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Abstract
We investigate the phenomenon of grokking
– delayed generalization accompanied by non-
monotonic test loss behavior – in a simple
binary logistic classification task, for which
"memorizing" and "generalizing" solutions can
be strictly defined. Surprisingly, we find that
grokking arises naturally even in this minimal
model when the parameters of the problem
are close to a critical point, and provide
both empirical and analytical insights into its
mechanism. Concretely, by appealing to the
implicit bias of gradient descent, we show that
logistic regression can exhibit grokking when
the training dataset is nearly linearly separable
from the origin and there is strong noise in the
perpendicular directions. The underlying reason
is that near the critical point, "flat" directions
in the loss landscape with nearly zero gradient
cause training dynamics to linger for arbitrarily
long times near quasi-stable solutions before
eventually reaching the global minimum. Finally,
we highlight similarities between our findings and
the recent literature, strengthening the conjecture
that grokking generally occurs in proximity to
the interpolation threshold, reminiscent of critical
phenomena often observed in physical systems.

1. Introduction
Understanding the relationship between the intrinsic
properties of data, the training dynamics of neural networks
(NNs), and their ability to generalize is crucial to explaining
the success of modern machine learning (ML) algorithms.
In particular, highly over-parameterized models based on
the transformer architecture (Vaswani et al., 2023), such as
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Large Language Models (LLMs) (OpenAI, 2024; Google,
2023; Zeng et al., 2022; Brown et al., 2020; Chowdhery
et al., 2022; Anil et al., 2023), as well as state of the art
models for computer vision (Srivastava & Sharma, 2023),
defy expectations and are able to generalize with a number
of parameters far exceeding the so called interpolation
threshold (Kaplan et al., 2020; Schaeffer et al., 2023).
Interestingly, these models have been shown to exhibit
unpredictable behaviors when changing the number of
network parameters, not only with respect to generalization,
but also in their learning dynamics.

One such phenomenon, known as Grokking, was first
observed by Power et al. (2022) during the training of a
transformer model on modular arithmetic tasks. Grokking
occurs when a model initially achieves perfect training
accuracy but no generalization (i.e. no better than a random
predictor), and upon further training, transitions to almost
perfect generalization. This phenomenon has garnered
substantial attention in recent years (Gromov, 2023; Liu
et al., 2023; Xu et al., 2023) due to its striking contrast
with naive expectations, whereby over-fitting is generally
seen as an undesirable property of models that should not
generalize with further training, originally dealt with using
early stopping (Prechelt, 1996).

In this work, we present a straightforward model where
grokking naturally emerges, allowing us to identify and
analyze its fundamental cause as proximity of the system
to a critical point. In our simple yet illuminating setting,
the asymptotic optimal solution can always be identified,
allowing a sharp definition of notions that are typically
ambiguous, such as "memorization" and "learning".

We study a typical logistic binary classification problem,
with the goal of finding a linear separator between two
Gaussians with distinct labels. We assume that the
Gaussians are well separated along the separation axis and
contains noise in all perpendicular directions. Extensions of
this setup are considered in Sec. 5. We mainly focus on the
limit of large N, d → ∞ while keeping the ratio λ = d/N
fixed, although the results can be generalized.

Our main contributions are:

1. We prove, and demonstrate numerically, that grokking
may occur in this setting, and is promoted when λ is
close to 1/2 and the separation along the separation
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between the Gaussians is small relative to the noise in
other directions.

2. We show that this happens because λ = 1/2 is a
critical point. That is, for λ < 1/2 the model
will almost surely asymptotically approach perfect
generalization accuracy and vanishing loss, while
for λ > 1/2 the model will almost surely achieve
imperfect generalization accuracy and the population
loss will diverge at t → ∞.

3. More fundamentally, we show that generalization
depends on whether the training set is linearly
separable from the origin (that is, whether the origin
is contained in the convex hull of the training set). In
the limit N, d → ∞, the data almost surely separable
from the origin if λ > 1/2 and almost surely false
otherwise.

4. Moreover, we show that near the threshold value λ =
1/2 (or, more generally, when the data is on the verge
of being separable), the dynamics may generically
track the overfitting solution for arbitrarily long
times before transitioning to the optimal generalizing
solution. This behavior manifests as a non-monotonic
test loss and delayed generalization, and can lead to
divergence of the "grokking time".

5. We construct a simple, one-dimensional model which
captures the salient aspects of the problem, and
explicitly solve the time evolution of the model
parameters for several interesting cases.

The main takeaway from this setup is that grokking happens
near a critical point, similar to “critical slowing down” in
the physics literature. While further study is needed, we
conjecture that this applies to other grokking examples, as
was demonstrated explicitly (though not necessarily stated in
these terms) in Levi et al. (2023); Liu et al. (2023); Gromov
(2023); Rubin et al. (2023; 2024).

The rest of the paper is organized as follows: Sec. 3 presents
our main analysis of grokking as a critical phenomenon,
beginning with empirical results in Sec. 3.1, studying the
possible solutions in Sec. 3.2, and relating it to linear
separability in Sec. 3.3. Finally, we bring together the
pieces in Sec. 3.4 to explain why grokking occurs near
the critical point. Sec. 4 provides a tractable effective model
which fully captures the grokking dynamics. In Sec. 5,
we discuss generalizations of this setup. We conclude in
Sec. 6 and discuss future directions. In the appendices we
discuss several generalizations of our results and provide
some further proofs and derivations.

2. Related Work
Following the discovery of grokking by Power et al. (2022),
numerous studies have attempted to elucidate its underlying
mechanisms. Liu et al. (2022) showed that when sufficient
data determines the structured representation, perfect
generalization can be achieved on a non-modular addition
task. Other works have identified factors contributing to
grokking, including pattern learning (Davies et al., 2023),
delayed robustness (Humayun et al., 2024), and transitions
from memorization to circuit formation (Nanda et al., 2023),
and the role of activation sparsity, weight entropy, and circuit
complexity in real-world tasks (Golechha, 2024). Others
analyzed the trigonometric algorithms learned by networks
after grokking (Nanda et al., 2023; Chughtai et al., 2023;
Merrill et al., 2023; Gromov, 2023), and demonstrated
similar dynamics in sparse parity tasks (Merrill et al.,
2023). Additional works proposed "slingshots" (Thilak
et al., 2022) or "oscillations" (Notsawo et al., 2023) as
explanations for grokking, whereas others focused on the
role of regularization (Power et al., 2022; Liu et al., 2023)
and of numerical precision (Prieto et al., 2025), which may
significantly impact grokking in certain scenarios. We stress
that our work requires none of these in order to exhibit or
explain grokking.

Recently, a body of works on solvable models which
grok in various settings has emerged. Liu et al. (2023);
Kumar et al. (2023) and Lyu et al. (2024) have linked
grokking to memorization and transitions from lazy to rich
dynamics. Žunkovič & Ilievski (2022); Gromov (2023);
Doshi et al. (2024) analyzed solvable models exhibiting
grokking and related their findings to the formation of latent-
space structure, Xu et al. (2023) related grokking to benign
over-fitting for ReLU networks on XOR data, Rubin et al.
(2024) described grokking as a first-order phase transition,
and Levi et al. (2023) provide the full dynamical solution of
grokking in linear regression. Our work attempts to sidestep
external probes, and fill the gap between solvable models
and representation learning, whereby we can always identify
the optimal solutions, while still solving the dynamics of the
model. To accomplish this, our work relies on the results of
Soudry et al. (2018); Nacson et al. (2019); Ji & Telgarsky
(2019), which analyze the late-time dynamics properties of
logistic regression for separable and inseparable data under
gradient descent (GD).

3. Grokking in Binary Classification
3.1. Model setup and empirical results

Consider a dataset of N training samples {x̃i}Ni=1 ⊂ Rd+1.
We investigate the case where the data consists of two
Gaussian distributions with opposite labels, well separated
along the axis of separation but with added noise in all

2



Grokking at the Edge of Linear Separability

SeparableInseparable SeparableInseparable

Figure 1. Left panels: Gradient descent dynamics for three different values of λ = d/N . Loss and accuracy over the train and test
datasets, and the time evolution of b(t) and ∥S(t)∥. Grokking is significant only when λ approaches to 1/2 from below. We can see that
for λ > 1/2, ∥S∥ increases indefinitely and generalization is not possible (see Eq. (4)). The parameters are N = 4 ·104,σ = 5, η = 0.01.
The direction of S(t = 0) was drawn isotropically with ∥S0∥ = 0.1 and b(t = 0) = 0. The number of test samples is Ntest = 104.
Right panels: Top: The norm of the limiting value S∞ in the separable case λ > 1/2, as a function of λ. Note that ∥S∞∥ diverges for
λ → 1

2
. Middle: the accuracy at the end of the training (in blue), and the predicted limiting accuracy (orange), calculated only using the

margin of the dataset, see Prop. 3.2. Bottom: The Grokking time, defined here as the delay between the times when Atrain/gen surpass a
threshold of 0.9. Grokking time and ∥S∞∥ diverge near λ = 1/2. Additional details regarding the experiments can be found in App. K.

other directions. WLOG, we take the separation between
the Gaussians to be along the first axis. Explicitly, the
distribution of the data is x̃i ∼ N (±µ,Σ) where the
covariance Σ is diagnoal with Σ11 = σA and Σii = σB

for i > 1, and µ = (µ, 0, 0, ...) is a vector pointing in the
direction of the first axis with magnitude µ. We consider a
binary logistic regression task with a linear model without
bias.

Throughout this work, we focus on the regime σA ≪ µ,
which allows full generalization below the critical point. We
explain the reasoning behind this assumption, and discuss
cases where it does not hold in Sec. 5. We also note that
neither Gaussianity nor the assumption of unit covariance is
essential for our analysis, and are only made for simplicity
(see App. G).

Reduction to a d-dimensional problem with bias.

We consider now the limiting case σA = 0, in which the
first coordinate of each data point is simply ±µ. In this
case, the gradient flow dynamics can be exactly mapped to
a d-dimensional problem with bias, in which all points are
assigned the same label. The key idea is that, up to a scaling
factor, the data points take the form x̃i = (1,xi), where
xi ∼ N (0,

σ2
B

µ2 Id) is a d-dimensional vector (Id is the d×d

identity matrix). In this formulation, it is standard to treat
the first coordinate of the weight vector as the bias term. A
more rigorous justification for this equivalence is provided
in App. H, where it is also shown that under this mapping
the d−dimensional problem the effective learning rate is
faster by a factor of µ2. The benefit of this equivalence is
that the analysis of the equivalent model is simpler.

To sum up, for simplicity, throughout this paper we will
analyze the following equivalent d-dimensional problem:
Consider N training samples {xi}Ni=1 ⊂ Rd where xi ∼
N (0, σ2Id) and σ > 0 is the feature standard deviation
(mapped to σB/µ in the model above). Consider logistic
classification, where all input points are assigned the same
label, which for concreteness we take as {yi}Ni=1 = −1.

Linear model: loss and accuracy. The model parameters
are a weight vector S ∈ Rd and a bias term b ∈ R. The
output is a scalar fi = f(xi) = S · xi + b. We optimize
the empirical cross-entropy loss L(S, b) and measure the
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empirical accuracy A(S, b), given by1

L(S, b) = 1

N

N∑
i=1

ℓ
(
STxi + b

)
, (1)

A =
1

N

N∑
i=1

Θ
(
−STxi − b

)
,

where ℓ(fi) = log
(
1 + e−yi·fi

)
= log

(
1 + efi

)
is the

single sample loss and Θ(z) is the Heaviside function,
defined as Θ(z) = 1 if z ≥ 0 and Θ(z) = 0 if z < 0.

Optimizer. Throughout the main text we use gradient
descent (GD) dynamics. The effects of other optimizers
are discussed in App. F. The GD equations at training step t
with learning rate η are

St+1 − St = −η∇SL, bt+1 − bt = −η∂bL. (2)

In this paper we will focus on the gradient flow (GF) limit
(η → 0) of these equations.

Numerical results. In Fig. 1, we show numerical results
depicting the gradient-descent dynamics of the model across
three values of λ ≡ d/N . Notably, we observe a significant
grokking effect, both in the non-monotonicity of the test loss,
and a delayed rise in test accuracy, only when λ → λc =
1/2 (there may be some differences between the grokking
observed here and other examples in the literature, but they
seem to be superficial - see App. B). In the following section,
we explain how λc can be interpreted as the interpolation
threshold in this setting.

3.2. The generalizing and over-fitting solutions

To understand grokking in this setup, we begin by examining
the optimal generalizing solution. Since the support of the
input distribution is unbounded and all labels are equal, the
model must position all points in Rd on the same side of
the separating hyperplane, effectively pushing the decision
boundary to infinity.

To see this rigorously, we derive expressions for the
generalization accuracy and loss. Since the data follows a
Gaussian distribution, xi ∼ N (0, σ2Id), the generalization
(population) loss is, by definition:

Lgen = Ex∼N (0,σ2Id)

[
log
(
1 + exp

(
STx+ b

))]
(3)

= Ey∼N (0,1)

[
log
(
1 + eσ∥S∥y+b

)]
,

where we used the fact that STx ∼ N (0, ∥S∥2σ2). Note
that Lgen depends only on b and ∥S∥. Similarly, the

1The labels do not appear explicitly in L since they are identical
for all samples.

generalization accuracy is given by:

Agen(S, b) = Ey∼N (0,1)

[
Θ(−σ∥S∥y − b)

]
(4)

=
1

2

[
1− erf

(
1√
2

b

σ∥S∥

)]
,

where erf is the error function.

Proposition 3.1. Perfect generalization, i.e., Lgen → 0
and Agen → 1, is achieved only if both b → −∞ and
b/∥S∥ → −∞. That is, b must tend to negative infinity
while also being infinitely large compared to ∥S∥.

Proof. It is easily seen from Eq. (4) that the condition
Agen → 1 requires b/∥S∥ → −∞. If b is bounded, then
this can only happen for ∥S∥ → 0, but this cannot be since
then Eq. (3) implies that Lgen is bounded away from zero.
Therefore, perfect generalization implies both b → −∞ and
b/∥S∥ → −∞.

The bottom panels of Fig. 1 show that b → −∞ at late times
in all parameter regimes. However, while ∥S∥ saturates at
a constant value for λ < 1/2, it diverges when t → ∞ for
λ > 1/2, and does so at a rate comparable to b, leading to
sub-optimal generalization limt→∞ A(S(t), b(t)) < 1.

Relation to prior results regarding separability. These
results are closely related to the framework developed
by Soudry et al. (2018), who studied the convergence of
binary classification for linearly separable data, and later
expanded by Ji & Telgarsky (2019) for inseparable data. In
our case, since the model contains a bias term and all labels
are the same, the data is always separable by a hyperplane
“at infinity”. To use their framework, we need to work in
an extended space of dimension d+ 1, where we define the
extended weight vector w = (S, b) ∈ Rd+1. The network
solution at the late stages of training can be obtained as a
direct corollary of Theorem 3 from Soudry et al. (2018).

Theorem 1 (Rephrased from Theorem 3 of Soudry et al.
(2018) ). In the setting described above, for any smooth
monotonically decreasing loss function with an exponential
tail, and for small learning rate, GD iterates will converge
at the late stages of training to:

w(t) = wSVM log(t) + ρ(t) , (5)

wSVM = argmin
(S,b)

{
∥S∥2 + b2 s.t. STxi + b ≤ −1

}
.

Here, wSVM is the solution2 to the hard margin SVM
problem in the extended d + 1 space and ρ is a residual
vector which is bounded for all t.

Connecting this result to the previous discussion, we see

2Note that the SVM solution in the extended d+ 1 is not the
same as the typical formulation of the Support Vector Machine
(SVM) with bias in d dimensions, because of the different penalty
used for the bias term.
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Separable

Inseparable

Separable

Inseparable

Figure 2. Evolution of the model parameters. (left) the distribution of STxi/∥S∥, where S is the final spatial weight vector that
was found using GD dynamics for λ = 0.05, 0.48, 0.52, 0.8. The parameters are identical to those of Fig. 1. We can see that for
λ = 0.05, 0.48 the model does not separate the data (because the data is inseparable) while for 0.52, 0.8 it does. The margin is plotted for
λ = 0.8 Middle panel: ∥S(t)∥, optimized with GD using the exponential loss given in Eq. (6), with and without a bias term. With a bias
term, the result is shown as a function of the conformal time (Eq. (8). The two curves follow the same path different rates. The inset
shows d∥S∥

d log(t)
and db

d log(t)
, (right) Optimization paths for different λ values, shown in the b, σ∥S∥ plane. For inseparable data b diverges

while S is bounded, while slightly above the limit of separability both b and ∥S∥ diverge.

indeed that either |b| and/or ∥S∥ must diverge at infinite
training times, and the question is now reduced to the
directionality of wSVM.

The generalizing solution, which classifies correctly all
points in Rd is when wSVM = (0,−1), (0 being the d-
dimensional zero vector) i.e. when it points in the direction
of the bias and the separating plane is at infinity. This
is exactly the aforementioned condition b → −∞ and
|b|/ ∥S∥ → ∞. In contrast, over-fitting occurs when the
hyperplane is far enough from the data to correctly classify
all the training samples, but does not go to infinity. In
the extended space, this means that wSVM also contains a
component in the direction of the data, and the model did
not correctly learn the data distribution. In what follows, we
will show that the factor determining whether we observe
grokking in this setup is not the regular separability of data
points from one another, but rather “separability from the
origin” (or, separability with no bias), defined as follows:

Definition 2. A data-set {xi}Ni=1, xi ∈ Rd×1 is linearly
separable from the origin iff there exists a vector S ∈ Rd×1

such that STxi > 0 for any i.

In the rest of the paper, we will use “separable” as a
shorthand for “separable from the origin”. We are now
ready to present our main claims regarding the grokking
phenomenology presented in Fig. 1. We argue that:

• The generalization and overfitting at t → ∞ depend
only on whether the training samples (in Rd) are
separable (from the origin) (Prop. 3.2).

• For large N, d, the training set is separable if λ > 1
2

and inseparable for λ < 1
2 (Prop. 3.3).

• For separable training sets (λ > 1
2 ), the model

will always overfit, and the limiting generalization
accuracy is directly related to the optimal separating

margin (Prop. 3.2.2). For inseparable training sets
(λ < 1

2 ) the model will always generalize perfectly:
limt→∞ b(t) = ∞ and S saturates on a finite value
limt→∞ S(t) = S∞ (Prop. 3.2.1).

• However, for λ → 1
2

−, the training set is on the verge
of separability, and ∥S∞∥ diverges (Prop. 3.4).

• Consequently, our main result follows: dynamics may
take arbitrarily long times to reach the generalizing
solution. This is the underlying mechanism of
grokking in this setting.

3.3. Separability determines whether the model will
generalize perfectly or not

Proposition 3.2. The model will reach perfect
generalization if and only if the data is not linearly
separable from the origin. In particular:

1. If the data is not linearly separable from the origin,
then limt→∞ b(t) = ∞ while S saturates on a finite
value limt→∞ S(t) = S∞.

2. If the data is linearly separable from the origin,
then limt→∞ Agen = 1

2

[
1 + erf

(
1

σM
√
2

)]
, where

M is the margin.

To prove Prop. 3.2, we first note that due to the “exponential
tail” of the cross-entropy loss, at late times the loss is
dominated by samples with large model outputs f =
STx+ b, for which the cross-entropy loss ℓ(f) of Eq. (2),
approaches the exponential loss ℓe(f) = ef (Soudry
et al., 2018; Nacson et al., 2019; Ji & Telgarsky, 2019).
Specifically, the exponential loss must converge to the same
late time dynamics as the cross entropy loss. Therefore, we
will consider the exponential loss for which the calculations
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are tractable,

Le(S, b) =
1

N

N∑
i=1

eS
Txi+b. (6)

In the gradient-flow limit, the induced dynamics are

∂S

∂t
= − η

N
eb
∑
i

eS
Txixi ,

∂b

∂t
= − η

N
eb
∑
i

eS
Txi . (7)

Note that both rates are proportional to a common time-
dependent scalar eb(t). We can thus define a so-called
conformal time3: τ(t) =

´ t
0
eb(t

′)dt′, which is a strictly
increasing function of t. In terms of τ , the time evolution
takes the form
∂S

∂τ
= − η

N

∑
i

eS
Txixi ,

∂b

∂τ
= − η

N

∑
i

eS
Txi . (8)

The importance of this change of variables is that the
dynamics of S(τ) in terms of the conformal time are
identical to those of S(t) in the absence of bias. That
is, S(t) follows the same path that would be obtained by
minimizing L = 1

N

∑N
i=1 e

STxi , but does so at a different
rate which depends exponentially on the current value of
b(t). This is demonstrated in the middle panel of Fig. 2.
Since τ(t) diverges for t → ∞ (see App. C for details),
S(t) must follow the same path at long times, as it would
have followed without bias. We can now complete the proof:

Proof of 3.2.1 (inseparable case) Consider the dynamics
without bias. In case the data is inseparable, Le of Eq. (6)
is unbounded in all directions of S. That is, for any unit
vector e ∈ Rd we have limα→∞ Le(αe, 0) = ∞. Since Le

is convex, the gradient flow dynamics will lead to a global
minimum at a finite point limt→∞ S(t) = S∞. Recalling
the discussion of conformal time above, this is also the limit
of the dynamics with bias. From Eq. (5), we know that either
∥S(t)∥ or |b(t)| must diverge, and since S(t) approaches
a finite value, we conclude that |b|/ ∥S∥ → ∞ for t → ∞.
That is, wSVM = (0,−1) and the model flows towards the
generalizing solution.

Proof of 3.2.2 (separable case) When the training set
is separable from the origin, it is easier to examine the
optimization problem in Eq. (5) directly. We wish to
minimize ∥w∥2 = ∥S∥2 + b2 under the separability
constraints. The generalizing solution wg = (0,−1)
satisfies all constraints trivially and has ∥wg∥ = 1.
However, since the data is separable from the origin, there
exists another solution to the constraints, namely w∗ =
(S∗, 0), where S∗ is the separating vector in d dimensions

3This is a common measure in cosmology and gravitational
physics to describe co-moving objects in an expanding or shrinking
spacetime background (Guth, 1981).

without bias, i.e. the solution to

S∗ = argmin
S

{
∥S∥2 s.t. STxi ≤ −1

}
. (9)

The norm of S∗ is the inverse of the separation margin
M = 1/ ∥S∗∥.

Due to convexity, any convex combination of wg and
w∗ will also satisfy the constraints, and since they are
orthogonal it also has a smaller norm. The combination with
the smallest norm is the global optimum, which is easily
shown to be proportional to wSVM ∝ (M2S∗,−1). That is,
both S and b diverge when t → ∞ and limt→∞

b(t)
∥S(t)∥ =

− 1
M . Plugging the result into Eq. (4) completes the proof.

Next, we establish the relation between separability and λ.
Proposition 3.3. For N, d → ∞, and λ = d/N , the dataset
is separable from the origin with probability 1, if λ > 1/2,
and is inseparable if λ < 1/2.

In other words, Prop. 3.3 states that (almost) any large set
of N points in d dimensions are separable (i.e., lie on the
same "half" of some hypersphere passing through origin)
as long as d > N/2. This is a direct corollary of Wendel’s
theorem (Wendel, 1962) which we prove in App. A.

3.4. Collecting the pieces: why does grokking happen
near λ = 1

2?

We have established that for λ < 1
2 , the model will almost

surely generalize perfectly. For infinitely long times, S(t)
converges to a finite vector S∞, and b(t) diverges. For
λ > 1

2 , the model will almost surely overfit. Intuitively, one
should expect that in the vicinity of the critical point λc =

1
2 ,

where the two solutions exchange stability, dynamics may
become slow. This is because for λ > 1/2 the overfitting
solution is stable and for λ smaller than but close to 1/2, it is
unstable but only slightly so. Therefore, the dynamics may
spend arbitrarily long times in the vicinity of the overfitting
solution before flowing to the generalizing solution. This is
delayed generalization. Rigorously, this happens through of
the following properties:

Proposition 3.4. For λ → 1
2

−
, ∥S∞∥ → ∞.

That is, when the training set is non-separable, but on
the verge of separability, ∥S∞∥ obtains arbitrarily large
values. This statement is formally proven in App. D and
empirically demonstrated in Fig. 1. It can also be obtained
as a corollary of Ji & Telgarsky (2019). An intuitive
geometric interpretation is that for a nearly separable set,
S(t) approaches a finite limit S∞, but a small translation of
the data would make the set separable, and correspondingly
would make |S(t)| → ∞. Smoothness thus implies |S∞|
must be large if the set is almost separable.
Proposition 3.5. For λ < 1

2 and σ large enough, S(t) will
approach its asymptotic value S∞ arbitrarily fast.
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Figure 3. Simplified model. Three left panels: Illustration of the hard margin SVM problem in 1+1 dimensions for the simplified model.
Note that −wSV M is the point closest to the origin in the intersection of the two shaded regions. When wSV M points along the bias axis
(the vertical axis) if and only if x2 ≥ 0. (right) Grokking time, defined as the time it takes for the generalization accuracy to reach 0.95,
plotted against σ and 1− 2λ. We see it diverges when both λ → 1/2 and σ → ∞, while neither condition suffices alone.

λ < 1/2 (x2 > 0) λ = 1/2 (x2 = 0) λ > 1/2 (x2 < 0)

b(t ≫ 1) − log(t) − log(t) − 1
1+M2 log(t)

∥S∥(t ≫ 1) 1
2(1−λ) log

(
1

1−2λ

)
log(log(t)) M

1+M2 log(t)

Table 1. Summary of the different regimes of the simplified model, where x1 = −1, x2 = 1− 2λ, and the margin is M = |x2| = 2λ− 1.

Proof. To see this, it is useful to define the rescaled
variables x̃i = xi/σ, S̃ = σS. Clearly, x̃i ∼ N (0, Id).
The gradient flow equations in terms of the rescaled
variables are (we study the exponential loss for simplicity)

∂S̃

∂t
= −σ2 η

N
eb
∑
i

eS̃
T
x̃i x̃i, (10)

∂b

∂t
= − η

N
eb
∑
i

eS̃
T
x̃i .

Note that these are identical to the gradient flow equations
of the original variables given by Eq. (7), but the dynamics
of S are faster by factor of σ2. Thus, by taking a large σ,
S̃ will approach its asymptotic value S∞ arbitrarily fast,
while the dynamics of b will not change. Recalling that σ
was mapped to σB/µ in the original two-Gaussians model
introduced at the start, we note that a large σ is equivalent
to introducing large noise in directions perpendicular to the
separation axis.

We can now understand mechanistically how grokking
occurs. For λ values close enough to 1

2 from below, the
limiting norm ∥S∞∥ is arbitrarily large (Prop. 3.4). For
large enough σ, S(t) will grow arbitrarily fast towards S∞
(Prop. 3.5). Under these conditions, the growth rate of b(t)
remains boudned, and the generalization can be delayed
for arbitrarily long times. Note that this necessitates both
λ → 1

2

− and σ → ∞, as is also demonstrated in the right
panel of Fig. 3. Interestingly, using adaptive momentum
based optimizers like ADAM (Kingma & Ba, 2017), one
can see significant grokking even for σ = 1, see App. B and
App. F for more details.

4. Insights From a Simplified Model
Our main claim is that the asymptotic dynamics depend
only on the separability of the training set, and that grokking
occurs at the edge of linear separability. This intuition can
be worked out explicitly in a much simpler setting in one
dimension. In this case, separability boils down to asking
whether the origin is contained between the extremal points
min{xi} and max{xi}. Therefore, all the phenomenology
of the full model described in the previous sections can
be captured by a training set consisting of only 2 points
x1, x2, representing the points with maximal and minimal
projections along S∞. For consistency with the problem of
Gaussian data, we parameterize this set as

x1 = −σ , x2 = σ (1− 2λ) , (11)

L(S, b) = 1

2

(
eSx1+b + eSx2+b

)
,

so that the scale of xi is σ, and they are separable
(inseparable) for λ < 1/2 (λ > 1/2). We note that
the margin of the dataset from the origin has the same
dependence as in the Gaussian model with N points in
d dimensions.

The asymptotic dynamics of this model qualitatively, and
sometimes quantitatively, capture the phenomenology of the
full problem. The model is fully tractable analytically and
the detailed analysis is presented in App. E. We summarize
here the main results:

• The left panels of Fig. 3 show the geometry of the
problem in 1 + 1 dimensions. It is easily seen that the
optimal SVM solution is s = 0, b = −1 if and only if
the data is not separable, i.e. when the segment x2 ≥ 0

7
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contains the origin.
• The limiting value S∞ can be easily found to be
S∞ = 1

2(λ−1) log (1− 2λ) , for the separable case
λ < 1/2. Indeed, it diverges logarithmically at
λ = 1/2, in agreement with the numerical results of
the full model presented in the upper-right panel of
Fig. 1. The long time dynamics of ∥S(t)∥ and b(t) are
summarized in Table 1.

• The behavior of the loss and accuracy of the simplified
model as a function of λ is remarkably similar to that
of the full model, see Fig. 8 in App. E.

Criticality. We note that this result bears a striking
resemblance to that of Levi et al. (2023), which employed
the MSE loss in a linear regression problem, again for N
points sampled iid from an isotropic Gaussian distribution.
In their setting, the interpolation threshold is at λ = 1,
in the sense that for λ < 1 the model always generalizes
asymptotically, and never generalizes for λ > 1. They
also found logarithmic divergence of the "grokking time"
(the time difference between the times it takes for the
generalization and training accuracy to reach a certain
threshold). It diverges as a function of the distance from
criticality as ∝ log (1−

√
λ), which was explained in terms

of a “critical slowing down” effect, arising from a vanishing
eigenvalue of the data covariance near criticality. While the
two problems are quite different, they both display a critical
behavior near an effective interpolation threshold of the
corresponding problem. We believe this is not a coincidence
but rather a manifestation of a deeper relation between the
behaviors of NNs in the vicinity of critical points.

5. Extensions of the Setup
In our original setup, we assumed σA ≪ µ, which allowed
us to reduce the model to a d-dimensional problem with a
bias term under constant labels. In this section, we explore
what happens when this assumption does not hold. We show
that while the condition σA ≪ µ (or equivalently, constant
labels) is essential for full generalization, grokking – in the
sense of delayed generalization as well as non-monotonic
test loss behavior, can still be observed provided the system
remains near the critical point of linear separability.

Typically, binary classification models fully generalize only
when the number of samples is sufficiently large, i.e.,
N ≫ d. However, grokking is observed outside this regime,
with d/N ≈ 1/2. Here, the assumption σA ≪ µ becomes
particularly useful, as it ensures perfect test accuracy for any
λ below the critical point. When this assumption is relaxed,
full generalization is no longer guaranteed. Nevertheless,
the underlying mechanism discussed in earlier sections
remains: near the critical point λ = 1/2, the model can
initially reduce the loss by adjusting the direction and
norm of the perpendicular weights S2, ...,Sd+1, while

only modifying S1 at later times, leading to delayed
generalization. In Fig. 4 we present numerical simulations
supporting this behavior: While σ = 0.01 is small enough
to closely follow the behavior of σ = 0, for larger values
(σ = 0.05, 0.1), we observe that the limiting accuracy is
below 1 and the loss begins to diverge at long times.

Finally, we note that while the precise dynamics depend on
the data distribution and labeling scheme, similar results
are expected for a broad class of linear binary classification
problems, as long as λ is near the critical point. For instance,
in App. I, we analyze a generalization of the setup from
another perspective, where the constant labels are explicitly
modified to be discriminative. The results closely resemble
those presented here, see Fig. 16.
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100
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Figure 4. Top: The dynamics of the loss and accuracy for the
2-Gaussians model, with different values of σ. The parameters
are λ = 0.4, µ = 0.2, GD optimizer, and η = 0.1. Bottom:
illustration of the separation for each σ.
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6. Discussion, conclusions and limitations
We studied the dynamics of gradient descent in a simple
setting of logistic classification with strong noise. We have
shown that in this setting, grokking occurs near a critical
point in the asymptotic dynamics. Specifically, at the critical
point, which occurs at λ = 1/2 in our case, the overfitting
and generalizing solutions exchange stability. We showed
that this non-analytic change in the asymptotic dynamics
is the cause for grokking, much like in Rubin et al. (2024);
Levi et al. (2023); Doshi et al. (2024), and to some extent
also Humayun et al. (2024), who showed that grokking
occurs near a phase transition.

Intuitively, in the vicinity of the critical point there are
“flat directions” in the loss landscape. These directions
may cause training to stay in the vicinity of almost-
stable solutions for arbitrarily long times periods before
eventually converging to the global minimum. In the physics
literature, this behavior is known as “critical slowing down”
(e.g. (Sethna, 2021)). In the current context, this is the
mechanism of delayed generalization, which also explains
the non-monotonic evolution of the generalization loss.

While we cannot show it rigorously, we conjecture that
grokking is intimately related to such critical points also
in different settings. In a few examples, this has been
directly demonstrated, (Levi et al., 2023; Rubin et al., 2023;
2024; Humayun et al., 2024). We note that other intriguing
phenomena, such as the non-monotonic dependence of
asymptotic performance on model complexity, a.k.a “double
descent”, have also been proposed to be related to criticality,
e.g. (Schaeffer et al., 2023).

If this is indeed the case, then in analogy to the theory
of critical phenomena in physics, there might exist
“universality classes” that have similar critical behavior,
but possibly very different underlying mechanisms (Sethna,
2021). We will address this connection in future work.

Limitations: We considered a specific problem of linear
binary classification in high dimensions. It is natural to ask
how our results extend to more complex data, for instance
including non-trivial correlations, hierarchical structure, or
a finite sample space, as in the original observation of
grokking in Power et al. (2022); Gromov (2023). While
we believe the same analysis can be repeated in these
instances, in the sense of (non)linear separability, we leave
this to future work. In any case, we do not claim that the
underlying mechanism of criticality is necessarily related to
separability.

The analytic were all done in the GF limit, and while our
results were verified by experiments with a finite learning
rate, it may be interesting to study how large learning rates
affect this setup, possibly relating to catapults (Lewkowycz
et al., 2020) or the edge of stability mechanism (Cohen et al.,

2022).

Lastly, we did not study the prospect of nonlinear logistic
regression, which is closer to deep learning models in the
wild. We believe some of our results may be generalized,
provided we accept a “feature map” description of the model
up to the last layer, and consider the SVM solution on the
learned features.
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Žunkovič, B. and Ilievski, E. Grokking phase transitions in
learning local rules with gradient descent, 2022.

11

http://eudml.org/doc/165817


Grokking at the Edge of Linear Separability

Appendix
A. Separability and Wendel’s Theorem
Wendel’s theorem (Wendel, 1962) states that the probability that N random vectors drawn from a distribution in d dimensions
are linearly separable, is

p =
1

2N−1

d−1∑
k=0

(
N − 1

k

)
(12)

In relation to our work, the only assumptions required from the distribution is that

• It is symmetric around the origin, i.e. P (x) = P (−x), and

• The dataset is almost surely in general position.

We note that Eq. (12) is a the cumulative probability function of the Binomial distribution, i.e. the probability that the the
number of successes is greater than d out of N − 1 attempts with success probability 1

2 . The central limit theorem states that
in the limit of large N, d the binomial distribution approaches a Gaussian, and thus the cumulative distribution function
approaches the error function. Straightforward manipulations show that for large N, d,

p(λ) → 1

2

[
1 + erf

(√
d

(√
2λ− 1√

2λ

))]
, λ =

d

N
. (13)

It is seen that for d → ∞ the transition becomes infinitely sharp as a function of lambda and we have

lim
d→∞

p(λ) =


0 λ < 1

2
1
2 λ = 1

2

1 λ > 1
2

(14)

See also Cover (1965) for further discussion.

B. Relation to canonical examples
In this section, we will discuss the similarities and differences of our work with previous examples of Grokking in the
literature, focusing on the seminal work of Power et. al. (Power et al., 2022). We first note that Grokking at Power et. al. is
significant when the fraction of the data used for training α = Ntraining/N is near a critical value αc, in the sense that the
system achieves perfect generalization if and only if α > αc, as can be seen in Fig. 1 (center) of their paper. We expect that
this non-analytic behavior in the long time limit of training will be the crucial property that underlies grokking. That is, we
expect that near such points the dynamics will be slow. We note that α in Power et. al. is analogous to our λ parameter,
defining an effective "interpolation threshold" for the modular arithmetic problem.

Secondly, we note that a noticeable difference between our work and that of Power et. al. is that in our case, the accuracy
shows a rise from the start rather than staying at chance level for a long time before generalizing. We argue that this is
only a superficial discrepancy that depends on the choice of optimizer and fine-tuning of hyperparameters, and that the
fundamental mechanism (that grokking occurs near critical points in which solutions exchange stability and dynamics are
generically slow) is the same.

Indeed, in Fig. 5 we show that our setup is capable of grokking with accuracy staying at chance level (50%) at the start,
similar to Power et al. We achieved this by using λ values closer to half (“almost separable”) and the Adam optimizer
instead of vanilla gradient descent (GD). The fact that this optimizer converges faster on the training data is no coincidence:
the adaptive learning rate leads to quicker convergence to large values of |S| (the “memorizing solution"), maintaining
accuracy at chance level until later stages, before going to large −b (the "generalizing solution"). Notably, Power et al.
also used Adam (or AdamW). In conclusion, although Adam can lead to a slightly "cleaner" grokking result, we explored
GD because it is easier to derive analytical insights from it while, we believe, not changing the underlying mechanism of
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Figure 5. Grokking in a similar setup to the results in the main text but with ADAM optimizer (with β1 = 0.8, β2 = 0.9), instead of GD.
The parameters are λ = d/N = 0.495, N = 4000 and σ = 1.

grokking. Finally, We will also note that the non-monotonicity of the test loss is also a typical sign of Grokking that can be
seen in our setup (for example, compare Fig. 4 of Power et al. with the test loss in Fig. 5).

C. Divergence of the conformal time

In the main text we have defined the “conformal time” τ =
´ t
0
eb(t

′)dt′ and saw that as the result the gradient-decent
trajectory of S(t) is the same as one that minimizes the exponential loss without bias: L = 1

N

∑N
i=1 e

STxi . However, if τ
is bounded it might reach a different fixed point. We will show now that indeed τ must diverge. First, we notice that the loss
must be bounded from above: If the points are not separable (that is, there is some ε > 0 such that for any ST

∥S∥ that we

choose ST

∥S∥xi > ε for any i), then it must be true since ∥S∥ is bounded — otherwise the loss would be infinite. If the points
are separable, then ∥S∥ might diverge (and will, as discussed in the main text) but at some point all of the arguments of
the exponent would be negative, so the loss would be trivially bounded by 1. Now, using the fact that ∂β

∂t = β ∂b
∂t we have

∂β
∂t = −ηβ2 1

N

∑
i e

S·xi . Denoting L(t) < C , we see that

− 1

β2

∂β

∂t
< ηC. (15)

We note that on the left-hand side we have a positive function (since ∂β
∂t < 0). In other words, ∂

∂t

[
1

β(t)

]
< ηC, so we get

that

1

β(t)
=

1

β(0)
+

ˆ t

0

∂

∂t

[
1

β(t)

]
<

1

β(0)
+

ˆ t

0

ηC =
1

β(0)
+ ηCt (16)

so that 1
β(t) < 1 + ηCt or, β(t) > 1

1+ηCt . This means that
´ t
0
β(t) >

´ t
0

1
1+ηεt , which diverges.
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Figure 6. Left panel: The fraction of positive ST
∞

∥S∞∥xi, which goes to a constant for λ = 1/2. Right panel: The fraction of separable
datasets for λ < 1/2 that were not included in the calculation.
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Figure 7. Numerical investigation of properties of the limiting distribution of STxi, as a function of 1− 2λ (averaged over different

random configurations). In blue, we plot the average value of positive ST
∞

∥S∞∥xi, for λ < 1/2 (by minimizing L = 1
N

∑N
i=1 e

STxi ), and
the margin for λ > 1/2 (using SVM).

D. Proof that S∞ diverges for almost separable data
We look at the function

f(S, {xi}) =
n∑

i=1

eS·xi x, S ∈ Rd (17)

We will assume n > d and that the data is in general position, and that it is not separable from the origin. Since for every S
we must have S · xi > 0 for some i, it is easy to see that f diverges when S grows large in any direction. Since f > 0, there
exists a global minimum at finite S.

A minimum (which is also unique under our assumptions but that’s not crucial) obeys

∂f

∂S
=

n∑
i=1

xie
S·xi = 0 (18)

If we divide this expression by f , we get
n∑

i=1

pixi = 0 pi =
eS·xi

f
0 ≤ pi ≤ 1,

∑
i

pi = 1 (19)

Eq. (19) means that the origin is a convex combination of the sample points with weights pi. We found that a necessary
condition for the existence of a critical point at a finite S is that the origin is contained in the convex hull of the sample
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points. This is of course equivalent to the condition that the origin is not linearly separable from the sample data.

We want to show that if the data is almost separable, that is, if it is not separable but the origin is close to the boundary of the
convex hull, then S must be large. The intuition for this comes from Eq. (19): if the origin is very close to the boundary of
the convex hull then some of the pi’s must be very large compared to the others, which can only happen if S is large.

In fact, the origin is exactly on the boundary of the convex hull (that is, the data is exactly on the edge of separability) if and
only if for every representation of the origin as a convex combination of the sample points,

n∑
i=1

qixi = 0 , (20)

the weights qi are non zero only for k sample points, say xi, . . . , xk, with k ≤ d, and x1, . . . xk are the vertices of a facet of
the convex hull. This naturally leads to the definition:

Definition We say that the origin is ϵ-close to the boundary if there exist k points x1, . . . , xk such that for every
representation of the type of Eq. (20), the total weight assigned to x1, . . . xk is at least 1− ϵ,

k∑
i=1

qi ≥ 1− ϵ

Theorem If the origin is ϵ-close to the boundary of the convex hull of the sample points, then the norm of S = argmin f
is bounded from below by

|S| ≥ 1

D
log

(
1− ϵ

ϵ

)
where D = maxij |xi − xj | is the diameter of the data.

Proof. We divide the points to two groups: A = {x1, . . . xk}, and B = {xk+1, . . . xN}. Since the origin is ϵ-close, the
ratio of the weights of the two groups is bounded by∑

i∈A pi∑
i∈B pi

≥ 1− ϵ

ϵ
(21)

Consider now the convex combination Eq. (19). Using Jensen’s inequality, we can bound the relative weights of the second
group by ∑

i∈B

eS·xi ≥ (N − k)eS·x̄ , with x̄ =
1

N − k

∑
i∈B

xi (22)

where x̄ is the average of the points in the second group. Therefore, the ratio is bounded by∑
i∈A pi∑
i∈B pi

=

∑
i∈A eS·xi∑
i∈B eS·xi

≤
∑

i∈A eS·xi

(N −K)eS·x̄ ≤ k

N − k
e|S|D ≤ k

N − k
e|S|D (23)

Combining Eq. (21) and Eq. (23) we get

1− ϵ

ϵ
≤ k

N − k
e|S|D ⇒ |S| ≥ 1

D
log

(
1− ϵ

ϵ
· N − k

k

)
(24)

Since k ≤ d, we also have N − k ≥ n− d.

Note that the same convexity argument would work also for logisitic loss f =
∑

i ℓ(S · xi), ℓ(z) = log (1 + ez), or any
other monotonic and convex ℓ. In this case the only difference is that the log function should be replaced the inverse of
ℓ.
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Figure 8. Simplified model (left, center) Loss and accuracy for different λ and σ = 5. dotted/solid lines represent the
training/generalization respectively. (right) Grokking time (the time difference between the time it takes for the training and generalization
loss to reach a certain threshold, ε = 10−50 in this case) for σ = 20. The data is in very good agreement with the prediction. (inset) how
grokking time is calculated for ε = 10−50 and λ = 10−4.

E. Details of the Simplified Model
E.1. Justification and Relation to the Full Model

We will provide here supplemental results regarding the justification of the simplified model (by numerical comparison to
the full model). To obtain the results we average over different random realizations: Assuming the so-called “self averaging”
property, we know that the average over a large number of finite systems should give us the same result as the infinite system
(where N, d → ∞ and the ratio is constant).

In the non-separable case, S∞ can be found by any optimizer that minimizes the loss L =
∑

eS
Txi . We note that when

getting close to the transition point, for any finite-sized system we have some probability of getting a separable set (even
though λ < 1/2), see Eq. (12). In this case, we just ignore the the result: In the right panel of Fig. 6 we present the fraction
of realizations that are separable. This will probably introduce some bias into the results which is likely the cause of the fact
that the average of positive samples (and similarly, the margin) does not go exactly to zero for λ → 1/2 (see Fig. 7). In the
left panel of Fig. 6 we present the fraction of positive ST

∞
∥S∞∥xi . Interestingly, it does not go to zero but to some positive

constant, implying that there is a singularity in the density of ST
∞

∥S∞∥xi at λ = 1/2.

E.2. Analytical Predictions

Here, we provide the full analysis of the model presented in Sec. 4, for a single point fixed at x1 = −1, and a second point
x2 = x = 1− 2λ, where λ = d/N .

The gradient flow equations in conformal time are given by

∂S

∂τ
= −η

2

(
xeSx − e−S

)
= −η

2

(
(1− 2λ)eS(1−2λ) − e−S

)
, (25)

∂b

∂τ
= −η

2

(
eSx + e−S

)
= −η

2

(
eS(1−2λ) + e−S

)
.

While there exist analytical solutions for Eq. (25), they do not necessarily provide any intuition, and so we find it better to
begin by investigating three special representative cases:

1. x2 = 1 (non-separable).

2. x2 = 0 (marginally non-separable).

3. x2 = −1 (separable).
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For x = 1 (A), the data is entirely non-separable in one dimension and the conformal time solutions are

S(τ) = log
(
tanh

(ητ
2

+ tanh−1
(
eS0
)))

, (26)

b(τ) = b0 + log

(
tanh

(
2 tanh−1

(
eS0
))

cosh
(
2 tanh−1

(
eS0
))

tanh
(
ητ + 2 tanh−1 (eS0)

)
cosh

(
ητ + 2 tanh−1 (eS0)

)) ,

in which case the generalization accuracy reaches 1 for τ → ∞, as b(τ) grows faster than S(τ) with conformal time.

For x2 = 0 (B), the equations in conformal time become:

∂S

∂τ
=

η

2
e−S ,

∂b

∂τ
= −η

2
(e−S + 1) (27)

By solving for S and plugging into ∂b
∂τ , we immediately get

S = log
(
eS0 +

η

2
τ
)
, b = − log

(
eS0 +

η

2
τ
)
− η

2
τ + S0 + b0. (28)

Using the fact that eb = ∂τ
∂t , we get that ∂τ

∂t = e−
η
2
τ

eS0+ η
2 τ

eS0+b0 , and taking another integral, we get that e
η
2 τ
[
eS0 − 1 + η

2 τ
]
=

eS0+b0 η
2 t+ (eS0 − 1). Taking the inverse of this, we finally get

τ =
2

η

[
W0

((
eS0+b0

η

2
t+ (eS0 − 1)

)
ee

S0−1
)
− eS0 + 1

]
, (29)

where W0 is the Lambert W function. We note that for large t we have τ ∼ log(t), and therefore b ∼ − log (t),
S ∼ log(log(t)), so it is interesting to note that in the critical point we still have limt→∞ S(t)/b(t) = 0 (i.e., accuracy goes
to 1), even though S diverges.

Finally, for x = −1 (C), the data is fully separable in one dimension and the solution in conformal time is given by

S(τ) = S0 + log
(
1 + ητe−S0

)
, b(τ) = b0 − log

(
1 + ητe−S0

)
, (30)

showing that the accuracy is bounded at A∞
gen = 1

2

(
1 + erf

(
1√
2

))
agreeing with Item 1 for M = 1.

For completeness, we report here the full solution, as a function of the conformal time τ =
´ t
0
eb(t)dt of Eq. (25). We define

f(y) = −
xey(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
(x+1)yx

)
x+ 2

− ey, (31)

then the solution for S(τ) is given by the inverse function f−1(u) evaluated at

u = −
xeS0(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(x+1)x

)
x+ 2

− τ

2
− eS0 , (32)

as

S(τ) = f−1

−
xeS0(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(x+1)x

)
x+ 2

− ητ

2
− eS0

 . (33)
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The solution for b(τ) is obtained simply by integrating Eq. (25), resulting in

b(τ) =
1

x

b0x− log

1− e
(1+x)f−1

(
−eS0−

eS0(2+x)x 2F1(1,1+ 1
x+1

;2+ 1
x+1

;eS0(1+x)x)
2+x

)
x

 (34)

+ log

1− e
(1+x)f−1

(
−eS0− ητ

2 −
eS0(2+x)x 2F1(1,1+ 1

x+1
;2+ 1

x+1
;eS0(1+x)x)

2+x

)
x


+ xf−1

−eS0 −
eS0(2+x)x 2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(1+x)x

)
2 + x


− xf−1

−eS0 − ητ

2
−

eS0(2+x)x 2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(1+x)x

)
2 + x

 .

While these solutions may not necessarily be instructive in this form, appropriate limits can be taken in order to obtain the
results in the main text.

E.3. Grokking time in the simplified model

We can define t∗tr, t
∗
gen as the times it would take for the training and generalization loss to reach some threshold ε. We can

find t∗tr by solving Ltr =
1
2e

b
(
e−S + eS(1−2λ)

)
= ε. We will assume that σ is large enough such that S = S∞ from the

start (as discussed in the main text, σ increase the rate that S goes to its final value). Therefore, we plug S∞ = − log(1−2λ),
and find that for λ which is close enough to 1/2, the loss is approximately given by Ltr =

1
2e

b. Comparing to ε and plugging
the long-time limit b = − log(η2 t), we find that

t∗tr =
1

ηε
. (35)

Similarly, using the generalization loss Lgen = ebeS
2/2 we can find that

t∗gen =
2

ηε
e

1
2 log2(1−2λ) (36)

It is already clear that for any finite ε, t∗gen − t∗tr diverges. We can also obtain an ε-independent property by noting that√
log(t∗gen/t

∗
tr) =

1√
2
log(1− 2λ), (37)

which is verified numerically in Fig. 9.

It is interesting to note that in the conformal time, we have b ≈ −τ , and therefore can repeat this calculation and obtain

τ∗tr = − log(ηε), τ∗gen =
1

2
log2(1− 2λ)− log

η

2
ε. (38)

In this case, the result is a bit more natural since now the time difference (instead of ratio) becomes ε-independent:

τ∗gen − τ∗tr ≈
1

2
log2(1− 2λ). (39)

We note that this result still depends on ε implicitly, in the sense that our assumption that S = S∞ is true only for long-times,
or ε which is small enough.

E.4. Calculation of the subleading term in the separable case

We now consider x2 < 0 but close to zero (that is, we are in a separable case where M = −x2 is the margin). We know that
w diverges at long times as w ≈ M

1+M2 log
[
η
2 (1 +M2)t+ 1

]
. We will now denote

u ≡ w − M

1 +M2
log
[η
2
(1 +M2)t+ 1

]
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Figure 9. Numerical evidence for the Grokking time in the simplified model. In the left panel, we demonstrate for 1− 2λ = 0.001 how
the Grokking time is calculated: t∗tr, t∗gen are calculated by finding the intersection of the loss with some ε. In the right panel we plot√

log(t∗gen/t
∗
tr) versus log(1− 2λ) numerically, and show that the result is linear with slope ≈ 1√

2
, in agreement with the prediction

of Eq. (37)

as the difference from the diverging term. The equation for u is therefore

∂u

∂t
= −η

2
eb
(
−e

x1

(
u+ M

1+M2 log[ η2 (1+M2)t]
)
−Me

−M
(
u+ M

1+M2 log[ η2 (1+M2)t]
))

− M

1 +M2

1

t
.

Plugging the (long-time) solution for the bias, b ≈ − 1
M2+1 log

[
η
2 (1 +M2)t+ e−(1+M2)b0

]
(where b0 = 0 in our case),

we get

∂u

∂t
= −x1

η

2
ex1u

(η
2
(1 +M2)t+ 1

) x1M−1

1+M2

+
(
e−Mu − 1

) M

(1 +M2)t+ 2
η

.

For M ≈ 0, we note that the second term is O(M2), and by neglecting it we get

u = − 1

x1
log

(
x2
1

x1M +M2

(η
2
(1 +M2)t+ 1

) x1M+M2

1+M2

− x2
1

x1M +M2
+ 1

)
.

For t → ∞, and neglecting the other O(M2) terms, we finally get

u ≈ − 1

x1
log

(
x1

x2

)
.

Remarkbly, this is identical to the result of the in the x2 > 0 case.

F. Impact of different parameters
Here we present supplemental results for Sections Sec. 4.

F.1. The Variance Scale σ

Here we provide additional information regarding the effect of σ different than 1. In particular, we will show that increasing
σ can make grokking more apparent (but only up to a certain point). We will first assume that σ = 1 at the start, and
investigate how taking x̃i = σxi changes the dynamics in comparison to that case. We will begin with the non-separable
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case (λ < 1/2). Recalling that the equations for gradient flow in our model are given by Eq. (7), this results in

∂S

∂t
= −σ

η

N
eb
∑
i

eS
Tσxixi,

∂b

∂t
= − η

N
eb
∑
i

eS
Tσxi . (40)

We can now absorb σ into S by denoting S̃ ≡ σS and investigate how it affects the dynamics of S̃, and the generalization
loss and accuracy as a function of S̃. First, the GD equations become

∂S̃

∂t
= −σ2 η

N
eb
∑
i

eS̃
T
xixi,

∂b

∂t
= − η

N
eb
∑
i

eS̃
T
xi . (41)

We note that the generalization loss and accuracy in Eqs. (3) and (4) are the same except they are now a function of
∥∥∥S̃∥∥∥

instead of ∥S∥ (being a function of σ ∥S∥). Since the equation for ∂S̃
∂t is just multiplied by a factor σ2, the limiting value of

S̃∞ would be the same as for the σ = 1 case, but it will reach it at a faster rate. To sum up, obtaining the dynamics of the
loss and accuracy when σ is larger than one can be done by using the same Eqs. (3) and (4), but also (A) Increasing the
starting condition of S0 by a factor of σ, and (B) Multiply only the learning rate of the spatial part by a factor of σ2. If σ
is large enough, we can go to the fixed point of ∥S∥ as fast as we want, enabling the appearance of Grokking (if also the
limiting value of ∥S∥ is large, which happens when we are on the edge of being separable).

Finally, we will also investigate the effect of σ in the separable regime (λ > 1/2). Now we can use ?? and Item 2, where we
only need to consider how σ changes the margin M . Since it is obtained from the equation ST

∥S∥xm = −M , we can see

that the new margin will be larger by σ than the old one, i.e., M̃ = σM . Plugging this in the expression for the accuracy
in Prop. 3.2, we get that the accuracy is now

lim
t→∞

Agen ≈ 1

2

[
1 + erf

(
1

σ2M
√
2

)]
. (42)

where we note that the argument inside the erf is smaller in a factor of σ2, drastically reducing the limiting accuracy.

F.2. Optimizer

The effect of changing the optimizer to Adam is demonstrated in Fig. 11. We note that the fact that adaptive-type optimizers
change each learning rate individually based on past gradients, leads the dynamics faster in the direction of ∥S∥, relatively
to b. The fact that it makes ∥S∥ change faster (and not slower) than b, is probably related to the fact that S is a vector in
high dimension: Moving each component of such vector will result in a change of the norm in a rate that is proportional to√
d, but this may need further investigation. We will also note that using a different optimizer for the non-separable region

where, will lead to a different solution than the hard margin SVM, as is also discussed by Soudry et al. (Soudry et al., 2018).
This means that the results we developed in the main text will not hold, but we can still expect to obtain accuracy smaller
than one since ∥S∥ diverges, as indeed can be seen in Fig. 11.

F.3. Initial conditions

As discussed in the main text, changing the initial conditions can change the monotonicity of the generalization loss and
accuracy: See Fig. 12, Fig. 13 below.

F.4. Different loss

In the main text, we showed that we can use the exponential instead of the CE loss, since it will converge to it at late times.
Here we provide numerical evidence that indeed Grokking could be seen, even when taking from the beginning just the
exponential loss L = 1

N

∑
i e

ST xi+b: See Fig. 14.
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Figure 10. Gradient descent dynamics for three different values of σ, all for λ = 0.48. The top panels show the loss and accuracy for
the train and test datasets, while the bottom panels present b and the norm of S. Except for σ, the parameters are the same as in Fig. 1.
We can see that increasing σ makes the grokking more apparent at start, but then saturates (that is, increasing σ will not increase the
“grokking time” anymore).
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Figure 11. Dynamics, using ADAM optimizer with PyTorch’s default parameters. The setup is the same as Fig. 1, except for the fact that
σ = 1 now instead of 5. Significant Grokking can be seen even though the value of σ is not large.
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Figure 12. Gradient descent dynamics for λ = 0.48 and for three different values of starting norm, ∥S0∥. Except for this, the setup is the
same as Fig. 1. We can see that the non-monotonicity of the loss can be affected by the starting condition.
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Figure 13. Gradient descent dynamics for λ = 0.48 and for three different values of b. Except for this, the setup is the same as Fig. 1.
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Figure 14. Gradient descent dynamics for a setup which is the same as Fig. 1, but with the exponent loss L = 1
N

∑
i e

ST xi+b. That is,
the loss is strictly the exponent loss at any time (and not just converge to the exponent loss at long times, as the CE loss). Clearly, we can
see that the behavior of the Grokking is similar.
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G. Different input data distributions
As discussed in the main text, our results hold for any data distribution that is symmetric around the origin. Since the
underlying mechanism only requires that the data is on the verge of separability (in which case |S∞| diverges). As we
discuss in App. A, in the limit d,N → ∞, λ = 1/2 is the critical value below which the dataset is almost surely inseparable.
Therefore, the analysis and resulting behavior, including the occurrence of Grokking and the critical point of λ should hold
for any symmetric distribution.

To demonstrate this, we compare three input distributions at λ = 0.45 in Fig. 15: (1) The isotropic Gaussian input (as
discussed in the main text), (2) Non-isotropic Gaussian inputs, generated using a covariance matrix with eigenvalues that
follows the scaling law λn = λ0

nα , with α = 1.5. (3) Mixture of Gaussians N (µ = ±1, σ = 0.25). We notice that σ in this
context (and its effect on Grokking described in Sec. 4) could also be easily generalized for any distribution, by simply
multiplying all of the inputs by a factor of σ.
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Figure 15. Grokking for three different input data distributions: Isotropic Gaussian (left), Gaussian with covariance whose eigenvalues
follow a power-law scaling (middle), and uniform distribution (right). The parameters are: d = 180, N = 400 (λ = 0.45), and the
optimizer is gradient-decent. Left panel: Isotropic Gaussian with σ = 5, as appears in the main text. Middle panel: Gaussian with
eigenvalues that follow λn = λ0/n

α, where α = 1.5. The normalization factor λ0 is chosen such that
∑

n λn = σ · d, where here
σ = 10. Right panel: each element in the input vector is chosen from a mixture of Gaussian distribution, with µ1,2 = ±1 and σ1,2 = 0.25.
After sampling, the input was multiplied by 5, as a generalization of the original σ.

H. Reduction to a d-dimensional model with bias.
In this section we will prove the equivalence between the d+1-dimensional two-Gaussians model and the d-dimensional
model with bias. Consider the d+ 1-dimensional classification problem with no bias:

xi = (yiµ, xi,2, xi,3, ..., xi,d+1), (43)

where yi = ±1 are the labels, µ is some constant and xi,j ∼ N (0, σB). The loss is L = 1
N

∑
i ℓi where ℓi = ℓ(yiS · xi) is

some loss. Taking xi → yixi, we get

xi = (µ, yixi,2, yixi,3, ...), (44)
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but the distribution of yixi,j stays the same since it is symmetrical, so we can assume WLOG that yi = 1. The dynamics is

∂S

∂t
= −η

1

N

∑
i

∂ℓ(S · xi)

∂(S · xi)
xi. (45)

We now denote x̃i =
1
µxi, S̃ = µS (so that S · xi = S̃ · x̃i), and get

∂S̃

∂t
= −ηµ2 1

N

∑
i

∂ℓ(S · xi)

∂(S · xi)
x̃i, (46)

which is the same except for a µ2 learning rate factor. Since x̃i = (1, 1
µxi,2,

1
µxi,3, ...), we can define also the scalar b and

the d dimensional vectors S, x, by

S̃ ≡ (b,S1,S2, ...,Sd), x̃i ≡ (1,xi,1, ...,xi,d) (47)

We can see that

∂b

∂t
= −ηµ2 1

N

∑
i

∂ℓ(S · xi + b)

∂(S · xi + b)
, (48)

∂S

∂t
= −ηµ2 1

N

∑
i

∂ℓ(S · xi + b)

∂(S · xi + b)
xi (49)

Which is exactly the dynamics of the d model with bias, where all of the labels are the same. We also note that σ = σB/µ,
where σ is factor of the std of xi.

I. Extension of the model from another perspective
In this section, we begin with the constant label model and extend it explicitly to a model where only a fraction r of the
samples are the same (so that for r = 1 we get the same model studied throughout the paper). We show that grokking can
still be observed. Specifically, we classify a point xi as label -1 if its first coordinate xi,1 exceeds a threshold µ, and as label
1 otherwise. Here, µ = Q(r), where Q is the Gaussian quantile function (inverse CDF) and r ∈ [0, 1] is a fraction. We note
that for r < 1, only a fraction r of points are labeled -1, while the remaining 1− r are labeled 1.

The same reasoning as the previous sections can be applied here: near the critical point λ = 1/2, the model could reduce the
loss first by changing the direction of S, and only then modifying b, leading to delayed generalization. However, unlike the
constant-labeling case, full generalization is not possible even for λ > 1/2, since the optimal solution is not obtained by
taking the separating hyperplane to infinity. We can see this by studying the expression for the generalization accuracy (see
App. I.1) given by

Agen =
1

2

[
1 +

1√
2πσ2

ˆ ∞

−∞
dx1e

− 1
2σ2 x2

1sign(x1 − µ)

×erf

 1√
2

x1 + b/S1

σ
√∑d

i=2(Si/S1)2

 .

(50)

For perfect generalization, we must have b/S1 = −µ and S1 ≫ Si,∀i > 1, which can only be achieved up to a certain error,
determined by the max-margin solution.

In Fig. 16, we demonstrate numerically that while the limiting generalization accuracy is smaller than one for r < 1,
grokking in the sense of delayed generalization and a non-monotonic test loss is still present.

I.1. Derivation of Eq. (50)

Starting from the explicit expression for the accuracy

A =
1

Ns

Ns∑
i=1

(yiθ(S · xi + b) + (1− yi)θ(−S · xi − b)) , (51)
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Figure 16. Grokking at λ = 0.48, for three different label-fractions: r = 1 (constant label), r = 0.99, and r = 0.95 (represented by
three different opacities). For example, for r = 0.95, approximately 95% of the input data would be assigned with the label −1 and 0.05
with the label 1. The rest of the parameters are the same as in Fig. 1.

and recalling that xi ∼ N (0, σId×d) , we get that the generalization accuracy is given by

Agen =
1√

det(2πΣ)

ˆ
ddxe−

1
2x

TΣ−1x [y(x)θ(S · x+ b) + (1− y(x))θ(−S · x− b)] . (52)

Plugging the label to be a function of the first coordinate

y(x) =

{
0, x1 < µ

1, else
, (53)

where µ = Q(r) is the threshold (Q being the Gaussian quantile function as discussed in the main text), we get that

Agen =
1√

(2πσ2)d−1

ˆ d∏
j=2

dxje
− 1

2σ2

∑d
i=2 x2

i
1√
2πσ2

[ˆ µ

−∞
dx1e

− x2
1

2σ2 θ(−S1x1 −
d∑

i=2

Sixi − b) (54)

+

ˆ ∞

µ

dx1e
− x2

1
2σ θ(S1x1 +

d∑
i=2

Sixi + b)

]
. (55)

Setting y =
∑d

i=2 Sixi, we note that y ∼ N (0, σy), where σy = σ
√∑d

i=2 S
2
i = σ

(
∥S∥ − S2

1

)
. Therefore,

Agen =
1√
2πσ2

y

ˆ ∞

−∞
dye

− y2

2σ2
y

1√
2πσ2

[ˆ µ

−∞
dx1e

− 1
2σ2 x2

1θ(−S1x1 − y − b) +

ˆ ∞

µ

dx1e
− 1

2σ x2
1θ(S1x1 + y + b)

]
.

(56)
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Taking explicitly the integral over y of the two terms and simplifying the result, we will finally get

Agen =
1

2

[
1 +

1√
2πσ2

ˆ ∞

−∞
dx1e

− 1
2σ2 x2

1sign(x1 − µ)erf

(
1√
2

S1x1 + b

σ
√

||S||2 − S2
1

)]
. (57)

J. Direct calculation of the late time behavior of b, S in the separable regime
Here we present a direct calculation for S(t) ≡ ∥S(t)∥ Ŝ(t), b(t) at late times. First, we will work in the conformal time
τ =
´ t
0
β(t′)dt′. As discussed in the main text, when the data is separable we know that in the late time limit Ŝ goes to a

certain direction and ∥S∥ → ∞. Therefore, only the points with maximum STxm will contribute to the sum in the large

1

N

∑
i

eS
T xi ≈ D

N
eS

T xm , (58)

where STxm is the maximum value that is obtained, D is their degeneracy. We note that STxi are all negative, so the
maximum are just the points which are closest to zero, so these are exactly the support vectors. To continue, for τ → ∞ we
denote

S ∼ Ef(τ)Ŝ, (59)

where E is some constant, and f(τ) is some function of t. Without loss of generality, and for compatibility with the results
of the main text, we will define E by the equation E ≡ − 1

Ŝ
T
xm

. We can now find f(τ) explicitly using the following
arguments: We know that

∂ ∥S∥
∂τ

=
ST

∥S∥
∂S

∂τ
= −η

1

N

∑
i

eS
Txi

ST

∥S∥
xi. (60)

Using the approximation and comparing with ∂∥S∥
∂τ = Ef ′(τ), we get that

η
D

N

1

E
e−f(τ) = Ef ′(τ). (61)

Solving for f(τ), we get

f(τ) = log

[
η
D

N

1

E2
τ + C1

]
, (62)

where C1 is some constant. Therefore, we get

∂b

∂τ
≈ −η

D

N

1

ηD
N

1
E2 τ + C1

. (63)

and taking the integral over dτ we get

β(τ) ≈ C2

(
η
D

N

1

E2
t̃+ C1

)−E2

. (64)

Recalling that ∂τ
∂t = eb, we can integrate to find:

τ(t) =
1

ηD
N

1
E2

(
η
D

N

E2 + 1

E2

) 1
E2+1

[C2t+ C3]
1

E2+1 − 1

ηD
N

1
E2

C1. (65)

Using b = log(∂τ∂t ), we get for long times that

b(t) ≈ − E2

E2 + 1
log(t). (66)

Plugging also ∥S∥ ≈ Ef(τ) ≈ E log(τ), we can see that

∥S(t)∥ ≈ E

E2 + 1
log(t). (67)
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Recalling that E = 1
M , this verifies the result of the main text.

K. Supplemental Details of Experiments
In this section, we will provide information regarding the experiments. The results of the left panels of Fig. 1 (and all of the
results in Section App. F) can be easily obtained on a personal laptop. As for the heavier experiments which are presented in
the right-most column of Fig. 1 (and in Fig. 7):

(1) Calculation of ∥S∞∥ and STxi properties of the distribution. The setup is: N = 2400, σ = 1, and d =930, 990, 1050,
1086, 1110, 1134, 1152, 1158, 1164, 1170, 1173, 1176, 1179, 1182, 1185, 1188, 1191, averaged over 15000 different
random realizations, and using the ADAM optimizer (any optimizer will work in the inseparable regime).

(2) Calculation of the margin. The setup is: N = 2400, σ = 1, and d =1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440,
1470, 1500, 1530, 1560, averaged over 1000 realizations.

(3) The results of the right-middel and right-bottom panels of Fig. 1. The setup is: N = 400, and d =20, 40, 80, 100, 120,
140, 160, 168, 180, 188, 192, 196, 200, 208, 220, 228, 240, 260, 280, 300, 320, 360, averaged over 100 realizations.
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