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Abstract

Survival analysis is critical in healthcare for predicting time-to-event outcomes such as dis-
ease progression or patient survival. While deep learning excels at capturing meaningful
representations from complex clinical data and has improved performance in deep survival
models, it inherently struggles with reliability and robustness, challenges that are especially
significant when deploying these models in real-world clinical practice. Out-of-distribution
(OOD) detection, designed to identify or flag samples that deviate from the training distri-
bution, has become a key method for evaluating Al reliability across fields. This capability is
especially important in clinical applications, where noisy or heterogeneous patient data can
lead to incorrect assessments; yet, OOD detection remains underexplored and challenging
in deep survival analysis due to the need to handle both censored and observed samples,
which are unique to this domain. In this study, we address this critical gap by introducing
TCSurv, a novel time-base clustering approach for survival analysis that handles both ob-
served and censored samples for robust OOD detection. TCSurv initializes cluster centers
using in-distribution data, creating time-specific clusters that anchor model predictions for
both observed and censored samples. Experiments in real-world clinical data, including
Alzheimer’s dementia progression, and benchmark medical imaging datasets demonstrate
that TCSurv effectively distinguishes OOD samples without compromising survival perfor-
mance compared to existing deep survival analysis frameworks. The full code is available
at https://anonymous.4open.science/r/TCSurv-F585.

1 Introduction

Survival analysis is a critical statistical tool used to predict the time until the occurrence of a specific event,
such as death, disease recurrence, or hardware failure Klein & Goel (2013); |Clark et al.| (2003]); |Allison
(2010). In healthcare, it offers a trajectory for disease progression until a critical point (i.e. disease onset
or death). This is particularly relevant in cases like Alzheimer’s dementia, for which there is currently no
known cure and brain damage is irreversible, making early prediction through survival analysis essential for
proactive clinical intervention.

In recent years, deep learning (DL) approaches have demonstrated exceptional capabilities in estimating
complex survival functions from high-dimensional signals such as medical images |Wiegrebe et al.| (2024).
These advancements have enabled researchers to model disease progression from data sources like MR images
Thrasher et al.|(2024), CT scans|Saeed et al.| (2024]), and whole-slide images | Xu et al.[(2025)). While DL-based
survival analysis has achieved notable quantitative success, ensuring the reliability of these models remains a
critical challenge Zheng et al.| (2023); |Jatarzadeh et al.| (2021). This concern is especially pressing in medical
contexts, where, without reliability guarantees, clinicians may be unable to trust DL-based predictions.

One crucial aspect of ensuring reliability is the ability to detect out-of-distribution (OOD) inputs|Jafarzadeh
et al.| (2021)), which are data samples that deviate significantly from the training distribution. OOD detection
is essential because deep learning models can produce confident yet incorrect predictions when exposed to
unfamiliar, corrupted, or low quality inputs. For example, in survival analysis for Alzheimer’s Disease
(AD) progression, a model should be able to flag distorted or corrupted MR images for further clinical
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review to prevent misleading prognostic outputs. Without such safeguards, incorrect predictions could delay
necessary interventions or lead to inappropriate treatment decisions. Therefore, developing robust OOD
detection mechanisms is critical for ensuring reliable survival predictions and facilitating the safe translation
of DL based models into real world healthcare practice.

In recent years, DL has seen the emergence of various frameworks aimed at identifying and rejecting OOD
samples to enhance model reliability. However, most of these algorithms have been developed for relatively
static tasks such as classification or detection [Yang et al.| (2022); |Cao et al. (2020); |Shi & Lee (2024),
overlooking the unique challenges in survival analysis—particularly its temporal dynamics and the presence
of censored data. While the fundamental principle of ensuring reliable performance on in-distribution samples
remains relevant, adapting OOD detection for survival analysis demands novel methodologies that account
for its time-to-event structure. To the best of our knowledge, no prior work has explicitly addressed OOD
detection in the context of survival analysis.

Toward this, we propose TCSurv, a novel framework that leverages time-based clustering for OOD detection
in survival analysis. TCSurv forms compact, time-specific clusters by guiding sample representations based
on their event status: uncensored samples are pulled toward designated time-based anchor points, while
censored samples are grouped with clusters beyond their censorship time, ensuring meaningful grouping
even under censoring constraints. This approach enables the model to account for temporal dynamics and
censoring patterns inherent in survival data. By organizing representations around meaningful time-based
clusters, TCSurv enhances the survival model’s ability to flag anomalous or unfamiliar inputs as OOD,
thereby improving the real-world applicability of survival models.

We evaluate TCSurv across a diverse set of survival analysis datasets, including ADNI (MRI imaging for
Alzheimer’s disease), FLCHAIN (clinical lab data), GBSG (breast cancer clinical data), and METABRIC
(gene expression and clinical features). Additionally, we test on six medical imaging datasets from the
MedMNIST collection to further assess performance across modalities and organs. Our results demonstrate
that TCSurv effectively distinguishes OOD samples while maintaining strong survival analysis performance,
consistently outperforming existing deep survival analysis models. Through comprehensive experiments on
diverse datasets, TCSurv shows remarkable robustness and generalizability across multiple medical imaging
modalities and clinical data types. These extensive analyses not only validate the efficacy of our time-based
clustering approach for OOD detection but also highlight its potential for reliable real-world deployment in
survival prediction tasks.

Opverall, our contributions are as follows: (1) For the first time, we conduct an OOD detection study within
the context of deep survival models, addressing a significant gap in current survival analysis research. (2) We
introduce TCSurv, a novel time-based clustering approach specifically designed to improve OOD detection
in survival analysis. TCSurv achieves superior OOD detection performance compared to existing methods,
without compromising predictive accuracy in survival tasks. (3) We conduct a comprehensive evaluation of
our approach across a diverse set of survival analysis healthcare datasets, including a real-world Alzheimer’s
disease progression dataset, demonstrating the applicability and effectiveness of our proposed method for
OOD detection and survival analysis in clinical settings.

2 Related Work

2.1 Survival analysis

Nonparametric deep survival analysis approaches have emerged as promising methods to model survival
distributions. Unlike parametric approaches |Sheng & Henao| (2025); Lee et al.| (2023)), which make strong
assumptions about the underlying distributions, or semi-parametric methods Katzman et al.[ (2018), which
follow a more restrictive proportional hazards assumption, nonparametric models seek to directly estimate the
survival function without relying on such assumptions. This is achieved by decomposing the study window
into T discrete time intervals and estimating the probability that the event of interest will occur at each time
t € {0,1,...,T}. Under this formulation, [Lee & Whitmore| (2006) extend standard negative log-likelihood
(NLL) to support right-censored data, whereas [Fotso| (2018b)) instead approach it as a multi-task logistic
regression (MLTR) problem. However, a study by [Kvamme & Ornulf Borgan! (2019) claims that MLTR is
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Figure 1: (Left) A deep model, fp(X), extracts features z from an input X. (Center) A distance based loss
is applied to the extracted z. Samples where the event is observed (6 = 1) are pulled toward time cluster
ty, corresponding to the observation time, while the samples which are censored (6 = 0) are pulled equally
toward all time clusters after the time of censoring, reflecting the possibility of the event occurring at some
(unknown) time in the future. (Right) Out-of-distribution samples are embedded further away in the feature
space.

practically equivalent to NLL, but with an additional reversed cumulative sum. Additionally, other works
have noted that utilizing an additional ranking loss component, which seeks to learn the proper ordering
of uncensored individuals, can be utilized as a powerful regularizer to further improve the discriminative
performance of nonparametric survival models Lee et al.| (2018)); Kamran & Wiens| (2021b)). These strategies
are being applied across various domains, including medical imaging Nakagawa et al.| (2020); Bello et al.|
; however, no prior work has considered the reliability of these models in terms of OOD detection.
Our study, for the first time, considers the problem of OOD detection for survival analysis.

2.2 Out-of-distribution detection

Given the reliability issues associated with DL models, out-of-distribution (OOD) detection has become
essential for assessing model reliability |Zheng et al| (2023); [Jafarzadeh et al| (2021). Significant work has
been done in this area, from post-processing techniques that analyze learned predictive distributions (e.g.,
MaxLogit [Zhang & Xiang| (2023))) to methods that normalize feature and logit spaces to distinguish in-
distribution (ID) from OOD data (e.g., LogitNorm [Wei et al. (2022))). Other approaches include open-set
recognition and clustering-based methods [Liu et al| (2022); [Sinhamahapatra et al.| (2022). Additionally,
benchmark studies have been established to understand and evaluate model performance across various
datasets |Yang et al.| (2022), including medical imaging applications (2020). However, these stud-
ies have primarily focused on classification and segmentation tasks, with alarmingly few exploring OOD
detection in survival analysis. While some previous work have somewhat explored OOD detection within
this domain [Loya et al.| (2020)); Liu et al| (2025)), their scope is limited to evaluating OOD through uncer-
tainty quantification, which is often insufficient due to the tendency of DL models to provide overconfident
predictions regardless of the input distribution. In contrast, our study targets OOD detection specifically
within the survival analysis framework. While it may appear that standard OOD detection techniques
developed for classification tasks, such as Max Softmax Probability (MSP) Hendrycks & Gimpel| (2017),
could be readily applied, this is not the case in survival analysis. Survival models produce time-dependent
risk estimates and censored outcomes rather than normalized class probabilities, rendering confidence-based
detectors ill-defined and often misleading in this setting.
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3 Methods

3.1 Preliminary I: Survival analysis

The objective of survival analysis is to model the time until a specific event occurs, such as disease progression
or patient mortality, which is particularly relevant for medical prognosis. Formally, consider a dataset
D ={X;,d;,t; | 1 € N} of size N, where X; represents features extracted from medical data, §; € {1,0} is an
indicator of whether the event of interest occurred within the observation window (1) or is right-censored (0),
and ¢; denotes the time of event occurrence or censoring. Importantly, censorship implies that the event was
not observed during the study period but may still occur later. The goal is to estimate the survival function
S(t) = P(T > t), which expresses the probability that the event has not occurred by time ¢. Estimating S(¢)
from image-derived features provides critical insights into patient prognosis and disease progression while
handling both observed and censored outcomes. We provide more details in the Appendix.

3.2 Preliminary Il: OOD detection

OOD detection aims to identify inputs different than the training data distribution, a crucial capability in
applications like medical domain where unusual cases may indicate rare conditions, novel pathologies, or even
noisy or faulty samples. Given a dataset D = {X;|i € N} of size N, consisting of in-distribution samples,
OOD detection seeks a score function S.(X) that quantifies how likely a new sample X, belongs to the
training distribution (also referred as in-distribution (ID) data). A threshold ¢ is then defined, where X is
00D if S.(X) > ¢ and ID otherwise.

3.3 Time-based clustering

To enhance the robustness of survival analysis models, we present a novel approach that leverages time-
based clustering to create well-defined feature spaces. We introduce a distance-based objective function
specifically designed to learn representations that maintain clear separations between samples associated
with different event times, ensuring that embeddings are closely clustered around time-specific anchors.
This improves alignment with survival outcomes and naturally positions atypical samples farther from these
clusters, resulting in a feature space that is inherently resilient to variations outside the training distribution.

Toward this, we begin by discretizing survival times into T' equally spaced intervals, such that each time ¢
maps to a discrete time label ¢t € {0,1,...,T}. For each sample X* with an observed event at time ¢, we
aim to learn a feature representation z* = fp(X*), where fy(-) is a deep learning model parameterized by 6.
The objective is to ensure that this embedding z* is positioned close to a predefined anchor ¢;. This setup
encourages 1D data to cluster around their respective time-based anchors, while OOD data is expected to
lie farther from these anchors. To achieve this clustering effect, we propose the following objective function,
which combines temporal separation and anchor proximity terms to guide embeddings toward their time-
specific clusters:

L=Lr+ X L4 (1)

where L1 promotes separation between time clusters, and £ 4 ensures that embeddings remain close to their
respective time anchors. Here, ) is a hyperparameter that controls the relative influence of anchor proximity.

While similar distance-based objective functions have been used in the computer vision literature to learn
class-specific representations for tasks like classification and detection Miller et al.| (2021)), the survival
analysis context presents unique challenges. Specifically, the presence of censored samples—instances where
the exact event time is unknown—complicates the learning process, as these samples lack precise time labels
yet still contribute valuable information. Consequently, our objective function must incorporate a specialized
approach that distinguishes between censored and observed samples, ensuring that both types are effectively
utilized in training.

As such, for observed data points, the calculation of L and L4 is straightforward, and is expressed as:

L1 =log[l+ Y exp(d —d;)], (2)
J#t
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Figure 2: Examples from the ID datasets and their corresponding OOD samples.

La=lF(X) = el (3)

where, d = {||z — c1l|2, ||z — c2l|2, -, ||z — ¢nl|2} is the distance vector which represents all of the distances
between an embedding z and every anchor, n is the total number of clusters, and ¢ corresponds to the ground
truth time anchor.

Whereas, for censored samples, we lack precise event times, making it challenging to assign them directly to
a specific time anchor. However, useful survival analysis-based insights can still guide their embedding. For
instance, if a sample X* is censored at time ¢ = 3, we know that X* cannot correspond to the time anchors
for {0,1,2,3} but may belong to any of the anchors in {4,5,...,T}. Additionally, a sample censored at the
maximum observation time t = T suggests that the event occurs beyond the observation window. To account
for such cases, we introduce an extra time anchor at ¢t = T + 1 to capture this uncertainty. To incorporate
censored samples effectively, we define modified loss terms, L7, and £ 4, which extend the original objective
in equations Eqns [2] and [3] to support the unique requirements of censored data, as follows:

S log [+ X exp (dy — )

L
Te Tt ’

(4)

Yl @) — el
¢ T—t

L4 (5)

Finally, our combined time-based clustering objective (L) for both censored and uncensored samples in the
training data is defined as:

L= Lr+MLa + L7o+ LA, (6)

Observed samples  Censored samples

Prior to training, the time anchors are initialized as the scaled one-hot vector e;,Vi € {0,1,...,T + 1}. The
set of anchors is then defined as C' = {cy, ...,cr41} = {a-e1,...,a-eri1}, where a is a hyperparameter which
defines the magnitude of the e;. It is worth noting that A; and A could be tuned individually, but we use a
single A by setting A\; = Ay for our experiments.



Under review as submission to TMLR

. AUROC (OOD performance)

Models C-td (Survival performance) ADNLT2 Bias

NLL 0.7786 £ .047 0.3361 £ .050 0.5361 £ .028
N-MLTR 0.8128 + .015 0.4560 £ .069 0.4704 £ .051
RPS 0.8668 £ .025 0.4041 £+ .017 0.4992 £+ .037
RPS+Rank 0.8576 £+ .023 0.3475 £+ .036 0.4391 £+ .029
DeepHit 0.7770 £ .026 0.4819 £+ .067 0.4105 £ .044
SurvRNC 0.6528 £ .079 0.4806 + .058 0.4118 £+ .036
TE-SSL 0.6103 £ .018 0.4690 £ .047 0.3789 £+ .032
TCSurv (Ours) 0.8798 + .017 0.7165 + .080 0.5765+ .014

Table 1: (Left) Survival performance. (Right) OOD performance for ADNI data, averaged across three
seeds.

3.4 TCSurv Evaluation

3.4.1 Survival evaluation

TCSurv follows a more recent trend of directly predicting the survival function, in contrast to the proportional
hazard assumption used in prior methods such as DeepSurv |Katzman et al| (2018). To achieve this, we
begin by relocating the initial time anchors to the average locations of the correctly predicted elements.
Specifically, for uncensored elements, a prediction is considered correct if it most closely aligns with the
anchor corresponding to its ground truth event time. Since censored elements are more ambiguous, we
define a prediction as correct if it is assigned to any time anchor after the time of censoring, allowing
flexibility for model assignments of censored elements. We demonstrate that this action improves overall
performance in Sec. After updating the time anchors, the survival function is modeled as the relative
distance between the feature representation and each of the time clusters, given by:

t

S(tX) =) 1-o(d) (7
=0

where o(-) is the softmin function applied to the distance vector. The softmin function is the inverse of the
softmax function, emphasizing the smallest values in a vector by assigning them higher probabilities. We
then quantify our model’s discriminative survival performance based on the time-dependent concordance
index (C-td) |Antolini et al.| (2005)), enabling a fair comparison of our method against existing approaches.

3.4.2 O0OOD evaluation

For OOD evaluation, the central idea is that the further away any new input X, is from the time-based
anchors, the more likely it is to be an OOD sample. A straightforward way to achieve this would be to
simply use the distance d (which represents distance to all the anchors) as the score function. However, prior
works in the classification domain Miller et al.| (2021) have considered the combination of d and softmin(-)
function to achieve a more robust score function. Hence, we also consider a similar strategy for designing
the score function for evaluating OOD detection with TCSurv as:

Se(X) =min(d- (1 - o(d))). (8)

This score function will have minimum value when the inputs have both a low distance and high softmin
score. We note that, since baseline methods do not have a notion of time anchors, we initialize the "learned
anchors" as the average location of correctly predicted elements similar to the method described in Sec.
This allows us to fit our OOD detector to other survival methods for fairer comparison.

4 Experiments

This section presents our experimental results and ablation analyses. We begin with a description of the
datasets, followed by experimental settings and baselines. Finally, we report survival prediction, OOD
detection results, and ablation studies to validate the framework.
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C-td ID:FLCHAIN

Model FLCHAIN GBSG METABRIC

NLL 0.8328 + .004 0.4371 £ .032 0.4091 £ .030
N-MTLR 0.8321 £ .006 0.4003 £ .020 0.4189 + .036
RPS 0.8126 £ .005 0.4810 £ .021 0.4565 + .026
RPS+Rank 0.8197 £+ .007 0.4632 £ .063 0.4514 + .048
DeepHit 0.8389 £ .002 0.4488 £ .054 0.4610 £+ .038
SurvRNC 0.7831 £ .009 0.4892 £ .003 0.4596 + .008
TE-SSL 0.7816 £+ .009 0.4772 £ .006 0.4453 + .018
TCSurv 0.8229 £ .002 0.7010 + .041 0.7000 + .021

Table 2: (Left) Survival performance (Right) OOD performance for non-imaging data.

4.0.1 Alzheimer’'s Disease progression MRI dataset

We utilize MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [Petersen et al.| (2010)
for our analysis on real world medical imaging data. ADNI provides follow up information on patients’
progression towards Alzheimer’s dementia. This dataset includes 1,978 T1-weighted 3D MRI scans used as
our ID data, and 919 T2-weighted MRIs treated as OOD. Since survival models are usually trained and
evaluated on high-quality MRIs, artifacts from equipment errors naturally represent OOD data. To this
end, we also generate additional OOD samples which simulate intensity inhomogeneity, known as bias fields
(shown in Fig. . These variations create a blurring effect on the MRI, which inhibits feature detection,
weakening model performance |Jindal et al.| (2022). We generated these artifacts using the RandomBias
augmentation pipeline from the Torchio library Pérez-Garcia et al.| (2021)).

4.0.2 Non-imaging data

To reinforce our results, we include additional non-imaging data from three standardized survival datasets:
1) Assay of Serum Free Light Chain (FLCHAIN) Dispenzieri et al.| (2012)), 2) German Breast Cancer
Study (GBSG) [Schumacher et al.| (1994)), and 3) the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) |Curtis et al| (2012)). These continuous time datasets are then discretized with
the pipeline laid out in [Kvamme & Ornulf Borgan| (2019). For our experiments, we train on FLCHAIN and
treat GBSG and METABRIC as OOD, truncating and padding features as necessary to align with model
dimensions. We provide further details on these datasets in the Appendix.

4.0.3 Maedical imaging benchmark dataset

We also include medical imaging datasets from the MedMNIST [Yang et al.| (2023)) collection. In specific,
we utilize six different datasets, which are divided into two groups. In the first group, we analyze the far-
OOD performance on three different modalities: Colon Pathology (PathMNIST), Blood Cell Microscope
(BloodMNIST), and Dermatoscope (DermaMNIST) imaging. The second group analyzes near-OOD
detection performance when exposed to different 2D views of the same 3D abdominal CT images, namely
the Axial (OrganAMNIST), Saggital (OrganSMNIST), and Coronal (OrganCMNIST) views. We
provide some examples in Fig. [2| and more details on their statistics in the Appendix.

Synthesizing survival signals: Since benchmark medical datasets lack survival information, we synthesize
survival signals by assigning event times and censoring indicators to each class. This overcomes the scarcity,
noise, and heavy censoring of real-world survival data and provides a controlled environment with adjustable
censorship and known ground truth. For each (X;,y;) image-label pair, the ground truth event time ¢} is
initially set to the class label y;. We then uniformly censor a portion of the data by setting by setting §; = 0.
However, since, by definition of censorship, it is known that an element cannot be censored at its ground
truth event time, we shift the time of censorship to a uniformly random ¢ € {0,1,...,¢f — 1}. Conversely,
elements with ¢7 = 0 are always observed and are made to be uncensored. Finally, we completely censor all
elements where t7 = max(7") to allow the model to provide elements which should be assigned to the “future"
time cluster. We prefix these datasets with “Surv-" and drop the “MNIST" (e.g., SurvPath) to distinguish
them from standard MedMNIST datasets. We also use “Surv*" as shorthand for the entire set of synthetic
survival datasets for simplicity.
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C-td ID:SurvPath ID:SurvBlood
SurvPath SurvBlood SurvBlood SurvDerma SurvPath SurvDerma
NLL 0.9773 £+ .004 0.9954 + .001 0.4985 £+ .004 0.5004 £+ .007 0.5452 + .011 0.5197 £+ .007
N-MTLR 0.9881 4+ .002 0.9958 + .001 0.5076 + .021 0.5322 4+ .025 0.5731 + .018 0.5174 + .016
RPS 0.9733 £ .002 0.9936 £+ .001 0.5160 £ .004 0.4907 £+ .004 0.5459 £+ .009 0.5227 £+ .008
RPS+Rank 0.9740 £+ .002 0.9927 4+ .001 0.5125 4+ .011 0.4929 + .008 0.5716 + .015 0.5256 + .016
DeepHit 0.9861 + .002 0.9951 + .001 0.5141 + .023 0.5113 £+ .011 0.5717 £+ .008 0.5172 £+ .011
SurvRNC 0.9722 £+ .003 0.9899 + .001 0.6131 £+ .035 0.5108 £+ .044 0.6123 + .035 0.6335 £+ .141
TE-SSL 0.9660 £ .001 0.9878 £+ .001 0.5265 £+ .034 0.4644 £+ .020 0.6479 £ .048 0.5209 £ .012
TCSurv (Ours) 0.9813 £ .001 0.9809 £ .002 ‘ 0.7989 + .042 0.7649 + .016 0.8933 £+ .020 0.9403 + .016
C-td ID:SurvOrganA ID:SurvOrganS
SurvOrganA SurvOrganS SurvOrganS SurvOrganC SurvOrganC SurvOrganC
NLL 0.9927 £+ .001 0.9671 £+ .004 0.5273 £+ .005 0.5177 £+ .004 0.5272 £+ .000 0.5129 £+ .001
N-MTLR 0.9921 + .001 0.9678 + .004 0.5617 4+ .018 0.5406 £+ .011 0.5358 + .012 0.5175 4+ .004
RPS 0.9892 £ .001 0.9682 £ .002 0.5515 £ .006 0.5463 £ .005 0.5280 £ .006 0.5197 £+ .005
RPS+Rank 0.9920 £ .002 0.9708 £+ .003 0.5425 4+ .017 0.5359 £+ .012 0.5267 + .003 0.5153 £+ .000
DeepHit 0.9918 4+ .002 0.9724 + .002 0.5276 &+ .005 0.5214 £+ .004 0.5364 + .014 0.5137 £+ .005
SurvRNC 0.9853 £ .003 0.9627 + .004 0.6138 £+ .045 0.5737 £+ .031 0.5911 + .016 0.5276 £+ .004
TE-SSL 0.9878 £ .002 0.9582 £+ .018 0.5525 £+ .011 0.5316 £ .003 0.5853 + .036 0.5229 £+ .012
TCSurv (Ours) 0.9809 £ .002 0.9496 £+ .002 ‘ 0.7453 + .005 0.7032 + .011 0.6098 + .023 0.5572 + .011

Table 3: (Left) Survival performance (Right) OOD performance for medical imaging benchmark datasets

4.1 Experimental setup

We evaluate our method against Negative Log-Likelihood (NLL) [Kvamme & Ornulf Borgan| (2019), Neural
Multi-Task Logistic Regression (N-MTLR) [Fotso| (2018a)), and Ranked Probability Scoring (RPS) Kamran
& Wiens| (2021a)) models. Additionally, some works have explored the use of an additional ranking component,
which seeks to learn the proper ordering of uncensored individuals. As such, we include DeepHit (Ly 11 +
L Ranking) [Lee et al.| (2018) and RPS+Rank (Lrps + LRanking) Kamran & Wiens| (2021a)) in our baseline
suite. Finally, since TCSurv can be viewed as a representation learning method, we include two recent
approaches: SUurvRNC (Lpeeprit + 7Lsurvrne) Saeed et al| (2024) and TE-SSL (Lpeepmit + YLTESSL)
Thrasher et al| (2024), to ensure that our improved OOD detection is not merely due to better feature
learning, but rather to learning a more optimal feature space.

All models were optimized using the Adam algorithm Kingma, (2014) with a learning rate ®. We use a
3D CNN [Liu et al| (2020) as the backbone model for ADNI, ResNet18 for the Surv* scenario, and a feed
forward neural network [Kvamme & Ornulf Borgan! (2019) for the nonimaging datasets. ADNI were trained
with o = 1, A = 0.5, ® = 1 x 10~%, Surv* with o, A = 1, ® = 1 x 1074, and FLCHAIN with o, A = 1,
® = 173, All experiments were conducted using NVIDIA A30, A40, and RTX 4500 Ada Generation GPUs.
Results are reported as the mean and standard deviation across three random seeds. We provide more details
on each baseline model in Appendix [C]

4.2 Results

We present the primary results for the ADNI, non-imaging, and Surv* datasets in Tables and
respectively. In each table, we show the OOD results (AUROC) on the right and the corresponding survival
results (C-td) on held-out in-distribution data on the left.

First, as shown across nearly all experiments, the OOD detection performance of TCSurv is significantly
higher, achieving up to a 49% increase in the ADNI experiments, 43% with non-imaging data, and 48% with
the Surv* suite compared to top performing baselines. This improvement in OOD detection can be attributed
to TCSurv’s explicit design that encourages in-distribution (ID) training data to form tight clusters around
time-dependent anchor points. To empirically observe this behavior, we plot the distance to the nearest
time-based center for our method in Figure [3|and compare it to the baselines. Here, we clearly observe that
baseline methods fail to distinguish between ID and OOD data. In some cases (e.g., NLL), the logit space
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SurvPathMNIST ‘ SurvOrgan AMNIST
Cotd AUROC AUROC Cotd AUROC AUROC
(SurvBloodMNIST)  (SurvDermaMNIST) (SurvOrganSMNIST)  (SurvOrganCMNIST)

0.1 | 0.9725 0.7292 0.8371 0.9583 0.6743 0.6510

o 1 0.9836 0.8434 0.7914 0.9794 0.7495 0.7132
5 0.9671 0.7086 0.4976 0.9548 0.7499 0.7163

10 0.9295 0.5430 0.3329 0.9021 0.7342 0.6919

0 0.8557 0.5200 0.3724 0.9299 0.7403 0.6912

.25 | 0.9837 0.8371 0.7834 0.9860 0.7838 0.7356

A .5 0.9836 0.7832 0.8082 0.9844 0.7659 0.7258
.75 | 0.9837 0.8751 0.8505 0.9828 0.7536 0.7157

1 0.9832 0.8112 0.8433 0.9809 0.7909 0.7498

Table 4: Ablation of « and A for Surv{Path, OrganA}.
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Figure 3: TCSurv allows the ID dataset to cluster more tightly around the time-based centers, while the
distances of OOD samples to the nearest time-based centers are more spread out compared to the baselines.

even places ID data farther from the center than OOD data. In contrast, TCSurv effectively achieves tighter
clusters for ID data, while OOD data remain more dispersed. We additionally provide distance plots for the
representative non-imaging experiments in the Appendix

Second, in terms of survival performance, TCSurv demonstrates results that are comparable and competi-
tive with existing baselines. For example, on ADNI, a real-world dataset for Alzheimer’s dementia, TCSurv
achieves the best performance. On other datasets, with the exception of SurvOrgan$, its survival outcomes
remain closely aligned with those of the strongest baseline methods, with only marginal differences. Impor-
tantly, as discussed earlier, TCSurv consistently outperforms baselines in OOD detection across all datasets.
This is particularly critical in real-world applications, where the reliability and robustness of a model are
just as important as its accuracy.

4.2.1 Ablation analysis

a & X analysis: We examine the effect of «, which controls the magnitude of the class anchor, and A, which
balances the contributions of £7 and £ 4, on both survival performance and OOD detection. The results,
presented in Table El (top), indicate that the model generally prefers smaller « values, suggesting that a
compact feature space is well-suited for both survival analysis and OOD detection.
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Figure 4: Analysis of the effect of including censored samples when updating anchor locations for both
survival performance (left) and OOD detection (right).

In Table 4| (bottom), we analyze the effect of A to understand the role of anchor loss. As seen for both
datasets and in both survival analysis and OOD performance, when A = 0 (corresponding to zero anchor
loss), the performance is poor, demonstrating the importance of £ 4.

Censored samples in determining the anchor position: TCSurv repositions the time anchors based on cor-
rectly predicted samples. As discussed in Sec [3.4.1} we consider both observed and censored elements for
relocation, rather than updating centers solely based on observed ones. As shown in Fig. [4] while including
censored samples does not significantly impact survival performance on benchmark datasets, it proves cru-
cial for all OOD evaluations, where censored data plays an important role in determining accurate anchor
positions. This is particularly apparent in the evaluation of ADNI-T2 data, where the model is entirely
unable to predict OOD samples when anchors are relocated based solely on observed data.

Censorship ratio: As discussed in Sec. synthetic data allows us to conduct a more thorough analysis of
our model’s behavior as the level of censorship varies. As such, Figure[5]depicts TCSurv’s performance across
varying levels of censorship. From the four plots on the right, it can be seen that our method consistently
achieves superior AUROC on the OOD detection task when compared to the baseline models. It can also be
seen from the two leftmost plots that survival performance from TCSurv maintains steady and competitive
performance. While it is slightly below some of the baseline methods, we argue that TCSurv still performs
strongly overall on the survival task, and that the massively improved OOD performance justifies a slight loss
in the survival task since reliability is equally crucial in real-world applications. But we also acknowledge
this as a limitation of our method as Egs. [] and [ handle censored data in a more restrictive manner
than the unbounded approaches in the baseline models. Finding a better balance between OOD detection
performance and a less restrictive mechanism for censored data could be a valuable area for future work.

5 Discussion

In this work, we address the problem of OOD detection head-on in survival analysis for the first time by
introducing TCSurv, a novel time-based clustering framework. TCSurv organizes representations of both
observed and censored samples into distinct, compact time-based clusters, enhancing the model’s ability to
distinguish ID images from those in unseen distributions, thus improving OOD detection in survival analy-
sis. The approach incorporates an objective function that promotes separation between time clusters while
ensuring that learned embeddings remain close to their respective time anchors. Through extensive evalua-
tions across a real-world MRI dataset, three clinical lab feature datasets, and six medical imaging benchmark
datasets, TCSurv consistently improves OOD detection without compromising survival performance. Fur-
ther, uur experiments demonstrate that TCSurv consistently creates compact clusters around the designated
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Figure 5: Analysis of model performance with varying levels of censorship. (Top) Trained on SurvPath
as ID data and Surv{Blood, Derma} as OOD data. (Bottom) Trained on SurvOrganA as ID data and
SurvOrgan{S, C} as OOD data.

time anchors and is robust the high degrees of censorship. Among the OOD detection tasks studied, the
ability of our method to identify artifact-filled MRIs as OOD is particularly significant, as such artifacts,
caused by equipment interference, can severely degrade image quality and diagnostic accuracy Noda et al.
(2022)).

However, this study has certain limitations that point to important directions for future research. While
prior work has explored OOD detection in survival analysis using epistemic uncertainty quantification |[Loya
et al.| (2020); |Liu et al.| (2025), this work does not focus on uncertainty-based approaches. A key reason
is that uncertainty estimates alone do not reliably capture distributional shifts in unseen data, as modern
deep neural networks are often poorly calibrated and tend to exhibit overconfident predictions even under
significant distributional mismatch Wang et al.| (2021)). In addition, our experimental formulation simplifies
the clinical progression modeled in the ADNI dataset, which contains labels for Cognitively Normal (CN),
Mild Cognitive Impairment (MCI), and Alzheimer’s Dementia (AD) samples. To frame it as a survival
task, we merged CN and MCI into a single category, predicting AD directly. Extending TCSurv to handle
longitudinal survival data, thereby modeling transitions from CN to MCI to AD, could be a valuable future
direction with significant translational implications. Since longitudinal methods follow a single subject over
time, ensuring reliability across multiple visits is another important challenge to consider. Additionally, we
note that the current anchor initialization method yields equidistant time centers, which may imply that
all event times are equally spaced (i.e. t = 1 is as close to t = 2 as it is t = 10). While this formulation
is effective, organizing anchors such that centroids are closer to temporally nearby anchors than distance
ones could offer further improvement to the survival modeling process. We also note that since TCSurv
is designed as a nonparametric approach, future work should explore OOD detection for parametric and
semi-parametric methods. Lastly, our analysis using the Surv* datasets could be expanded to develop a
standardized benchmark for survival-based OOD detection. This would likely attract broad interest and
help drive progress in addressing this critical reliability challenge.
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Appendix

A Survival analysis

Survival analysis is a statistical tool used to model the time it takes until a specific event occurs. Survival
data are collected in follow-up studies, where a subject is monitored until the event of interest has occurred,
at which point the time between the initial visit and event occurrence is recorded as the survival outcome.
Importantly, not all survival outcomes can be recorded due to the study ending prior to event observation or
a subject dropping out of the study for some other reason. These instances are called right-censored samples,
and are a crucial aspect to survival analysis because it is unknown if/when the event will occur in the future.
In these cases, we instead record the last visit as the time of censorship (6 = 0) since it is at least known
that this subject has not experienced an event by this time.

Formally, consider subject data X. The ground truth event time can be sampled from a distribution ¢* € T.
Similarly, the time of censorship can be sampled from ¢ € C. We choose the subject’s event indicator to
be § = 1 if t* < ¢ and 0 otherwise. Then, the corresponding event time is ¢ = min(¢*, ¢). Note that it is
typically assumed that 7 L C|X for right-censored data.

A.1 Survival evaluation

The Concordance Index (CI) evaluates the model’s ability to correctly rank the event times of two samples,
given the information. However, CI is only computed at the initial time of observation and does not reflect the
change in risk over time [Lee et al. (2018). Instead, the time-dependent concordance index (C-td) evaluates
the average concordance across each time interval to provide a more holistic view of the risk across the
study. To compute C-td, we first must define the Cumulative Incidence Function (CIF), which expresses the
probability that the event will occur on or before some time ¢. This is essentially the cumulative sum of the
S(t|X), and is defined as:

t
F(tX) = a(fo(X)): 9)
i=0
where o(+) is the Softmax (or softmin for TCSurv) function. We then define C-td as:

Aij+ 1(F (] X5) > F(t]| X5)

Ctd =
Dizg Ai

(10)

Here, A; ; is a function which determines whether a pair of elements 7, j are comparable, defined as A; ; =
1(0; = 1,¢; < t;). Higher is better for C-td, where 1 corresponds to perfect ranking, 0.5 is complete
randomness, and 0 is inversely perfect.

B Detailed dataset descriptions

B.1 ADNI

The ANDI dataset includes a cohort of 493 unique patients from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [Petersen et al| (2010). Each participant has one or more visits that include 3D T1-
weighted MRI scans, resulting in a total of 1,978 data points. A subset of patient visits additionally include
a T2-weighted MRI, which we utilize as OOD data during evaluation. At each visit, patients are classified as
cognitively normal (CN), having mild cognitive impairment (MCI), or diagnosed with Alzheimer’s dementia
(AD). We designate as converters those individuals who were initially CN or MCI but developed AD over
the course of the study. Additionally, each visit records the number of months since the baseline observation,
serving as a time-to-event indicator, with a 68.7% censor rate. The data underwent preprocessing following
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Dataset ~ Modality (#classes) # Train / Val / Test
Path Colon Pathology (9) 89,996,/10,004,/7,180
Blood Blood Cell Microscope (8) 11,959/1,712/3,421
Derma Dermatoscope (7) -/ - /2,005

OrganA  Abdominal CT - Axial (11) 34,561/6,491/17,778

OrganS  Abdominal CT - Sagittal (11) 13,932 / 2,452 / 8,827
OrganC  Abdominal CT - Coronal (11) -/ -/ 8,216

Table Al: Overview of medical imaging benchmark datasets [Yang et al.| (2023).

the pipeline outlined in |Liu et al.| (2020) and were split by unique participants to prevent data leakage. For
patients with multiple visits, each visit is treated as an independent data point.

B.2 Nonimaging data

All nonimaging datasets included in this study are continuous time survival datasets which were binned into
10 time windows using LabTransDiscreteTime from the Pycox Kvamme & Ornulf Borgan| (2019) library. For
OOD evaluation, we truncated/padded the features to align every dataset with the model, as needed.

B.2.1 FLCHAIN

This dataset contains 7874 individuals with 7 features over a time horizon of 5166 days and studies the
relationship between serum free light chain (FLC) and mortality. FLCHAIN is approximately 69.9% right-
censored.

B.2.2 GBSG

GBSG contains follow up information for 473 patients with a 56 month time horizon and 7 features. The
event of interest for GBSG is death due to breast cancer. Finally, GBSG has is 43.2% censored.

B.2.3 METABRIC

METABRIC also contains follow up information for breast cancer mortality. It contains 9 gene expression
features with a time horizon of 355 months and a censor rate of 42.1%.

B.3 Synthetic data

Table [AT] provides more details on MedMNIST datasets that were used to generate the synthetic data.
Additionally, Figure [AT] provides a visualization of our synthetic data generation approach.

C Futher implementation details

Table [A2] outlines all of the hyperparameter configurations used in our experiments. We now provide more
details on the baseline methods, hyperparameters, and model architectures.

C.1 Baseline methods

We now provide more details on the baseline methods used for comparison.

C.2 Standard survival methods

C.2.1 Negative Log Likelihood (NLL)

This is an adaptation of log-likelihood proposed by |Lee & Whitmore| (2006|) for right-censored survival data,
defined as:
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t=0
6=1 o=1 60=0 o=1 60=0 o=1

Observed elements are assigned eventtime ¢, = y.

Elements with ground truth event time at t* = 0are always observed
Censored elements are assigned a random event time t < t*

All elements with ground truth event time t* = T are always censored

Figure Al: Schematic outlining synthetic data generation, where y is the class label, ¢ is the time of
event/censoring, t* is the ground truth event time, and ¢ is the event indicator.
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Figure A2: Histograms showing the distance of elements to their closest center for FLCHAIN experiment.

B T
Lypr=—» dilogii+(1—d)log > g (11)
i=1 j=ti+1
ADNI FLCHAIN Surv*
Optimizer Adam Adam Adam
Learning rate 1 x 107% 1x1073 1x107*
Batch Size 32 32 128
a 1 1 1
A 0.5 1 1
Y1 0.5 0.25 0.5
Y2 0.2 0.25 0.5
154 0.5 0.9 0.5

Table A2: Complete hyperparameter configuration for experiments.
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where B is the batch size and §; = softmax(fg(X;)). Specifically, for observed elements, Ly seeks to
maximize the predicted probability at the observed event time. Then, for censored elements, it instead
maximizes the sum of all probabilities after the time of censorship.

C.2.2 Neural Multi-task Logistic Regression (N-MTLR)

According to Kvamme & Ornulf Borgan| (2019)), N-MTLR is practically the equivalent to NLL loss, but with
a reversed cumulative sum applied to the output of the neural network.

C.2.3 Ranked Probability Scoring (RPS)

Instead of focusing only on an element’s event time, RPS loss instead applies to the entire time horizon,
defined as:

B T
Lrps :Z& Z (k| X;) — 1per,)?
=1 k=1
t;

5:) > (S(k|Xi) —1)?

k=1

(12)

For uncensored individuals, the survival probability is pushed toward 1 at all times before the event time
(rather than just at the event time) and is averaged over the entire time horizon. Then, for censored
individuals, RPS loss still moves the survival probability towards 1 at all times before censorship, but then
is only averaged up to the time of censorship (¢;) since the outcome is unknown after such time.

C.2.4 Ranking loss methods

Ranking loss is analogous to concordance index, in that it penalizes the model for an incorrect ordering of
two concordant individuals. Formally, it is defined as:

X)) — F(t] X
rankzng Z Az ,J eXP ( | )C ( ‘ j)) (13)
i7#]

Some works |Lee et al.| (2018); Kamran & Wiens| (2021b]) have demonstrated that the inclusion on such loss
can increase the discriminative performance of survival models.

C.2.5 Representation learning methods

There has been recent interest in applying contrastive learning-based losses to the survival context to improve
the model’s overall understanding of the training data, and therefore improve the survival performance. To
evaluate the OOD performance of such models, we include SurvRNC [Saeed et al| (2024) and TE-SSL
Thrasher et al.|(2024) in our baselines.

Since contrastive loss methods require a second, augmented view of the input batch, we apply the following
to our data: For MRIs, we use random flip with a probability of 50%, and random affine to randomly rotate
the input by 90 degrees in each direction. For the Surv* experiments, we apply color jitter and random
crop. Finally, we use SCARF feature corruption Bahri et al. (2022)) for the nonimaging datasets, with a
corruption rate of 60%. SurvRNC and TE-SSL are then applied regularization functions with DeepHit loss
as the prognosis function. Specifically Lpeeprit + V1 LsurvrNe and Lpeeprit + Y2L1ESSL, respectfully. We
define the ~y values in Table [A2]
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Layer Details
Linear (num features, 32)
ReLU -
BatchNorm1D -
Dropout 10%
Linear (32, 32)
ReLU -
BatchNorm1D -
Dropout 10%
Linear (32, 10)

Table A3: Details for non-imaging MLP network.

C.2.6 A note on the performance of SurvRNC and TE-SSL

We observe in our experiments that SurvRNC and TE-SSL both underperformed compared to the rest of
the baselines. We believe that this could indicate that contrastive learning based survival methods may
generally be sensitive to hyperparameter and environment configurations.

C.3 Architecture details

C.3.1 3D CNN for ADNI data

The 3D CNN used for the ADNI data takes X € RB*96x96x96 a1 yses a series of four convolutional layers
to create the embedding z € RB*1024 where B is the batch size. This network utilizes kernel sizes that are
unconventionally small compared to other models such as ResNet to preserve fine-grained details in the MRI
data, which has been demonstrated to improve AD classification performance. Refer to|Liu et al.| (2020) for
further details.

C.3.2 MLP for non-imaging data

We use a simple multi-layer perceptron (MLP) network from [Kvamme & Ornulf Borgan (2019) for the
non-imaging data. Table [A3] provides complete details.

D Additional Results

We present the additional distance histograms for experiments with FLCHAIN as the ID dataset in Figure
Here we can clearly see that TCSurv creates the tightest clusters around the time anchors and embeds
OOD samples further away, thereby improving overall OOD detection. The baselines, on the other hand,
tend to create a more spread representation space, making OOD detection more challenging.
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