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ABSTRACT

Recent self-supervised image segmentors have achieved promising zero-shot per-
formance. However, their pretraining schedule is multi-stage and alternates be-
tween offline pseudo-masks generation and parameters update, which leads to un-
stable training and sub-optimal solution. To solve this issue, we present Online
Agglomerative Pooling (OAP) that allows efficiently generating universal pseudo-
masks and updating parameters simultaneously at each training step. Specifically,
OAP contains a stack of instance pooling and semantic pooling layers. By us-
ing a layer-varied threshold, OAP can generate multi-hierarchy masks that can
provide more visual details for segmentation. Compared with MaskCut or Divide-
Conquer, each OAP layer can identify connected nodes in parallel, thus can gener-
ate universal pseudo-masks for a single image within tens of milliseconds. More-
over, to deploy OAP in online pretraining, we devise a teacher-student framework
with Query-wise Self-distillation, where the local view queries are each aligned
with the matched global view queries to learn the local-to-global correspondence.
Compared with other multi-stage offline pretraining methods, our framework can
effectively scale to larger datasets while ensuring quicker convergence. Exten-
sive experiments on the COCO, PASCAL VOC, Cityscapes, and UVO datasets
show that our method achieves state-of-the-art performance on zero-shot instance
segmentation, semantic segmentation, and panoptic segmentation. Our code and
pretrained models shall be released upon acceptance of this work.
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Figure 1: Previous paradigm vs. our paradigm. (left) Starting with merged universal pseudo-
masks generated by different methods (Wang et al. (2023a; 2024); Hamilton et al. (2022)), previ-
ous paradigm (Niu et al. (2024); Wang et al. (2023a; 2024)) is multi-stage and alternates between
updating parameters and offline re-generating new pseudo-masks. (right) We propose Online Ag-
glomerative Pooling (OAP) that enables simultaneously generating masks efficiently and updating
parameters in each training step. Compared to previous paradigm, our online framework effectively
scales to large dataset and yields substantial performance improvements.

1 INTRODUCTION

Recent years have witnessed significant advancements in image segmentation (Xie et al. (2021);
Cheng et al. (2022); Kirillov et al. (2023); Ravi et al. (2024)). However, these models typically
require extensive human annotations for training, which is exceptionally time-consuming and labor-
intensive; for example, annotating a single image in the SA-1B (Kirillov et al. (2023)) dataset can
take over 25 minutes of detailed work. Moreover, human annotations often contain noise and incon-
sistencies, making them sometimes poorly aligned with the fine details of the images. Additionally,
human annotations are susceptible to personal biases, as different annotators may have varying in-
terpretations of what constitutes an instance or how semantic categories are defined. These inherent
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Table 1: Comparison of pseudo-mask generation time and performance among different algorithms.
We run all methods on COCOval2017, evaluate their average processing time per image (in seconds)
and average zero-shot class-agnostic instance segmentation performance. All images are scaled to a
resolution of 448. All methods use the DINO pretrained ViT-base/8 backbone to extract the features.

method time APmask

TokenCut (Wang et al. (2023b)) 2.25 3.5
MaskCut (Wang et al. (2023a)) 4.72 6.7
Divide-and-Conquer (Wang et al. (2024)) 5.27 7.6
Online Agglomerative Pooling 0.045 6.2

shortcomings in manual annotations can compromise the robustness and generalizability of seg-
mentation models, potentially limiting their efficacy across various visual contexts. In this paper,
we aim to explore the design of a self-supervised pretraining model for image segmentation that
leverages the intrinsic information within the images themselves, reducing reliance on extensive
human-labeled data.

To reduce reliance on manual annotations and learn from visual data themselves, several self-
supervised zero-shot instance segmentors (Wang et al. (2023a; 2024); Niu et al. (2024); Arica et al.
(2024)) are proposed. They first use pretrained SSL features and graph-partitioning (Wang et al.
(2023b;a) algorithms to generate pseudo-masks for each image. As shown in Table 1, although
these offline algorithm has better zero-shot performance for initialized training, they are very time-
consuming. They can not be deployed to online environment and the offline pseudo-masks genera-
tion is also very time-consuming. Most importantly, the pseudo-masks used for the next round train-
ing is directly extracted from the last checkpoint, which makes the training unstable when switching
to another round. This may lead to sub-optimal solution.

The key solution for enabling online pretraining is to reduce the processing time of pseudo-mask
generation algorithm. To achieve this goal, we propose the Online Agglomerative Pooling (OAP)
algorithm to efficiently generate universal pseudo-masks of one image within tens of milliseconds.
Our key insight is that semantically-similar patches are spatially close in group. We can identify
these groups of strongly-connected nodes in parallel (Pearce (2005)). As shown in Table. 1, OAP
can generate comparable zero-shot instance segmentation performance to previous methods but is
100× faster than previous methods, which enables online large-scale pretraining for self-supervised
universal segmentation.

Equipped with the much more efficient pseudo-masks generation algorithm, we propose to adopt
a teacher-student framework with Query-wise Self-distillation as the pretext task to train the self-
suerpervised segmentation model. Unlike previous self-supervised representation models that utilize
global pooling or the ViT[CLS] (Dosovitskiy (2020)) token, we condense each image into a set
of universal queries, and train each student query to predict the corresponding bipartite-matched
teacher query. We empirically find that this simple but effective approach benefits self-supervised
segmentation by enabling more fine-grained learning of individual segments instead of focusing just
on the global context.

Our main contributions are:

• We propose an efficient pseudo-masks generation algorithm, Online Agglomerative Pool-
ing (OAP), which enables to generate high-quality semantic-level and instance-level
pseudo-masks within tens of milliseconds. This enables large-scale online pretraining.

• We propose the Query-wise Self-distillation loss to pretrain universal segmentation models
in a self-supervised manner. As far as we know, our model is the first work for online self-
supervised universal segmentation. Compared with other multi-stage alternating frame-
works, our model converges faster and achieves significant performance improvements.

• Extensive experiment results on COCO, PASCAL VOC, UVO, and Cityscapes validate
that our model achieves state-of-the-art performance on zero-shot self-supervised instance
segmentation, semantic segmentation and panoptic segmentation.
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2 RELATED WORK

Self-supervised Representation Learning. Self-supervised representation learning aims to learn
universal (Bengio et al. (2013) features from large amounts of unlabeled instances without manual
annotation. A pretext task is often pre-defined to train the model. According to types of pretext
task, they can be classified into contrastive learning methods and masked image modelling meth-
ods. Contrastive learning based methods include pretexts based on negative samples (Chen et al.
(2020a); He et al. (2020); Chen et al. (2021)), clustering (Caron et al. (2020); Asano et al. (2019)),
self-distillation (Caron et al. (2021); Grill et al. (2020); Chen & He (2021)), feature decorrela-
tion (Zbontar et al. (2021); Bardes et al. (2021)). Masked image modelling methods include pretexts
tasks based on low-leve targets (He et al. (2022); Chen et al. (2020b); Wei et al. (2022)), high-level
targets (Bao et al. (2021); Dong et al. (2023); Chen et al. (2024), self-distillation (Chen et al. (2022a);
Baevski et al. (2022)), and multi-modal teacher (Zhou et al. (2022); Peng et al. (2022)).

Self-supervised Instance and Semantic Segmentation. Recently studies (Caron et al. (2021);
Hamilton et al. (2022); Siméoni et al. (2021); Vo et al. (2020; 2021)) show pretrained SSL fea-
tures can capture pixel-to-pixel semantic similarity. Inspired by that, several works (Hamilton et al.
(2022); Wang et al. (2023a); Arica et al. (2024); Wang et al. (2024); Seong et al. (2023); Kim et al.
(2024); Wang et al. (2023b); Van Gansbeke et al. (2022); Wang et al. (2022); Liu et al. (2024)) aim
to distill or self-train a segmentation model based on the pretrained SSL representation. These meth-
ods can be classified into semantic segmentation methods, zero-shot instance segmentation methods,
and universal segmentation methods. State-of-the-art unsupervised zero-shot instance segmentation
methods (Wang et al. (2023a); Arica et al. (2024); Wang et al. (2024) adopt a cut and learn pipeline,
in the sense that they first generate pseudo-masks using pretrained SSL representation, and then learn
a model through multi-round self-training. Unsupervised semantic segmentation methods (Hamil-
ton et al. (2022); Seong et al. (2023); Kim et al. (2024); Liu et al. (2024) adopts a distillation-based
objective, in the sense that the projected segmentation features should preserve the pixel-to-pixel
semantic correspondence in the original SSL representation space. Recently, U2Seg (Niu et al.
(2024)) proposes a self-supervised universal segmentation framework for semantic, instance, and
panoptic segmentation. They adopt the similar cut-and-learn pretraining pipeline. To make the
model semantic-aware, they cluster the masks to generate the semantic pseudo-labels for semantic
training.

In contrast, we propose Online Agglomerative Pooling, which is an efficient pseudo-mask generation
algorithm, that enables pretraining self-supervised segmentation models in an online manner and
effectively scaling to large datasets, without any offline generation or clustering. As far as we know,
our work is the first online method for self-supervised instance and universal segmentation.

Graph Pooling. As an esential component of Graph Neural Networks, graph pooling is important to
obtain a holistic graph-level representation. Graph pooling can be roughly divided into flat pooling
and hierarchical pooling according to its role in graph-level representation learning. Flat pool-
ing (Dwivedi et al. (2023); Xu et al. (2020); Noutahi et al. (2019)), also known as Graph Readout,
aims to obtain a global graph-level representation. Hierachical pooling aims to iteratively coarsen-
ing the graph into smaller size. It can be classified into node clustering pooling (Wu et al. (2019);
Liu et al. (2021)) and node drop pooling (Gao et al. (2019); Lee et al. (2021); Gao et al. (2021)).

3 PRELIMINARIES

Unsupervised Universal Image Segmentation (U2Seg). Universal segmentation requires annota-
tions of instance-level masks, semantic-level masks, and the class label for each mask. As the first
self-supervised universal segmentor, U2Seg (Niu et al. (2024)) follows a similar cut-and-learn (Wang
et al. (2023a)) pretraining pipeline. The ”cut” stage is offline and generates the pseudo universal an-
notations for the whole dataset. Specifically, based on the self-supervised feature maps (Caron et al.
(2021)), U2Seg uses the graph-partitioning algorithm MaskCut (Wang et al. (2023a)) to generate
a set of instance-level pseudo-masks for each image. K-means is then used to cluster these masks
and get their pseudo-labels. For semantic-level annotations, U2Seg uses a distillation-based model
STEGO (Hamilton et al. (2022)) to get the pixel-wise semantic pseudo-label. The ”learn” stage al-
ternates between training model using the current annotations and generating new pseudo universal
annotations using the previous model checkpoint.
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Self-distillation with No Labels (DINO). Self-supervised representation learning frequently incor-
porates a pretext task to supervised encoder training. DINO (Caron et al. (2021)) is a self-distillation
model that leverages online clustering (Caron et al. (2020); Asano et al. (2019). Specifically, DINO
employs a student-teacher framework wherein both networks consist of an encoder and a projection
head designed for online clustering. The teacher network encodes solely global views of the im-
age, whereas the student network processes both global and local views created through multi-crop
augmentation (Caron et al. (2020). The student head learns by aligning its outputs to those of the
teacher head:

SD(pt,ps) = −
K∑

k=1

pk
t logpk

s , (1)

where K is the online cluster number, pt ∈ RK is the softmax code of the teacher view, ps ∈ RK

is the softmax code of the student view. The self-distillation loss between local and global view en-
ables the model to capture local-to-global correspondences. The teacher network is updated using a
momentum mechanism (He et al. (2020)) that effectively ensembles the model over time (Tarvainen
& Valpola (2017)), thus providing higher-quality target features to guide the student and enhance
learning without the need for manual labels.

4 SCALABLE SELF-SUPERVISED UNIVERSAL SEGMENTATION
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Figure 2: Our online pretraining framework for scalable self-supervised universal segmentation. We
adopt a teacher-student framework. The original view (global) is fed into the teacher branch, then
we propose to use Online Agglomerative Pooling (OAP) to efficiently generate semantic/instance-
level masks (△) and their feature embeddings (□). In student branch, we use mask decoder with
level-specific object queries to predict the local view universal masks. To train the network, we
use bipartite matching to match the student outputs with the cropped teacher masks. We propose
Query-wise Self-distillation to align each student query with corresponding matched teacher query.

4.1 OVERVIEW ARCHITECTURE

As shown in Figure 2, given an image, we use multi-crop (Caron et al. (2020)) augmentation to get
a set of local views from the original view. The original view is input to the teacher branch, where
a multi-scale encoder (Chen et al. (2022b); Caron et al. (2021) extracts its features, and a series of
Online Agglomerative Pooling (OAP) layers are then employed to generate the instance-level and
semantic-level pseudo-masks along with their feature embeddings. Simultaneously, each local view
is fed to the student encoder to first extract its features. A mask decoder (Cheng et al. (2022)) is
then used to predict its universal masks and feature embeddings. We partition the object queries into
two distinct parts—semantic queries, distinguished by the learnable token [SEM], which focus on
capturing semantic-level information across the image, and instance queries, distinguished by the
learnable token [INS], which aim to identify individual instances within an image.

After both branches have generated their respective universal masks and feature embeddings, we
treat teacher outputs as targets and perform bipartite matching to align the student outputs. Since the
teacher processes the global view, we spatially crop the teacher’s pseudo-masks to correspond with
the student’s local views before matching.

We also incorporate the pretext task, online clustering with self-distillation (Caron et al. (2020;
2021)), to train the student branch. Unlike DINO or SwAV, which distills a single global image fea-
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ture, query-wise self-distillation uses multiple query features per image corresponding to different
segments. After matching, each student query learns from its teacher counterpart. This approach
benefits self-supervised segmentation by enabling fine-grained learning of individual segments.

Unlike previous seminal works Wang et al. (2023a; 2024); Niu et al. (2024); Arica et al. (2024),
our pretraining framework does not include any offline pseudo-masks generation or offline clus-
tering, thereby enabling self-supervised segmentation models to scale effectively to larger datasets.
Moreover, as shown in Section 5, continuously updating pseudo-annotations allows our model to
converge more rapidly and reliably, avoiding the loss fluctuations associated with previous alternat-
ing multi-stage frameworks.

4.2 ONLINE AGGLOMERATIVE POOLING

input graph

1

2

3

4

5

6

7

8

9

10

semantic poolinginstance pooling

1

2

3

4

5

6

7

8

9

10

I M MI

Figure 3: One layer in Online Agglomerative Pooling (OAP). Each layer first generate instance-level
pseudo-masks using instance pooling. Based on the result of instance pooling, a fully-connected
graph is built. Semantic-level pseudo-masks are then generated by semantic pooling. The result of
instance pooling is used as input in the next OAP layer. Both instance pooling and semantic pooling
adopt the Identify then Merge pipeline.

As shown in Figure.3, each OAP layer first finds groups of strongly-connected nodes, and merge
each group into one supernode. Compared with the optimization-based TokenCut (Wang et al.
(2023b)) and MaskCut (Wang et al. (2023a)) methods, OAP is a heuristic approach and does not
require computation of eigenvectors. Moreover, thanks to the SCC (Pearce (2005)) algorithm, OAP
can group nodes in parallel, wich is also much faster than the Divide-and-Conquer approach adopted
in (Wang et al. (2024)). Next we will illustrate the initialization, identify step, and the merge step in
details. We summarize Online Agglomerative Pooling in Algorithm. 1.

Graph Initialization. Following (Wang et al. (2023a; 2024)), we use the L2-normalized ”key”
features F ∈ RH′W ′×d from the last self-attention layer in the teacher encoder to initialize the
graph. Specifically, each token is treated as one node, and edges are formed solely between nodes
that are directly adjacent horizontally and vertically. Throughout the pooling process, each node i is
associated with a mask Mi ∈ {0, 1}H

′W ′
denoting which tokens belong to its subtree. We initialize

M0 as the identity matrix I ∈ {0, 1}H′W ′×H′W ′
. The initialized undirected, connected graph is

denoted as G0 = {V0,M0,E0}, where V0 ∈ Rs0×d, E0 ∈ {0, 1}s0×s0 is the adjacency matrix,
s0 = H ′W ′ is nodes number. We also denote A = FFT ∈ RH′W ′×H′W ′

as the spatial affinity
matrix, which are used when computing the edge similarity.

Identify Step. For semantically-similar tokens, their features should have large cosine similarity,
therefore, we compute the feature similarity of two adjacent nodes as:

Sfij = Vt
iV

t
j
T
. (2)

However, due to the merge step (which will be illustrated later), node features are evolving after
each layer. The pairwise similarity may not be consistent with the one implied from the original
encoder features. To mitigate this issue, we also measure the spatial similarity of two nodes as:

Ssij = 1− 1

H ′W ′ |
Mt

iA

Mt
i1

T
−

Mt
jA

Mt
j1

T
|1T , (3)

where | · | is the absolute operator, 1 ∈ R1×H′W ′
is a vector of 1s. node i and j are considered

semantically similar if they have similar affinity distribution along the original tokens map. Ssij
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does not require direct feature comparison, it assembles a voting mechanism, in the sense that each
original token gives its score on their similarity. The final similarity measure is formulated as:

Sij = ωfSfij + ωs(Ssij), (4)

where ωf + ωs = 1 and Sij ∈ [−1, 1]. Then, given a threshold τt, edges with similarity measure
larger than τt are labeled to be contracted. We use the SCC (Pearce (2005); Scipy (2024)) algorithm
to find a set of connected groups of nodes. Nodes in each group will be merged into one supernode.

coarsen

Figure 4: Mask visualization of different feature updating strategy. Each column corresponds to one
OAP layer (t=2,3,4,5). (Up) The supernode feature is updated using Vt+1

i = ΩTVt
i . (Bottom) The

supernode feature is updated using Equation. 6

Merge Step. The SCC algorithm outputs a node-supernode assignment matrix Ω ∈ {0, 1}st×st+1

.
According to the assignment matrix, the new adjacent matrix and mask matrix is updated as:

Et+1 = ΩTEt(ΩTEt)T ;Mt+1 = ΩTMt, (5)
where each supernode takes a union of each child node mask. To get the supernode features, a
direct solution is averaging features of tokens inside its mask, i.e. Vt+1

i = ΩTVt
i . However, we

empirically find that this can cause semantically-different but spatially-close nodes to first merge.
We think this is due to that the supernode feature includes information of its boundary tokens and
is not representative of its main region. When two supernodes are neighboring to each other, their
common boundary tokens will make their feature having a large similarity measure. To mitigate this
issue, similar to Equation.3, the supernode feature is computed as:

Vt+1
i = L2N{softmax(

Mt+1
i A

σ
)F}, (6)

where L2N{·} denotes L2-normalization, σ is the softmax temperature. Equation.6 can also be
seen as a voting mechanism, where most of the softmax mass will lie on the salient region of the
supernode, and the information of boundary tokens is suppressed. As shown in Figure. 4, the ”grass”
region are not merged with the ”human leg” region throughout the pooling process. This shows that
updating supernode features using Equation 6 can make semantically-different but spatialy-close
regions more discriminative.

Instance Pooling and Semantic Pooling. It is noteworthy that edges exist only between adjacent
nodes in G0. Moreover, the edge updating function Equation. 5 ensures that edges are maintained
only between adjacent supernodes. Consequently, each mask corresponds to a single connected re-
gion, which is predominantly suitable for instance segmentation tasks. However, semantic segmen-
tation often requires masks that encompass multiple disjoint regions belonging to the same semantic
class. To address this limitation, we construct a fully connected version of the graph derived from
instance pooling. Subsequently, the same Identify and Merge pipeline is employed to generate se-
mantic masks, thereby accommodating multiple disjoint components within a single semantic mask.
The graph derived from instance pooling is used as input of the next OAP layer.

Time-varied Thresholding. Online Agglomerative Pooling can be seen as a graph coarsen proce-
dure, where the coarsened supernodes represent its whole receptive region and removes the abundant
information among adjacent pixels. Therefore, we use a decreasing threshold to filter out masks at
different semantic hierarchy. We empirically find that the background tokens, where pixels are very
similar to their neighbors, are merged at the very early OAP layers by using a high threshold (such
as 0.9). While tokens like ”human head” and ”human body” with higher level semantics are merged
at later OAP layers using a lower threshold (such as 0.5).

6
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Algorithm 1 Online Agglomerative Pooling

Require: Initialized graph: G0 = {V0,M0,E0}, Spatial affinity matrix: A ∈ RH′W ′×H′W ′
,

L2-normalized key features: F ∈ RH′W ′×d, Layer-varied thresholds: {τt}Tt=1, Softmax tem-
perature: σ, Spatial and Feature similarity weight: ωs, ωf , Mask area threshold ϕ

1: instance masks← {}, instance features← {}, semantic masks← {}, semantic features← {}
2: for t in [0, ..., T − 1] do
3: Compute similarity score of each edge using Equation.4
4: Find set of edges {Et

i} with similarity score larger than τt
5: Compute node-supernode assignment matrix Ω = SCC({Et

i})
6: Update Et+1 ← ΩTEt(ΩTEt)T

7: Update Mt+1 ← ΩTMt

8: for i in [0, ..., st+1] do
9: Update Vt+1

i ← L2N{softmax(M
t+1
i A

σ )F}
10: if area(Mt

i) ≥ ϕ then
11: Append Mt

i to instance masks,Append Vt
i to instance features

12: end if
13: end for
14: Build a new fully-connected graph Gs = {Vt+1,Mt+1,Es}
15: Repeat steps 3-13 for Gs, get semantic features and semantic masks.
16: end for
17: return semantic masks, semantic features, instance masks, instance features

4.3 MODEL TRAINING

To deploy Online Agglomerative Pooling (OAP) for scalable online self-supervised universal seg-
mentation, we devise a teacher-student framework with momentum updating strategy. Moreoever,
we introduce a novel pretext task, Query-wise Self-Distillation, specifically designed to train models
for self-supervised segmentation.

Multi-scale Encoder and Zero-initialization. To utilize the important multi-scale information ( Lin
et al. (2017); Cheng et al. (2022)) for segmentation tasks, existing self-supervised models ( Wang
et al. (2023a; 2024); Niu et al. (2024)) utilize the DINO pretrained ResNet ( He et al. (2016)). To
further benefit from large-scale ViT( Dosovitskiy (2020)) pre-training, we devise Vit-Adapter( Chen
et al. (2022b)) as our multi-scale encoder. Given that OAP is a non-parametric module without prior
information, we zero-initialize the adapter parameters so that OAP can generate meaningful masks
during the early stages of training.

Level-specific Object Queries. To train a universal segmentation model, the mask decoder must
output both instance-level masks and semantic-level masks. Unlike U2Seg (Niu et al. (2024)) where
the decoder has two separate branches, we adopt a more streamlined approach by partitioning the
object queries in the mask decoder into the semantic queries and instance queries. To distinguish
between these two groups, we also introduce two special learnable tokens [INS] and [SEM], which
are added to the respective query features at each decoder layer. It is noteworthy that both groups of
queries share the same decoder parameters and projection head, enabling universal learning through
parameter sharing across different levels.

Cropped Bipartite Matching. The teacher network processes the original global view of the im-
age, producing pseudo-masks that cover the entire image. In contrast, the student network processes
local views obtained from multi-crop augmentation. To resolve the mismatch, we crop the teacher’s
pseudo-masks to match the spatial regions of the student’s local views. Teacher embeddings and
pseudo-masks that does not overlap with the student local view are dropped. We employ the Dice
similarity coefficient as the matching criterion. Moreover, the matching is conducted separately
within each segmentation level, in the sense that the matching processes for the semantic and in-
stance levels are independent and do not interfere with each other.

Query-wise Self-Distillation. We denote the query embeddings of the teacher and student branch
after bipartite matching as Qt ∈ RL×d and Qs ∈ RL×d, where L is the query number. We propose

7
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a simple but effective loss specifically designed for self-distilled segmentation:

L∑
i=1

SD{teacher head(Qi
t), student head(Ql

s)}. (7)

Loss. 7 is simply a sum of self-distillation loss over each pair of matched query embedding. This
is different from the representation-specific DINO loss. 1 where the code is the projection of the
global ViT [CLS] token. This approach benefits self-supervised segmentation by enabling more
fine-grained learning of individual segments instead of just focusing on the global context.

5 EXPERIMENTS

Table 2: Performance comparison with previous methods on class-agnostic zero-shot instance seg-
mentation, zero-shot instance-segmentation, unsupervised semantic segmentation, and panoptic seg-
mentation. Our model outperforms other state-of-the-art performance on all tasks.

Task → Agn Instance Seg. Instance Seg. Semantic Seg. Panoptic Seg.
Datasets → COCO COCO VOC UVO COCO COCO Cityscapes
Metric → APbox

50 APbox APbox
50 ARbox

100 APbox
50 ARbox

100 APbox
50 ARbox

100 PixelAcc mIoU PQ SQ RQ PQ SQ RQ
FreeSOLO Wang et al. (2022) 9.6 4.2 - - - - - - - - - - - - - -
TokenCut Wang et al. (2023b) 5.8 3.2 - - - - - - - - - - - - - -
CutLER Wang et al. (2023a) 21.9 12.3 - - - - - - - - - - - - - -
DINO Caron et al. (2021) - - - - - - - - 30.5 9.6 - - - - - -
STEGO Hamilton et al. (2022) - - - - - - - - 56.9 28.2 - - - - - -
CutLER+ - - 9.0 10.3 26.8 27.2 10.6 11.8 - - - - - - - -
CutLER+STEGO - - - - - - - - - - 12.4 64.9 15.5 12.4 36.1 15.2
U2Seg Niu et al. (2024) 22.8 13.0 11.8 21.5 31.0 48.1 10.8 25.0 63.9 30.2 16.1 71.1 19.9 17.6 52.7 21.7
Ours 28.7 19.6 25.3 30.5 38.4 56.4 16.2 32.1 68.4 36.1 20.2 80.6 26.7 20.5 60.1 29.7

Table 3: Comparison with other methods on unsupervised object detection and instance segmen-
tation on UVOval and COCOval and comparison with other methods on unsupervised panoptic
segmentation on Cityscapesval and COCOval. Our model outperforms previous methods by a
large marin on all univeral segmentation settings

Metric (UVO val-Instance) APbox APbox
50 ARbox

100 APmask APmask
50 ARmask

100

CutLER+Wang et al. (2023a) 6.3 10.6 11.8 6.0 9.0 10.4
U2SegNiu et al. (2024) 6.8 10.8 25.0 6.2 9.5 21.0
Ours 10.1 16.2 32.1 8.3 12.1 24.3

Metric(COCOval-Instance) APbox APbox
50 ARbox

100 APmask APmask
50 ARmask

100

CutLER+Wang et al. (2023a) 5.9 9.0 10.3 5.3 8.6 9.3
U2SegNiu et al. (2024) 7.3 11.8 21.5 11.2 6.4 18.5
Ours 9.6 25.3 30.5 14.6 12.4 23.3

Methods (Cityscapesval-Panoptic) Pretrain PQ SQ RQ
zero-shot methods

U2SegNiu et al. (2024) IN 15.7 46.6 19.8
Ours IN 20.1 53.4 24.3

non zero-shot methods
CutLER+STEGO COCO 12.4 36.1 15.2
U2SegNiu et al. (2024) COCO+IN 17.6 52.7 21.7
Ours COCO+IN 20.5 60.1 29.7

Methods(COCOval-Panoptic) Pretrain PQ SQ RQ
zero-shot methods

U2SegNiu et al. (2024) IN 11.1 60.1 13.7
Ours IN 16.2 71.2 18.5

non zero-shot methods
CutLER+STEGO COCO 12.4 64.9 15.5
U2SegNiu et al. (2024) COCO+IN 16.1 71.1 19.9
Ours COCO+IN 20.2 80.6 26.7

5.1 TRAINING SETTINGS

Model Architecture. For the multi-scale encoder, we use the DINO pretrained ViT-base/8
and ViT-Adapter(Chen et al. (2022b)). For the mask decoder, we use the official setting of
Mask2Former(Cheng et al. (2022)). For the project head, we follow DINO(Caron et al. (2021))
using a 3-layer MLP with hidden dimension 2048 followed by L2 normalization and a linear layer
of K dimensions. The adapter parameters are zero-initialized for stable pretriaining. After training,
the final teacher network with the mask decoder is used for inference. For unsupervised seman-
tic segmentation, we follow (Niu et al. (2024); Hamilton et al. (2022)) to additionaly fine-tune
our model using COCO’s training images. Parameter setting. We set σ = 0.07, {τt}Tt=1 =
[0.8, 0.7.0.6, 0.5, 0.4], ϕ = 5, ωf = 0.6, ωs = 0.4,K = 512. The number of semantic queries
is set to 50 and the number of instance queries is set to 150. We use a local crop scale between
0.05 and 0.4 for multi-crop augmentation. The images are resized to 448 as input. Optimization
Setting. We train the model using adamw optimizer with a batch size of 16. The learning rate is
linearly ramped up for the first 10k iterations to 0.000625. A cosine schedule is used to decay the
learing rate to zero. It is noteworthy that our model is only trained for 160k iterations, while other
models are trained for another multi-stage self-training. We use a cosine momentum schedule from
0.996 to 1 during training.
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5.2 DATASETS AND METRICS

Test Dataset. We test unsupervised instance segmentation on COCO textttval(Lin et al. (2014)),
PASCAL VOS val(Everingham et al. (2010)) and UVO val(Wang et al. (2021)). We test un-
supervised semantic segmentation on the COCOStuff-27(Caesar et al. (2018)) dataset. Following
U2Seg (Niu et al. (2024)), we test unsupervised panoptic segmentation on Cityscapes val(Cordts
et al. (2016) and COCO val. Test Metrics. We use the same evaluation protocol with U2Seg (Niu
et al. (2024)). We use AP, AP50, AR100 to evaluate the unsupervised instance segmentation. We
use Pixel Accuracy and mIoU to evaluate the unsupervised semantic segmentation. The clustering
labels are mapped using Hungarian matching to class labels in the dataset. Pretraining Dataset.We
use the ImageNet-1k (1.3M images) dataset for pretraining. Following U2Seg ( Niu et al. (2024))
on non-zero-shot evaluation, we also train our model over the combination of COCO and ImageNet
images for 90k iterations.

5.3 EXPERIMENT RESULTS

Self-supervised Instance Segmentation. As shown in Table.2 and Table.3, our framework signif-
icantly outperforms other state-of-the-art methods on COCO, PASCAL VOC, and UVO. For class-
agnostic unsupervised instance segmentation, our model achieves an increase of +5.9 in APbox

50 ,
which is 25.8% of increase compared to U2Seg (Niu et al. (2024)). Our online pretraining frame-
work can converge faster and achieve significant improvements over previous multi-stage alternating
methods. Most importantly, for our method, the performance of the class-aware instance segmenta-
tion is higher of that in class-agnostic instance segmentation. However, this is reversed for U2Seg.
This is because U2Seg adopts the multi-stage alternating strategy, where the pseudo-labels are re-
generated at each round and thereby the classification learning is not stable and can not achieve better
performance. This shows that the online clustering mechanism can better help model to capture the
semantics information in the pretraining dataset.

Self-supervised Semantic Segmentation. As shown in Table.2, our framework also significantly
outperforms other state-of-the-art methods on COCOStuff-27 for unsupervised semantic segmenta-
tion. Specifically, our model achieves an increase of +5.9 in PixelAcc, which is 19.5% of increase
compared to U2Seg and 20.9% of increase compared to STEGO.

Self-supervised Panoptic Segmentation. As shown in Table.2 and Table.3, our framework also
significantly outperforms other state-of-the-art methods over panoptic segmentation on COCO and
Cityscapes. For the zero-shot setting (solely trained on ImageNet), our method achieves an increase
of +6.8 in SQ on Cityscapes, which is 14.5% of increase compared to U2Seg, and achieves an
increase of +5.1 in PQ on COCO, which is 45.9% of increase compared to U2Seg. For the non-zero-
shot setting (trained on combination of ImageNet and COCO), our method achieves an increase of
+8.0 in RQ on Cityscapes, which is 36.8% of increase compared to U2Seg, and achieves an increase
of +9.5 in SQ on COCO, which is 13.3% of increase compared to U2Seg.

5.4 ABLATION STUDIES

We identify three main hyperparameters in the design of our model for ablation studies, which are
the Spatial and Feature similarity weights (ωf , ωs), the thresholds of each OAP layer {τt}Tt=1, and
the number of online clusters (output dimension of the projection head). We evaluate all ablations
on the unsupervised class-aware instance segmentation on UVOval dataset.

Table 4: Ablation studies for the Spatial and Feature similarity weights, the thresholds of each OAP
layer, and the number of online clusters.

ωs, ωf APmask ARmask
100

0.6, 0.4 7.4 23.6
0.5, 0.5 7.6 24.1
0.4, 0.6 8.3 24.3
0.0, 1.0 5.9 20.3

{τt}Tt=1 APmask ARmask
100

0.9-0.1 8.7 24.2
0.5-0.1 4.5 18.6
0.8-0.4 8.3 24.3

K APmask ARmask
100

128 4.2 18.2
512 8.3 24.3
1024 8.8 25.4
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Feature and Spatial similarity weights. As shown in Table. 4, without considering the spatial
similarity, i.e. setting ωs = 0, the performance drops significantly. By setting ωs = 0.4, our model
achieves an increase of +2.4 in APmask. This validates our design choices as illustrated in Section.4.2
The best performance is achieved when ωs = 0.4, ωf = 0.5. Number of online clusters. As shown
in Table. 4, by using more clusters, our model can learn a finer representation granularity. This
is also validated in U2Seg and previous self-supervised representation models. However, unlike
DINO where a large number of 65536 are used, our model is designed for dense segmentation, a
large number of clusters will throw out-of-memory and also slow down the training process. Time-
varied Layer Thresholds. As shown in Table. 4, when we use a set of much lower thresholds, the
performance drops significantly. This is because that a lower threshold (0.5) will make almost every
edge to be coarsen. Instead, by using a more fine-grained set of thresholds (0.9,0.8,...,0.1), the OAP
layer can identify more fine-grained groups of different semantic hierarchies. However, this would
cost much time since more OAP layers are used. Instead, by setting an intermediate set of thresholds
(0.8,...,0.4), our model can have comparable performance, while, more importantly, also cost less
time.

6 SUMMARY

In this paper, we propose an efficient pseudo-mask generation algorithm, Online Agglomerative
Pooling (OAP), to generate both the semantic-level and instance-level masks of one image within
tens of milliseconds. Based on OAP, we propose the first online framework for self-supervised
universal segmentation. A teacher-student framework is used, where we propose a simple but effec-
tive pretext task, Query-wise Self-distillation, specifically designed for self-supervised segmentation
models. Our pretrained model achives state-of-the-art performance on unsupervised zero-shot in-
stance segmentation, semantic segmentation, and panoptic segmentation tasks.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Scipy. connectedcomponents. , 2024.

Hyun Seok Seong, WonJun Moon, SuBeen Lee, and Jae-Pil Heo. Leveraging hidden positives for
unsupervised semantic segmentation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 19540–19549, 2023.
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Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and no
labels. arXiv preprint arXiv:2109.14279, 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

Wouter Van Gansbeke, Simon Vandenhende, and Luc Van Gool. Discovering object masks with
transformers for unsupervised semantic segmentation. arXiv preprint arXiv:2206.06363, 2022.
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