
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONGRA: BENCHMARKING AUTOMATIC CONFLICT
RESOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Resolving conflicts from merging different software versions is a challenging task.
To reduce the overhead of manual merging, researchers develop various program
analysis-based tools which only solve specific types of conflicts and have a lim-
ited scope of application. With the development of language models, researchers
treat conflict code as text, which theoretically allows for addressing almost all
types of conflicts. However, the absence of effective conflict difficulty grading
methods hinders a comprehensive evaluation of large language models (LLMs),
making it difficult to gain a deeper understanding of their limitations. Further-
more, there is a notable lack of large-scale open benchmarks for evaluating the
performance of LLMs in automatic conflict resolution. To address these issues,
we introduce CONGRA, a CONflict-GRAded benchmarking scheme designed
to evaluate the performance of software merging tools under varying complexity
conflict scenarios. We propose a novel approach to classify conflicts based on
code operations and use it to build a large-scale evaluation dataset based on 44,948
conflicts from 34 real-world projects. We evaluate state-of-the-art LLMs on con-
flict resolution tasks using this dataset. By employing the dataset, we assess the
performance of multiple state-of-the-art LLMs and code LLMs, ultimately uncov-
ering two counterintuitive yet insightful phenomena. CONGRA will be released at
https://github.com/xxx/ConGra.

1 INTRODUCTION

Code merging has become a challenging task for developers during project development and mainte-
nance. Git, the most popular version control system (Spinellis (2012)), uses a text-based code-merging
mechanism. Despite its efficiency, developers often struggle with manually merging different versions
of code when Git fails to resolve conflicts automatically. These conflicts come from text or even the
syntax and the functionality of the code from different versions.

To address conflict resolution, researchers leverage program analysis to achieve syntax-error-free
code merging (Zhu et al. (2022); Sousa et al. (2018); Larsén et al. (2022); Shen et al. (2019); Apel
et al. (2012; 2011)). Based on abstract syntax trees (AST), these tools merge AST vertices and edges
to ensure syntax correctness and better merge results. Nevertheless, a conflict is still generated and
need to be resolved by developers if the merge of AST nodes fails. With the development of language
models and even LLMs, they are now applied to conflict resolution (Dinella et al. (2022); Zhang et al.
(2022); Svyatkovskiy et al. (2022); Dong et al. (2023)). Trained on extensive datasets of prior and
manually merged codes, these models predict suitable resolution for each conflicting code segment
without manual efforts.

However, evaluating the performance of LLMs on conflict resolution tasks is challenging due
to the wide variation in conflict difficulty and the lack of effective grading methods to reflect
these differences. For example, ConflictBench (Shen & Meng (2024)) classifies conflicts based
on the source of conflict-resolved code, such as from either merging candidate versions or newly
introduced by developers. This classification does not accurately reflect the complexity of the conflicts.
Additionally, the community lacks comprehensive conflict resolution benchmarks (discussed in
Section 2.4), especially for extreme cases involving long code contexts.

To this end, we introduce CONGRA, which is designed to evaluate code merging tools across a
diverse range of merging scenarios and assess their ability to resolve conflicts of varying complexities.
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We propose a novel approach to construct graded conflict dataset according to conflict’s resolving
complexity. We evaluated six state-of-the-art LLMs (three general LLMs and three code LLMs) on
CONGRA to assess their abilities to resolve conflict in various merging scenarios. The dataset is
constructed using 44,948 conflict cases sourced from 34 large-scale open-source projects written
in C, C++, Java, and Python. The results show that LLMs with longer contexts support do not
always yield better results compared to models with shorter contexts. Additionally, general LLMs
(e.g. LLama3-8B and DeepSeek-V2) outperform specialized code LLMs in automatically resolving
conflict. Besides, we will release our datasets and a benchmark at https://github.com/xxx/ConGra.

In summary, we made the following contributions:

1. We introduce the first classification approach to generate a complexity-graded conflict
dataset. Using this approach, collected conflicts can be classified into seven categories.

2. We release a large-scale graded dataset for conflict resolution benchmarking. which contains
44,948 conflict cases from popular projects written in C, C++, Java, and Python.

3. We conduct the first comprehensive evaluation of LLM’s performance on conflict resolution
task, and find two thought-provoking counter-intuitive phenomena.

2 BACKGROUND

2.1 TASK DEFINITION OF AUTOMATIC MERGE CONFLICT RESOLUTION

Git offers multiple strategies to merge code (Atlassian (2022)). The most common and widely-
used strategy is the three-way merging strategy (Vinkler (2023)). The fundamental concept behind
three-way merging is to locate the most recent common ancestor (O) through the historical commit
graph, given two merging candidates (A and B), and to generate the automerged code version (M )
based on the difference A − O and the difference B − O. Before generating M , Git identifies
multiple difference matching triplets Ai − Oi − Bi by comparing A − O and B − O. For each
difference matching triplet, 1) if Ai −Oi equals Bi −Oi, it indicates that both A and B have made
identical changes to the same code segment. In this case, the difference block will be applied to M ;
2) if Ai −Oi is empty, but Bi −Oi exists, it suggests that only B has modified this code segment.
Consequently, the difference block from B will be applied to M , and vice versa; 3) if Ai −Oi and
Bi −Oi are not empty nor equal, it indicates that A and B have made different modifications to the
same code segment, resulting in a conflict in M . In this paper, we assume that M always contains at
least one conflict.

Due to the presence of conflicts, Git-based automated code merging may encounter exceptions,
prompting developers to manually address them. Following conflict resolution, developers will
release the resolved code version (R). In large projects, merging two versions results in numerous
conflicts, involving substantial code modifications. This significantly raises developers’ project
maintenance costs (Vale et al. (2021)). To this end, various automatic conflict resolution (ACR)
systems have been proposed to mitigate these challenges.

2.2 PROGRAM ANALYSIS-BASED ACR

Program analysis-based ACR (Zhu et al. (2022); Larsén et al. (2022); Sousa et al. (2018); Apel et al.
(2011); Shen et al. (2019); Apel et al. (2012)) ensures the syntactic integrity of the merged code by
merging on AST. As they implement the three-way merging strategy, conflicts inevitably arise for
unmergeable AST nodes, requiring manual intervention.

To assess the performance of program analysis-based ACR, researchers focus on metrics like the
number of generated conflicts, the accuracy of resolutions, and resource consumption. However,
these tools often lack convincing evaluation datasets and performance comparisons. As shown
in Table 1, tools like Spork, SafeMerge, and Mastery (Larsén et al. (2022); Sousa et al. (2018);
Zhu et al. (2022)) evaluate all merging scenarios without classification, obscuring performance
differences across conflict complexities. JDIME and FSTMerge (Apel et al. (2012; 2011)) separately
categorize structural and textual merges, but this is essentially an ablation study, leaving the dataset’s
resolving complexity intertwined. IntelliMerge (Shen et al. (2019)) classifies merge scenarios but
fails to differentiate these categories in the final evaluation, preventing performance comparisons
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Table 1: Evaluation features implemented in 1) program analysis-based ACR (tagged with †); 2)
machine learning-based ACR (tagged with ‡); 3) conflict resolution benchmark (tagged with ✠). The
symbol "-" means the feature is not applicable to the corresponding work’s evaluation.

Evaluation Features Feature1 Feature2 Feature3 Feature4 Feature5 Feature6

IntelliMerge† ✓ ✗ ✓ ✓ ✓ ✗
Spork† ✗ ✗ ✓ ✓ ✓ ✗
SafeMerge† ✗ ✗ ✓ ✗ ✗ ✗
FSTMerge† ✓ ✗ ✓ ✗ ✗ ✗
Mastery† ✗ ✗ ✓ ✗ ✓ ✗
JDIME† ✓ ✗ ✓ ✗ ✗ ✗
MergeBERT‡ ✗ ✗ - ✓ ✓ ✗
GMerge‡ ✗ ✗ - ✓ ✓ ✗
DeepMerge‡ ✗ ✗ - ✓ ✓ ✗
MergeGen‡ ✗ ✗ - ✓ ✓ ✗
RPredictor‡ ✗ ✗ ✓ ✓ ✓ ✗
ChatMerge‡ ✗ ✗ ✓ ✓ ✓ ✗
MESTRE‡ ✗ ✗ - ✓ ✓ ✗
ConflictBench✠ ✓ ✗ ✓ ✓ ✓ ✗
CONGRA ✠ ✓ ✓ ✓ ✓ ✓ ✓

Feature1: Classify dataset; Feature2: Assess performance under different graded conflicts; Feature3:
Record number of generated conflicts; Feature4: Calculate precision of the generated conflict resolution;
Feature5: Calculate accuracy of the generated conflict resolution; Feature6: Assess the whole code
similarity instead of using exact string matching.

across scenarios. Additionally, these tools evaluate the quality of generated resolutions by exact
string matching with the manual resolution (ground truth). However, this approach is inadequate for
measuring code similarity, as it is influenced by programming style and code structure.

2.3 MACHINE LEARNING-BASED ACR

Machine learning-based ACR (Zhang et al. (2022); Dong et al. (2023); Svyatkovskiy et al. (2022);
Dinella et al. (2022); Aldndni et al. (2023); Shen et al. (2023); Elias et al. (2023)) leverages a vast
number of code merge examples during pre-training and harnesses the language-aware capabilities of
machine learning models to understand the intricacies of code merging. Once trained, these models
offer resolution suggestions for merge conflicts. They does not rely on the three-way merge strategy,
eliminating majority of the need for manual conflict resolution.

Table 1 illustrates the features implemented in machine learning-based ACRs’ evaluation. Machine
learning-based ACRs must provide accurate resolutions for all conflicts, underscoring the importance
of resolution correctness. Prior research efforts have primarily concentrated on improving two key
metrics: precision and accuracy. Accuracy measures the percentage of total conflicts for which these
tools produce the correct resolution, while precision indicates the percentage of correct resolutions
among all resolution suggestions provided by the tools. By the same token as depicted in Section 2.2,
the matching algorithm between generated resolution and ground truth are exact string matching,
which cannot reflect the real code similarity. Furthermore, existing language model-based ACR test
datasets also lack classification of merge scenarios based on different complexities, hindering the
assessment of model performance across various levels of code merging tasks’ difficulty.

2.4 CONFLICT RESOLUTION BENCHMARKS

ConflictBench (Shen & Meng (2024)) is the only benchmark for software code merging evaluation
to date. It categorizes merging scenarios by resolution types and uses three metrics with an exact
string matching algorithm to evaluate merging tools. However, as shown in Table 1, its classification
strategy doesn’t fully capture the complexity of merging scenarios. For example, conflicts can be
resolved by retaining all edits from A or B, or by introducing new edits. ConflictBench categorizes
these into three groups, but the complexity boundaries between them are often blurred. Additionally,
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ConflictBench’s datasets include only 180 merging cases, and further classification limits the data
volume in each category, potentially leading to inaccurate evaluation results.

3 BENCHMARKING PIPELINE

3.1 OVERVIEW

Figure 1: Benchmarking pipeline overview.

Figure 1 provides an overview of CONGRA’s benchmarking pipeline. CONGRA starts with collecting
open-source projects’ historical merging scenarios with conflict from Github. After the raw dataset is
constructed, CONGRA further colors the conflict snippets with code operations which are extracted
via a lightweight but powerful syntax tree level analysis. These conflicts then are classified into
various categories based on the code operations taken in the conflict code block to construct CONGRA
dataset. Via the classifier, each conflict can be pigeonholed by diverse resolving complexities. Then,
we combine the conflict along with its context to construct the prompt for LLMs. Finally, LLMs
will respond to the query and provide conflict resolution suggestions. The results will be assessed by
CONGRA’s evaluation metrics.

3.2 COLORING

Firstly, analyzing conflict code snippets is challenging because the snippets in M generated by Git are
often fragmented and can contain any part or format of code. Existing program analysis tools (Lattner
& Adve (2004); Wang & Shoshitaishvili (2017); Lam et al. (2011)) cannot handle these incomplete
snippets syntactically or semantically. To address this, CONGRA applies M ’s modifications from A
and B separately to generate two merged files (Ma and Mb). This approach applies all the difference
blocks from either A or B, allowing for code analysis of the conflicting snippets by recording the
text ranges and analyzing the whole code from Ma and Mb.

Secondly, for the benchmarking pipeline, automating code complexity assessment must use the
lightest code analysis. Traditional program analysis requires a strict program context, including
the project environment and necessary compilation settings, which are hard to preserve in datasets.
Additionally, program analysis tools perform data flow or control flow analysis (Chess & McGraw
(2004); Nielson et al. (2015)), consuming significant resources, especially for large-scale datasets.
CONGRA addresses this through code operation abstraction. It extracts the operations of conflicting
code fragments from Ma and Mb to reflect code complexity. Since CONGRA’s analysis involves
only lexical and grammatical analysis without deeper compilation or context dependency, it achieves
efficient benchmarking.

Given Ma, Mb and respective conflict-related code ranges, CONGRA extracts code operations from
these conflict-related code blocks in the coloring phase. CONGRA first leverages tree_sitter (Brunsfeld
(2024)), a lightweight multi-language code parsing framework, to convert plain text code into a syntax
tree that is suitable for analysis. We pre-define types of code operations based on the node of the
syntax tree. These code operations are arranged in ascending order of priority as shown below:

1. Composite Type Definition (CTD): Definition of composite types, e.g. the definition of
class and the definition of struct in C++ language.

2. Function Body Definition (FBD): Definition of the function body content. Any modifica-
tion to the function body is included in this operation.
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3. Function Prototype Definition (FPD): Definition of function prototype, i.e. function name,
return value type and parameter list.

4. Language-Specific Operations (LSO): Operations related to language features, such as
macro definitions in C/C++ and the introduction of third-party libraries in Python.

5. Commenting (CMT): Developers’ comments on the code.
6. Variable Declaration (VD): Declaration of all variables. These variables refers to global

variables, local variables, and member variables defined in composite types.

These code operations have different priorities, and operations with higher priorities can override
operations with lower priorities. For instance, the modification of a local variable name in a function
body can belong to both function body definition and variable declaration. To this end, CONGRA
will give priority to variable declaration as the result of code operation extraction. After analyzing
each syntax tree node, CONGRA only retains code operations related to the conflicting code area,
and generates code operation lists for the two versions of the code, namely Pa and Pb. These code
operations serve as the basis for conflict classification in the subsequent stage.

3.3 CLASSIFIER

Given Pa and Pb, CONGRA traverses each pair of conflicting code blocks in A and B and classifies
the conflicts according to the following conditions. For each pair of A ’s conflict and B ’s conflict
(i.e., Pai in Pa and Pbi in Pb):

1. Text conflict: At least one of Pai and Pbi contains CMT. Figure 2a presents a text conflict
example.

2. Functional conflict: At least one of Pai and Pbi contains FBD. Figure 2b presents a
functional conflict example.

3. Syntax conflict: Respectively construct operations sets based on Pai and Pbi (denoted as
Sa and Sb) with only remaining CTD, FPD, LSO, and VD. Finally, the difference between
Sa and Sb is not empty. Figure 2c presents a syntax conflict example.

(a) Text conflict. (b) Syntax conflict. (c) Functional conflict.

Figure 2: Examples of text, syntax, and functional conflicts

Considering that the syntax among languages varies, the benchmarking of CONGRA only focuses on
syntax problems caused by missing declarations or definitions which will occur in all programming
languages. Since the classifier of CONGRA adopts the whitelist mode, the correctness of the
classification results can be guaranteed. As one conflict may be classified into multiple categories,
CONGRA supports seven classifications, i.e., all permutations of text, syntax, and functional conflict.

3.4 GENERATE RESOLUTIONS

In this section, we present how to obtain merge conflict resolution solutions using LLMs, as depicted
in Figure 3. Here, we describe the specific steps as follows: (1) Step 1: Acquire the merge conflict
and its context. Merge conflict refers to the current improvements and incoming changes. We select
the previous and subsequent text at the conflict location as the context. (2) Step 2: Construct the
prompt. We employ the thought-chain method to create the prompt, with the specific content provided
in the Appendix A. To avoid outputting redundant context, we offer an example for LLMs to
reference. (3) Step 3: Check the input. Since LLMs can only support a limited context length, we
utilize the corresponding tokenizer to process the prompt. If the number of tokens surpasses the
LLMs’ maximum input length, revert to Step 1 and reduce the context’s lines. (4) Step 4: Query
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Figure 3: The process of generating resolutions by LLMs.

LLMs and obtain the resolution. We input the prompt to LLMs to receive answers, and extract the
relevant code block as the final generated resolution, ensuring a logically coherent and standardized
format.

4 GRADED CONFLICTS DATASET

We target on the well-known open-source projects in Github. Our target selection criteria is that the
project should contain 10K+ lines of code and historical commits on main branch. This is because
a larger code base and a more active development history can help generate conflicts with multiple
complexities. Upon generating the datasets, we first traverse the historical commits of each project
and reproduce each merge process through Git merge. When the merge fails, we record the conflicting
file, namely M , and extract A, B, O and R from the commit graph. Finally, we utilize the coloring
and classifier introduced in Section 3 to classify all the collected cases. In summary, we collected
data from 34 open-source projects on GitHub: 14 written in C/C++, 11 in Java, and 9 in Python. We
gathered 23,334 conflict files encompassing 44,948 conflict scenarios classified in 7 complexity types
as shown in Figure 4. All these conflicts are collected with the timeframe from the initialization of
these projects to 9th June 2024. The statistics on the length (in lines of code) of all conflicts and their
corresponding manual resolutions are presented in Figure 5. More visualizations of CONGRA are
shown in Appendix F.

Figure 4: Venn diagrams for conflict types.

Figure 5: Average length of different types of conflicts. T for Text, S for Syntax, F for Functional.
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5 BENCHMARKING FOR AUTO-CONFLICT RESOLUTOIN

5.1 BENCHMAKRING SETTINGS

Evaluation Metric. We choose the accuracy and precision of generated resolutions as the key
metrics in our evaluation. Accuracy is the percentage of generated resolutions that match the ground
truth to the total number of conflicts. Precision refers to the percentage of generated resolutions
that match ground truth to all generated resolutions. We use the combination of normalized edit
distance, winnowing, and cosine semantic similarity (Ristad & Yianilos (1998); Schleimer et al.
(2003); Rahutomo et al. (2012)) as the code-matching standard (i.e., ES, WS, and SS). For a generated
resolution, CONGRA regards the resolution matches the ground truth when at least one of the above
values greater than 80%.

Benchmarked Models. As depicted in Figure 5, CONGRA exhibits a substantial number of conflict
instances, characterized by their contextual information. Consequently, we opt for LLMs that are
capable of accommodating long contexts as our benchmarked models. These language models,
supporting over 8K tokens, comprise three general language models (Llama3-8B 1, DeepSeek-
V22( DeepSeek-AI et al. (2024)), GLM-3-turbo 3) and three code language models (CodeLlama-
7B( Roziere et al. (2023)), CodeLlama-34B( Roziere et al. (2023)), DeepSeek-Coder V1( Guo et al.
(2024))). To compare the performance of variants of the same model on CONGRA, we also include
additional variants to form the following variant comparision group on Java and Python conflicts: (1)
DeepSeek-Coder V1 and DeepSeek-Coder V2( Zhu et al. (2024)). (2) CodeLlama 7B and CodeLlama
34B. (3) LLama3-8B and LLama3.1-8B 4. We also include one of the most state-of-the-art LLM,
GPT-4o-mini 5 as the baseline becaust it is one of the most widely-used LLMs. We only evaluate it
on Java dataset because of the resource and token limitation.

Experiment Settings. We set the temperature coefficient uniformly at 0.7 to fully ensure the
creativity of LLMs in the experiments. For each conflict, we take at most the previous 100 lines and
the following 100 lines of text as context, and decrement line by line until the number of tokens is
lower than the maximum context length supported by LLMs. In addition, for each conflict that does
not correctly obtain the model output, we will repeat the experiment up to 10 times, otherwise it will
be regarded as an unprocessable case. For open-source models, we use vLLM( Kwon et al. (2023) as
the backend for model deployment.

Comparision with Existing Merging Tool Baselines. We initially planned to choose prior related
works as the baselines to contribute to this evaluation with the selected LLMs. However, these
existing tools fails to be adequate baselines because of the following reasons: (R1) For conflict
dataset, although ConflictBench provides graded conflicts based on manual strategies, it does not
evaluate merging tools across different conflict classifications. Since our goal is to assess LLM
performance across various conflict complexities, ConflictBench’s classification rules are unsuitable.
Additionally, its small size (only 180 conflicts) may lead to biased results. (R2) Using program-
analysis-based conflict resolving systems as benchmarks presents inconsistent metrics and unfair
comparison challenges. For inconsistent metrics challenge, the aforementioned seven merging tools
are either structured or semi-structured merging tools and will merge code on the AST level. As
ConGra extracts merging code chunks, conflict code chunks, and resolving code chunks (i.e., the
conflict resolving ground truth) on the textual level, it is impossible to map the modified zone from
these merging tools to the ground truth zone, therefore fails to get the evaluation metric to compare
with the LLMs’ performance. For unfair comparison challenge, unlike LLMs, these systems still
generate conflicts when the merging of AST nodes fails. Regarding the project scale of ConGra,
more complicated merging scenarios are included in our dataset, therefore causing a high conflict
ratio even in the SOTA merging tools. If we only focus on the data point without conflicts, the
number of samples in the dataset will be inconsistent (compared with the number of samples used by
LLMs), which causes a large deviation in the results. (R3) Regarding to machine learning approaches,
RPredictor and MESTRE can predict whether the developers should keep the left version, keep the
right version, or resolve the conflict manually. Unfortunately, they cannot generate any conflict

1https://llama.meta.com/llama3/
2We are using their official API service, which supports a context of 32K tokens instead of 128K.
3https://open.bigmodel.cn/dev/api#glm-3-turbo
4https://ai.meta.com/blog/meta-llama-3-1/
5https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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resolution code therefore not suit for our benchmarking. GMerge and ChatMerge are not open-
sourced thus we failed to evaluate them. DeepMerge and MergeBERT are essentially classification
models that select answers from candidates, while our paper only focuses on LMs. Second, these
methods are highly dependent on the training data used for fine-tuning, which has been beyond the
range of our paper. Finally, these methods do not consider the contextual content and are divorced
from the actual scenario, therefore cannot be used as baselines to standardize the evaluation results.

5.2 BENCHMARK RESULTS AND ANALYSIS

Table 2: Benchmark Result on Python and Java.

Model Context
Length

PYTHON JAVA
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 75.82 77.45 0.71 0.36 0.66 82.93 83.00 0.75 0.42 0.67
DeepSeek-V2 32K 75.07 75.53 0.67 0.53 0.83 84.38 84.40 0.74 0.61 0.84
GLM-3-turbo 128K 57.05 57.31 0.53 0.33 0.70 62.52 64.75 0.58 0.38 0.74

CodeLlama-7B 16K 50.68 59.92 0.55 0.41 0.76 73.61 73.66 0.67 0.51 0.79
CodeLlama-34B 16K 61.47 62.34 0.61 0.30 0.63 70.82 71.03 0.66 0.40 0.70

DeepSeek-Coder V1 16K 56.49 57.31 0.55 0.41 0.76 74.52 74.6 0.67 0.53 0.82

Table 3: Benchmark Result on C and C++.

Model Context
Length

C C++
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 72.45 73.11 0.64 0.36 0.69 78.13 79.22 0.71 0.38 0.70
DeepSeek-V2 32K 54.42 71.06 0.61 0.45 0.79 70.86 77.31 0.69 0.53 0.83
GLM-3-turbo 128K 58.86 60.32 0.52 0.30 0.70 64.10 64.13 0.57 0.32 0.70

CodeLlama-7B 16K 59.09 60.55 0.52 0.35 0.73 64.28 64.9 0.58 0.38 0.75
CodeLlama-34B 16K 67.75 68.23 0.61 0.26 0.63 69.83 70.39 0.66 0.29 0.63

DeepSeek-Coder V1 16K 62.36 62.72 0.54 0.38 0.77 62.33 62.9 0.57 0.39 0.78

5.2.1 OVERALL PERFORMANCE

In this section, we present a comprehensive evaluation of advanced LLMs on our proposed CONGRA
dataset. The experimental results can be found in Tables 2 and 3. Upon careful comparison, we draw
the following observations: (1) LLMs with longer context support do not always yield optimal results.
GLM-3-Turbo, which supports a 128K context, is generally outperformed by LLama3-8B, which only
supports an 8K context, with the exception of semantic similarity. For instance, in Python and Java,
the Precision metric for GLM-3-Turbo is nearly 20% lower than that of LLama3-8B. We speculate
that this may result from LLMs with ultra-long context support not being sufficiently trained on merge
conflict datasets, hindering their ability to effectively extract valuable information from the context
to suggest merge resolutions. (2) Code LLMs do not appear to demonstrate a distinct advantage.
Notably, LLama3-8B and DeepSeek-V2 surpass Code LLMs in Precision across all four languages.
We attribute this to two factors: (i) general models are in fact trained on extensive code repositories,
so their code comprehension capabilities are not significantly inferior to Code LLMs. (ii) Elements
within conflicts such as comments and variable names contribute a plethora of semantic information,
extending beyond mere code understanding, which presents a challenge for Code LLMs. (3) Both
LLama3-8B and DeepSeek-V2 prove to be well-suited for automatic conflict resolution. We also
conducted experiments to evaluate the performance of different variants of models on CONGRA in
Appendix G, and explore the most state-of-the-art models’ performance on CONGRA in Appendix H.

5.2.2 THE IMPACT OF CONFLICT TYPE

Furthermore, we investigate the performance of LLMs under different conflict types. Based on
Section 3.3, we consider seven conflict types, namely Text, Syntax, Functional conflicts, and their
combinations. The results are visualized in Figure 6. In Figure 6, the closer the result is to blue, the
better the model performs; the closer it is to green, the worse the model performs.

For LLMs, a simpler conflict does not necessarily mean it is easier to handle. This is actually a
counterintuitive phenomenon. Specifically, for most models and languages (e.g., Python, C/C++),
LLMs exhibit better performance on the most complex conflicts (i.e., F+S+T) and poorer performance
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T T+F T+S T+S+F F S S+F

LLama3-8B

DeepSeek-V2

GLM-3-turbo

CodeLlama-7B

CodeLlama-34B

DeepSeek-Coder

72.84 80.33 83.38 85.55 70.70 75.05 74.19

71.44 79.78 77.30 84.28 66.47 73.90 68.21

53.65 58.51 58.16 64.53 50.44 59.87 54.29

56.73 63.14 71.36 66.38 56.67 61.99 58.00

59.54 62.70 66.75 70.44 55.39 62.06 59.16

53.05 58.63 66.67 63.46 48.93 62.79 56.61

Python
T T+F T+S T+S+F F S S+F

73.35 76.44 77.60 83.29 86.96 81.30 86.74

92.82 75.29 77.72 83.24 86.27 77.40 83.27

40.42 70.11 61.96 70.12 72.09 63.32 72.78

64.63 64.94 64.13 72.74 78.64 68.84 79.28

52.34 67.24 61.96 76.08 77.54 67.46 78.18

67.56 67.24 70.11 74.23 80.57 66.41 79.61

Java
T T+F T+S T+S+F F S S+F

67.44 69.64 79.12 77.53 71.60 73.45 77.46

66.85 68.07 80.39 72.29 69.71 71.74 74.08

54.16 58.51 66.99 67.98 58.67 57.84 65.72

51.71 58.90 64.84 64.21 59.91 59.03 69.86

60.88 67.80 69.83 72.61 68.39 64.45 75.18

53.42 63.36 64.07 65.55 63.29 58.45 70.98

C++
T T+F T+S T+S+F F S S+F

73.70 78.57 73.33 84.52 78.05 75.65 81.81

72.52 74.34 74.33 85.18 74.84 73.77 81.01

63.03 57.45 59.00 72.95 60.14 63.05 66.98

49.86 63.68 60.00 71.59 63.07 60.60 71.74

63.04 70.32 67.67 75.91 68.30 65.54 75.24

47.70 61.30 59.67 69.40 62.13 52.73 73.32

C

50 60 70 80 90

Figure 6: Heatmap on precision of LLMs and types. T for Text, S for Syntax, F for Functional.

on the simplest conflicts (i.e., F, S, and T). In the context of text conflicts, the performance of LLMs
on different samples can be ranked as follows: T+F+S > T+F ≈ T+S > T. We believe that this occurs
because, for LLMs, the simpler the samples within the conflict area (such as type T), the less effective
guidance information the conflict can provide, causing LLMs to produce conservative answers. For
example, when the conflict involves a comment, LLMs tend to preserve as much information as
possible from both branches a and b. In contrast, the more complex the conflict area, the clearer
the direction for conflict resolution. In summary, LLMs need to extract more valuable guidance
information from the conflict area itself to improve their performance. Notice that in Figure 6, the
precision of F in Java is relatively higher. This is due to Java’s encapsulation. To hide "sensitive"
member variables of a class from users, these variables are often declared as private, and the class
must provide public get and set methods to access and update these values. Consequently, these
getter and setter methods are simple in terms of functionality. Since most of the F conflicts in the
Java dataset arise from the rewriting of these encapsulated methods, the LLMs can easily infer the
resolutions, resulting in high precision.

5.3 THE ROLE OF CONTEXT

Figure 7: The impact of contextual information on Precision.

Table 4: Benchmark Result for Different Context Lines on Java.

Model # Context
Line

JAVA
Accuracy Precision ES WS SS

DeepSeer-Coder V2 20 86.08 86.13 0.76 0.63 0.85
50 86.26 86.31 0.76 0.64 0.85
100 85.89 86.20 0.76 0.64 0.85

LLama3.1-8B 20 78.07 78.13 0.70 0.55 0.83
50 79.10 79.16 0.71 0.56 0.83
100 81.01 81.08 0.72 0.58 0.84

In the vast majority of cases, LLMs without conflict context information significantly outperform
those with context information. As observed in Figure 7, the red and gray solid circles almost
entirely encompass their corresponding dashed circles, with only a few exceptions. We analyze
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this phenomenon from two perspectives: (1) the context understanding capability of large language
models. Although existing LLMs have undergone extensive training on code data, this does not
necessarily imply that they can effectively extract useful information from the rich context for
automatic conflict resolution. (2) The choice of context. In our experiments, we provided the most
basic context information (i.e., the adjacent codes around the current conflict chunk). However,
regarding the actual programming process, a session of code relies more on variables, functions, and
composite types that are usually defined far away from where the current code chunk is located, or
even in another file that the aforementioned concept of basic context cannot cover. By the same
token, using these invalid contexts is possible to introduce significant amounts of noise and can
cause LLM to lose focus, which in turn leads to worse performance. As a result, selecting the
appropriate context for automatic conflict resolution may be a valuable research direction to explore.
We conducted additional experiment with various context lines (depicted in Table 4) to evaluate the
conflict resolution ability of DeepSeeker-Coder V2 and LLama3.1-8B as illustration. We change the
context lines number to 20, 50 and 100 respectively and compare the five metrics as well. According
to the result, although a larger number of context lines leads to better conflict resolving performance
in LLama3.1-8B, a worse performance is found in DeepSeek-Code V2.

6 DISCUSSION

Limitation. The conflict classification strategy in Section 3 ensures correct classification but may
fail to identify the exact category of a conflict due to advanced language usage. For example, the use
of template class definitions in C++ (Vandevoorde & Josuttis (2002)) prevents tree_sitter (Brunsfeld
(2024)) from capturing the type used as the template argument during instantiation. Consequently, a
conflict that should be classified as "syntax" may be regarded as "non-syntax." We will continue to
refine CONGRA’s classification in future work.

Societal Impacts. (1) Improvement of benchmarking current LMs on code merging tasks. During
the merging process, LMs may fail to handle pure text conflict, and generate error-prone merged
code with incorrect syntax or functionality. These wrong results require large amounts of human
intervention to fix. With ConGra, these LMs can be well benchmarked in terms of their ability
to generate text-correct, syntactic-correct, and functional-correct merged code. We believe the
publication of ConGra can further enhance the utilization of LMs in the code merging field and cast a
positive impact on the whole community. (1) Propagation of large datasets for LMs’ training and
testing. There is a trend that more large-scale Git repository data are used for LLMs purposes. We do
believe that the publication of ours or similar works will fuel the momentum as well. We think the
open-source of large datasets will finally lead to a positive contribution..

7 CONCLUSION

We propose CONGRA, a complexity-graded conflict benchmarking system. CONGRA implements
a highly efficient and accurate conflict classification algorithm to construct a complexity-graded
conflict dataset, which is used to evaluate the performance of merging tools under various conflict
scenarios. CONGRA utilizes three code matching metrics of different granularities and combines
them to calculate the accuracy and precision of auto-generated resolutions. We evaluate six LLMs
on CONGRA, and the results show that LLMs with longer context support often perform worse
than those with shorter context support, and general LLMs outperform specialized code LLMs in
precision.
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A PROMPT

Please provide the merged code based on the specified conflict and its context. 
Please provide the merged code following the chain of thought:
1. Understand the cause of the conflict: Examine the conflicting code and its context to understand why the 
conflict occurred.
2. Decide how to merge: Based on the functionality and logic of the code, determine which changes should be 
kept or how the changes from both sides can be combined.
3. Provide the merged code, using "```{language}" as the beginning and "```" as the end of the merged code. 
You only need to output the resolution of the conflict without providing any context.
For example, 
Conflict Context is:
```python
def quick_sort(arr):

<<<<<<< a
if len(arr) <= 1:

return arr
else:

pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick_sort(left) + [pivot] + quick_sort(right)

=======
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
>>>>>>> b
return arr

```
Conflict is:
```python

<<<<<<< a
if len(arr) <= 1:

return arr
else:

pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick_sort(left) + [pivot] + quick_sort(right)

=======
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
>>>>>>> b

```
You need to output:
```python

if len(arr) <= 1:
return arr

else:
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]

return quick_sort(left) + [pivot] + quick_sort(right)
```
Here is the context related to the conflict:
```{language}
{conflict_context}
```
Here is the conflict that needs to be resolved:
```{language}
{conflict_text}
```

[System]
You are an expert in code merge conflicts, providing the merged code based on the conflict and its context.

[User]

Figure 8: Prompt

B DEMO CASE

B.1 CONFLICT

Listing 1: Demo 1: text conflict
1 <<<<<<< a
2 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
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3 - If int: the same symmetric padding is applied to depth, height,
4 and width.
5 - If tuple of 3 ints: interpreted as three different symmetric
6 padding values for depth, height, and width:
7 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
8 - If tuple of 3 tuples of 2 ints: interpreted as
9 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,

10 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.
11 data_format: A string, one of ‘"channels_last"‘ (default) or
12 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
13 ‘"channels_last"‘ corresponds to inputs with shape
14 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
15 while ‘"channels_first"‘ corresponds to inputs with shape
16 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
17 When unspecified, uses ‘image_data_format‘ value found in your Keras
18 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
19 ‘"channels_last"‘.
20 =======
21 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
22 - If int: the same symmetric padding
23 is applied to height and width.
24 - If tuple of 3 ints:
25 interpreted as two different
26 symmetric padding values for height and width:
27 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
28 - If tuple of 3 tuples of 2 ints:
29 interpreted as
30 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
31 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘
32 data_format: A string,
33 one of ‘channels_last‘ (default) or ‘channels_first‘.
34 The ordering of the dimensions in the inputs.
35 ‘channels_last‘ corresponds to inputs with shape
36 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
37 while ‘channels_first‘ corresponds to inputs with shape
38 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
39 It defaults to the ‘image_data_format‘ value found in your
40 Keras config file at ‘~/.keras/keras.json‘.
41 If you never set it, then it will be "channels_last".
42 >>>>>>> b

Listing 2: Demo 2: text and functional conflict
1 <<<<<<< a
2 constraints = _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) or []
3
4 kwargs = kwargs or {}
5 =======
6 if constraints is not None:
7 log_export_usage(event="export.private_api", flags={"constraints"})
8 warnings.warn(
9 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "

10 "and will not be supported in the future. "
11 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
12 DeprecationWarning,
13 stacklevel=2,
14 )
15 else:
16 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
17 >>>>>>> b

Listing 3: Demo 3: syntax conflict
1 <<<<<<< a
2 import torch.utils._pytree as pytree
3 =======
4 >>>>>>> b
5 from torch._decomp import register_decomposition

Listing 4: Demo 4: text, syntax, and functional conflict
1 <<<<<<< a
2 log.info("converting frame raised error, suppressing error")
3 =======
4
5 # Suppress the error. NB: It’s very important to do the
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6 # suppression logging HERE, where the actual suppression
7 # happens. Previously it was somewhere else and so it was
8 # possible to accidentally not log at all.
9 record_filename = getattr(e, "record_filename", None)

10 code = frame.f_code
11 if config.is_fbcode():
12 from torch._dynamo.fb.logging import ( # type: ignore[import]
13 log_dynamo_suppress_errors,
14 )
15
16 error_msg = format_error_msg_verbose(e, code, record_filename, frame)
17 log_dynamo_suppress_errors(
18 code.co_name, code.co_filename, code.co_firstlineno, error_msg
19 )
20 else:
21 error_msg = format_error_msg(e, code, record_filename, frame)
22
23 if soft_fail:
24 log.info(error_msg, exc_info=True)
25 else:
26 log.warning(error_msg, exc_info=True)
27 >>>>>>> b
28 return None

B.2 GROUND TRUTH

Listing 5: Ground truth of demo 1
1 Args:
2 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
3 - If int: the same symmetric padding is applied to depth, height,
4 and width.
5 - If tuple of 3 ints: interpreted as three different symmetric
6 padding values for depth, height, and width:
7 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
8 - If tuple of 3 tuples of 2 ints: interpreted as
9 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,

10 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.
11 data_format: A string, one of ‘"channels_last"‘ (default) or
12 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
13 ‘"channels_last"‘ corresponds to inputs with shape
14 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
15 while ‘"channels_first"‘ corresponds to inputs with shape
16 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
17 When unspecified, uses ‘image_data_format‘ value found in your Keras
18 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
19 ‘"channels_last"‘.

Listing 6: Ground truth of demo 2
1
2 kwargs = kwargs or {}
3 _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) # TODO(avik): remove

Listing 7: Ground truth of demo 3
1 import torch._inductor as inductor
2 import torch.utils._pytree as pytree
3 from torch import fx
4 from torch._decomp import register_decomposition

Listing 8: Ground truth of demo 4
1 raise
2
3 # Suppress the error. NB: It’s very important to do the
4 # suppression logging HERE, where the actual suppression
5 # happens. Previously it was somewhere else and so it was
6 # possible to accidentally not log at all.
7 record_filename = getattr(e, "record_filename", None)
8 code = frame.f_code
9 error_msg = format_error_msg(e, code, record_filename, frame)

10
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11 if soft_fail:
12 log.info(error_msg, exc_info=True)
13 else:
14 log.warning(error_msg, exc_info=True)

B.3 RESOLUTION GENERATED BY LLAMA3-8B

Listing 9: Demo 1: LLama3-8B resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height, and width.
3 - If tuple of 3 ints: interpreted as three different symmetric padding values for depth

, height, and width:
4 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
5 - If tuple of 3 tuples of 2 ints: interpreted as
6 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim2_pad), (left_dim3_pad,

right_dim3_pad))‘.
7 data_format: A string, one of ‘"channels_last"‘ (default) or
8 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
9 ‘"channels_last"‘ corresponds to inputs with shape

10 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
11 while ‘"channels_first"‘ corresponds to inputs with shape
12 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
13 When unspecified, uses ‘image_data_format‘ value found in your Keras
14 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
15 ‘"channels_last"‘.

Listing 10: Demo 2: LLama3-8B resolution
1 if constraints is not None:
2 log_export_usage(event="export.private_api", flags={"constraints"})
3 warnings.warn(
4 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "
5 "and will not be supported in the future. "
6 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
7 DeprecationWarning,
8 stacklevel=2,
9 )

10 else:
11 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
12 kwargs = kwargs or {}

Listing 11: Demo 3: LLama3-8B resolution
1 from torch.utils._pytree import pytree

Listing 12: Demo 4: LLama3-8B resolution
1 log.info("converting frame raised error, suppressing error")

B.4 RESOLUTION GENERATED BY DEEPSEEK-CHAT

Listing 13: Demo 1: Deepseek-Chat resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height,
3 and width.
4 - If tuple of 3 ints: interpreted as three different symmetric
5 padding values for depth, height, and width:
6 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
7 - If tuple of 3 tuples of 2 ints: interpreted as
8 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
9 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.

10 data_format: A string, one of ‘"channels_last"‘ (default) or
11 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
12 ‘"channels_last"‘ corresponds to inputs with shape
13 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
14 while ‘"channels_first"‘ corresponds to inputs with shape
15 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
16 It defaults to the ‘image_data_format‘ value found in your
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17 Keras config file at ‘~/.keras/keras.json‘.
18 If you never set it, then it will be "channels_last".

Listing 14: Demo 2: Deepseek-Chat resolution
1 if constraints is not None:
2 log_export_usage(event="export.private_api", flags={"constraints"})
3 warnings.warn(
4 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "
5 "and will not be supported in the future. "
6 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
7 DeprecationWarning,
8 stacklevel=2,
9 )

10 else:
11 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []

Listing 15: Demo 3: Deepseek-Chat resolution
1 import torch.utils._pytree as pytree
2 from torch._decomp import register_decomposition

Listing 16: Demo 4: Deepseek-Chat resolution
1 # Suppress the error. NB: It’s very important to do the
2 # suppression logging HERE, where the actual suppression
3 # happens. Previously it was somewhere else and so it was
4 # possible to accidentally not log at all.
5 record_filename = getattr(e, "record_filename", None)
6 code = frame.f_code
7 if config.is_fbcode():
8 from torch._dynamo.fb.logging import ( # type: ignore[import]
9 log_dynamo_suppress_errors,

10 )
11
12 error_msg = format_error_msg_verbose(e, code, record_filename, frame)
13 log_dynamo_suppress_errors(
14 code.co_name, code.co_filename, code.co_firstlineno, error_msg
15 )
16 else:
17 error_msg = format_error_msg(e, code, record_filename, frame)
18
19 if soft_fail:
20 log.info(error_msg, exc_info=True)
21 else:
22 log.warning(error_msg, exc_info=True)
23 return None

B.5 RESOLUTION GENERATED BY DEEPSEEK-CODER

Listing 17: Demo 1: Deepseek-Coder resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height,
3 and width.
4 - If tuple of 3 ints: interpreted as three different symmetric
5 padding values for depth, height, and width:
6 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
7 - If tuple of 3 tuples of 2 ints: interpreted as
8 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
9 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.

10 data_format: A string, one of ‘"channels_last"‘ (default) or
11 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
12 ‘"channels_last"‘ corresponds to inputs with shape
13 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
14 while ‘"channels_first"‘ corresponds to inputs with shape
15 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
16 When unspecified, uses ‘image_data_format‘ value found in your Keras
17 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
18 ‘"channels_last"‘.
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Listing 18: Demo 2: Deepseek-Coder resolution
1 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
2
3 kwargs = kwargs or {}

Listing 19: Demo 3: Deepseek-Coder resolution
1 import torch.utils._pytree as pytree
2 from torch._decomp import register_decomposition

Listing 20: Demo 4: Deepseek-Coder resolution
1 log.info("converting frame raised error, suppressing error")
2 record_filename = getattr(e, "record_filename", None)
3 code = frame.f_code
4 if config.is_fbcode():
5 from torch._dynamo.fb.logging import ( # type: ignore[import]
6 log_dynamo_suppress_errors,
7 )
8
9 error_msg = format_error_msg_verbose(e, code, record_filename, frame)

10 log_dynamo_suppress_errors(
11 code.co_name, code.co_filename, code.co_firstlineno, error_msg
12 )
13 else:
14 error_msg = format_error_msg(e, code, record_filename, frame)
15
16 if soft_fail:
17 log.info(error_msg, exc_info=True)
18 else:
19 log.warning(error_msg, exc_info=True)
20 return None

C GIT MERGE CONFLICT EXAMPLE

Figure 9 shows a code merging scenario with conflict. Both version A (Figure 9a) and version B
( Figure 9b) implement quick sort, but version A selects the middle element of arr as the pivot, while
version B selects the first element. This discrepancy causes Git to encounter an impasse and report a
conflict, as depicted in Figure 9c.

(a) Quick sort from version A. (b) Quick sort from version B. (c) Quick sort with merge conflict.

Figure 9: Quick sort merging example

D LICENSE

We utilized the source code of 34 open-source projects in this research. These projects and their license
information are as follows: 1) Linux Kernel, Android Kernel, Raspberry Pi Kernel, Git, MySQL,
ReactOS, JDK, NewPipe, Ansible Cpython, are licensed under GNU General Public License (GPL);
2) Bitcoin, GCC, Jenkins, are licensed under the Massachusetts Institute of Technology (MIT); 3)
LLVM, Swift, Tensorflow, AOSP, dbeaver, Ghidra, hadoop, Micronaut, Netty, Sprint-boot, Sprint-
framework, Keras, Transformers, are under the Apache License; 4) Mongo is under Server Side
Public License; 5) PHP is under PHP License; 6) V8, Django, Pandas, Pytorch, Scrapy, are under
BSD-3-Clause License; 7) Eclipse is under Eclipse Public License; 8) Youtube-dl is unlicensed. We
acknowledge the contributions of the open-source community in developing and maintaining these
projects.
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E CODE SIMILARITY METRICS

• Edit Similarity (ES). Edit distance is a metric used to measure the difference between two
strings (Ristad & Yianilos (1998)). It is defined as the minimum number of edit operations
required to transform one string into another. In CONGRA, we normalize the edit distance,
treating the normalized result as the similarity measure in character level.

• Winnowing Similarity (WS). Winnowing is an algorithm used for text similarity detection
and fingerprint extraction (Schleimer et al. (2003)). It has been implemented in the Moss
code plagiarism detection system (Aiken (2022)) to determine code similarity. In CONGRA,
we normalize the winnowing result to assess the similarity of the whole conflict code
snippets.

• Semantic Similarity (SS). We use the cosine similarity between the generated resolution
and the actual resolution as the semantic similarity. In CONGRA, in order to effectively
model the semantic information of the resolution, we use BCEmbedding NetEase Youdao
(2023) as the embedding model to obtain the representation of each resolution.

F VISUALIZATION OF THE NUMBER OF CONFLICTS IN CONGRA

Here we visualize the distribution characteristics of the number of conflicts contained in each file in
four languages in Figure 10. Overall, most files contain only one or two conflicts, and a very small
number of files contain more than 10 conflicts. We also visualize the number of different types of
conflicts for each language in Figure 11.
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Figure 10: Violin plots of the number of conflicts per file.

G COMPARISON OF MODEL VARIANTS ON CONGRA

Table 5: Benchmark Result for Model Variants on Python and Java.

Model Context
Length

PYTHON JAVA
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 75.82 77.45 0.71 0.36 0.66 82.93 83.00 0.75 0.42 0.67
LLama3.1-8B 8k 73.58 75.16 0.67 0.53 0.83 81.01 81.08 0.72 0.58 0.84

CodeLlama-7B 16K 50.68 59.92 0.55 0.41 0.76 73.61 73.66 0.67 0.51 0.79
CodeLlama-34B 16K 61.47 62.34 0.61 0.30 0.63 70.82 71.03 0.66 0.40 0.70

DeepSeek-Coder V1 16K 56.49 57.31 0.55 0.41 0.76 74.52 74.6 0.67 0.53 0.82
DeepSeek-Coder V2 16k 77.04 78.14 0.70 0.56 0.84 85.89 86.20 0.76 0.64 0.85

We evaluated the performance of different variants of LLMs with the following comparison groups:

1. DeepSeek-Coder V1 vs DeepSeek-Coder V2.
2. CodeLlama 7B vs CodeLlama 34B.
3. LLama3-8B vs LLama3.1-8B.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

T T+S T+S+F T+F S S+F F
0

10

20

30

40

50

#C
on
fl
ic
ts
 p
er
 f
il
e

(a) Python

T T+S T+S+F T+F S S+F F
0

5

10

15

20

#C
on
fl
ic
ts
 p
er
 f
il
e

(b) Java

T T+S T+S+F T+F S S+F F
0

5

10

15

20

25

#C
on
fl
ic
ts
 p
er
 f
il
e

(c) C++

T T+S T+S+F T+F S S+F F

0

20

40

60

80

100

#C
on
fl
ic
ts
 p
er
 f
il
e

(d) C

Figure 11: Strip plots of number of conflicts per file.
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Table 5 shows the results of the variants comparision. In Conclusion, DeepSeek-Coder V2 gains
better performance on all of the five metrics in both Python and Java targets compared with DeepSeek-
Coder V1. LLama3-8B outperforms LLama3.1-8B in terms of Accuracy, Precision, and ES while
LLama3.1-8B takes the lead in WS and SS regarding both Python and Java projects. CodeLlama-7B
performs better on all of the five metrics in Java datasets but worse on Accuracy, Precision, and ES in
Python datasets.

H COMPARISON AMONG STATE-OF-THE-ART MODELS ON CONGRA

Table 6: Benchmark Result for State-of-the-art baseline and Well-performed Models on Java.

Model JAVA
Accuracy Precision ES WS SS

DeepSeer-Coder V2 86.08 86.13 0.76 0.63 0.85
LLama3.1-8B 78.07 78.13 0.70 0.55 0.83
GPT-4o-mini 83.76 83.82 0.74 0.62 0.84

To explore whether CONGRA can help with the improvement of the state-of-the-art LMs, we
conducted additional experiments as shown in Table 6. Due to the resource and token limitations,
we restrict the number of context lines to 20. We include GPT-4o-mini, DeepSeek-Coder V2 and
LLama3.1-8B as they are either one of the most popular LMs or performed outstandingly in the other
parts of our evaluation. Notably, DeepSeek-Coder V2 performed the best among the three SOTA
LLMs. Nevertheless, DeepSeek-Coder V2 does not exhibit an incredibly high performance (1.70%↑
in Accuracy, 1.73%↑ in Precision, 0.01↑ in ES, 0.02↑ in WS, and 0.01↑ in SS). To this end, we
suggest that there is still room for improvement of LLMs on code merging tasks.
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