
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONGRA: BENCHMARKING AUTOMATIC CONFLICT
RESOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Resolving conflicts from merging different software versions is a challenging task.
To reduce the overhead of manual merging, researchers develop various program
analysis-based tools which only solve specific types of conflicts and have a lim-
ited scope of application. With the development of language models, researchers
treat conflict code as text, which theoretically allows for addressing almost all
types of conflicts. However, the absence of effective conflict difficulty grading
methods hinders a comprehensive evaluation of large language models (LLMs),
making it difficult to gain a deeper understanding of their limitations. Further-
more, there is a notable lack of large-scale open benchmarks for evaluating the
performance of LLMs in automatic conflict resolution. To address these issues,
we introduce CONGRA, a CONflict-GRAded benchmarking scheme designed
to evaluate the performance of software merging tools under varying complexity
conflict scenarios. We propose a novel approach to classify conflicts based on
code operations and use it to build a large-scale evaluation dataset based on 44,948
conflicts from 34 real-world projects. We evaluate state-of-the-art LLMs on con-
flict resolution tasks using this dataset. By employing the dataset, we assess the
performance of multiple state-of-the-art LLMs and code LLMs, ultimately uncov-
ering two counterintuitive yet insightful phenomena. CONGRA will be released at
https://github.com/xxx/ConGra.

1 INTRODUCTION

Code merging has become a challenging task for developers during project development and mainte-
nance. Git, the most popular version control system (Spinellis (2012)), uses a text-based code-merging
mechanism. Despite its efficiency, developers often struggle with manually merging different versions
of code when Git fails to resolve conflicts automatically. These conflicts come from text or even the
syntax and the functionality of the code from different versions.

To address conflict resolution, researchers leverage program analysis to achieve syntax-error-free
code merging (Zhu et al. (2022); Sousa et al. (2018); Larsén et al. (2022); Shen et al. (2019); Apel
et al. (2012; 2011)). Based on abstract syntax trees (AST), these tools merge AST vertices and edges
to ensure syntax correctness and better merge results. Nevertheless, a conflict is still generated and
need to be resolved by developers if the merge of AST nodes fails. With the development of language
models and even LLMs, they are now applied to conflict resolution (Dinella et al. (2022); Zhang et al.
(2022); Svyatkovskiy et al. (2022); Dong et al. (2023)). Trained on extensive datasets of prior and
manually merged codes, these models predict suitable resolution for each conflicting code segment
without manual efforts.

However, evaluating the performance of LLMs on conflict resolution tasks is challenging due
to the wide variation in conflict difficulty and the lack of effective grading methods to reflect
these differences. For example, ConflictBench (Shen & Meng (2024)) classifies conflicts based
on the source of conflict-resolved code, such as from either merging candidate versions or newly
introduced by developers. This classification does not accurately reflect the complexity of the conflicts.
Additionally, the community lacks comprehensive conflict resolution benchmarks (discussed in
Section 2.4), especially for extreme cases involving long code contexts.

To this end, we introduce CONGRA, which is designed to evaluate code merging tools across a
diverse range of merging scenarios and assess their ability to resolve conflicts of varying complexities.

1

https://github.com/xxx/ConGra

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We propose a novel approach to construct graded conflict dataset according to conflict’s resolving
complexity. We evaluated six state-of-the-art LLMs (three general LLMs and three code LLMs) on
CONGRA to assess their abilities to resolve conflict in various merging scenarios. The dataset is
constructed using 44,948 conflict cases sourced from 34 large-scale open-source projects written
in C, C++, Java, and Python. The results show that LLMs with longer contexts support do not
always yield better results compared to models with shorter contexts. Additionally, general LLMs
(e.g. LLama3-8B and DeepSeek-V2) outperform specialized code LLMs in automatically resolving
conflict. Besides, we will release our datasets and a benchmark at https://github.com/xxx/ConGra.

In summary, we made the following contributions:

1. We introduce the first classification approach to generate a complexity-graded conflict
dataset. Using this approach, collected conflicts can be classified into seven categories.

2. We release a large-scale graded dataset for conflict resolution benchmarking. which contains
44,948 conflict cases from popular projects written in C, C++, Java, and Python.

3. We conduct the first comprehensive evaluation of LLM’s performance on conflict resolution
task, and find two thought-provoking counter-intuitive phenomena.

2 BACKGROUND

2.1 TASK DEFINITION OF AUTOMATIC MERGE CONFLICT RESOLUTION

Git offers multiple strategies to merge code (Atlassian (2022)). The most common and widely-
used strategy is the three-way merging strategy (Vinkler (2023)). The fundamental concept behind
three-way merging is to locate the most recent common ancestor (O) through the historical commit
graph, given two merging candidates (A and B), and to generate the automerged code version (M)
based on the difference A − O and the difference B − O. Before generating M , Git identifies
multiple difference matching triplets Ai − Oi − Bi by comparing A − O and B − O. For each
difference matching triplet, 1) if Ai −Oi equals Bi −Oi, it indicates that both A and B have made
identical changes to the same code segment. In this case, the difference block will be applied to M ;
2) if Ai −Oi is empty, but Bi −Oi exists, it suggests that only B has modified this code segment.
Consequently, the difference block from B will be applied to M , and vice versa; 3) if Ai −Oi and
Bi −Oi are not empty nor equal, it indicates that A and B have made different modifications to the
same code segment, resulting in a conflict in M . In this paper, we assume that M always contains at
least one conflict.

Due to the presence of conflicts, Git-based automated code merging may encounter exceptions,
prompting developers to manually address them. Following conflict resolution, developers will
release the resolved code version (R). In large projects, merging two versions results in numerous
conflicts, involving substantial code modifications. This significantly raises developers’ project
maintenance costs (Vale et al. (2021)). To this end, various automatic conflict resolution (ACR)
systems have been proposed to mitigate these challenges.

2.2 PROGRAM ANALYSIS-BASED ACR

Program analysis-based ACR (Zhu et al. (2022); Larsén et al. (2022); Sousa et al. (2018); Apel et al.
(2011); Shen et al. (2019); Apel et al. (2012)) ensures the syntactic integrity of the merged code by
merging on AST. As they implement the three-way merging strategy, conflicts inevitably arise for
unmergeable AST nodes, requiring manual intervention.

To assess the performance of program analysis-based ACR, researchers focus on metrics like the
number of generated conflicts, the accuracy of resolutions, and resource consumption. However,
these tools often lack convincing evaluation datasets and performance comparisons. As shown
in Table 1, tools like Spork, SafeMerge, and Mastery (Larsén et al. (2022); Sousa et al. (2018);
Zhu et al. (2022)) evaluate all merging scenarios without classification, obscuring performance
differences across conflict complexities. JDIME and FSTMerge (Apel et al. (2012; 2011)) separately
categorize structural and textual merges, but this is essentially an ablation study, leaving the dataset’s
resolving complexity intertwined. IntelliMerge (Shen et al. (2019)) classifies merge scenarios but
fails to differentiate these categories in the final evaluation, preventing performance comparisons

2

https://github.com/xxx/ConGra

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Evaluation features implemented in 1) program analysis-based ACR (tagged with †); 2)
machine learning-based ACR (tagged with ‡); 3) conflict resolution benchmark (tagged with ✠). The
symbol "-" means the feature is not applicable to the corresponding work’s evaluation.

Evaluation Features Feature1 Feature2 Feature3 Feature4 Feature5 Feature6

IntelliMerge† ✓ ✗ ✓ ✓ ✓ ✗
Spork† ✗ ✗ ✓ ✓ ✓ ✗
SafeMerge† ✗ ✗ ✓ ✗ ✗ ✗
FSTMerge† ✓ ✗ ✓ ✗ ✗ ✗
Mastery† ✗ ✗ ✓ ✗ ✓ ✗
JDIME† ✓ ✗ ✓ ✗ ✗ ✗
MergeBERT‡ ✗ ✗ - ✓ ✓ ✗
GMerge‡ ✗ ✗ - ✓ ✓ ✗
DeepMerge‡ ✗ ✗ - ✓ ✓ ✗
MergeGen‡ ✗ ✗ - ✓ ✓ ✗
RPredictor‡ ✗ ✗ ✓ ✓ ✓ ✗
ChatMerge‡ ✗ ✗ ✓ ✓ ✓ ✗
MESTRE‡ ✗ ✗ - ✓ ✓ ✗
ConflictBench✠ ✓ ✗ ✓ ✓ ✓ ✗
CONGRA ✠ ✓ ✓ ✓ ✓ ✓ ✓

Feature1: Classify dataset; Feature2: Assess performance under different graded conflicts; Feature3:
Record number of generated conflicts; Feature4: Calculate precision of the generated conflict resolution;
Feature5: Calculate accuracy of the generated conflict resolution; Feature6: Assess the whole code
similarity instead of using exact string matching.

across scenarios. Additionally, these tools evaluate the quality of generated resolutions by exact
string matching with the manual resolution (ground truth). However, this approach is inadequate for
measuring code similarity, as it is influenced by programming style and code structure.

2.3 MACHINE LEARNING-BASED ACR

Machine learning-based ACR (Zhang et al. (2022); Dong et al. (2023); Svyatkovskiy et al. (2022);
Dinella et al. (2022); Aldndni et al. (2023); Shen et al. (2023); Elias et al. (2023)) leverages a vast
number of code merge examples during pre-training and harnesses the language-aware capabilities of
machine learning models to understand the intricacies of code merging. Once trained, these models
offer resolution suggestions for merge conflicts. They does not rely on the three-way merge strategy,
eliminating majority of the need for manual conflict resolution.

Table 1 illustrates the features implemented in machine learning-based ACRs’ evaluation. Machine
learning-based ACRs must provide accurate resolutions for all conflicts, underscoring the importance
of resolution correctness. Prior research efforts have primarily concentrated on improving two key
metrics: precision and accuracy. Accuracy measures the percentage of total conflicts for which these
tools produce the correct resolution, while precision indicates the percentage of correct resolutions
among all resolution suggestions provided by the tools. By the same token as depicted in Section 2.2,
the matching algorithm between generated resolution and ground truth are exact string matching,
which cannot reflect the real code similarity. Furthermore, existing language model-based ACR test
datasets also lack classification of merge scenarios based on different complexities, hindering the
assessment of model performance across various levels of code merging tasks’ difficulty.

2.4 CONFLICT RESOLUTION BENCHMARKS

ConflictBench (Shen & Meng (2024)) is the only benchmark for software code merging evaluation
to date. It categorizes merging scenarios by resolution types and uses three metrics with an exact
string matching algorithm to evaluate merging tools. However, as shown in Table 1, its classification
strategy doesn’t fully capture the complexity of merging scenarios. For example, conflicts can be
resolved by retaining all edits from A or B, or by introducing new edits. ConflictBench categorizes
these into three groups, but the complexity boundaries between them are often blurred. Additionally,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ConflictBench’s datasets include only 180 merging cases, and further classification limits the data
volume in each category, potentially leading to inaccurate evaluation results.

3 BENCHMARKING PIPELINE

3.1 OVERVIEW

Figure 1: Benchmarking pipeline overview.

Figure 1 provides an overview of CONGRA’s benchmarking pipeline. CONGRA starts with collecting
open-source projects’ historical merging scenarios with conflict from Github. After the raw dataset is
constructed, CONGRA further colors the conflict snippets with code operations which are extracted
via a lightweight but powerful syntax tree level analysis. These conflicts then are classified into
various categories based on the code operations taken in the conflict code block to construct CONGRA
dataset. Via the classifier, each conflict can be pigeonholed by diverse resolving complexities. Then,
we combine the conflict along with its context to construct the prompt for LLMs. Finally, LLMs
will respond to the query and provide conflict resolution suggestions. The results will be assessed by
CONGRA’s evaluation metrics.

3.2 COLORING

Firstly, analyzing conflict code snippets is challenging because the snippets in M generated by Git are
often fragmented and can contain any part or format of code. Existing program analysis tools (Lattner
& Adve (2004); Wang & Shoshitaishvili (2017); Lam et al. (2011)) cannot handle these incomplete
snippets syntactically or semantically. To address this, CONGRA applies M ’s modifications from A
and B separately to generate two merged files (Ma and Mb). This approach applies all the difference
blocks from either A or B, allowing for code analysis of the conflicting snippets by recording the
text ranges and analyzing the whole code from Ma and Mb.

Secondly, for the benchmarking pipeline, automating code complexity assessment must use the
lightest code analysis. Traditional program analysis requires a strict program context, including
the project environment and necessary compilation settings, which are hard to preserve in datasets.
Additionally, program analysis tools perform data flow or control flow analysis (Chess & McGraw
(2004); Nielson et al. (2015)), consuming significant resources, especially for large-scale datasets.
CONGRA addresses this through code operation abstraction. It extracts the operations of conflicting
code fragments from Ma and Mb to reflect code complexity. Since CONGRA’s analysis involves
only lexical and grammatical analysis without deeper compilation or context dependency, it achieves
efficient benchmarking.

Given Ma, Mb and respective conflict-related code ranges, CONGRA extracts code operations from
these conflict-related code blocks in the coloring phase. CONGRA first leverages tree_sitter (Brunsfeld
(2024)), a lightweight multi-language code parsing framework, to convert plain text code into a syntax
tree that is suitable for analysis. We pre-define types of code operations based on the node of the
syntax tree. These code operations are arranged in ascending order of priority as shown below:

1. Composite Type Definition (CTD): Definition of composite types, e.g. the definition of
class and the definition of struct in C++ language.

2. Function Body Definition (FBD): Definition of the function body content. Any modifica-
tion to the function body is included in this operation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3. Function Prototype Definition (FPD): Definition of function prototype, i.e. function name,
return value type and parameter list.

4. Language-Specific Operations (LSO): Operations related to language features, such as
macro definitions in C/C++ and the introduction of third-party libraries in Python.

5. Commenting (CMT): Developers’ comments on the code.
6. Variable Declaration (VD): Declaration of all variables. These variables refers to global

variables, local variables, and member variables defined in composite types.

These code operations have different priorities, and operations with higher priorities can override
operations with lower priorities. For instance, the modification of a local variable name in a function
body can belong to both function body definition and variable declaration. To this end, CONGRA
will give priority to variable declaration as the result of code operation extraction. After analyzing
each syntax tree node, CONGRA only retains code operations related to the conflicting code area,
and generates code operation lists for the two versions of the code, namely Pa and Pb. These code
operations serve as the basis for conflict classification in the subsequent stage.

3.3 CLASSIFIER

Given Pa and Pb, CONGRA traverses each pair of conflicting code blocks in A and B and classifies
the conflicts according to the following conditions. For each pair of A ’s conflict and B ’s conflict
(i.e., Pai in Pa and Pbi in Pb):

1. Text conflict: At least one of Pai and Pbi contains CMT. Figure 2a presents a text conflict
example.

2. Functional conflict: At least one of Pai and Pbi contains FBD. Figure 2b presents a
functional conflict example.

3. Syntax conflict: Respectively construct operations sets based on Pai and Pbi (denoted as
Sa and Sb) with only remaining CTD, FPD, LSO, and VD. Finally, the difference between
Sa and Sb is not empty. Figure 2c presents a syntax conflict example.

(a) Text conflict. (b) Syntax conflict. (c) Functional conflict.

Figure 2: Examples of text, syntax, and functional conflicts

Considering that the syntax among languages varies, the benchmarking of CONGRA only focuses on
syntax problems caused by missing declarations or definitions which will occur in all programming
languages. Since the classifier of CONGRA adopts the whitelist mode, the correctness of the
classification results can be guaranteed. As one conflict may be classified into multiple categories,
CONGRA supports seven classifications, i.e., all permutations of text, syntax, and functional conflict.

3.4 GENERATE RESOLUTIONS

In this section, we present how to obtain merge conflict resolution solutions using LLMs, as depicted
in Figure 3. Here, we describe the specific steps as follows: (1) Step 1: Acquire the merge conflict
and its context. Merge conflict refers to the current improvements and incoming changes. We select
the previous and subsequent text at the conflict location as the context. (2) Step 2: Construct the
prompt. We employ the thought-chain method to create the prompt, with the specific content provided
in the Appendix A. To avoid outputting redundant context, we offer an example for LLMs to
reference. (3) Step 3: Check the input. Since LLMs can only support a limited context length, we
utilize the corresponding tokenizer to process the prompt. If the number of tokens surpasses the
LLMs’ maximum input length, revert to Step 1 and reduce the context’s lines. (4) Step 4: Query

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: The process of generating resolutions by LLMs.

LLMs and obtain the resolution. We input the prompt to LLMs to receive answers, and extract the
relevant code block as the final generated resolution, ensuring a logically coherent and standardized
format.

4 GRADED CONFLICTS DATASET

We target on the well-known open-source projects in Github. Our target selection criteria is that the
project should contain 10K+ lines of code and historical commits on main branch. This is because
a larger code base and a more active development history can help generate conflicts with multiple
complexities. Upon generating the datasets, we first traverse the historical commits of each project
and reproduce each merge process through Git merge. When the merge fails, we record the conflicting
file, namely M , and extract A, B, O and R from the commit graph. Finally, we utilize the coloring
and classifier introduced in Section 3 to classify all the collected cases. In summary, we collected
data from 34 open-source projects on GitHub: 14 written in C/C++, 11 in Java, and 9 in Python. We
gathered 23,334 conflict files encompassing 44,948 conflict scenarios classified in 7 complexity types
as shown in Figure 4. All these conflicts are collected with the timeframe from the initialization of
these projects to 9th June 2024. The statistics on the length (in lines of code) of all conflicts and their
corresponding manual resolutions are presented in Figure 5. More visualizations of CONGRA are
shown in Appendix F.

Figure 4: Venn diagrams for conflict types.

Figure 5: Average length of different types of conflicts. T for Text, S for Syntax, F for Functional.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 BENCHMARKING FOR AUTO-CONFLICT RESOLUTOIN

5.1 BENCHMAKRING SETTINGS

Evaluation Metric. We choose the accuracy and precision of generated resolutions as the key
metrics in our evaluation. Accuracy is the percentage of generated resolutions that match the ground
truth to the total number of conflicts. Precision refers to the percentage of generated resolutions
that match ground truth to all generated resolutions. We use the combination of normalized edit
distance, winnowing, and cosine semantic similarity (Ristad & Yianilos (1998); Schleimer et al.
(2003); Rahutomo et al. (2012)) as the code-matching standard (i.e., ES, WS, and SS). For a generated
resolution, CONGRA regards the resolution matches the ground truth when at least one of the above
values greater than 80%.

Benchmarked Models. As depicted in Figure 5, CONGRA exhibits a substantial number of conflict
instances, characterized by their contextual information. Consequently, we opt for LLMs that are
capable of accommodating long contexts as our benchmarked models. These language models,
supporting over 8K tokens, comprise three general language models (Llama3-8B 1, DeepSeek-
V22(DeepSeek-AI et al. (2024)), GLM-3-turbo 3) and three code language models (CodeLlama-
7B(Roziere et al. (2023)), CodeLlama-34B(Roziere et al. (2023)), DeepSeek-Coder V1(Guo et al.
(2024))). To compare the performance of variants of the same model on CONGRA, we also include
additional variants to form the following variant comparision group on Java and Python conflicts: (1)
DeepSeek-Coder V1 and DeepSeek-Coder V2(Zhu et al. (2024)). (2) CodeLlama 7B and CodeLlama
34B. (3) LLama3-8B and LLama3.1-8B 4. We also include one of the most state-of-the-art LLM,
GPT-4o-mini 5 as the baseline becaust it is one of the most widely-used LLMs. We only evaluate it
on Java dataset because of the resource and token limitation.

Experiment Settings. We set the temperature coefficient uniformly at 0.7 to fully ensure the
creativity of LLMs in the experiments. For each conflict, we take at most the previous 100 lines and
the following 100 lines of text as context, and decrement line by line until the number of tokens is
lower than the maximum context length supported by LLMs. In addition, for each conflict that does
not correctly obtain the model output, we will repeat the experiment up to 10 times, otherwise it will
be regarded as an unprocessable case. For open-source models, we use vLLM(Kwon et al. (2023) as
the backend for model deployment.

Comparision with Existing Merging Tool Baselines. We initially planned to choose prior related
works as the baselines to contribute to this evaluation with the selected LLMs. However, these
existing tools fails to be adequate baselines because of the following reasons: (R1) For conflict
dataset, although ConflictBench provides graded conflicts based on manual strategies, it does not
evaluate merging tools across different conflict classifications. Since our goal is to assess LLM
performance across various conflict complexities, ConflictBench’s classification rules are unsuitable.
Additionally, its small size (only 180 conflicts) may lead to biased results. (R2) Using program-
analysis-based conflict resolving systems as benchmarks presents inconsistent metrics and unfair
comparison challenges. For inconsistent metrics challenge, the aforementioned seven merging tools
are either structured or semi-structured merging tools and will merge code on the AST level. As
ConGra extracts merging code chunks, conflict code chunks, and resolving code chunks (i.e., the
conflict resolving ground truth) on the textual level, it is impossible to map the modified zone from
these merging tools to the ground truth zone, therefore fails to get the evaluation metric to compare
with the LLMs’ performance. For unfair comparison challenge, unlike LLMs, these systems still
generate conflicts when the merging of AST nodes fails. Regarding the project scale of ConGra,
more complicated merging scenarios are included in our dataset, therefore causing a high conflict
ratio even in the SOTA merging tools. If we only focus on the data point without conflicts, the
number of samples in the dataset will be inconsistent (compared with the number of samples used by
LLMs), which causes a large deviation in the results. (R3) Regarding to machine learning approaches,
RPredictor and MESTRE can predict whether the developers should keep the left version, keep the
right version, or resolve the conflict manually. Unfortunately, they cannot generate any conflict

1https://llama.meta.com/llama3/
2We are using their official API service, which supports a context of 32K tokens instead of 128K.
3https://open.bigmodel.cn/dev/api#glm-3-turbo
4https://ai.meta.com/blog/meta-llama-3-1/
5https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

7

https://llama.meta.com/llama3/
https://open.bigmodel.cn/dev/api#glm-3-turbo
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

resolution code therefore not suit for our benchmarking. GMerge and ChatMerge are not open-
sourced thus we failed to evaluate them. DeepMerge and MergeBERT are essentially classification
models that select answers from candidates, while our paper only focuses on LMs. Second, these
methods are highly dependent on the training data used for fine-tuning, which has been beyond the
range of our paper. Finally, these methods do not consider the contextual content and are divorced
from the actual scenario, therefore cannot be used as baselines to standardize the evaluation results.

5.2 BENCHMARK RESULTS AND ANALYSIS

Table 2: Benchmark Result on Python and Java.

Model Context
Length

PYTHON JAVA
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 75.82 77.45 0.71 0.36 0.66 82.93 83.00 0.75 0.42 0.67
DeepSeek-V2 32K 75.07 75.53 0.67 0.53 0.83 84.38 84.40 0.74 0.61 0.84
GLM-3-turbo 128K 57.05 57.31 0.53 0.33 0.70 62.52 64.75 0.58 0.38 0.74

CodeLlama-7B 16K 50.68 59.92 0.55 0.41 0.76 73.61 73.66 0.67 0.51 0.79
CodeLlama-34B 16K 61.47 62.34 0.61 0.30 0.63 70.82 71.03 0.66 0.40 0.70

DeepSeek-Coder V1 16K 56.49 57.31 0.55 0.41 0.76 74.52 74.6 0.67 0.53 0.82

Table 3: Benchmark Result on C and C++.

Model Context
Length

C C++
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 72.45 73.11 0.64 0.36 0.69 78.13 79.22 0.71 0.38 0.70
DeepSeek-V2 32K 54.42 71.06 0.61 0.45 0.79 70.86 77.31 0.69 0.53 0.83
GLM-3-turbo 128K 58.86 60.32 0.52 0.30 0.70 64.10 64.13 0.57 0.32 0.70

CodeLlama-7B 16K 59.09 60.55 0.52 0.35 0.73 64.28 64.9 0.58 0.38 0.75
CodeLlama-34B 16K 67.75 68.23 0.61 0.26 0.63 69.83 70.39 0.66 0.29 0.63

DeepSeek-Coder V1 16K 62.36 62.72 0.54 0.38 0.77 62.33 62.9 0.57 0.39 0.78

5.2.1 OVERALL PERFORMANCE

In this section, we present a comprehensive evaluation of advanced LLMs on our proposed CONGRA
dataset. The experimental results can be found in Tables 2 and 3. Upon careful comparison, we draw
the following observations: (1) LLMs with longer context support do not always yield optimal results.
GLM-3-Turbo, which supports a 128K context, is generally outperformed by LLama3-8B, which only
supports an 8K context, with the exception of semantic similarity. For instance, in Python and Java,
the Precision metric for GLM-3-Turbo is nearly 20% lower than that of LLama3-8B. We speculate
that this may result from LLMs with ultra-long context support not being sufficiently trained on merge
conflict datasets, hindering their ability to effectively extract valuable information from the context
to suggest merge resolutions. (2) Code LLMs do not appear to demonstrate a distinct advantage.
Notably, LLama3-8B and DeepSeek-V2 surpass Code LLMs in Precision across all four languages.
We attribute this to two factors: (i) general models are in fact trained on extensive code repositories,
so their code comprehension capabilities are not significantly inferior to Code LLMs. (ii) Elements
within conflicts such as comments and variable names contribute a plethora of semantic information,
extending beyond mere code understanding, which presents a challenge for Code LLMs. (3) Both
LLama3-8B and DeepSeek-V2 prove to be well-suited for automatic conflict resolution. We also
conducted experiments to evaluate the performance of different variants of models on CONGRA in
Appendix G, and explore the most state-of-the-art models’ performance on CONGRA in Appendix H.

5.2.2 THE IMPACT OF CONFLICT TYPE

Furthermore, we investigate the performance of LLMs under different conflict types. Based on
Section 3.3, we consider seven conflict types, namely Text, Syntax, Functional conflicts, and their
combinations. The results are visualized in Figure 6. In Figure 6, the closer the result is to blue, the
better the model performs; the closer it is to green, the worse the model performs.

For LLMs, a simpler conflict does not necessarily mean it is easier to handle. This is actually a
counterintuitive phenomenon. Specifically, for most models and languages (e.g., Python, C/C++),
LLMs exhibit better performance on the most complex conflicts (i.e., F+S+T) and poorer performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

T T+F T+S T+S+F F S S+F

LLama3-8B

DeepSeek-V2

GLM-3-turbo

CodeLlama-7B

CodeLlama-34B

DeepSeek-Coder

72.84 80.33 83.38 85.55 70.70 75.05 74.19

71.44 79.78 77.30 84.28 66.47 73.90 68.21

53.65 58.51 58.16 64.53 50.44 59.87 54.29

56.73 63.14 71.36 66.38 56.67 61.99 58.00

59.54 62.70 66.75 70.44 55.39 62.06 59.16

53.05 58.63 66.67 63.46 48.93 62.79 56.61

Python
T T+F T+S T+S+F F S S+F

73.35 76.44 77.60 83.29 86.96 81.30 86.74

92.82 75.29 77.72 83.24 86.27 77.40 83.27

40.42 70.11 61.96 70.12 72.09 63.32 72.78

64.63 64.94 64.13 72.74 78.64 68.84 79.28

52.34 67.24 61.96 76.08 77.54 67.46 78.18

67.56 67.24 70.11 74.23 80.57 66.41 79.61

Java
T T+F T+S T+S+F F S S+F

67.44 69.64 79.12 77.53 71.60 73.45 77.46

66.85 68.07 80.39 72.29 69.71 71.74 74.08

54.16 58.51 66.99 67.98 58.67 57.84 65.72

51.71 58.90 64.84 64.21 59.91 59.03 69.86

60.88 67.80 69.83 72.61 68.39 64.45 75.18

53.42 63.36 64.07 65.55 63.29 58.45 70.98

C++
T T+F T+S T+S+F F S S+F

73.70 78.57 73.33 84.52 78.05 75.65 81.81

72.52 74.34 74.33 85.18 74.84 73.77 81.01

63.03 57.45 59.00 72.95 60.14 63.05 66.98

49.86 63.68 60.00 71.59 63.07 60.60 71.74

63.04 70.32 67.67 75.91 68.30 65.54 75.24

47.70 61.30 59.67 69.40 62.13 52.73 73.32

C

50 60 70 80 90

Figure 6: Heatmap on precision of LLMs and types. T for Text, S for Syntax, F for Functional.

on the simplest conflicts (i.e., F, S, and T). In the context of text conflicts, the performance of LLMs
on different samples can be ranked as follows: T+F+S > T+F ≈ T+S > T. We believe that this occurs
because, for LLMs, the simpler the samples within the conflict area (such as type T), the less effective
guidance information the conflict can provide, causing LLMs to produce conservative answers. For
example, when the conflict involves a comment, LLMs tend to preserve as much information as
possible from both branches a and b. In contrast, the more complex the conflict area, the clearer
the direction for conflict resolution. In summary, LLMs need to extract more valuable guidance
information from the conflict area itself to improve their performance. Notice that in Figure 6, the
precision of F in Java is relatively higher. This is due to Java’s encapsulation. To hide "sensitive"
member variables of a class from users, these variables are often declared as private, and the class
must provide public get and set methods to access and update these values. Consequently, these
getter and setter methods are simple in terms of functionality. Since most of the F conflicts in the
Java dataset arise from the rewriting of these encapsulated methods, the LLMs can easily infer the
resolutions, resulting in high precision.

5.3 THE ROLE OF CONTEXT

Figure 7: The impact of contextual information on Precision.

Table 4: Benchmark Result for Different Context Lines on Java.

Model # Context
Line

JAVA
Accuracy Precision ES WS SS

DeepSeer-Coder V2 20 86.08 86.13 0.76 0.63 0.85
50 86.26 86.31 0.76 0.64 0.85
100 85.89 86.20 0.76 0.64 0.85

LLama3.1-8B 20 78.07 78.13 0.70 0.55 0.83
50 79.10 79.16 0.71 0.56 0.83
100 81.01 81.08 0.72 0.58 0.84

In the vast majority of cases, LLMs without conflict context information significantly outperform
those with context information. As observed in Figure 7, the red and gray solid circles almost
entirely encompass their corresponding dashed circles, with only a few exceptions. We analyze

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

this phenomenon from two perspectives: (1) the context understanding capability of large language
models. Although existing LLMs have undergone extensive training on code data, this does not
necessarily imply that they can effectively extract useful information from the rich context for
automatic conflict resolution. (2) The choice of context. In our experiments, we provided the most
basic context information (i.e., the adjacent codes around the current conflict chunk). However,
regarding the actual programming process, a session of code relies more on variables, functions, and
composite types that are usually defined far away from where the current code chunk is located, or
even in another file that the aforementioned concept of basic context cannot cover. By the same
token, using these invalid contexts is possible to introduce significant amounts of noise and can
cause LLM to lose focus, which in turn leads to worse performance. As a result, selecting the
appropriate context for automatic conflict resolution may be a valuable research direction to explore.
We conducted additional experiment with various context lines (depicted in Table 4) to evaluate the
conflict resolution ability of DeepSeeker-Coder V2 and LLama3.1-8B as illustration. We change the
context lines number to 20, 50 and 100 respectively and compare the five metrics as well. According
to the result, although a larger number of context lines leads to better conflict resolving performance
in LLama3.1-8B, a worse performance is found in DeepSeek-Code V2.

6 DISCUSSION

Limitation. The conflict classification strategy in Section 3 ensures correct classification but may
fail to identify the exact category of a conflict due to advanced language usage. For example, the use
of template class definitions in C++ (Vandevoorde & Josuttis (2002)) prevents tree_sitter (Brunsfeld
(2024)) from capturing the type used as the template argument during instantiation. Consequently, a
conflict that should be classified as "syntax" may be regarded as "non-syntax." We will continue to
refine CONGRA’s classification in future work.

Societal Impacts. (1) Improvement of benchmarking current LMs on code merging tasks. During
the merging process, LMs may fail to handle pure text conflict, and generate error-prone merged
code with incorrect syntax or functionality. These wrong results require large amounts of human
intervention to fix. With ConGra, these LMs can be well benchmarked in terms of their ability
to generate text-correct, syntactic-correct, and functional-correct merged code. We believe the
publication of ConGra can further enhance the utilization of LMs in the code merging field and cast a
positive impact on the whole community. (1) Propagation of large datasets for LMs’ training and
testing. There is a trend that more large-scale Git repository data are used for LLMs purposes. We do
believe that the publication of ours or similar works will fuel the momentum as well. We think the
open-source of large datasets will finally lead to a positive contribution..

7 CONCLUSION

We propose CONGRA, a complexity-graded conflict benchmarking system. CONGRA implements
a highly efficient and accurate conflict classification algorithm to construct a complexity-graded
conflict dataset, which is used to evaluate the performance of merging tools under various conflict
scenarios. CONGRA utilizes three code matching metrics of different granularities and combines
them to calculate the accuracy and precision of auto-generated resolutions. We evaluate six LLMs
on CONGRA, and the results show that LLMs with longer context support often perform worse
than those with shorter context support, and general LLMs outperform specialized code LLMs in
precision.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alex Aiken. Moss: A system for detecting software similarity. https://theory.stanford.
edu/~aiken/moss/, 2022. Accessed: 2024-Jun.

Waad Aldndni, Na Meng, and Francisco Servant. Automatic prediction of developers’ resolutions for
software merge conflicts. Journal of Systems and Software, 206:111836, 2023.

Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kästner. Semistructured
merge: rethinking merge in revision control systems. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering, pp. 190–
200, 2011.

Sven Apel, Olaf Leßenich, and Christian Lengauer. Structured merge with auto-tuning: balancing
precision and performance. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pp. 120–129, 2012.

Atlassian. Git merge. https://www.atlassian.com/git/tutorials/
using-branches/git-merge, 2022. Accessed: 2023-Oct.

Max Brunsfeld. Tree-sitter. https://tree-sitter.github.io/tree-sitter/, 2024.
Accessed: 2024-June.

Brian Chess and Gary McGraw. Static analysis for security. IEEE security & privacy, 2(6):76–79,
2004.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q. Li,
Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and Ziwei
Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model, 2024.

Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur Naik, and Shuvendu
Lahiri. Deepmerge: Learning to merge programs. IEEE Transactions on Software Engineering, 49
(4):1599–1614, 2022.

Jinhao Dong, Qihao Zhu, Zeyu Sun, Yiling Lou, and Dan Hao. Merge conflict resolution: Classifica-
tion or generation? In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1652–1663. IEEE, 2023.

Paulo Elias, Heleno de S Campos Junior, Eduardo Ogasawara, and Leonardo Gresta Paulino Murta.
Towards accurate recommendations of merge conflicts resolution strategies. Information and
Software Technology, 164:107332, 2023.

11

https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://tree-sitter.github.io/tree-sitter/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework for java program
analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop (CETUS 2011),
volume 15, 2011.

Simon Larsén, Jean-Rémy Falleri, Benoit Baudry, and Martin Monperrus. Spork: Structured merge
for java with formatting preservation. IEEE Transactions on Software Engineering, 49(1):64–83,
2022.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pp. 75–86. IEEE, 2004.

Inc. NetEase Youdao. Bcembedding: Bilingual and crosslingual embedding for rag. https:
//github.com/netease-youdao/BCEmbedding, 2023.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis. springer,
2015.

Faisal Rahutomo, Teruaki Kitasuka, Masayoshi Aritsugi, et al. Semantic cosine similarity. In The 7th
international student conference on advanced science and technology ICAST, volume 4, pp. 1.
University of Seoul South Korea, 2012.

Eric Sven Ristad and Peter N Yianilos. Learning string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532, 1998.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pp. 76–85, 2003.

Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang Wang. Intellimerge:
a refactoring-aware software merging technique. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–28, 2019.

Bowen Shen and Na Meng. Conflictbench: A benchmark to evaluate software merge tools. Journal
of Systems and Software, pp. 112084, 2024.

Chaochao Shen, Wenhua Yang, Minxue Pan, and Yu Zhou. Git merge conflict resolution leveraging
strategy classification and llm. In 2023 IEEE 23rd International Conference on Software Quality,
Reliability, and Security (QRS), pp. 228–239. IEEE, 2023.

Marcelo Sousa, Isil Dillig, and Shuvendu K Lahiri. Verified three-way program merge. Proceedings
of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

Diomidis Spinellis. Git. IEEE software, 29(3):100–101, 2012.

Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Elizabeth Dinella, Chris-
tian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K Lahiri. Program merge conflict resolution
via neural transformers. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 822–833, 2022.

12

https://github.com/netease-youdao/BCEmbedding
https://github.com/netease-youdao/BCEmbedding

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. Challenges of resolving merge
conflicts: A mining and survey study. IEEE Transactions on Software Engineering, 48(12):
4964–4985, 2021.

David Vandevoorde and Nicolai M Josuttis. C++ templates: the complete guide. Addison-Wesley
Professional, 2002.

Alexis Määttä Vinkler. The magic of 3-way merge. https://blog.git-init.com/
the-magic-of-3-way-merge/, 2023. Accessed: 2023-Oct.

Fish Wang and Yan Shoshitaishvili. Angr-the next generation of binary analysis. In 2017 IEEE
Cybersecurity Development (SecDev), pp. 8–9. IEEE, 2017.

Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K Lahiri. Using
pre-trained language models to resolve textual and semantic merge conflicts (experience paper). In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 77–88, 2022.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, and Fei He. Mastery: Shifted-code-aware
structured merging. In International Symposium on Dependable Software Engineering: Theories,
Tools, and Applications, pp. 70–87. Springer, 2022.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

13

https://blog.git-init.com/the-magic-of-3-way-merge/
https://blog.git-init.com/the-magic-of-3-way-merge/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROMPT

Please provide the merged code based on the specified conflict and its context.
Please provide the merged code following the chain of thought:
1. Understand the cause of the conflict: Examine the conflicting code and its context to understand why the
conflict occurred.
2. Decide how to merge: Based on the functionality and logic of the code, determine which changes should be
kept or how the changes from both sides can be combined.
3. Provide the merged code, using "```{language}" as the beginning and "```" as the end of the merged code.
You only need to output the resolution of the conflict without providing any context.
For example,
Conflict Context is:
```python
def quick_sort(arr):

<<<<<<< a
if len(arr) <= 1:

return arr
else:

pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick_sort(left) + [pivot] + quick_sort(right)

=======
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
>>>>>>> b
return arr

```
Conflict is:
```python

<<<<<<< a
if len(arr) <= 1:

return arr
else:

pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quick_sort(left) + [pivot] + quick_sort(right)

=======
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]
>>>>>>> b

```
You need to output:
```python

if len(arr) <= 1:
return arr

else:
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]

return quick_sort(left) + [pivot] + quick_sort(right)
```
Here is the context related to the conflict:
```{language}
{conflict_context}
```
Here is the conflict that needs to be resolved:
```{language}
{conflict_text}
```

[System]
You are an expert in code merge conflicts, providing the merged code based on the conflict and its context.

[User]

Figure 8: Prompt

B DEMO CASE

B.1 CONFLICT

Listing 1: Demo 1: text conflict
1 <<<<<<< a
2 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

3 - If int: the same symmetric padding is applied to depth, height,
4 and width.
5 - If tuple of 3 ints: interpreted as three different symmetric
6 padding values for depth, height, and width:
7 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
8 - If tuple of 3 tuples of 2 ints: interpreted as
9 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,

10 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.
11 data_format: A string, one of ‘"channels_last"‘ (default) or
12 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
13 ‘"channels_last"‘ corresponds to inputs with shape
14 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
15 while ‘"channels_first"‘ corresponds to inputs with shape
16 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
17 When unspecified, uses ‘image_data_format‘ value found in your Keras
18 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
19 ‘"channels_last"‘.
20 =======
21 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
22 - If int: the same symmetric padding
23 is applied to height and width.
24 - If tuple of 3 ints:
25 interpreted as two different
26 symmetric padding values for height and width:
27 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
28 - If tuple of 3 tuples of 2 ints:
29 interpreted as
30 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
31 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘
32 data_format: A string,
33 one of ‘channels_last‘ (default) or ‘channels_first‘.
34 The ordering of the dimensions in the inputs.
35 ‘channels_last‘ corresponds to inputs with shape
36 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
37 while ‘channels_first‘ corresponds to inputs with shape
38 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
39 It defaults to the ‘image_data_format‘ value found in your
40 Keras config file at ‘~/.keras/keras.json‘.
41 If you never set it, then it will be "channels_last".
42 >>>>>>> b

Listing 2: Demo 2: text and functional conflict
1 <<<<<<< a
2 constraints = _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) or []
3
4 kwargs = kwargs or {}
5 =======
6 if constraints is not None:
7 log_export_usage(event="export.private_api", flags={"constraints"})
8 warnings.warn(
9 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "

10 "and will not be supported in the future. "
11 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
12 DeprecationWarning,
13 stacklevel=2,
14)
15 else:
16 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
17 >>>>>>> b

Listing 3: Demo 3: syntax conflict
1 <<<<<<< a
2 import torch.utils._pytree as pytree
3 =======
4 >>>>>>> b
5 from torch._decomp import register_decomposition

Listing 4: Demo 4: text, syntax, and functional conflict
1 <<<<<<< a
2 log.info("converting frame raised error, suppressing error")
3 =======
4
5 # Suppress the error. NB: It’s very important to do the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

6 # suppression logging HERE, where the actual suppression
7 # happens. Previously it was somewhere else and so it was
8 # possible to accidentally not log at all.
9 record_filename = getattr(e, "record_filename", None)

10 code = frame.f_code
11 if config.is_fbcode():
12 from torch._dynamo.fb.logging import (# type: ignore[import]
13 log_dynamo_suppress_errors,
14)
15
16 error_msg = format_error_msg_verbose(e, code, record_filename, frame)
17 log_dynamo_suppress_errors(
18 code.co_name, code.co_filename, code.co_firstlineno, error_msg
19)
20 else:
21 error_msg = format_error_msg(e, code, record_filename, frame)
22
23 if soft_fail:
24 log.info(error_msg, exc_info=True)
25 else:
26 log.warning(error_msg, exc_info=True)
27 >>>>>>> b
28 return None

B.2 GROUND TRUTH

Listing 5: Ground truth of demo 1
1 Args:
2 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
3 - If int: the same symmetric padding is applied to depth, height,
4 and width.
5 - If tuple of 3 ints: interpreted as three different symmetric
6 padding values for depth, height, and width:
7 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
8 - If tuple of 3 tuples of 2 ints: interpreted as
9 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,

10 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.
11 data_format: A string, one of ‘"channels_last"‘ (default) or
12 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
13 ‘"channels_last"‘ corresponds to inputs with shape
14 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
15 while ‘"channels_first"‘ corresponds to inputs with shape
16 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
17 When unspecified, uses ‘image_data_format‘ value found in your Keras
18 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
19 ‘"channels_last"‘.

Listing 6: Ground truth of demo 2
1
2 kwargs = kwargs or {}
3 _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) # TODO(avik): remove

Listing 7: Ground truth of demo 3
1 import torch._inductor as inductor
2 import torch.utils._pytree as pytree
3 from torch import fx
4 from torch._decomp import register_decomposition

Listing 8: Ground truth of demo 4
1 raise
2
3 # Suppress the error. NB: It’s very important to do the
4 # suppression logging HERE, where the actual suppression
5 # happens. Previously it was somewhere else and so it was
6 # possible to accidentally not log at all.
7 record_filename = getattr(e, "record_filename", None)
8 code = frame.f_code
9 error_msg = format_error_msg(e, code, record_filename, frame)

10

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

11 if soft_fail:
12 log.info(error_msg, exc_info=True)
13 else:
14 log.warning(error_msg, exc_info=True)

B.3 RESOLUTION GENERATED BY LLAMA3-8B

Listing 9: Demo 1: LLama3-8B resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height, and width.
3 - If tuple of 3 ints: interpreted as three different symmetric padding values for depth

, height, and width:
4 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
5 - If tuple of 3 tuples of 2 ints: interpreted as
6 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim2_pad), (left_dim3_pad,

right_dim3_pad))‘.
7 data_format: A string, one of ‘"channels_last"‘ (default) or
8 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
9 ‘"channels_last"‘ corresponds to inputs with shape

10 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
11 while ‘"channels_first"‘ corresponds to inputs with shape
12 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
13 When unspecified, uses ‘image_data_format‘ value found in your Keras
14 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
15 ‘"channels_last"‘.

Listing 10: Demo 2: LLama3-8B resolution
1 if constraints is not None:
2 log_export_usage(event="export.private_api", flags={"constraints"})
3 warnings.warn(
4 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "
5 "and will not be supported in the future. "
6 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
7 DeprecationWarning,
8 stacklevel=2,
9)

10 else:
11 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
12 kwargs = kwargs or {}

Listing 11: Demo 3: LLama3-8B resolution
1 from torch.utils._pytree import pytree

Listing 12: Demo 4: LLama3-8B resolution
1 log.info("converting frame raised error, suppressing error")

B.4 RESOLUTION GENERATED BY DEEPSEEK-CHAT

Listing 13: Demo 1: Deepseek-Chat resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height,
3 and width.
4 - If tuple of 3 ints: interpreted as three different symmetric
5 padding values for depth, height, and width:
6 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
7 - If tuple of 3 tuples of 2 ints: interpreted as
8 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
9 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.

10 data_format: A string, one of ‘"channels_last"‘ (default) or
11 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
12 ‘"channels_last"‘ corresponds to inputs with shape
13 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
14 while ‘"channels_first"‘ corresponds to inputs with shape
15 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
16 It defaults to the ‘image_data_format‘ value found in your

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

17 Keras config file at ‘~/.keras/keras.json‘.
18 If you never set it, then it will be "channels_last".

Listing 14: Demo 2: Deepseek-Chat resolution
1 if constraints is not None:
2 log_export_usage(event="export.private_api", flags={"constraints"})
3 warnings.warn(
4 "Using ‘constraints‘ to specify dynamic shapes for export is DEPRECATED "
5 "and will not be supported in the future. "
6 "Please use ‘dynamic_shapes‘ instead (see docs on ‘torch.export.export‘).",
7 DeprecationWarning,
8 stacklevel=2,
9)

10 else:
11 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []

Listing 15: Demo 3: Deepseek-Chat resolution
1 import torch.utils._pytree as pytree
2 from torch._decomp import register_decomposition

Listing 16: Demo 4: Deepseek-Chat resolution
1 # Suppress the error. NB: It’s very important to do the
2 # suppression logging HERE, where the actual suppression
3 # happens. Previously it was somewhere else and so it was
4 # possible to accidentally not log at all.
5 record_filename = getattr(e, "record_filename", None)
6 code = frame.f_code
7 if config.is_fbcode():
8 from torch._dynamo.fb.logging import (# type: ignore[import]
9 log_dynamo_suppress_errors,

10)
11
12 error_msg = format_error_msg_verbose(e, code, record_filename, frame)
13 log_dynamo_suppress_errors(
14 code.co_name, code.co_filename, code.co_firstlineno, error_msg
15)
16 else:
17 error_msg = format_error_msg(e, code, record_filename, frame)
18
19 if soft_fail:
20 log.info(error_msg, exc_info=True)
21 else:
22 log.warning(error_msg, exc_info=True)
23 return None

B.5 RESOLUTION GENERATED BY DEEPSEEK-CODER

Listing 17: Demo 1: Deepseek-Coder resolution
1 padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
2 - If int: the same symmetric padding is applied to depth, height,
3 and width.
4 - If tuple of 3 ints: interpreted as three different symmetric
5 padding values for depth, height, and width:
6 ‘(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)‘.
7 - If tuple of 3 tuples of 2 ints: interpreted as
8 ‘((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
9 right_dim2_pad), (left_dim3_pad, right_dim3_pad))‘.

10 data_format: A string, one of ‘"channels_last"‘ (default) or
11 ‘"channels_first"‘. The ordering of the dimensions in the inputs.
12 ‘"channels_last"‘ corresponds to inputs with shape
13 ‘(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)‘
14 while ‘"channels_first"‘ corresponds to inputs with shape
15 ‘(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)‘.
16 When unspecified, uses ‘image_data_format‘ value found in your Keras
17 config file at ‘~/.keras/keras.json‘ (if exists). Defaults to
18 ‘"channels_last"‘.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Listing 18: Demo 2: Deepseek-Coder resolution
1 constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes) or []
2
3 kwargs = kwargs or {}

Listing 19: Demo 3: Deepseek-Coder resolution
1 import torch.utils._pytree as pytree
2 from torch._decomp import register_decomposition

Listing 20: Demo 4: Deepseek-Coder resolution
1 log.info("converting frame raised error, suppressing error")
2 record_filename = getattr(e, "record_filename", None)
3 code = frame.f_code
4 if config.is_fbcode():
5 from torch._dynamo.fb.logging import (# type: ignore[import]
6 log_dynamo_suppress_errors,
7)
8
9 error_msg = format_error_msg_verbose(e, code, record_filename, frame)

10 log_dynamo_suppress_errors(
11 code.co_name, code.co_filename, code.co_firstlineno, error_msg
12)
13 else:
14 error_msg = format_error_msg(e, code, record_filename, frame)
15
16 if soft_fail:
17 log.info(error_msg, exc_info=True)
18 else:
19 log.warning(error_msg, exc_info=True)
20 return None

C GIT MERGE CONFLICT EXAMPLE

Figure 9 shows a code merging scenario with conflict. Both version A (Figure 9a) and version B
(Figure 9b) implement quick sort, but version A selects the middle element of arr as the pivot, while
version B selects the first element. This discrepancy causes Git to encounter an impasse and report a
conflict, as depicted in Figure 9c.

(a) Quick sort from version A. (b) Quick sort from version B. (c) Quick sort with merge conflict.

Figure 9: Quick sort merging example

D LICENSE

We utilized the source code of 34 open-source projects in this research. These projects and their license
information are as follows: 1) Linux Kernel, Android Kernel, Raspberry Pi Kernel, Git, MySQL,
ReactOS, JDK, NewPipe, Ansible Cpython, are licensed under GNU General Public License (GPL);
2) Bitcoin, GCC, Jenkins, are licensed under the Massachusetts Institute of Technology (MIT); 3)
LLVM, Swift, Tensorflow, AOSP, dbeaver, Ghidra, hadoop, Micronaut, Netty, Sprint-boot, Sprint-
framework, Keras, Transformers, are under the Apache License; 4) Mongo is under Server Side
Public License; 5) PHP is under PHP License; 6) V8, Django, Pandas, Pytorch, Scrapy, are under
BSD-3-Clause License; 7) Eclipse is under Eclipse Public License; 8) Youtube-dl is unlicensed. We
acknowledge the contributions of the open-source community in developing and maintaining these
projects.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E CODE SIMILARITY METRICS

• Edit Similarity (ES). Edit distance is a metric used to measure the difference between two
strings (Ristad & Yianilos (1998)). It is defined as the minimum number of edit operations
required to transform one string into another. In CONGRA, we normalize the edit distance,
treating the normalized result as the similarity measure in character level.

• Winnowing Similarity (WS). Winnowing is an algorithm used for text similarity detection
and fingerprint extraction (Schleimer et al. (2003)). It has been implemented in the Moss
code plagiarism detection system (Aiken (2022)) to determine code similarity. In CONGRA,
we normalize the winnowing result to assess the similarity of the whole conflict code
snippets.

• Semantic Similarity (SS). We use the cosine similarity between the generated resolution
and the actual resolution as the semantic similarity. In CONGRA, in order to effectively
model the semantic information of the resolution, we use BCEmbedding NetEase Youdao
(2023) as the embedding model to obtain the representation of each resolution.

F VISUALIZATION OF THE NUMBER OF CONFLICTS IN CONGRA

Here we visualize the distribution characteristics of the number of conflicts contained in each file in
four languages in Figure 10. Overall, most files contain only one or two conflicts, and a very small
number of files contain more than 10 conflicts. We also visualize the number of different types of
conflicts for each language in Figure 11.

Python Java C++ C

100

101

102

#C
on

fl
ic

ts
 p

er
 f

il
e

Figure 10: Violin plots of the number of conflicts per file.

G COMPARISON OF MODEL VARIANTS ON CONGRA

Table 5: Benchmark Result for Model Variants on Python and Java.

Model Context
Length

PYTHON JAVA
Accuracy Precision ES WS SS Accuracy Precision ES WS SS

LLama3-8B 8K 75.82 77.45 0.71 0.36 0.66 82.93 83.00 0.75 0.42 0.67
LLama3.1-8B 8k 73.58 75.16 0.67 0.53 0.83 81.01 81.08 0.72 0.58 0.84

CodeLlama-7B 16K 50.68 59.92 0.55 0.41 0.76 73.61 73.66 0.67 0.51 0.79
CodeLlama-34B 16K 61.47 62.34 0.61 0.30 0.63 70.82 71.03 0.66 0.40 0.70

DeepSeek-Coder V1 16K 56.49 57.31 0.55 0.41 0.76 74.52 74.6 0.67 0.53 0.82
DeepSeek-Coder V2 16k 77.04 78.14 0.70 0.56 0.84 85.89 86.20 0.76 0.64 0.85

We evaluated the performance of different variants of LLMs with the following comparison groups:

1. DeepSeek-Coder V1 vs DeepSeek-Coder V2.
2. CodeLlama 7B vs CodeLlama 34B.
3. LLama3-8B vs LLama3.1-8B.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

T T+S T+S+F T+F S S+F F
0

10

20

30

40

50

#C
on
fl
ic
ts
 p
er
 f
il
e

(a) Python

T T+S T+S+F T+F S S+F F
0

5

10

15

20

#C
on
fl
ic
ts
 p
er
 f
il
e

(b) Java

T T+S T+S+F T+F S S+F F
0

5

10

15

20

25

#C
on
fl
ic
ts
 p
er
 f
il
e

(c) C++

T T+S T+S+F T+F S S+F F

0

20

40

60

80

100

#C
on
fl
ic
ts
 p
er
 f
il
e

(d) C

Figure 11: Strip plots of number of conflicts per file.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5 shows the results of the variants comparision. In Conclusion, DeepSeek-Coder V2 gains
better performance on all of the five metrics in both Python and Java targets compared with DeepSeek-
Coder V1. LLama3-8B outperforms LLama3.1-8B in terms of Accuracy, Precision, and ES while
LLama3.1-8B takes the lead in WS and SS regarding both Python and Java projects. CodeLlama-7B
performs better on all of the five metrics in Java datasets but worse on Accuracy, Precision, and ES in
Python datasets.

H COMPARISON AMONG STATE-OF-THE-ART MODELS ON CONGRA

Table 6: Benchmark Result for State-of-the-art baseline and Well-performed Models on Java.

Model JAVA
Accuracy Precision ES WS SS

DeepSeer-Coder V2 86.08 86.13 0.76 0.63 0.85
LLama3.1-8B 78.07 78.13 0.70 0.55 0.83
GPT-4o-mini 83.76 83.82 0.74 0.62 0.84

To explore whether CONGRA can help with the improvement of the state-of-the-art LMs, we
conducted additional experiments as shown in Table 6. Due to the resource and token limitations,
we restrict the number of context lines to 20. We include GPT-4o-mini, DeepSeek-Coder V2 and
LLama3.1-8B as they are either one of the most popular LMs or performed outstandingly in the other
parts of our evaluation. Notably, DeepSeek-Coder V2 performed the best among the three SOTA
LLMs. Nevertheless, DeepSeek-Coder V2 does not exhibit an incredibly high performance (1.70%↑
in Accuracy, 1.73%↑ in Precision, 0.01↑ in ES, 0.02↑ in WS, and 0.01↑ in SS). To this end, we
suggest that there is still room for improvement of LLMs on code merging tasks.

22

	Introduction
	Background
	Task Definition of Automatic Merge Conflict Resolution
	Program Analysis-based ACR
	Machine learning-based ACR
	Conflict Resolution Benchmarks

	Benchmarking Pipeline
	Overview
	Coloring
	Classifier
	Generate Resolutions

	Graded Conflicts Dataset
	Benchmarking for Auto-Conflict Resolutoin
	Benchmakring Settings
	Benchmark Results and Analysis
	Overall Performance
	The Impact of Conflict Type

	The Role of Context

	Discussion
	Conclusion
	Prompt
	Demo Case
	Conflict
	Ground Truth
	Resolution generated by LLama3-8B
	Resolution generated by Deepseek-Chat
	Resolution generated by Deepseek-Coder

	Git Merge Conflict Example
	License
	Code Similarity Metrics
	Visualization of the number of conflicts in ConGra
	Comparison of Model Variants on ConGra
	Comparison among State-of-the-art Models on ConGra

