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ABSTRACT

While existing approaches address unpaired image-text matching by construct-
ing cross-modal aligned knowledge, they often fail to identify semantically cor-
responding visual representations for Out-of-Distribution (OOD) words. More-
over, the distributional variance of visual representations associated with differ-
ent words varies significantly, which negatively impacts matching accuracy. To
address these issues, we propose a novel method namely Multimodal Aligned
Semantic Knowledge (MASK), which leverages word embeddings as bridges to
associate words with their corresponding prototypes, thereby enabling semantic
knowledge alignment between the image and text modalities. For OOD words, the
representative prototypes are constructed by leveraging the semantic relationships
encoded in word embeddings. Beyond that, we introduce a prototype consistency
contrastive learning loss to structurally regularize the feature space, effectively
mitigating the adverse effects of variance. Experimental results on the Flickr30K
and MSCOCO datasets demonstrate that MASK achieves superior performance
in unpaired matching.

1 INTRODUCTION

Image–text matching has become an essential technique for various applications, such as visual
question answering Özdemir & Akagündüz (2024); Lerner et al. (2024), image captioning Fu et al.
(2024); Wang et al. (2024a), cross-modal retrieval Wang et al. (2024b); Li et al. (2024b) and so
forth. Due to the heterogeneous representations and asymmetry of information between images
and texts, accurately learning cross-modal semantic correspondences remains a challenging prob-
lem. Although training on large-scale paired image-text data has substantially improved matching
accuracy, collecting and annotating such data at scale is often impractical in real-world scenarios.
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Figure 1: Comparison between existing matching paradigms and our proposed unpaired framework.

To reduce the dependence of image-text matching on paired data, the unpaired image-text matching
paradigm Huang et al. (2022) was first proposed, in which domain-specific paired images and texts
are assumed to be unavailable during model training. Inspired by the fact that the human brain
can correlate arbitrary images and texts well while does not need to learn from large-scale paired
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images and texts, the unpaired image-text matching is implemented by modeling human brain-like
knowledge, which is multimodal aligned and used to associate visual and linguistic information.

Note that unimodal visual or linguistic knowledge has been widely used for vision and language
understanding task Chen & Zhao (2023). There are also some works Li et al. (2025); Gao et al.
(2025) directly combining these two types of knowledge together, but the resulting knowledge is
not multimodal aligned. Another alternative is Multimodal Aligned Conceptual Knowledge Huang
et al. (2024a), which establishes correspondences between prototypical region representations and
words, as shown in Figure 1 (a). However, these knowledge-based methods still face the following
issues: 1) OOD words have not been thoroughly investigated. Existing knowledge-based meth-
ods fail to leverage the underlying semantic structure to transfer the visual prototypes of known
words to OOD words; 2) The influence of distributional variance has been largely overlooked.
The region representations corresponding to different words exhibit substantial appearance varia-
tions. Consequently, certain instances that deviate substantially from the distributional mean may
be prone to misclassification into other words; 3) The raw region representation is insufficient in
effectively capturing the semantic relationships between words. The raw region representation
is predominantly influenced by the co-occurrence relationships among regions. However, there is no
inherent relationship between semantic relevance and co-occurrence patterns. For instance, while
’human’ and ’hat’ often co-occur in visual contexts, ’human’ and ’gentleman’ may exhibit a higher
semantic similarity.

To address these issues, we propose a new method namely Multimodal Aligned Semantic Knowl-
edge for unpaired image-text matching, which establishes semantic alignment between prototypical
region representations and word embeddings, as shown in Figure 1 (b). We summarize our key
contributions as follows:

• We propose a novel cross-modal semantic alignment method, MASK, which constructs
representative prototypes for OOD words by exploiting the intrinsic relationships among
word embeddings, thereby enhancing the model’s generalization ability in unpaired image-
text matching.

• We introduce a prototype consistency contrastive learning loss to structurally regularize
the feature space, which explicitly encourages region representations associated with the
same word to align closely with their prototype, thereby mitigating the adverse impact of
distributional variance.

• We incorporate external knowledge from pre-trained word vectors as auxiliary supervision
signals, which establishes a relation-preserving equivariant mapping between region repre-
sentations and word embeddings, enabling the region representations to effectively capture
semantic relationships among words.

2 RELATED WORK

2.1 MODEL-BASED MATCHING

Extensive model-based matching works have been made on measuring the semantic correlation
between vision and language. To our knowledge, Socher et al. Socher et al. (2013) might propose the
first framework of Visual-Semantic Embedding (VSE) to correlate images and their class labels in a
two-stream manner. Lee et al. Lee et al. (2018) propose a Stacked Cross Attention Network(SCAN)
to discover all latent alignments by using regions of the image and words in a sentence as context.
The SCAN has been extensively studied from various aspects such as memory modeling Huang et al.
(2021), context modeling Zhang et al. (2020) and graph structure Liu et al. (2020). Later, by using
millions or billions of paired images and texts for supervised model learning, many models Li et al.
(2020); Pan et al. (2023); Wu et al. (2024); Li et al. (2024a); Pham et al. (2024); Ge et al. (2024)
based on multimodal versions of Transformer have been proposed and have achieved remarkable
results. However, while these existing methods achieve relatively strong performance, they rely
heavily on extensive paired image-text datasets for supervised training, which significantly restricts
their applicability.
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2.2 KNOWLEDGE-BASED MATCHING

Knowledge-based matching has been explored in a few vision and language understanding tasks.
Feng et al. Feng et al. (2019) use a visual concept detector to encourage generated captions to be
semantically consistent with visual concepts. This work focuses more on the visual concepts while
paying less attention to visual relations. Gu et al. Gu et al. (2019) propose to align two scene
graphs of images and texts, by mapping one to the other one, and vice versa. The performance of
this work depends more on the accuracy of predicted scene graphs that contain both visual concepts
and relations. Huang et al. Huang et al. (2022) introduce Multimodal Aligned Conceptual Knowl-
edge (MACK) for unpaired image-text matching, effectively addressing challenges associated with
diverse appearances. Subsequently, Huang et al. Huang et al. (2024b) further extend MACK to
broaden its applicability. However, these approaches still face certain limitations, particularly in
their inability to leverage the underlying semantic structure to transfer the prototype representations
of known words to OOD words.

3 METHOD

This section illustrates the pipeline of obtaining the proposed MASK for unpaired image-text match-
ing, as shown in Figure 2. For each region, the image embedding branch is utilized to extract region
representations characterized by high cohesion and low coupling. For each word, the text embed-
ding branch is employed to generate its corresponding word embedding. Consequently, we obtain
a knowledge set in which each word is aligned with its corresponding prototypical region repre-
sentation. This knowledge serves as a bridge in the knowledge-based image-text matching module,
enabling the association between domain-specific images and texts and thereby supporting unpaired
matching. It is worth noting that the knowledge can be fine-tuned to better adapt to specific do-
main (Appendix H). However, the fine-tuning step is optional according to whether unpaired data in
certain domain are given or not.
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ing. The top figures illustrate how to obtain the knowledge and the bottom figures illustrate how to
use the knowledge for unpaired image-text matching.
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3.1 MULTIMODAL ALIGNED SEMANTIC KNOWLEDGE

In addition to the semantic concepts, the studied knowledge also has another important property
of cross-modal one-to-one alignment. For each word, its semantically related objects in different
regions often exhibit diverse visual appearances, which could easily lead to confusion in practice.
Therefore, rather than align each word to multiple related regions in an one-to-many manner, the
MASK aligns each word to a single prototypical region, with the goal to alleviate the issue of
appearance variation. In particular, we formulate the knowledge as a set of semantic concepts having
paired multimodal representations {(wk, vk)}k=1,...,K , where wk and vk are the word embedding
and prototypical region representation of the k-th semantic concept, respectively, and K is the total
number of semantic concepts.

As shown in Figure 2, for each word, we compute the word embeddings wk by using pre-trained
word vectors. For each region, we first extract the raw region representations rj(j = 1, . . . , Jk)
by feeding a bounding box and an image into the pre-trained object detection model Faster-RCNN.
Then we extract region representations µj by utilizing the Prototype-Aware Encoder (PAE) h, with
rj as the input:

µj , σj = h(rj ; Θh), (1)

where Θh is the parameters of h and σj represents the variance of distribution. Finally, we
compute the prototypical region representations vk by averaging all related region representations
{µj}j=1,...,Jk :

vk =
1

Jk

∑Jk
j=1 µj , (2)

where the Jk indicates the number of regions for the k-th semantic concept.

3.2 IMAGE EMBEDDING BRANCH

Given a batch B of paired regions and words, we first obtain raw region representations R =
{rn}n=1,...,B (R ∈ RB×M ), where M is the dimension of rn. We then extract region repre-
sentations µ using the PAE model h, which takes R as input and consists of a Fully Connected
(FC) layer followed by three self-attention layers:

µ, σ = h(R; Θh), (3)

where the mean µ ∈ RB×Z and variance σ ∈ RB×Z are used to preserve the information of
the raw region representations R by using the Feature Restoration Module (FRM ) g comprising a
self-attention layer and two FC layers:

R′ = g(µ, σ, z; Θg), (4)

where the z is a random vector sampled from a standard normal distribution and Θg is the parameters
of g. The Z represents the feature dimension of latent space. As shown in Figure 2, the PAE model
h and FRM model g are trained jointly using the information retention loss function Lir:

Lir = DKL( N(µ, σ2) ||N(0, 1) ) + E(rn,r′n)∼(R,R′) [‖rn − r′n‖
2
2], (5)

where theDKL( N(µ, σ2) ||N(0, 1) ) implies that the data distribution in the latent space gradually
approaches the standard normal distribution. The E(rn,r′n)∼(R,R′) [‖rn − r′n‖

2
2] measures the dif-

ference between the reconstructed raw region representations R′ and the raw region representations
R. The loss Lir ensures that the mean µ retains a significant amount of information from the raw
region representations R.

Inspired by clustering theory and contrastive learning, we design a prototype consistency contrastive
learning loss Lcl to reduce the influence of distributional variance between prototypes and their re-
lated region representations. The loss Lcl employs prototypes as class centers, maximizing the
similarity between region representations and their corresponding prototypes while minimizing
similarity with other prototypes, thereby achieving intra-class aggregation and inter-class separa-
tion. Compared to traditional instance-to-instance contrastive learning, Lcl introduces prototypes as
global semantic representatives, explicitly aggregating instances of the same class around their cor-
responding prototypes. This process constructs a more structured and discriminative representation
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space, enabling the model to capture clearer semantic boundaries. The loss Lcl is defined as follows
(Appendix G):

Lcl = − 1

B

B∑
k=1

log
exp(vk · µ+/τ)∑B
n=1 exp(vk · µn/τ)

, (6)

where the µ+ refers to the region representations associated with the prototypical region representa-
tions vk, i.e., positive examples. The hyperparameter τ regulates the capacity of the model to distin-
guish between negative examples. The loss Lcl encourages all region representations corresponding
to the same word to be closer to each other, while driving the region representations corresponding
to different words farther apart, which effectively mitigates the impact of variance among different
words on the similarity computation.

3.3 TEXT EMBEDDING BRANCH

Given a batchB of paired regions and words, we obtain word embeddings V = {wk}k=1,...,B (V ∈
RB×N ) by utilizing the pretrained word vectors, where N is the dimension of wk. Pre-trained
word embeddings typically exhibit well-structured semantic properties, where semantically related
words are mapped to vectors that are close to each other in the embedding space. To enable region
representations to effectively capture semantic correlations between words, we utilize a Modality
Transfer Model (MTM ) f with three self-attention layers and three FC layers that can map the
mean µ output by the PAE model h into the word embedding space:

V ′ = f(µ; Θf ), (7)

where the Θf is the parameters of the MTM model f and V ′ ∈ RB×N represents the predicted
word embeddings. The model f is a relation-preserving equivariant mapping that lays the foundation
for constructing prototypical region representations corresponding to OOD words. Formally, for any
two region representations µi and µj , the function f should satisfy (Appendix B):

ds(f(µi; Θf ), f(µj ; Θf )) ∝ ds(µi, µj), (8)

where the distance metric ds captures the pairwise relations between representations within each
modality. The PAE model h and MTM model f are trained jointly using the cross-modal align-
ment loss function Lcm (Appendix C, E and F):

Lcm = E[(1− cos( wi
‖wi‖2

,
w′i
‖w′i‖2

))] + E[((cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

)))2], (9)

where w′i, w
′
j ∈ V ′(i 6= j) and wi ∈ V . The loss function Lcm enforces the predicted word embed-

dings V ′ to gradually converge toward the word embeddings V , while simultaneously ensuring that
the region representations effectively capture the semantic relationships between words.

3.4 KNOWLEDGE-BASED IMAGE-TEXT MATCHING

To decide whether a given image and a text are matched or not, we first obtain a set of raw region
representations R = {ri}i=1,...,I (R ∈ RI×M ) using the Faster-RCNN above and a set of parsed
words through tokenization operation implemented via NLTK 1, as shown in Figure 2. Then, we use
the knowledge as a cross-modal bridge to represent all the words into the corresponding prototypical
region representations U = {vj}j=1,...,J (U ∈ RJ×Z). For the set of regions R, we extract region
representations µ ∈ RI×Z by utilizing the PAE model h. Finally, we obtain the desired global
similarity score s for the given image and text as:

s = ρ( µ · UT ), (10)

where ρ(·) denotes the max-mean pooling operation, which first performs max pooling along the
column dimension and then mean pooling along the row dimension of the input matrix.

However, the scope of knowledge is inherently limited and heavily reliant on the volume of paired
data available in public datasets. The vocabulary size supported by the pre-trained word vectors

1https://www.nltk.org/

5



Published as a conference paper at ICLR 2026

significantly surpasses the scale of the existing knowledge. Therefore, for OOD words relative
to the knowledge, their corresponding word embeddings can typically be obtained by leveraging
pre-trained word vectors. To fully utilize these OOD words, we first sample m paired multimodal
representations {(wq, vq)}mq=1 from the knowledge. Then, we calculate the similarity scores {sq}mq=1

between the m word embeddings {wq}mq=1 and the word embedding wout:

{sq}mq=1 = softmax(wout · {wq}mq=1). (11)

By utilizing the sampled prototypical region representations {vq}mq=1 as base vectors and the sim-
ilarity scores {sq}mq=1, we can obtain the prototypical region representation vout corresponding to
word embedding wout:

vout =
∑m
q=1 sq · vq. (12)

In unpaired image-text matching, constructing prototypical region representations based on semantic
similarities between words enables the effective utilization of information from OOD words.

To ensure the semantic quality of the visual prototypes constructed for OOD words, we select the
top-m paired multimodal representations from the knowledge whose word embeddings are most
relevant to OOD words. This selection strategy is motivated by the local linearity property of word
embeddings on the semantic manifold. Semantically related words lie close to each other in the
embedding space and approximately reside in a locally linear subspace. Consequently, the top-
m neighbors provide the most informative directions for reconstructing the corresponding visual
representations. Moreover, the Lcm constrains local alignment between the word embedding space
and the visual prototype space, making nearest neighbors in the embedding space more likely to
preserve geometric relationships in the prototype space, thereby reducing reconstruction bias. In
this way, the top-m neighbors effectively capture the most salient semantic and structural information
needed for accurate and robust prototype estimation. To obtain these top-m semantic neighbors for
OOD words, we first normalize all word embeddings {wq}Kq=1 in the knowledge, and denote the
normalized embeddings as { wq

‖wq‖}
K
q=1. Similarly, the normalized embedding of OOD words as

wout

‖wout‖ . The similarity between wout

‖wout‖ and { wq

‖wq‖}
K
q=1 are computed as:

{sq}Kq=1 =
wout
‖wout‖

· { wq
‖wq‖

}Kq=1. (13)

The top-m nearest neighbors {sq}mq=1 are then selected based on {sq}Kq=1 to support subsequent
visual prototype construction.

3.5 MODEL TRAINING

The studied knowledge mainly contains dataset-independent semantic concepts, with the goal to be
generally applicable to different scenarios. The semantic concepts are multimodal, which includes
objects and attributes in images, and nouns and adjectives in texts. To obtain them, we resort to
publicly available dataset Visual Genome (VG) Krishna et al. (2017) 2 and collect corresponding
words and regions. For the textual knowledge, we obtain various words from synsets in the dataset.
For the visual knowledge, we detect regions from images and then associate them with the words.

After collecting a set of words and their semantically related image regions from publicly available
datasets, we train our model on these paired data to construct MASK. The loss of the entire training
process is expressed as L:

L = Lir + λ1Lcm + λ2Lcl, (14)

where λ1 and λ2 are trade-off factors for balancing different losses. By optimizing the loss L,
the region representations exhibit properties of high cohesion and low coupling, indicating that
representations corresponding to the same word become more compact and semantically consistent.

3.6 RE-RANKING EXTENSION

The proposed MASK is a knowledge-based approach, which differs significantly from existing data-
driven models. Due to this distinction, it is expected to exhibit complementary properties when

2http://visualgenome.org/
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combined with existing models. We extend MASK into a re-ranking method to re-rank the initial
results produced by existing multimodal models.

Taking the sub-task of image retrieval as an example, given a text query and a gallery ofL images, an
existing model can compute similarity scores and produce a similarity vector s̃ ∈ RL×1. By sorting
the values of s̃ in descending order, the model ranks the images and identifies the top-k candidates,
denoted as s̃k ∈ Rk×1. For the text query and the top-k retrieved images, we then compute an
additional similarity vector sk ∈ Rk×1 using MASK in an unpaired image-text matching setting.
Finally, the two similarity vectors are combined using a balancing factor α:

ŝk = ZS(s̃k) + α · ZS(sk), (15)

where ZS represents the Z-Score normalization and ŝk is the new similarity vector that can be used
to re-rank the top-k images to improve the rank of matched images.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We test the performance of MASK on two standard datasets: Flickr30k and MSCOCO. The com-
monly used evaluation criterions are “R@1”, “R@5” and “R@10”, i.e., recall rates at the top-1, 5
and 10 results. Following existing works Ge et al. (2024), we use an additional criterion of “Rs” by
summing all the recall rates to evaluate the overall performance. Experimental details are provided
in the Appendix I.2.

4.2 UNPAIRED IMAGE-TEXT MATCHING

We design several experiments comparing state-of-the-art model-based matching methods (e.g.,
CHAN Pan et al. (2023), DSRLN Wu et al. (2024), CORA Pham et al. (2024), BOOM Li et al.
(2024a), and 3SHNet Ge et al. (2024)) and knowledge-based matching methods (e.g., MACK
Huang et al. (2022) and MACKV G−M Huang et al. (2024b)) to verify the effectiveness for un-
paired image-text matching. We compare the performance of unpaired image-text matching in Ta-
ble 1. Model-based matching and knowledge-based matching exhibit comparable performance on
the Flickr30k dataset, whereas their performance diverges significantly on the MSCOCO dataset.
Compared to Flickr30k, MSCOCO exhibits greater sample diversity, with images typically contain-
ing multiple target objects and semantic regions, resulting in more complex visual structures. The
knowledge-based matching constructs explicit multimodal-aligned knowledge as a bridge between
regions and words, facilitating more accurate modeling of local visual-semantic relationships in
complex visual scenes.

Table 1: Performance comparison between model-based matching and knowledge-based matching
on the Flickr30k and MSCOCO datasets for the unpaired image-text matching.

Method
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

model-based
matching

CHAN2023 2.2 10.4 16.9 1.5 7.8 24.5 63.3 2.1 9.1 15.7 3.5 11.9 22.5 64.8
DSRLN2024 4.3 14.1 22.1 7.0 21.9 37.8 107.2 4.4 14.6 21.7 5.5 20.0 39.0 105.2
CORA2024 3.6 12.0 22.9 8.3 22.7 33.9 103.4 5.5 18.7 32.5 12.4 29.3 45.2 143.6
BOOM2024 3.9 12.6 23.8 8.3 22.6 35.2 106.4 5.8 19.2 32.6 12.9 29.8 45.4 145.7
3SHNet2024 3.8 12.2 23.1 8.1 22.0 34.3 103.5 6.0 19.7 33.4 13.2 29.6 47.8 149.7

knowledge-based
matching

MACK2022 3.0 9.9 15.4 10.1 24.6 32.3 95.3 7.2 25.9 40.6 21.8 46.2 60.0 201.7
MACKV G−M

2024 3.8 11.3 17.4 10.4 26.8 35.1 104.8 7.2 25.2 41.4 21.9 46.6 62.9 205.2
MASK 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5

-w/o region
prototypes

MACK2022 1.6 5.3 8.8 5.3 16.4 22.7 60.1 4.6 17.0 28.2 13.3 31.7 44.2 139.0
MACKV G−M

2024 1.7 7.0 10.9 5.3 16.2 23.4 64.5 4.6 16.9 29.6 13.3 31.4 45.3 141.1
MASK 2.5 9.1 14.5 5.6 17.1 23.9 72.7 5.2 18.9 31.7 13.6 33.5 45.6 148.5

-w/o max-mean
pooling

MACK2022 2.5 9.0 14.3 1.7 5.6 8.6 41.7 6.3 21.4 33.3 3.9 11.6 17.6 94.1
MACKV G−M

2024 2.7 9.4 17.2 1.7 5.9 10.3 47.2 6.7 22.9 36.1 3.8 11.6 19.2 100.3
MASK 4.5 14.1 22.1 2.9 7.7 12.0 63.3 8.0 26.0 40.2 4.8 12.8 20.9 112.7

The region prototypes and max-mean pooling have a significant impact on knowledge-based un-
paired matching methods. However, MASK consistently outperforms existing methods. This is
primarily because the MASK exhibits a strong intra-class cohesion among region representations,
i.e., the variance between any region representation and the prototypical region representation is
relatively small. Consequently, replacing the prototypical region representation with a randomly
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selected region representation has a minimal impact on overall performance. Furthermore, incorpo-
rating semantic relationships between word embeddings reduces the coupling among region repre-
sentations across words. Therefore, substituting max-mean pooling with global mean has a minor
effect on overall performance.

4.3 ZERO-SHOT IMAGE-TEXT MATCHING

To evaluate the effectiveness of the MASK in complementing with pre-trained models for zero-shot
image-text matching, we compare several state-of-the-art re-ranking strategies, including MACK
Huang et al. (2022), LeaPRR Qu et al. (2023), MACKV G−M Huang et al. (2024b) and FR
Wei et al. (2025). The original and re-ranked performance are compared in Table 2. We can see that
although the original accuracies are already high, further improvements can be achieved by applying
re-ranking strategies to these pre-trained models. Among them, MASK yields more substantial
performance gains. This can be attributed to the high cohesion and low coupling of the region
representations, which ensure that each region representation remains closest to its corresponding
prototypical region representation while maintaining substantial spatial separation from those of
non-corresponding terms. Consequently, MASK reduces the risk of region representations being
misclassified in zero-shot image-text matching. These evidences demonstrate that the MASK can
be well combined with existing models to further improve their performance.

Table 2: Zero-shot image-text matching by re-ranking two state-of-the-art models on the Flickr30k
and MSCOCO datasets.

Method
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 65.4 87.2 91.7 85.4 97.1 98.7 525.5 35.3 60.0 70.1 55.2 78.7 86.7 386.0
CLIP +MACK2022 66.8 88.2 92.6 86.2 97.2 98.9 529.9 36.9 61.6 71.7 55.7 79.6 87.1 392.6
CLIP + LeaPRR2023 65.9 87.9 92.8 86.2 97.3 98.1 528.2 36.2 61.9 70.8 55.9 80.2 85.4 390.4
CLIP +MACKV G−M

2024 66.9 88.4 92.8 87.6 96.9 99.0 531.6 37.2 62.0 71.8 56.3 80.0 87.1 394.4
CLIP + FR2025 66.4 88.4 93.1 86.8 97.3 99.1 531.1 36.7 62.1 72.4 56.2 80.3 87.8 395.5
CLIP + MASK 67.3 88.7 93.9 87.9 97.6 98.9 534.3 37.6 62.7 73.9 56.7 80.8 88.7 400.4
ALBEF 59.9 84.8 90.5 78.2 95.5 97.9 506.9 40.2 68.4 78.9 62.4 85.9 92.1 428.3
ALBEF +MACK2022 61.8 85.8 91.3 80.1 96.4 97.7 513.1 41.0 69.0 79.4 62.4 86.1 92.7 430.9
ALBEF + LeaPRR2023 61.4 85.9 91.6 79.3 96.2 97.5 511.9 40.7 69.1 79.6 62.8 86.4 91.8 430.4
ALBEF +MACKV G−M

2024 61.8 86.1 91.6 80.5 95.5 97.9 513.4 41.6 69.5 79.7 63.0 86.0 92.4 432.2
ALBEF + FR2025 61.7 86.4 91.8 80.8 96.2 97.6 514.5 41.9 69.8 80.1 62.8 86.3 92.1 433.0
ALBEF + MASK 63.1 86.6 92.0 81.6 96.9 97.9 518.1 42.1 70.5 80.8 63.6 86.9 92.3 436.2

4.4 KNOWLEDGE VISUALIZATION

To qualitatively illustrate major differences between MACK and MASK, we visualize two low-
dimensional word distributions in Figure 3. The words in the four numbered groups (marked by
dashed lines in different colors) are about animals, transports, faces and humans, respectively. In
the left distribution corresponding to MACK, there are still some related words that have remote
distances. In contrast, the right distribution generated by MASK is semantically more compact. The
underlying mechanism is that semantic relationships between word embeddings are incorporated
during model training, ensuring that the corresponding prototypical region representations also ex-
hibit semantic associations. These evidences indicate that the MASK can make their prototypical
region representations more discriminative.

4.5 OOD WORDS ANALYSIS AND LOSS ABLATION ANALYSIS

To evaluate the impact of OOD words on image-text matching accuracy, we conduct a compara-
tive experiment in Table 3. We observe that image-text matching accuracy significantly improves
in both image retrieval and image annotation tasks when OOD words are incorporated, and this
improvement is consistently validated across different datasets. Therefore, leveraging the semantic
relationships between OOD words and known words to construct corresponding prototypical region
representations for OOD words is an effective approach. This phenomenon can be attributed to the
relation-preserving equivariant mapping, as shown in Eq (8). As a result, region representations
inherit the semantic structure encoded in the word embeddings, allowing the relationships between
regions to reflect semantic distances and similarities, thereby enhancing the generalization ability of
the matching process.
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(a) MACK (b) MASK

Figure 3: Visualization of prototypical region representations from MACK and MASK. Each word
indicates its corresponding prototypical region representation embedded by t-SNE. In the two word
distributions, we group semantically related words by using same-colored dashed lines.

Table 3: Ablation of the overall loss and the impact of OOD words on unpaired image-text matching.

Method
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MASK 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
MASKw/o OODwords 4.5 13.6 20.5 11.8 28.5 37.3 116.2 7.2 24.5 38.2 22.2 44.6 56.4 193.1
MASK 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
MASKw/o Lcm

3.1 10.5 15.2 10.2 26.6 35.4 101.0 5.2 16.5 24.9 17.2 37.6 49.4 150.8
MASKw/o Lcl

2.6 8.3 13.7 9.1 23.9 34.8 92.4 4.5 13.6 20.9 13.3 31.0 40.2 123.5

To testify the contribution of each component of loss L to overall performance, we compare the
performance of various losses in Table 3. It can be observed that the performance of the overall loss
function L deteriorates when certain components are omitted. Among them, the prototype consis-
tency contrastive learning lossLcl makes the largest contribution to the performance. It is reasonable
since the lossLcl constrains all region representations related the same word to be close to each other
during model training. Additionally, the semantic relationships between word embeddings in loss
Lcm serve only as a reference for determining the degree of separation between region representa-
tions. Therefore, the loss Lcl can make the prototypical region representations more discriminative,
which obviously affects the accuracy of matching.

4.6 HYPERPARAMETER ANALYSIS

The proposed MASK involves two trade-off parameters λ1 and λ2 in Eq.(14). To evaluate the impact
of different hyperparameters on matching accuracy, we design three controlled experiments in Table
4. The results indicate that MASK achieves the best performance in unpaired image-text matching
at λ1 = λ2. Compared to λ1

λ2
= 3.0 (i.e., λ1 > λ2), the λ1

λ2
= 0.3 achieves better performance, with

improvements of approximately 3.5% and 10.3% in Rs on Flickr30k and MSCOCO, respectively.
These findings suggest that the cross-modal alignment loss and prototype consistency contrastive
loss are complementary, each contributing distinct yet essential benefits to the overall performance.
By jointly optimizing these two losses in a balanced manner, we mitigate the risk of overfitting to a
single loss term, thereby improving the model’s generalization capability.

Table 4: Unpaired image-text matching by MASK using different λ1/λ2 on the Flickr30k and
MSCOCO datasets.

λ1

λ2

Flickr30k dataset MSCOCO dataset
Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0.3 4.2 13.0 19.2 11.6 27.9 36.8 112.7 6.8 22.9 35.5 20.9 43.2 55.8 185.1
1.0 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
3.0 3.9 12.2 18.0 11.2 27.5 36.4 109.2 6.3 21.0 32.3 19.8 41.5 53.9 174.8
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4.7 ANALYSIS OF SAMPLING SIZE

The sampling size m for selecting paired multimodal representations critically affects the semantic
quality of the constructed prototypes. To evaluate the impact of different sampling sizes on matching
accuracy, we perform the experiment of unpaired image-text matching by MASK using different
sampling sizes m on the Flickr30k and MSCOCO datasets in Table 5. Experimental results show
that the matching accuracy follows a rise–then–fall trend as the sampling size m increases, achieving
its optimum around m = 50. This phenomenon can be explained as follows. When the sampling
size is too small, the constructed visual prototype relies excessively on only a few nearest neighbors.
Although this preserves strong local semantic characteristics, it also makes the prototype highly
sensitive to noise and outliers in the word embedding space. As the sampling size increases to a
moderate level, more semantically relevant neighbors contribute their visual information, thereby
enhancing robustness and discriminability. However, when the sampling size becomes too large,
semantically weak or marginal neighbors begin to dominate. Their less relevant visual cues dilute
the contributions of the core semantic neighbors, ultimately reducing matching accuracy.

Table 5: Unpaired image-text matching by MASK using different sampling sizes m on the Flickr30k
and MSCOCO datasets.

m
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

1 4.6 13.9 20.9 11.9 28.9 37.7 117.9 7.3 25.1 39.1 22.3 45.6 57.9 197.3
10 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
50 5.0 15.8 23.2 12.3 31.4 40.4 128.1 7.9 28.5 44.7 23.1 51.6 66.8 222.6
100 4.9 15.3 22.6 12.2 30.7 39.7 125.4 7.7 27.6 43.3 22.9 50.0 64.5 216.0

4.8 RE-RANKING ANALYSIS

An important balancing factor α, is introduced for re-ranking the existing models in Eq.(15). To
investigate the impact of α on final performance, we conduct zero-shot image-text matching experi-
ments using MASK (CLIP) in Table 6. The results show that the best performance on both datasets
is obtained at α = 0.15. When α is relatively small, the re-ranking method yields limited improve-
ments, as matching performance is largely dominated by the pre-trained CLIP model. In contrast,
as α increases, the influence of the MASK on matching performance becomes more pronounced.
Since the knowledge is not learned from domain-specific paired image-text data, potential distribu-
tional discrepancies may arise, which can adversely affect the overall performance. Therefore, an
appropriate value of α must be carefully chosen to achieve an optimal balance between semantic
alignment capability and generalization performance.

Table 6: Zero-shot image-text matching by MASK (CLIP) using different α on the Flickr30k and
MSCOCO datasets.

α
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0 65.4 87.2 91.7 85.4 97.1 98.7 525.5 35.3 60.0 70.1 55.2 78.7 86.7 386.0
0.1 67.1 88.7 93.7 87.2 97.3 99.1 533.1 37.1 62.3 73.6 56.3 80.3 88.6 398.2
0.15 67.3 88.7 93.9 87.9 97.6 98.9 534.3 37.6 62.7 73.9 56.7 80.8 88.7 400.4
0.2 66.9 88.5 93.6 86.4 97.1 99.0 531.5 36.9 62.2 73.4 55.6 80.5 88.3 396.9

5 CONCLUSION

This work has studied a practically important but seldom investigated problem as unpaired image-
text matching. To deal with this problem, we propose multimodal aligned semantic knowledge,
which leverages word embeddings as bridges to associate words with prototypes, capturing semantic
relationships between words, and further utilizing information from OOD words. Additionally, the
introduction of prototype consistency contrastive loss effectively mitigates the impact of variance in
unpaired matching. Code is available at https://github.com/AndroidDevelopersTools/MASK.
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A TABLE OF NOTATION

We list the notation used in this paper in Table 7, for the convenience of reference.

Table 7: Notation used in the paper.

Symbol Description
wk Word embedding directly from pre-trained word vectors
vk Learnable prototypical region representation (prototype) of k-th semantic concept
rj Raw region representation from pre-trained object detection model Faster-RCNN
µj The mean of the latent space corresponds to the region representation
σj The variance of the latent space
z Random vector sampled from Gaussian distribution
R {rn}n=1,...,B (R ∈ RB×M )
µ+ Region representation associated with the prototypical region representations vk
V {wk}k=1,...,B (V ∈ RB×N )
ds Distance metrics, e.g., cosine similarity
U {vj}j=1,...,J (U ∈ RJ×Z)
ρ(·) Max-mean pooling
wout Word embedding wout corresponding to OOD word
sq Similarity score
vout Prototypical region representation vout corresponding to word embedding wout
s̃k Top-k similarity vector from existing multimodal model
sk Top-k similarity vector from MASK

B PROOF: EQ. 8 FACILITATES THE CONSTRUCTION OF CORRESPONDING
PROTOTYPES FOR OOD WORDS.

Given a paired multimodal knowledge {(wk, vk)}k=1,...,K , where wk ∈ RN and vk ∈ RM are
the word embedding and prototypical region representation of the k-th semantic concept, respec-
tively, and K is the total number of semantic concepts. We sample from the multimodal knowledge
{(wk, vk)}k=1,...,K to obtain a subset {(wk, vk)}k=1,...,K̂ . Our objective is to utilize the known
word embedding wout and {(wk, vk)}k=1,...,K̂ to construct vout such that the following equation is
satisfied:

ds(f(vk), f(vout)) ∝ ds(vk, vout), k ∈ {1, . . . , K̂}, (16)

and f(vout) ≈ wout. (17)

We first rewrite Eq. 16 into an equidistant form. Then, there exists a β > 0 such that:

ds(f(vk), f(vout)) = β ds(vk, vout). (18)

Define the scaled mapping F := 1
β f . For any k, out:

ds(F (vk), F (vout)) = ds(vk, vout). (19)

That is, F precisely preserves the euclidean distance among these prototypes. An isometric map-
ping in euclidean space exhibits a well-defined structural property, which is a fundamental result in
classical geometry and functional analysis. Specifically, any distance-preserving mapping defined
on the euclidean space must be a rigid transformation Iovino (2021). In other words, there exists an
orthogonal matrix A that represents a rotation or reflection, and a translation vector t, such that the
mapping can be expressed as:

F (vk) = Avk + t. (20)

Therefore, the f can be expressed as:

f(vk) = βAvk + βt. (21)
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Since A is an orthogonal matrix, its inverse A−1 must exist and is equal to its transpose A>. There-
fore, we can derive:

vk = A>(F (vk)− t) = A>(
1

β
f(vk)− t). (22)

For any given wk in the knowledge, according to Eq. 17, we have:

vk = A>(
1

β
wk − t). (23)

Therefore, we only need to determine the values of A, t, and β to obtain the visual prototype vector
vout corresponding to the OOD words wout. Extending Eq. 20 to the general case where A is no
longer a strictly orthogonal matrix, we obtain the following equation using the column orthogonality
condition:

||Avk −Avout||2 = ||vk − vout||2 ⇔ A>A = Imin{M,N}, (24)

Here, there exists an A> such that Eq. 23 holds. We do not need to know the values of A, t, and β
a priori, as they can be uniquely determined from the paired knowledge {(wk, vk)}k=1,...,K using
standard similarity Procrustes decomposition. First, we construct matrix W1 = [v1, . . . , vK ] and
matrix W2 = [w1, . . . , wK ]. Next, we compute the centroids of each set:

v̄ =
1

K

K∑
k=1

vk ∈ RM , w̄ =
1

K

K∑
k=1

wk ∈ RN . (25)

We centralize the knowledge using the computed centroids v̄ and w̄:

W̃1 = [v1 − v̄, . . . , vK − v̄] ∈ RM×K , W̃2 = [w1 − w̄, . . . , wK − w̄] ∈ RN×K . (26)

From here, we can separate out t, and subsequently only need to consider the linear transformation
and scaling. Next, we construct the covariance matrix C:

C = W̃1 W̃2
> ∈ RM×N . (27)

Let M > N . And then, we utilize SVD decomposition to obtain the values of A, t, and β:

C = UΣV >, U ∈ RM×M ,Σ ∈ RM×N , V > ∈ RN×N , (28)

A = U

[
IN

0(M−N)×N

]
V >, A ∈ RM×N , (29)

β =
trace(AW̃2W̃1

>
)

trace(W̃2W̃1
>

)
, (30)

t = w̄ − βAv̄, t ∈ RM . (31)
Finally, we substitute the values of A, t, and β into Eq. 23 to obtain the prototype vector vout
corresponding to the word embedding wout.

C PROOF: THE COSINE SIMILARITY IN EQ. 9 IS A REASONABLE DISTANCE
METRIC ds.

Euclidean space possesses strict linear structure preservation properties. It is the only metric sat-
isfying translation and rotation invariance, and is naturally compatible with linear mappings. This
allows the structural alignment problem between visual and linguistic spaces to be transformed into
a standard orthogonal Procrustes problem. Therefore, we can equate Eq. 19 with Eq. 20 in euclidean
space.

Cosine similarity and euclidean distance are not inherently equivalent. However, after vector nor-
malization, there exists a strict monotonic mapping between cosine similarity and euclidean dis-
tance. This implies that, cosine similarity can be regarded as a form of ”Euclidean-like distance,”
thereby satisfying the prerequisites for similarity transformations. Let two vectors wk and w′k, their
cosine similarity is defined as:

cos(wk, w
′
k) =

wk · w′k
||wk|| ||w′k||

. (32)
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where || · || denotes the L1-norm. The euclidean distance is defined as:

dE(wk, w
′
k) = ||wk − w′k||. (33)

We normalize each vector such that ||wk||=||w′k||=1, yielding:

dE(wk, w
′
k)2 = ||wk − w′k||2 = ||wk||2 + ||w′k||2 − 2 · wkw′k = 2− 2cos(wk, w

′
k). (34)

cos(wk, w
′
k) = 1− 1

2
dE(wk, w

′
k)2. (35)

Combining Eq. 34 and Eq. 35, it can be concluded that after normalization, a one-to-one monotonic
functional relationship exists between cosine similarity and euclidean distance.

Lcm = E [(1−cos( wi
‖wi‖2

,
w′i
‖w′i‖2

))]︸ ︷︷ ︸
word−alignment

+E [((cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

)))2]︸ ︷︷ ︸
structure−preserving

. (36)

The loss Lcm comprises two components: the first item enforces alignment between predicted and
pre-trained word embeddings, while the second ensures that region representations capture the struc-
tural relationships among words.

∂(1− cos( wi

‖wi‖2
,

w′
i

‖w′
i‖2

))

∂
w′

i

‖w′
i‖2

=
(w′i
>
wi)w

′
i

‖w′i‖
2
2 ‖wi‖2

− wi
‖wi‖2

. (37)

∂(1− cos( wi

‖wi‖2
,

w′
i

‖w′
i‖2

))

∂
w′

i

‖w′
i‖2

= 0 =⇒ wi = w′i. (38)

∂([(cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)− cos( µi

‖µi‖2
,

µj

‖µj‖2
))2])

∂
w′

i

‖w′
i‖2

= 2(cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

))

∂(cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

))

∂
w′

i

‖w′
i‖2

.

(39)

∂(cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

))

∂
w′

i

‖w′
i‖2

=
w′j∥∥w′j∥∥2

−
(w′i · w′j)w′i
‖w′i‖

2
2

∥∥w′j∥∥2

. (40)

∂([(cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)− cos( µi

‖µi‖2
,

µj

‖µj‖2
))2])

∂
w′

i

‖w′
i‖2

= 0

=⇒ cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

) = cos(
µ′i
‖µ′i‖2

,
µ′j∥∥µ′j∥∥2

).

(41)

D PROOF: THE OBJECTIVE EXISTENCE OF THE ISOMETRIC HYPOTHESIS.

Proof: For any finite set of region representations {µi}ni=1, there necessarily exists a mapping f in
an appropriate Euclidean space such that:

ds(f(µi; Θf ), f(µj ; Θf )) ∝ ds(µi, µj). (42)
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Given n non-zero vectors µ1, . . . , µn ∈ RZ , normalize them to obtain:

µ̂i :=
µi
‖µi‖2

, i = 1, . . . , n. (43)

We aim to construct a set of vectors {yi}ni=1 in a Euclidean space as f(µi), and demonstrate that
cos(yi, yj) = cos(µi, µj) can be achieved. Next, we organize the pairwise similarities into a matrix,
facilitating the use of spectral decomposition to construct vectors that satisfy the given inner product
relationships. We define the n× n Gram matrix G as follows:

Gij := cos(µ̂i, µ̂j) = µ̂>i µ̂j . (44)

HereG is a real symmetric positive semi-definite (PSD) matrix, so for any vector z ∈ Rn, it satisfies:

z>Gz = ‖
∑
i ziµ̂i‖

2
2
≥ 0, (45)

where the Gii = 1. According to the properties of real symmetric PSD matrix, there exist an
orthogonal matrix U ∈ Rn×n and a diagonal matrix Λ = diag(λ1, . . . λn)(λk ≥ 0) such that:

G = UΛU>, (46)

where r = rank(G) ≤ n. Take the non-zero eigenvalue part of Λ as Λr ∈ Rr×r, and take the first
r columns of the corresponding eigenvectors to obtain Ur ∈ Rn×r:

G = UrΛrU>r , (47)

Y := UrΛ1/2
r ∈ Rn×r, (48)

where we write Y in row-vector form, and denote its i-th row as y>i (yi ∈ Rr):

(Y Y >)ij = y>i yj = (UrΛ1/2
r )(UrΛ1/2

r )>ij = UrΛrU>r ij = Gij . (49)

Therefore, we have constructed n vectors y1, . . . , yn ∈ Rr that satisfy the inner-product relation
y>i yj = Gij :

‖yi‖22 = y>i yi = Gii = 1, (50)

cos(yi, yj) =
y>i yj

‖yi‖ ‖yj‖
=
Gij
1 · 1

= cos(µ̂i, µ̂j), (51)

cos(yi, yj) = cos(µ̂i, µ̂j) = cos(µi, µj). (52)
By setting f(µi) := yi (i = 1, . . . , n), we obtain:

cos(f(µi), f(µj)) = cos(µi, µj) ∀ i, j, (53)

ds(f(µi; Θf ), f(µj ; Θf )) ∝ ds(µi, µj). (54)

E PROOF: Lcm (EQ. (9)) ENCOURAGES f TO APPROACH THE ISOMETRY
ASSUMPTION (EQ. (8)).

Given the pre-trained word embeddings wi and the predicted word embeddings w′i = f(µi; Θf ), we
normalize them to obtain:

ŵ′i :=
w′i
‖w′i‖

, ŵi :=
wi
‖wi‖

. (55)

Similarly, we normalize the region representations to obtain µ̂i := µi

‖µi‖ . Lcm consists of Lword and
Lstruct (Appendix F). For a given batch size B, there exist constants εw > 0 and εs > 0 such that,
when Lword ≤ εw and Lstruct ≤ εs, the following inequality holds:∣∣cos(ŵ′i, ŵ′j)− cos(µi, µj)∣∣ ≤ 4

√
2εw +

√
εs
M
, (56)

where M denotes the number of ordered pairs (i 6= j), and i, j ∈ B. When εw → 0 and εs → 0,
cos(ŵ′i, ŵ

′
j)−cos(µi, µj) admits an upper bound arbitrarily close to 0, meaning that the cosine sim-

ilarity between the mapped vector pairs approaches that in the original µ-space, thereby achieving
ds(f(µi; Θf ), f(µj ; Θf )) ∝ ds(µi, µj).
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We first convert the point-wise cosine error into the Euclidean difference between vectors. Accord-
ing to Appendix C, we have:

‖ŵ′i − ŵi‖
2
2 = 2(1− cos(ŵ′i, ŵi)). (57)

For each case where i ∈ B, let δi := 1− cos(ŵ′i, ŵi) ≥ 0. Then:

‖ŵ′i − ŵi‖2 =
√

2δi, (58)

∑
i∈B

δi = Lword ≤ εw, (59)

δi ≤ εw ⇒ ‖ŵ′i − ŵi‖2 ≤
√

2εw. (60)

To quantify how point-wise alignment errors influence the pairwise cosine discrepancies, we char-
acterize the variation of individual entries in the cosine similarity matrix using the norm difference.
Then: ∣∣cos(ŵ′i, ŵ′j)− cos(ŵi, ŵj)∣∣ =

∣∣ŵ′i · ŵ′j − ŵi · ŵj∣∣ , (61)∣∣ŵ′i · ŵ′j − ŵi · ŵj∣∣
=
∣∣(ŵ′i − ŵi) · ŵ′j + ŵi · (ŵ′j − ŵj)

∣∣
≤ ‖ŵ′i − ŵi‖2 ·

∥∥ŵ′j∥∥2
+ ‖ŵi‖2 ·

∥∥ŵ′j − ŵj∥∥2

≤ ‖ŵ′i − ŵi‖2 +
∥∥ŵ′j − ŵj∥∥2

(62)

∣∣ŵ′i · ŵ′j − ŵi · ŵj∣∣ ≤ √2εw +
√

2εw = 2
√

2εw. (63)

To quantify the influence of the structural loss Lstruct on the reconstruction error, we convert the
structural loss into an upper bound on the per-pair error. Let the per-pair error be defined as eij :=
cos(ŵ′i, ŵ

′
j)− cos(µi, µj). Then we obtain:

∑
i 6=j

e2
ij = Lstruct ≤ εs, (64)

max
i 6=j
|eij | ≤

√∑
i6=j

e2
ij ≤

√
εs. (65)

If we distribute εs uniformly across all pairs, then the absolute error of each pair is bounded above
by εs/M . Then:∣∣cos(ŵ′i, ŵ′j)− cos(µi, µj)∣∣

=
∣∣cos(ŵ′i, ŵ′j)− cos(ŵi, ŵj) + cos(ŵi, ŵj)− cos(µi, µj)

∣∣
≤
∣∣cos(ŵ′i, ŵ′j)− cos(ŵi, ŵj)∣∣+ |cos(ŵi, ŵj)− cos(µi, µj)|

≤ 2
√

2εw +
∣∣cos(ŵi, ŵj)− cos(ŵ′i, ŵ′j) + cos(ŵ′i, ŵ

′
j)− cos(µi, µj)

∣∣
≤ 4
√

2εw +

√
εs
M

(66)

Therefore, by enforcing εw → 0 and εs → 0 during training, we obtain the following expression:∣∣cos(ŵ′i, ŵ′j)− cos(µi, µj)∣∣→ 0. (67)

ds(f(µi; Θf ), f(µj ; Θf )) ∝ ds(µi, µj). (68)
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F PROOF: THE w′ IN EQ. (9) CANNOT BE REPLACED BY w.

The w′ in Eq. (9) cannot be replaced by w. Doing so would remove the “structure-preservation”
supervision imposed on the MTM model f , as the second term in Eq. (9) would no longer con-
tribute a meaningful loss for training f . The loss function recommended in the article for preserving
structure (the second term of Eq.(9)) is defined as LAstruct:

LAstruct = E[(cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

))2]. (69)

The loss function obtained after replacing w′ with w in LAstruct is defined as LBstruct:

LBstruct = E[(cos(
wi
‖wi‖2

,
wj
‖wj‖2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

))2]. (70)

Next, we compare the constraint capabilities of LAstruct and LBstruct on the MTM model f (with
parameters Θf ).

F.1 FROM THE PERSPECTIVE OF THE GRADIENT OF THE LOSS FUNCTION

For the loss function LAstruct, we apply the chain rule to Θf as follows:

∂LAstruct
∂Θf

= 2E(cos(
w′i
‖w′i‖2

,
w′j∥∥w′j∥∥2

)− cos( µi
‖µi‖2

,
µj
‖µj‖2

)) ·
∂ cos(

w′
i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)

∂Θf
. (71)

∂ cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)

∂Θf
=

∂ cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)

∂w′i
· ∂w

′
i

∂Θ
+

∂ cos(
w′

i

‖w′
i‖2

,
w′

j

‖w′
j‖2

)

∂w′j
·
∂w′j
∂Θ

. (72)

As long as the parameters of f influence w′i (i.e., ∂w
′
i

∂Θ 6= 0), the above equation generally does not
vanish. Consequently, LAstruct produces a nonzero gradient that drives the update of Θf , forcing

the mapping f to bring cos( w′
i

‖w′
i‖2

,
w′

j

‖w′
j‖2

) closer to cos( µi

‖µi‖2
,

µj

‖µj‖2
). Therefore, LAstruct directly

imposes constraints on the MTM model f .

Moreover, the cos( wi

‖wi‖2
,

wj

‖wj‖2
) in LBstruct is a constant. We apply the chain rule to Θf as follows:

LBstruct = E[(cos(
wi
‖wi‖2

,
wj
‖wj‖2

)︸ ︷︷ ︸
constant

−cos( µi
‖µi‖2

,
µj
‖µj‖2

))2]. (73)

∂ LBstruct
∂Θf

= 0. (74)

LBstruct provides no constraints or gradient information on f , and therefore cannot compel the map-
ping f to preserve input similarity in any manner. Although µ is affected, this influence does not
propagate to Θf , making it impossible to fulfill the objective of structural preservation.

F.2 FROM THE PERSPECTIVE OF THE JOINT OPTIMIZATION OBJECTIVE

The loss function recommended in the article for word alignment (the first term of Eq.(9)) is defined
as Lword:

Lword = E[(1− cos( wi
‖wi‖2

,
w′i
‖w′i‖2

))]. (75)

Next, we compared the differences between the two loss functions when jointly optimized with
Lword. The joint loss function for Lword and LAstruct is expressed as follows:

LAcm = Lword + LAstruct. (76)

Both loss terms involve Θf (through w′i) and therefore jointly constrain the mapping. Specifically,
Lword pulls each single-point mappingw′i toward its correspondingwi, whileLAstruct enforces that f
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preserve the pairwise similarity structure among samples, consistent with the semantic relationships
in the µ-space (prototype). The joint effect of these two losses ensures that the learned mapping f
achieves both accurate pointwise alignment and global structural preservation.

The joint loss function for Lword and LBstruct is expressed as follows:

LBcm = Lword + LBstruct. (77)

It is worth noting that LBstruct does not impose any constraints on the model f . Consequently,
Lword is the only term that directly supervises f , and minimizing it merely pulls w′i toward its
corresponding wi. In contrast, LBstruct adjusts the µ-space (governed by the parameters of the PAE
model) to make cos( µi

‖µi‖2
,

µj

‖µj‖2
) approach cos( wi

‖wi‖2
,

wj

‖wj‖2
), but it provides no mechanism to

enforce structural preservation in the mapping produced by f .

G PROOF: THE PROTOTYPE CONSISTENCY CONTRASTIVE LEARNING LOSS
Lcl ENHANCES THE DISCRIMINABILITY OF REGION REPRESENTATIONS.

The prototype consistency contrastive learning loss enhances the discriminability of region represen-
tations by reducing intra-word variance and increasing inter-word separation. Intra-word variance
σ2
k and inter-word separation Dk,k′ can be defined as follows:

σ2
k =

1

Jk

Jk∑
j=1

||µj − vk||2, (78)

Dk,k′ := ||vk − vk′ ||2. (79)

For any µj :

||µj − vk||2 = ||µj − µ̄+ µ̄− vk||2 = ||µj − µ̄||2 + ||µ̄− vk||2 + 2 〈µj − µ̄, µ̄− vk〉 , (80)

σ2
k ≈

1

Jk

Jk∑
j=1

||µj − µ̄||2 + ||µ̄− vk||2, (81)

where µ̄ serves as the temporary mean for a given batch. The intra-word variance can be decomposed
into the within-batch intra-word variance and the deviation between the batch-specific word centers
and the prototypes. The loss Lcl is updated along the gradient direction:

µj ←− µj − η(µj − vk). (82)

µj(t+ 1) = (1− η) µj(t) + ηvk. (83)

σ2
k(t+ 1) = (1− η)2σ2

k(t). (84)

As iterations progress, σ2
k gradually approaches zero, causing samples within the same word to

cluster tightly around their prototypes and thereby enhancing the discriminability of the region rep-
resentations. The loss Lcl is updated by moving along the gradient direction while simultaneously
being repelled away from other prototypes:

µj ←− µj + η
∑
k 6=k′

(µj − vk′). (85)

v′k =
1

Jk

Jk∑
j=1

µj(t+ 1) = vk + η
∑
k 6=k′

(vk − vk′). (86)

Dk,k′(t+ 1) = ||v′k − v′k′ ||2 = ||vk − vk′ + η(
∑
k 6=k̂

(vk − vk̂)−
∑
k′ 6=k̂

(vk′ − vk̂)||2 (87)

At convergence, each prototype is positioned as far as possible from all others, resulting in distinct
separation between different prototypes and further enhancing the discriminability of the region
representations.
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H FINE-TUNED DOMAIN KNOWLEDGE

To better adapt the multimodal aligned semantic knowledge to specific datasets, we can further fine-
tune the prototypical region representations to obtain domain-specific knowledge. This fine-tuning
step is optional and depends on the availability of unpaired data in the target dataset. Notably,
the multimodal aligned semantic knowledge alone can also be applied directly and achieves strong
performance. Given that annotating paired image-text data is costly, while unpaired images and
texts are typically more accessible, we adopt a bidirectional region-word cycle-consistent learning
approach in an unpaired learning setting.

In particular, given a batch of unpaired images and texts, we first obtain a set of raw region rep-
resentations R = {rn}n=1,...,I(R ∈ RI×M ) using the pre-trained Faster-RCNN above and a set
of parsed words through tokenization operation implemented via NLTK. Then, we use the knowl-
edge as a cross-modal bridge to represent all the words into the corresponding prototypical region
representations u = {vj}j=1,...,J (u ∈ RJ×Z). For the set of regions R, we extract region repre-
sentations µ ∈ RI×Z by utilizing the PAE model h.

We utilize a bidirectional region-word cycle-consistent loss to learn a parametric transformation
matrix W ∈ RZ×Z 3. This loss incorporates two cross-modal similarity measurement processes:
region-to-word (R2W) and word-to-region (W2R). In the R2W process, similarities between each
word and all regions are first computed, and these similarities are then used as weights to aggregate
all regions into a reconstructed word representation. Conversely, in the W2R process, similarities be-
tween each region and all words are computed to reconstruct regions from the word representations.
The corresponding formulations are

S = uW (µW )>, (88)

û = softmax(S) µW, µ̂ = softmax(S>) uW, (89)
where S ∈ RJ×I is the similarity matrix between transformed word and region representations, û ∈
RJ×Z contains the reconstructed word representations from region representations, and µ̂ ∈ RI×Z
contains the reconstructed region representations from word representations.

Each original word (or region) representation is then compared with its reconstructed counterpart to
determine whether they correspond to the same entity. By minimizing the cross-entropy between the
predicted and ground-truth labels, we obtain a self-supervised loss, Lss, which is used to optimize
W :

Ŷ R2W = softmax(uWû>)>, ŶW2R = softmax(µWµ̂>)>, (90)

LR2W = −
J∑
j=1

y>j log(ŷj), (91)

LW2R = −
I∑

n=1

y>n log(ŷn), (92)

Lss = LR2W + LW2R, (93)

where Ŷ R2W ∈ RJ×J and ŶW2R ∈ RI×I are two matrices including the predicted labels in R2W
and W2R directions, respectively. In Ŷ R2W and ŶW2R, the j-th and n-th columns are denoted as
ŷj and ŷn, respectively. yj and yn are two groundtruth label vectors, whose the j-th and n-th values
are ones and the rest are zeros. After the cycle consistent learning, we can use the learnable W to
transform all prototypical region representations into the fine-tuned domain knowledge, denoted as
{(wk, v̂k)}k=1,...,K , where v̂k = vkW ∈ RZ .

I EXPERIMENTAL SETTING

I.1 DATASET

The details of experimental datasets and metrics are described as follows.
3We also stack multiple transformation matrices in a nonlinear way, but find it does not necessarily lead to

better performance
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Flickr30k Young et al. (2014) consists of 31,783 images collected from the Flickr website. Each
image has 5 human annotated texts. We use the public training, validation and testing splits, which
contain 29,783, 1,000 and 1,000 images, respectively.

MSCOCO Lin et al. (2014) consists of 123,287 images, each of which is associated with 5 texts.
We use the public training, validation and testing splits, with 113,287, 5,000 and 5,000 images,
respectively.

I.2 IMPLEMENTATION DETAILS

In the multimodal aligned semantic knowledge, we collect all words from the VG dataset and filter
out some special characters and rare words, resulting in a total of K=12,385 semantic concepts. For
each image, we initially employ the pre-trained object detection model Faster-RCNN 4 to extract
raw region representations, setting the number of detected regions to I=36 and the dimensionality
of each region representation to M=2048. For each word, we obtain its word embedding using the
pre-trained word vectors glove-840B-300d 5. The batch size is 4096 for the first 200 epochs and
2048 for the next 200 epochs. The trade-off factors λ1 and λ2 are set to 3. The sampling size m is
set to 10. We use the Adam to optimize the loss with a learning rate of 1e-4.

I.3 PRETRAINED MODELS AND WORD VECTORS

Faster-RCNN is a widely used deep learning model for object detection, tasked with both identify-
ing and localizing objects within an image. Building on earlier approaches such as R-CNN and Fast
R-CNN, it introduces a Region Proposal Network (RPN) that generates object proposals directly
within the model. This integration significantly improves both speed and accuracy, enabling effi-
cient, real-time detection of multiple objects with high precision. We use Detectron2 as the backend
to support comprehensive functions, including training, testing, and feature extraction. Additionally,
we migrate the pre-trained Caffe-based model from the original repository, ensuring that it extracts
visual features consistent with the original model, with deviations of less than 0.01.

GloVe is an unsupervised learning algorithm designed to generate vector representations of words. It
is trained on aggregated global word-word co-occurrence statistics from a corpus, producing embed-
dings that capture meaningful semantic relationships and exhibit interpretable linear substructures
within the word vector space. We obtain word embedding using the pre-trained word vectors glove-
840B-300d. It is a set of pre-trained word embeddings derived from the GloVe model developed by
Stanford University, trained specifically on Common Crawl data. The model is built using approxi-
mately 840B tokens, resulting in a vocabulary of 2.2 million words and producing 300-dimensional
word vectors.

CLIP 6 is a cross-modal pre-trained model proposed by OpenAI, designed to learn a shared semantic
embedding space for images and text. It is trained on large-scale natural image-text pairs, mapping
images and text into the same-dimensional vector space using an image encoder and a text encoder.
Contrastive learning is employed to pull corresponding image-text pairs closer in the embedding
space while pushing non-corresponding pairs farther apart.

ALBEF 7 is a vision–language pre-trained model proposed by Salesforce, designed to enhance
cross-modal semantic representations through an “align before fuse” strategy. Its core idea is to
first align image and text features in a shared space via image–text contrastive learning, and then
fuse them using a multimodal encoder to capture richer cross-modal interactions. Additionally, AL-
BEF incorporates a momentum distillation mechanism, where a continuously updated momentum
model generates pseudo-labels to improve training robustness. The model demonstrates strong per-
formance on tasks such as image–text retrieval, visual question answering, and natural language
visual reasoning, making it a key approach in the vision–language pretraining field.

4https://github.com/MILVLG/bottom-up-attention.pytorch
5https://nlp.stanford.edu/projects/glove/
6https://github.com/openai/CLIP
7https://github.com/salesforce/ALBEF
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I.4 MODEL DETAILS

In this section, we present the architectures of the models involved in the proposed MASK frame-
work, as shown in Table 8. The [B,M, 2048] indicates that a batch contains B images, each image
is divided into M regions, and each region has a feature dimension of 2048. In our experiments, we
set B = 128 and M = 36. It is worth noting that the model architectures are not fixed. In later
sections, we will discuss how model size impacts the accuracy of image-text matching.

Table 8: Overview of the model architectures integrated into the MASK framework.

Model Layer Input Output Params

PAE

FC [B,M, 2048] [B,M, 512] 1.05M
ReLU [B,M, 512] [B,M, 512] 0

Self-Attention [B,M, 512] [B,M, 512] 1.05M
Self-Attention [B,M, 512] [B,M, 512] 1.05M
Self-Attention [B,M, 512] [B,M, 512] 1.05M
Normalization [B,M, 512] [B,M, 512] 1024

FRM

FC [B,M, 512] [B,M, 512] 0.26M
ReLU [B,M, 512] [B,M, 512] 0

Self-Attention [B,M, 512] [B,M, 512] 1.05M
FC [B,M, 512] [B,M, 2048] 1.05M

MTM

FC [B,M, 512] [B,M, 300] 0.15M
ReLU [B,M, 300] [B,M, 300] 0

Self-Attention [B,M, 300] [B,M, 300] 0.37M
Self-Attention [B,M, 300] [B,M, 300] 0.37M

FC [B,M, 300] [B,M, 300] 0.09M
ReLU [B,M, 300] [B,M, 300] 0

Self-Attention [B,M, 300] [B,M, 300] 0.37M
FC [B,M, 300] [B,M, 300] 0.09M

Total 8.1M

J ADDITIONAL EXPERIMENTS

J.1 CROSS-DATASET IMAGE-TEXT MATCHING

Our proposed MASK can also enhance the generalization of conventional image-text matching mod-
els when applied to unseen datasets. Specifically, we try to re-rank conventional image-text matching
models for the task of cross-dataset image-text matching. The experimental setup is as follows: (1)
two representative image-text matching models (i.e., VSRN Radford et al. (2021) and SAEM Wu
et al. (2019)) are trained on a source dataset (e.g., Flickr30k or MSCOCO), (2) these models are
then evaluated on a different target dataset (e.g., MSCOCO or Flickr30k), and (3) using the pro-
posed MASK to re-rank these models on the target dataset. It is important to note that neither the
re-ranking methods nor the base models are trained on the target dataset.

Table 9: Cross-dataset image-text matching by re-ranking existing models on the Flickr30k and
MSCOCO Datasets.

Method
MSCOCO→ Flickr30k Flickr30k→MSCOCO

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

V SRN 42.3 69.3 78.1 53.1 79.5 87.5 409.9 14.0 31.7 42.2 20.4 40.0 50.0 198.4
V SRN +MACK2022 42.6 69.8 78.5 53.3 79.7 87.7 411.7 14.4 32.6 43.1 20.5 40.5 50.2 201.4
V SRN + LeaPRR2023 42.9 69.6 79.8 55.2 79.3 88.1 414.9 16.2 31.9 43.8 20.9 40.2 51.4 204.4
V SRN +MACKV G−M

2024 44.8 71.3 79.5 56.7 81.7 89.0 422.9 16.6 35.8 45.0 23.3 43.3 52.0 215.9
V SRN + FR2025 46.4 73.4 80.1 56.8 83.3 89.1 429.1 16.7 37.1 44.4 24.2 44.5 56.8 223.7
V SRN + MASK 47.3 73.7 83.9 57.9 83.6 89.9 436.3 17.6 38.7 45.9 26.7 44.8 58.7 232.4
SAEM 41.4 70.2 80.0 53.4 80.9 89.6 415.5 14.8 34.0 45.0 23.2 45.4 57.4 219.8
SAEM +MACK2022 41.8 70.7 80.0 54.2 81.2 89.9 417.9 15.4 34.9 45.9 23.6 46.0 57.7 223.4
SAEM + LeaPRR2023 41.4 70.9 81.6 54.3 81.2 90.5 419.7 15.7 34.1 46.9 23.8 46.4 58.8 225.7
SAEM +MACKV G−M

2024 43.4 71.7 80.7 58.8 82.1 90.3 427.0 17.4 37.8 47.4 26.6 49.1 58.7 237.0
SAEM + FR2025 43.7 72.4 81.8 59.6 84.2 90.6 432.3 17.9 39.8 47.1 26.8 51.3 60.2 243.1
SAEM + MASK 45.1 72.6 82.0 61.6 86.9 91.9 440.1 19.1 40.5 47.8 27.6 53.9 62.3 251.2
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In Table 9, the results of two kinds of cross-dataset image-text matching are both presented, which
are explained as follows. MSCOCO→ Flickr30k: training existing models on the MSCOCO dataset
and testing them on the Flickr30k dataset. Flickr30k→MSCOCO: training existing models on the
Flickr30k dataset and testing them on the MSCOCO dataset. We observe that applying MASK to
re-rank the outputs of VSRN and SAEM consistently enhances their generalization performance
on unseen datasets, with substantial relative improvements observed across both sub-tasks. For
example, V SRN +MASK performs much better than V SRN by 5.0% and 4.8% in R@1 on the
MSCOCO→ Flickr30k task, and by 3.6% and 6.3% in R@1 on the Flickr30k→ MSCOCO task.
Compared with V SRN+FR, the relative improvements are also large, i.e., 7.2%∼ 8.7% and 7.8%
∼ 8.1% in Rs when re-ranking VSRN and SAEM, respectively. Comparing the results in Table 9
with those in Table 2, we observe that the relative performance gains are more substantial for VSRN
and SAEM, primarily because CLIP and ALBEF exhibit much higher baseline performance. In
other words, re-ranking yields larger improvements when applied to less accurate models.

J.2 VISUALIZATION OF POSITIVE AND NEGATIVE EXAMPLES FOR IMAGE RETRIEVAL AND
IMAGE ANNOTATION

To better understand the OOD words, we show some representative examples of retrieved images or
texts based on text or image queries by CLIP in Table 10. These examples are selected according to
the following criteria: 1) Positive examples are those in which the ground-truth matched image or
text is not ranked at top-1 by CLIP but is successfully promoted to a higher rank by MASK through
re-ranking, and 2) Negative examples refer to situations where the ground-truth image or text is
initially ranked at top-1 by CLIP but is pushed to a lower position after re-ranking by MASK. In
the positive examples, it seems that the CLIP cannot well understand the semantic concepts such
as “glasses”, “pierced”, and “broken”. For instance, in the top-1 retrieved image for the first text
query, there are no clear clues indicating “pierced” or “glasses”, yet its rank is still higher than
that of the ground-truth one. Similarly, in the top-1 retrieved text for the second image query,
the annotation contains the word “glasses”, even though the image itself does not include such
information. While our MASK especially focuses on understanding these semantic concepts and can
thus increase the corresponding similarity scores between the matched regions and words. However,
MASK may also make incorrect decisions. For example, in the images retrieved for the fourth text
query, MASK reduces the rank of the ground-truth image. This behavior can be attributed to the
presence of adverbs (e.g., “very”, “quite”), adjectives (e.g., “large”, “excited”), and pronouns (e.g.,
“they”, “this”) in the text. Our further analysis indicates that the OOD words negatively affecting
MASK are typically those that cannot correspond to specific visual regions. Attempting to construct
region prototypes for such words introduces substantial semantic noise. Finally, it is important to
note that negative examples contain not only non-visual adjectives, adverbs, and pronouns, but also
some informative OOD words with tense or plural variations. Consequently, the final image-text
matching accuracy is influenced by the combined effects of all these words.

J.3 DIFFERENT DETECTOR COMPARISON

This work derives region representations using the Bottom-Up and Top-Down (BUTD) model, i.e.,
Faster-RCNN, which consists of a Region Proposal Network (RPN) Ren et al. (2015) and a 101-
layer Residual Network (ResNet101) He et al. (2016) pretrained on the VG dataset. Since our
constructed multimodal knowledge is also based on the VG dataset, this pretraining step is crucial
for learning discriminative region representations and achieving strong performance. To validate
this, we experiment with three alternative detectors within the proposed MASK framework. The
first is DETR Carion et al. (2020), a recently popular Transformer-based detector. The second is
DINO Zhang et al. (2023), evaluated in two versions: the original model and a variant pretrained on
the VG dataset in the same manner as BUTD. The third is an enhanced version of BUTD, referred
to as BUTD+, which employs ResNet152, ConvNeXt Liu et al. (2022), and Swin Transformer Liu
et al. (2021) as the backbone networks to replace ResNet101.

We evaluate these detectors on the task of unpaired image-text matching and compare their perfor-
mance on the Flickr30k dataset in Table 11. The results show that directly using either DETR or
DINO leads to poor performance. This is primarily because they fail to extract region representa-
tions as accurately as BUTD when constructing multimodal knowledge. Specifically, BUTD uses
Faster R-CNN as its backbone, a two-stage object detector that allows ground-truth bounding boxes
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Table 10: Examples of retrieved top-3 images/texts based on text/image queries by CLIP.
Groundtruth matched images are marked by black bounding boxes, which can be re-ranked higher
by the proposed MASK. Similarly, the groundtruth text is annotated using the symbol “(GT)”. The
underlined words indicate the representative OOD words relative to the multimodal knowledge.

Query text/image Returned top-3 images/texts by CLIP Pos/Neg Reranked top-3 images/texts by MASK

The man with pierced ears
is wearing glasses and an
orange hat.

Pos

A woman in a green dress
sitting in a broken green
and yellow chair.

Pos

A family is standing under
a very large tree. Neg

A couple is sitting on the
sand with their feet in the
water, and they are shaking
hands.

Neg

A martial artist wear-
ing a white Gi and a
black belt is pinning
another man in a blue
Gi to the ground.

A young female stu-
dent performing a
downward kick to
break a board held
by Karate instructor.
(GT)

The girl with the red
belt is kicking a pad
that the person in
black is holding.

Pos

A young female stu-
dent performing a
downward kick to
break a board held
by Karate instructor.
(GT)

The girl with the red
belt is kicking a pad
that the person in
black is holding.

A martial artist wear-
ing a white Gi and a
black belt is pinning
another man in a blue
Gi to the ground.

A girl wearing glasses
is in a blue harness
while rock climbing.

The person has a
striped shirt on and is
holding on to a rope
on a mountain. (GT)

A mountaineer about
to descend down a
mountain with a blue
helmet on.

Pos

The person has a
striped shirt on and is
holding on to a rope
on a mountain. (GT)

A girl wearing glasses
is in a blue harness
while rock climbing.

A mountaineer about
to descend down a
mountain with a blue
helmet on.

A young boy is quite
excited in the throes
of a ballgame. (GT)

A child wearing a blue
shirt is jumping in the
air.

A boy wearing jeans
leaps in the air and
shows shadow below.

Neg
A boy wearing jeans
leaps in the air and
shows shadow below.

A child wearing a blue
shirt is jumping in the
air.

A young boy is quite
excited in the throes
of a ballgame. (GT)

This man bravely cuts
down trees on the job.
(GT)

A young adult is do-
ing a back flip on
a trampoline near a
lake.

A man in blue
overalls and red shirt
holding a chainsaw.

Neg

A young adult is do-
ing a back flip on
a trampoline near a
lake.

This man bravely cuts
down trees on the job.
(GT)

A man in blue
overalls and red shirt
holding a chainsaw.

Table 11: Unpaired image-text matching using different detectors on the Flickr30k dataset.

Detector Architecture Pretrained Boxes Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10

DETR ResNet50+Transformer No 36 0.5 2.1 3.6 1.5 4.8 6.9 19.4
DINO ResNet50+Transformer No 36 0.8 2.7 4.2 1.9 4.6 7.4 21.6
DINO ResNet50+Transformer Yes 36 3.1 8.3 12.5 6.4 19.2 28.9 78.4

BUTD RPN + ResNet101 Yes 36 4.8 14.8 22.0 12.1 30.1 39.0 122.8
BUTD+ RPN + ResNet152 Yes 36 5.3 16.7 24.2 11.9 34.6 43.4 136.1
BUTD+ RPN + ResNet152 Yes 100 5.2 15.2 24.4 16.6 39.0 47.3 147.7
BUTD+ RPN + ConvNeXt Yes 36 5.7 18.0 26.1 12.9 37.4 46.9 147.0
BUTD+ RPN + Swin Yes 36 5.9 18.7 27.1 13.3 38.7 48.6 152.3

to be directly provided, yielding highly accurate feature representations. In contrast, DETR and
DINO require generating hundreds of candidate bounding boxes and then selecting the one with the
highest Intersection over Union (IoU) for each ground-truth box. This additional step inevitably
introduces noise, thereby degrading the quality of the constructed knowledge and resulting in lower
performance. In addition to inaccuracies in bounding box generation, the superior performance of
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BUTD may also be attributed to its more powerful feature extraction network. To investigate this,
we replace the ResNet101 backbone with ResNet152, ConvNeXt, and Swin Transformer, result-
ing in an enhanced version called BUTD+. This modification leads to a substantial performance
improvement, demonstrating the benefit of stronger feature extraction.

J.4 MODEL ARCHITECTURE ANALYSIS

This work acquires multimodal aligned knowledge based on three models: PAE, FRM , and
MTM . Since the architecture of these models can significantly influence image-text matching
accuracy, we use different architectures to perform the experiment of unpaired image-text matching
and compare their performance on the Flickr30k dataset in Table 12.

We can see that increasing the number of fully connected (FC) layers leads to a decline in image-text
matching performance, whereas adding more self-attention layers results in performance gains. For
example, in the PAE model, increasing the number of fully connected layers from 1 to 3 results in
a performance drop of approximately 19.4% in Rs on the Flickr30k dataset. When the number of
layers is further increased from 3 to 5, accuracy decreases by an additional 11.3%. These findings
demonstrate that FC layers have a substantial impact on model performance, and excessive depth can
severely degrade accuracy. This can be explained as that FC layers apply fixed nonlinear transfor-
mations, where even minor training errors accumulate as the network deepens, gradually distorting
the spatial distribution of features. In contrast, self-attention layers explicitly model similarity re-
lationships among entities, inherently preserving or even reinforcing the semantic structure of the
representations.

Table 12: Unpaired image-text matching using different model architectures on the Flickr30k
dataset.

Model Layer Params Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10

PAE

1 FC + 1 Self-Attention layer 2.11M 4.2 13.4 19.8 11.2 26.6 35.4 110.6
1 FC + 3 Self-Attention layers 4.21M 4.8 14.8 22.0 12.1 30.1 39.0 122.8
1 FC + 5 Self-Attention layers 6.31M 4.6 15.3 26.3 12.3 28.5 41.7 128.7
3 FC + 3 Self-Attention layers 4.73M 2.6 11.8 16.4 10.3 26.1 36.2 103.4
5 FC + 3 Self-Attention layers 5.25M 1.9 9.3 12.6 9.6 24.8 33.9 92.1

FRM

1 FC + 1 Self-Attention layer 2.1M 4.2 13.9 21.2 11.7 29.6 37.5 118.1
2 FC + 1 Self-Attention layer 2.36M 4.8 14.8 22.0 12.1 30.1 39.0 122.8
3 FC + 1 Self-Attention layer 2.62M 3.7 12.6 20.2 10.8 28.7 36.1 112.1
2 FC + 3 Self-Attention layers 4.46M 4.9 12.8 24.5 13.3 32.6 38.2 126.3
2 FC + 5 Self-Attention layers 6.56M 4.6 15.3 24.2 13.9 33.8 38.9 130.7

MTM

1 FC + 3 Self-Attention layers 1.26M 3.9 12.4 18.8 10.0 26.1 34.5 105.7
3 FC + 3 Self-Attention layers 1.44M 4.8 14.8 22.0 12.1 30.1 39.0 122.8
5 FC + 3 Self-Attention layers 1.62M 2.7 11.3 16.1 9.2 23.5 32.4 95.2
3 FC + 1 Self-Attention layer 0.7M 4.2 13.6 20.4 11.7 28.2 37.5 115.6
3 FC + 5 Self-Attention layers 2.18M 5.1 13.9 22.7 12.8 32.4 41.3 128.2

J.5 DIFFERENT PRETRAINED WORD VECTORS COMPARISON

The semantic geometry of word embeddings directly influences the construction of OOD proto-
types. To evaluate the impact of different pretrained word vectors on matching accuracy, we per-
form the experiment of unpaired image-text matching by MASK using different word vectors on the
Flickr30k and MSCOCO datasets in Table 13. Experimental results show that GloVe consistently
outperforms Word2Vec and FastText across both datasets, demonstrating its superior suitability for
constructing OOD prototypes. Specifically, GloVe achieves 122.8% R@s on Flickr30k and 209.5%
R@s on MSCOCO, surpassing Word2Vec by 2.7 ∼ 5.2% and FastText by 8.4 ∼ 14.4%. These
performance differences can be attributed to the distinct characteristics of the word vectors. GloVe
encodes global word–word co-occurrence statistics, enabling it to capture broader contextual relat-
edness. Such global semantic structure is crucial in cross-modal matching, where visual regions and
textual words need to align through high-level associative semantics rather than strict synonymy.
In contrast, Word2Vec, which learns from local context windows, excels at modeling fine-grained
synonymy but is less capable of capturing the broader semantic relations required for cross-modal
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alignment. FastText places greater emphasis on morphological similarity. However, morphologi-
cal similarity does not necessarily imply semantic similarity, which introduces significant noise and
ultimately reduces matching accuracy.

Table 13: Unpaired image-text matching by MASK using different pretrained word vectors on the
Flickr30k and MSCOCO datasets.

Word vectors
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

GloVe 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
Word2Vec 4.6 14.0 21.3 11.3 28.6 37.8 117.6 7.4 26.2 41.5 22.2 47.8 61.7 206.8
FastText 4.2 12.6 19.9 10.0 26.1 35.6 108.4 7.0 25.4 40.7 21.3 46.3 60.4 201.1

J.6 MODEL EFFICIENCY AND SIZE COMPARISON

As last, we compare the testing time and model size of our proposed MASK with those of CLIP, AL-
BEF, and MACK on the same machine (Intel(R) Xeon(R) Platinum 8468V, 512 GB RAM memory,
and 1 NVIDIA L40), based on their publicly available codes in Table 14. To eliminate the influence
of other factors, such as the matching framework and feature extraction, we fix the batch size to 1
for all models during testing. In the table, the testing time is measured by seconds (s), and the model
size is measured by the millions of model parameters (M).

From the table, we observe that MACK and MASK have significantly smaller model sizes compared
to CLIP and ALBEF. The parameters of MACK come from the BUTD module used for extracting
region representations. While the knowledge-based image-text matching is lightweight and requires
no additional parameters. Similarly, for MASK, the majority of the testing time is attributed to the
inference processes of the BUTD and PAE models, which is considerably faster than the testing
time required by CLIP and ALBEF.

Table 14: Model Efficiency and Size Comparison.

Detector Testing Times (s) Model Size (M)

CLIP 0.08 291.0
ALBEF 0.29 209.5
MACK 0.03 42.5
MASK 0.04 50.6

J.7 HYPERPARAMETER ANALYSIS EXTENSION

To further evaluate the impact of different hyperparameters λ1 and λ2 on matching accuracy, we use
different values of hyperparameters to perform the experiment of unpaired image-text matching and
compare their performance on the Flickr30k and MSCOCO datasets in Table 15. The results indicate
that MASK achieves the best performance in unpaired image-text matching when λ1 = λ2 = 3. This
further indicates that the cross-modal alignment loss and the prototype consistency contrastive loss
are complementary. By jointly optimizing the entire loss function in a balanced manner, the model’s
generalization capability can be substantially improved.

K LIMITION AND FUTURE WORK

It is important to acknowledge certain limitations of the proposed MASK, which will be addressed in
future work. First, the raw region representations are extracted using the pre-trained object detection
model BUTD. It would be better to pretrain more advanced detectors on the VG dataset to provide
more discriminative region presentations. Second, relying solely on nouns for unpaired image-text
matching is suboptimal. It would be better to take all the other words into consideration for more
accurate image-text matching.
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Table 15: Unpaired image-text matching by MASK using different λ1 and λ2 on the Flickr30k and
MSCOCO datasets.

Hyperparameter
Flickr30k dataset MSCOCO dataset

Image Retrieval Image Annotation Rs Image Retrieval Image Annotation RsR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

λ1

1.0 4.2 13.0 19.2 11.6 27.9 36.8 112.7 6.8 22.9 35.5 20.9 43.2 55.8 185.1
3.0 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
5.0 3.1 10.2 16.6 11.2 25.5 34.3 100.9 5.2 17.8 28.3 19.8 37.1 48.3 156.5

λ2

1.0 3.9 12.2 18.0 11.2 27.5 36.4 109.2 6.3 21.0 32.3 19.8 41.5 53.9 174.8
3.0 4.8 14.8 22.0 12.1 30.1 39.0 122.8 7.6 26.7 41.8 22.7 48.5 62.2 209.5
5.0 3.6 11.7 17.8 11.6 25.2 33.5 103.4 5.6 19.4 30.7 19.6 39.9 50.2 165.4

L THE USE OF LARGE LANGUAGE MODELS

We use LLMs solely to assist in checking grammatical correctness. After the initial check by the
model, we further refine and correct any remaining grammatical issues manually. Therefore, the role
of LLMs in this work is limited.
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