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Abstract

In subjective NLP tasks, where a single ground
truth does not exist, the inclusion of diverse
annotators becomes crucial as their unique
perspectives significantly influence the anno-
tations. In realistic scenarios, the annotation
budget often becomes the main determinant of
the number of perspectives (i.e., annotators) in-
cluded in the data and subsequent modeling.
We introduce a novel framework for annota-
tion collection and modeling in subjective tasks
that aims to minimize the annotation budget
while maximizing the predictive performance
for each annotator. Our framework has a two-
stage design: first, we rely on a small set of an-
notators to build a multitask model, and second,
we augment the model for a new perspective
by strategically annotating a few samples per
annotator. To test our framework at scale, we
introduce and release a unique dataset, Moral
Foundations Subjective Corpus, of 2000 Red-
dit posts annotated by 24 annotators for moral
sentiment. We demonstrate that our framework
surpasses the previous SOTA in capturing the
annotators’ individual perspectives with as lit-
tle as 25% of the original annotation budget
on two datasets. Furthermore, our framework
results in more equitable models, reducing the
performance disparity among annotators.

1 Introduction

The common pipeline for supervised learning
in Natural Language Processing (NLP) starts by
collecting annotations from multiple annotators.
These annotations are often aggregated through
majority voting (Talat and Hovy, 2016) to con-
struct a ground truth or gold standard on which
the subsequent modeling is performed. In recent
years, researchers have advocated for a transition
from single ground-truth labels to annotator-level
modeling, aiming to capture diverse perspectives,
enhance contextual understanding, and incorporate
cultural nuances (Uma et al., 2021), and have pro-
posed different frameworks that take into account

unique perspectives of the annotators by model-
ing them as separate subtasks (Davani et al., 2022;
Kanclerz et al., 2022).

The impact of individual annotators’ back-
grounds and life experiences on annotations in sub-
jective tasks signifies the importance of incorpo-
rating a diverse set of annotators. Nevertheless,
the primary constraint on achieving this diversity
is often the annotation budget, limiting the num-
ber and, consequently, the diversity of perspectives
considered. In this paper, we introduce a novel
framework for annotation collection and modeling
in subjective tasks. Our framework is designed to
minimize the annotation budget required to model
a fixed number of annotators, while maximizing
the predictive performance for each annotator.

Our framework operates in two stages. In the
first stage, data is collected from a small pool of
annotators. This data serves as a foundation for
building a multitask model that captures the gen-
eral patterns for the task and provides a signal of
differences among individual annotators. Informed
by the first stage annotations, the second stage in-
volves collecting a few samples from each new
annotator that best capture their differences from
the general patterns. We use this data to augment
the model from the first stage to learn the new anno-
tators’ perspective from a few examples (Figure 1).

We introduce a unique dataset that enables the
study of detecting moral content, an understudied
subjective task, at a scale that was not possible be-
fore!. The Moral Foundations Subjective Corpus
(MFSC) is a collection of 2000 Reddit posts, each
annotated by 24 annotators for moral content along
with annotators’ responses to a range of psycholog-
ical questionnaires (§4.1).

We use MFSC in conjunction with the Brexit
Hate Dataset (Akhtar et al., 2021) to extensively
study each component of our proposed framework.
First, we empirically investigate the effect of pool-

'The dataset will be released as part of the accepted paper



ing data from varying numbers of annotators in
a multitask model (§5.1) and demonstrate that in-
creasing the number of annotators does not improve
annotator-level modeling in a multitask model. Sec-
ond, we showcase the efficacy of our framework in
capturing diverse annotator perspectives under bud-
get constraints (§5.2). Third, in §5.3, we study the
impact of various sample selection strategies. Our
framework achieves a 4.3% increase in F} score
with access to just 25% of the annotation budget
in moral sentiment prediction. Furthermore, our
results demonstrate a 6.7% improvement over the
previous state-of-the-art in hate speech detection
when using only 50% of the original annotation
budget. Next, we show that our proposed frame-
work consistently yields a more equitable model by
minimizing the performance disparity across vari-
ous annotators (§5.4). Specifically, on the lowest
budget scenarios, our approach reduces the stan-
dard deviation in performance across annotators by
7.5% and 1.1% on hate speech detection and moral
foundation classification, respectively. Finally, we
extend our analysis to investigate whether the se-
lection of the initial set of annotators in the first
stage of our framework is related to the model’s
performance (§5.5).

Our experiments on two subjective datasets re-
vealed that our framework consistently surpasses
previous state-of-the-art models with access to as
little as 25% of the original annotation budget.
In addition, our framework produced more equi-
table models with reduced performance disparities
among the annotators. By minimizing data require-
ments, our cost-efficient framework for subjective
tasks enables us to scale the number of included
annotators and, hence, improve the diversity of
captured perspectives. Furthermore, the two-stage
design of our framework facilitates the integration
of new annotators into pre-existing datasets.

2 Related Work

Subjective Tasks in NLP: In recent years, the
variety of tasks for which NLP is used has
significantly expanded. In many of these tasks, a
single ground truth does not exist, making them
inherently subjective in nature. In subjective
tasks, researchers have argued that disagreements
in particular labels should not be treated as
statistical noise (Larimore et al., 2021; Pavlick
and Kwiatkowski, 2019; Plank, 2022), as they are
often indicative of individual differences which

are driven by different backgrounds and lived
experiences of the annotators (Akhtar et al., 2019;
Plank et al., 2014; Prabhakaran et al., 2021; Diaz
et al., 2018; Garten et al., 2019; Ferracane et al.,
2021). For example, Davani et al. (2023) revealed
how the stereotypes of annotators influence their
behavior when annotating hate speech. In a
similar context, Sap et al. (2021) demonstrate
that annotators’ identity and beliefs impact their
ratings of toxicity. Sang and Stanton (2022)
conducted a study showing that differences in
age and personality among annotators result in
variations in their annotations. Larimore et al.
(2021) explored how annotators’ perceptions of
racism differ based on their own racial identity.
Basile (2020) calls for a paradigm shift away from
majority aggregated ground truths, and towards
representative frameworks preserving unique
perspectives of the annotators. In their later work,
Basile et al. (2021) define the phenomena of Data
Perspectivism, and share recommendations and
outlines to advance the perspectivist stance in
machine learning.

Capturing the Perspectives: To capture
annotator-level labels, Akhtar et al. (2020)
proposed dividing annotators into groups based
on similar personal characteristics and creating
different sets of gold standards for each group.
Kanclerz et al. (2022) and Deng et al. (2023)
incorporated knowledge about annotators into their
models to make them personalized. Davani et al.
(2022) propose a multitask approach, modeling
each annotators’ perspective as a subtask, while
having a shared encoder across the subtasks.
Baumler et al. (2023) and Wang and Plank (2023)
propose active learning methods for reducing the
budget of data collection by proposing methods for
collecting samples based on model confidence and
annotators’ disagreement. Casola et al. (2023) also
proposes ensembling perspective-aware models
based on their confidence.

3 Method

Problem Formulation: To formalize the task, sup-
pose we have a set of annotators A = {a1, ...,an}
and input texts X = {x1, z2, ..., T, } and their cor-
responding annotations Y = {y1,y2, ..., ym }. Let
D = {D,,|a; € A} be the entire annotations and
D,, = {X,,,Ya,} denote data collected from an-
notator a;. Then the budget B = |D]| is defined
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Figure 1: Left: The baseline approach for annotator-level modeling, in full and reduced budget scenarios. Right:
Our two-stage proposed framework, designed to achieve the outlined objectives

as the total number of annotations collected. Let
F = {fa;la; € A} and f,, denote the model cap-
turing labels assigned by annotator a;.

Proposed Framework: We design our framework
with two objectives: first, maximizing the average
performance over all annotators. Second, mini-
mizing the budget (B) required to achieve the first
goal. The second objective allows us to increase
the number of annotators’ perspectives (|.4| ) cap-
tured with a given budget. Our framework design
is based on two key intuitions. Firstly, as we show
in Section 5.1, multitask learning, which has of-
ten been treated as the upper bound by previous
work, does not improve in performance as the num-
ber of annotators grows. Secondly, even in sub-
jective tasks, there exists a substantial number of
texts on which annotators mostly agree, particu-
larly when these texts are randomly drawn from
a source. Therefore, obtaining many annotations
on such instances is not beneficial in learning a
new perspective. In line with these intuitions, our
framework consists of two stages (Figure 1). In
the first stage, we learn the commonalities between
annotators through a multitask model F,,;;. A cru-
cial difference of our approach in comparison to
previous multitask methods is that we only col-
lect annotations from a small subset of annotators
A C A. In the second stage, we learn the per-
spectives of new annotators A, = A — A,y with
only a few shots. Specifically, we collect anno-
tations for & input texts S(X) C X, where S is
a sampling function that ideally helps in captur-
ing patterns specific to individual annotators’ per-
spectives. Let Di° = {(z,yai)|z € S(X)} and
D] = k << |D,,|. We initialize Fy4,, with

Fomt1 and train it on D(J:f

Sampling Function (S): We explore four different
sampling functions: 1) Sy4nq: selects a random
sample for each annotator 2) S,,,: selects a bal-
anced sample determined by the majority vote of
the annotators. For a set of annotators A,,;, we
calculate the majority vote among these annotators
and select k samples that have an equal number of
each label based on that majority vote. 3) Sg;5 se-
lects the samples from A,,,;; with highest disagree-
ment score, and 4) Sp,; acts as an oracle, selecting
a balanced sample based on a specific annotator’s
label, not the majority vote. Therefore, if we have a
new annotator, Sp,; wWould select a balanced sample
based on the annotations of that specific annotator.
One frequent challenge in some subjective tasks is
the heavy imbalance in class frequencies. Hence,
we chose Sy, and Sy to provide a more balanced
sample to the few-shot model for each annotator.
We added Sg;5 with the goal of providing samples
that differentiate the individual annotator perspec-
tives to the model. We use the “item disagreement”
and “annotator disagreement” measure from Da-
vani et al. (2023) to select samples in Sy;s.

4 Experiments

4.1 Datasets

We run experiments on two datasets annotated for
subjective tasks: Brexit Hate dataset (Akhtar et al.,
2021) and the Moral Foundations Subjective Cor-
pus (MFSC), which we created as part of this work
to explore this less-studied subjective task. Both
datasets contain per-annotator labels for instances,
with every instance being annotated by all annota-
tors. This ensures that any observed performance



gains are attributed to the used methods and are
not driven by the specific samples annotated by
each annotator. Subsequently, we also evaluate
our framework on the Gab Hate Corpus (GHC)
(Kennedy et al., 2018), where the number of sam-
ples annotated by different annotators varies. De-
tailed experiments on this dataset are presented in
Appendix D.

Moral Foundations Subjective Corpus (MFSC):
We introduce a new dataset, Moral Foundations
Subjectivity Corpus (MFSC), consisting of 2000
Reddit posts annotated by 24 annotators for moral
sentiment based on the Moral Foundations The-
ory (MFT; Graham et al., 2013; Atari et al., 2022).
Morality is widely acknowledged to be a subjec-
tive concept, strongly influenced by cultural back-
grounds (Graham et al., 2016), one that has not
been explored much in the NLP community. We
asked annotators to label each text for the specific
moral concern (i.e., Purity, Harm, Loyalty, Au-
thority, Proportionality or Equality), and if one of
the concerns is chosen, we set the label as moral,
else as non-moral; This dataset was collected fol-
lowing the same procedure as Trager et al. (2022).
This dataset also contains additional metadata in-
formation, such as confidence for each instance
using a 3-level measure (i.e., confident, somewhat
confident, and not confident). We also collected
annotator responses for the “Big Five Inventory-2-
Short” questionnaire (Soto and John, 2017). MFSC
provides an opportunity to explore the subjective
nature of morality. The substantial number of an-
notators in this dataset along with questionnaire
responses enables future researchers to investigate
the modeling of subjective tasks on a larger scale.
The demographics of the annotators is shown in
Appendix A.1. In our experiments, we use the
annotations for the moral label. In addition, we
evaluate our framework on Care label which is
discussed in Appendix C.

Brexit Hate dataset: Hate speech detection has
become one of the primary subjective tasks stud-
ied in the NLP community (Akhtar et al., 2019;
Sang and Stanton, 2022; Sap et al., 2021). The
Brexit Hate dataset (Brexit) proposed by Akhtar
et al. (2021), consists of 1,120 English tweets col-
lected with keywords related to immigration and
Brexit. The dataset was annotated with hate speech
(in particular xenophobia and islamophobia), ag-
gressiveness, offensiveness, and stereotype, by six
annotators belonging to two distinct groups: a tar-

get group of three Muslim immigrants in the UK,
and a control group who were researchers with
Western background. For our experiments, we use
the overall hate label. Additional dataset statistics
can be found in Appendix A.

4.2 Experiment Setup

We designed our experiments to study the impact
of each component of the framework towards our
two objectives: maximizing average performance
and minimizing annotation budget.

We use multitask learning (MTL) on all the an-
notators as our baseline and assess the efficacy of
our framework compared to this baseline in cap-
turing individual annotators’ perspectives under a
range of budget constraints. Specifically, for our
approach, we vary the budget B by changing the
size of | Ayuu|. Recall that B = |D| = > |D,,|
and |[DJf| = k << |D,,|. Also, recall that under
our proposed framework the annotators A are di-
vided into two sets A,;,;; and Ay,. Since the cost

of annotating a few samples per new annotator is
2
[Da, |
proposed framework can be reduced to

Bowrs = Y |Da,|
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For example, the MFSC dataset has |.A| = 24 an-
notators. Hence, 25% B shows the scenarios where
| Amnt1| = 6. Whereas, for the baseline, we vary
the budget B by changing the size of D, for all
annotators. In the given example, a 25% B for the
baseline means using only 25% of D, for each a;.

To ensure that our results are not driven by the
specific choices of A,,,4;, we run our experiments
for each budget on multiple samples of A,,;; C A.
Specifically, we run our models with all possible
choices of A,,,;; for Brexit dataset and 20 different
samples of A,y for the MFSC dataset.

For each annotator a;, F|" denotes the perfor-

negligible ( is close to 0) the budget under our

X B

X B

mance on predicting a;’s labels. We use Flf * and
Fmt to denote the average of Fi' scores when
a; € Ags and a; € Apy respectively. For our
framework, we also calculate the overall perfor-
mance for all annotators FP¥e™! as the weighted
average of F/* and F™!,



4.3 Implementation Details

We use RoBERTa-base as our base model (Liu
et al., 2019). All multitask models undergo hy-
perparameter tuning, for learning rate and weight
decay, and are trained for 5 epochs. The best model
is selected based on the validation F} score, and
its best hyperparameters are applied in subsequent
fine-tuning. Few-shot models are trained for 50
epochs with all parameters updated. Experiments
are repeated with three random seeds.

For the Brexit dataset, we utilize predefined
train, validation, and test splits provided within
the dataset®. In the case of the MFSC dataset, we
allocate 80% for training, 10% for validation, and
the remaining 10% for testing. Further implemen-
tation details are available in Appendix E.1.

5 Results and Analysis

5.1 Few Annotators are Enough

Previous state-of-the-art methods for subjective
tasks achieve performance gains by jointly learning
annotations from multiple annotators, as opposed
to independently learning each annotator’s perspec-
tives (Davani et al., 2022). In this analysis, we
further explore whether adding more annotators
to the multitask model results in a better model
for all annotators. To answer this question, we
look at the multitask performance F™ as the num-
ber of annotators in the multitask model, |.A,,4|,
grows. There is no statistically significant correla-
tion between the number of annotators and ™
(r = —0.28,p > 0.05). Figure 2 shows that av-
erage " for all annotators does not increase as
the number of annotators increases. Note that this
pattern is consistent in both datasets and as Fig-
ure 2 shows, the FJ"! scores are reliable with low
standard deviations across models with different
numbers of annotators. This observation motivates
our first design choice; in the first stage of our
framework, we can only rely on a small number of
annotators to get a reliable multitask model.

5.2 Towards Better Performance with Less
Annotation Budget

A successful framework for modeling subjective
tasks should, above all, demonstrate the ability to
accurately predict labels from all of the annota-
tors. Therefore, we assess the overall performance
(Flovemu) of our proposed framework in compari-
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Figure 2: Multitask models F} performance (F{””) as
the number of annotators increase. Mean and standard
deviation are reported across three repeated runs

son to the baseline of multitask learning. Recall
the second component of our framework is to aug-
ment the multitask learning model of the first stage
Fmul to predict new annotators’ labels using only a
few samples. To isolate the impact of the few-shot
learning model from the specific choice of samples,
we sample the & shots randomly.

As shown in Table 1, our framework outperforms
the multitask baseline on both datasets when it
comes to predicting labels of all annotators. Specif-
ically, on MFSC, our approach outperforms multi-
task learning using 100% of data with access to
as little as 25% of the original annotation bud-
get. On Brexit, our framework matches the per-
formance of multitask learning on 100% budget
with access to only 50% of the original budget.
The findings demonstrate the success of our frame-
work in achieving its dual objectives: enhancing
performance across all annotators while reducing
annotation budget requirements. Consequently, our
framework facilitates increased diversity by incor-
porating additional annotator perspectives while
adhering to a specific budget constraint. We also
conduct an ablation study by omitting the first MTL
stage and employing random few-shot sampling for
each annotator (Appendix B).

5.3 Few-shot Sampling Strategies

Recall that in the second stage of our framework,
we only select a small subset of the input texts
S(X) C X to be annotated by the new annota-
tors (Figure 1). Intuitively, we are relying on the
first stage of our framework (i.e., multitask learn-
ing) to learn the commonalities between annotators.
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Table 1: Mean and standard deviation of I scores on Brexit and MFSC dataset across three runs, with varying
annotation budgets (%B). The budget allocation differs in the baseline and our framework; For example, 50%| D, |
indicates selecting 50% of each annotator’s data, while 50%|.A| denotes selecting 50% of annotators and using all
their data (i.e., 3 out of 6 annotators for Brexit, and 12 out of 24 annotators for MFSC).

Hence, the goal of the selection function S(X) is
to choose input texts that best capture individual
annotators’ differences. To study the impact of data
selection strategies, we compare the fewshot per-
formance (Flf %) of each strategy controlling for the
number of shots % (see §3 for definitions of S(.)).

On Brexit dataset, the Sp,; strategy, which se-
lects a balanced sample for each annotator out-
performs other approaches consistently with 50%
budget. With 66% budget, Sp,; strategy performs
the best for all values of k. Notably, with this bud-
get, the performance gap is closed by the Sy;, for
higher number of shots. Although the differences
in performance are less pronounced for higher bud-
get scenarios (i.e., the 83%B), Spq; and Sy still
achieve better results especially when more shots
are available. We acknowledge that the Sy, strat-
egy relies on access to a balanced sample for each
annotator which is often not readily available. How-
ever, this study showcases the potential of this ap-
proach and future work can explore methods that
attempt to select instances that approximate a bal-
anced sample per annotator.

On the MFSC dataset, sampling strategies persis-
tently outperform the multitask learning baseline
in all scenarios. While different strategies seem to
perform comparably, a crucial differentiating factor
is the impact of various strategies on the stability
of the results. Specifically, compared to S,44, all
sampling functions result in more stable perfor-
mances (i.e., lower standard deviation) across all
budgets and values of k.

Overall, our results on two datasets show that the
fewshot stage of our framework, results in models
that consistently outperform the multitask learning
baseline. Our experiments clearly demonstrate the

importance of sample selection strategies both in
terms of performance improvement and stability.
Furthermore, our results on both datasets motivate
the exploration of sampling strategies that can ap-
proximate a balanced sample per annotator.

5.4 Reduced Performance Disparities across
Annotators

Ensuring a comprehensive representation of anno-
tators’ viewpoints is crucial in modeling subjective
tasks. To achieve this goal, a critical criterion is
to create models that not only improve the aggre-
gated performance but also demonstrate fair and
equitable performance across all annotators. For
example, if the I3 scores of one model for two
annotators are 0.6 and 0.8, respectively, while the
second model scores 0.7 for both annotators, the
latter is considered a better model. Although the
average performance is the same for both mod-
els, the first model has a disparate negative impact
on the first annotator. This is important because
performance disparities among social groups (in
our case annotators) can lead to biased models,
limiting the system’s ability to accurately reflect
diverse perspectives and potentially perpetuating
inequalities in the outputs of subjective tasks (Buo-
lamwini and Gebru, 2018). Merely relying on
aggregated performance measures, like the aver-
age across all annotators, falls short of providing
a complete understanding of how well the model
is capturing annotators’ varying perspectives. For
example, it is not clear whether the average per-
formance is improving because an approach im-
proves on capturing only a subset of annotators
or for everyone. Hence, we look into the stan-
dard deviation of performance across all annotators
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Table 2: Few-shot I results (F} 1f 's) on BREXIT and MFSC datasets across varying percentages of the full budget
(%B). Mean and standard deviation calculated over three repeated runs.
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Figure 3: Comparison of Annotator level F1 scores
(F7'") on the Brexit dataset between MTL model and
our framework, leveraging the Sp,; sampling method
for all budgets and shots

d= \/ﬁ SN (F& — poverall)2 [ ower stan-
dard deviations are indicative of more equitable
models. As shown in Table 3, regardless of the
sampling strategy, our approach results in lower
performance variances compared to the MTL base-
line on lower budgets (50% and 66%). Comparing
the different sampling strategies on Brexit dataset,
we observe that Sp,; achieves the most equitable
models across all values of k. On MFSC, using
a balanced sampling strategy consistently reduces

the disparities among annotators compared to the
MTL baseline for all budgets. Figure 3 visualizes
the performance of our framework in comparison to
the multitask learning baseline for each annotator.
Notably, our framework improves the performance
for the annotators in the non-Western control group
(i.e., the first three annotators) while maintaining
the performance of the rest of the annotators.
Overall, these results suggest that our proposed
framework not only improves the overall perfor-
mance of all annotators but also yields models that
are more fair and equitable. Interestingly, we ob-
serve similar patterns in fairness and overall per-
formance improvements. In other words, the con-
figurations with the best overall performance (see
section 5.3) are also the ones that have the least
performance disparities among all annotators.

5.5 Annotator-level Analysis

Here we delve into the relationship between
annotator-level variables. Recall that our frame-
work is trained on A,y in the initial stage, fol-
lowed by fine-tuning for each a € Ay,. Hence, a
practical question arises: does the choice of the set
A,y matter? In other words, would the similarity
or divergence in perspectives among annotators in
this set impact the performance on Af,? Investi-
gating this is crucial, as identifying such an effect



metric = d | Brexit MEFSC
50% 66% 83% |25% 50% T75%
MTL 168 139 .131 | .128 .136 .127
Svar | -119 127 132 | .119 124 .124
k- 16 Sais | 141 134 127 | 129 .130 .126
Smo | 138 137 131 | .131 .130 .127
Srand | 137 139 135 | .137 135 .130
Svar | 113 125 133 | .120 .125 .124
k= 39 Sais | -145 138 .131 |.131 .130 .126
Smov | -140 137 129 | .130 .130 .127
Srand | 139 135 138 | .136 .134 .129
Star | -109 119 127 | 119 .124 123
k- 64 Sais | 137 126 .123 | .131 .130 .126
Smo | 145 146 126 | .130 .129 .127
Srand | 131 128 132 | .136 .135 .129
Sbar | 093 108 117 |.117 .122 .121
b — 198 Sais | 111 120 .124 | 130 .129 .127
Smo | 137 142 132 | .126 .128 .127
Srand | 131 127 136 | .134 133 .128

Table 3: d | measure across annotators, for full budget
d = .13 for both datasets; Spai, Sdis» Smw»> and Syand
refer to the sampling functions used in the second stage
of our framework (§3)

would necessitate a thoughtful selection of A,,;.
To examine this, we conduct the following analysis:
Disagreement within A,,;; and performance on
Apgs: The aim of this analysis is to investigate
whether there is a relationship between the dis-
agreement within annotators in A,,; and the per-
formance of the newly adopted annotators in A,.
To test this relationship, we employ a mixed-effects
model to predict the performance of a € Ay, by
the agreement within A,y denoted as d* (Fleiss,
1971). The model controls for k, budget B, and
agreement between A;s and A,,y, denoted using
d?, incorporating random effects for A,,;; and A fo-
The formula for this model is as follows:

fij =Bo + B1dj + Bokij + B3B; W

+ ﬂ4d?j + ug; + V15 + €45
where f;; denotes the performance of i" annota-
tor in Ay, on the model trained on a 4™ sample of
Ay The fixed effects coefficients are represented
by S to B4, and the random effects for ¢ and j are
represented by wg;, v1; respectively. e;; denotes
the residual error term. To see the impact of sam-
pling strategies, we run a total of four models, each

corresponding to the performance results obtained
from one of the strategies (Spai, Sdis, Smuv, Srand)-

The findings regarding Brexit indicate that
there is no statistically significant effect of agree-
ment within A, (d') on the performance. For
the MFSC dataset, a significant effect was ob-
served only for results obtained from Sy (81 =
—0.052, SE = 0.012,p < 0.001). This implies
that a unit decrease in d', corresponding to moving
from full agreement to full disagreement, is asso-
ciated with a 0.052 increase in the Fj score. This
finding suggests that selecting a diverse A,y with
high disagreement can potentially be advantageous.

6 Conclusion

We introduced a framework for annotation collec-
tion and annotator modeling in subjective tasks.
Our framework aims to minimize the annotation
budget required to model a fixed number of annota-
tors while maximizing the predictive performance
for each annotator. Our approach involves collect-
ing annotations from an initial set of annotators and
building a multitask model that captures general
task patterns while signaling differences among in-
dividual annotators. Subsequently, we utilize the
annotations from the first stage to select a small set
of samples from new annotators that best highlight
their deviations from the general patterns. Finally,
we leverage this collected data to augment the ini-
tial model, enabling it to learn the new annotator’s
perspective from a limited number of examples.
We explored four distinct methods for few-shot
sample selection and found that the most effec-
tive approach involves balanced sample selection.
We introduced a new subjective task dataset Moral
Foundations Subjective Corpus (MFSC), of 2000
Reddit posts annotated by 24 annotators for moral
sentiment which enabled us to test our framework
in scale. Our experiments on MFSC and a hate
speech dataset revealed that our framework con-
sistently surpasses previous SOTA with access to
as little as 25% of the original annotation budget.
In addition, we showed that our framework yields
more equitable models that reduce performance
disparities among annotators. Our cost-effective
framework for subjective tasks allows increasing
the number of annotators, enhancing the diversity
of perspectives captured, and facilitates the integra-
tion of new annotators into pre-existing datasets.



7 Limitations and Ethical Statement

We acknowledge that the datasets employed in our
experiments are not representative of all annota-
tor populations. While in MFSC we recruited a
substantial number of annotators and efforts were
made to diversify this pool, it is important to note
that our sample is limited to undergraduate students
at a private university in the US. Consequently,
we advocate for the replication and extension of
our work with non-student, non-US-based samples.
Furthermore, we exclusively operate with English
data and focus on datasets related to moral senti-
ment prediction and hate speech detection tasks.
This may restrict the generalizability of our find-
ings to a broader linguistic and thematic landscape.
Despite these constraints, our research lays the
groundwork for future research to extend and val-
idate our approach across diverse languages and
subjective NLP tasks. In our experiments, we do
not consider the cost of collecting few-shot sam-
ples, as discussed in Section 4.2. We recognize
that in certain cases, depending on the budget and
the nature of the task, this assumption can be chal-
lenged. Even with the additional expense of an-
notating a few samples per new annotator, it is
crucial to highlight that our proposed framework
substantially reduces annotation cost, especially as
the number of included perspectives grows.

In the MFSC dataset the annotators underwent
four sessions of training, including guidance on
avoiding potential adverse consequences of anno-
tations, and were compensated at a rate of $17 per
hour. The study protocol received approval from
the Institutional Review Board (IRB), and all an-
notators consented to both the terms outlined in
an information sheet provided by the IRB about
the study and the sharing of their responses to the
psychological questionnaires along with their anno-
tations. We emphasize that MFSC is created with
the intention of exploring subjectivity and different
perspectives in this context and it should not be
used for any other purposes.
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A Dataset Details

Table 4 displays dataset details, including Fleiss’s
kappa (Fleiss, 1971) measuring the inter-annotator
agreement. The low agreement for these tasks high-
lights the subjective nature of them. Furthermore,
the *%Pos.” column in Table 4 shows the class
imbalance in these datasets and the scarcity of pos-
itive class annotations. For example, in the Brexit
dataset, only 12% of samples, on average, were
labeled as "Hate". See Table 5 for sample annota-
tions.

Dataset Size |A| Kappa %Pos.
Brexit 1120 6 0.34 12.86
MFSC (Moral) 2000 24 0.26 63.69
MESC (Care) 2000 24 0.31 13.34

Table 4: Statistics of the datasets used in our experi-
ments. |.A| denotes the number of annotators, Kappa
represents Fleiss’s kappa inter-annotator agreement, and
%Pos. indicates the average percentage of positive class
annotations across annotators

A.1 Demographics of MFSC Annotators

We aimed to diversify the annotators for MFSC
dataset across gender, sexual orientation, religion,
and race. Even though our dataset is not balanced
across these dimensions, we strived to include rep-
resentative annotators from a cross-section of the
aforementioned demographics. The distribution of
the annotators across the mentioned demographics
is presented in Figure 4.

B Additional Baseline and Ablation Study

First, we conduct an ablation study where we omit
the first stage MTL. Essentially, this model is equiv-
alent to few-shot adaptation for each annotator ini-
tializing from a pre-trained model. The resulting £}
scores are presented in Table 6. Comparing these
scores with our framework using random few-shot
sampling for £k = 16 from Table 2, we observe
that our framework has a 21% gain for Brexit and
a 15.5% gain for MFSC. This study demonstrates
that the first stage MTL in our framework is crucial
for its success.

Dataset k=16 k=32 k=64 k=128
Brexit 0.23 0.22 0.20 0.28
MFESC 0.66 0.73 0.71 0.77

Table 6: F} scores for few-shot baseline with random
sampling S,.4,,q When the first stage MTL is omitted.
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Gender Religion

Woman Nonreligious

Hinduism
Islam
Judaism

Other
Christianity

Sexual orientation

homosexual (gay/lesbian)
bisexual

4%
4%

heterosexual (straight)

Figure 4: The abbreviations in the pie chart for race
W stands for White or European American, B stands
for Black or African American, H stands for Hispanic
or Latino/Latinx, P stands for Native Hawaiian or Pa-
cific Islander, A stands for Asian or Asian American, M
stands for Middle Eastern or North African.

In the second ablation study, we omit the second
stage few-shot sample selection from our frame-
work. In other words, in the second stage, we
use the entire annotated samples for each annota-
tor instead of selecting only a few samples. Note
that this is equivalent to using 100% of the budget
and serves as an upper bound to the performance
achieved with an ideal sampling function.

Additionally, we present Ensemble, a new base-
line in which we train a separate model for each
annotator using 100% of data from that annota-
tor. The Ensemble baseline involves fine-tuning
RoBERTa-basse directly for each annotator, calcu-
lating individual annotator F} scores, and reporting
the average F score across annotators. Hyperpa-
rameters and epoch numbers for training are con-
sistent with those mentioned for the MTL model
in Section 4.3. In line with the naming convention
used in Davani et al. (2022), we name this base-
line “Ensemble” to maintain consistency with the
previous work in this domain. Figure 5 presents a
comparison of 3 different strategies, using 100%
of the budget (MTL, Ensemble, and ours). On the
Brexit Dataset (top) our framework has as much
as 7.4% performance gain compared to Ensemble
baseline (when using % annotators in MTL), and
for MFSC dataset our framework has as large as
5% gain compared to Ensemble baseline (when us-
ing % of annotators in MTL). These results show
that even considering the 100% budget our frame-



Dataset Examples Annotations

"THE MAJORITY WILL NEVER allow the Mentally I1l Globalists to turn "0.0.1.1.0.1"
Brexit the world into a STW and Radical Islam SAFE SPACE #brexit #Trump2016" R

"A muslim Mayor of London? What!? This PC Sickness has "0.0.0.1.1.1"

become a pandemic. England turning into Little Asia. <url>" A

Not all foreign people who wants to go to the uk have bad intentions. "0.0.0.0.0.0"

Improve your law. The #Brexit isn’t gonna help your economy. e

’m using the term *ethnicity* in all the meanings. A word doesn’t have an

inner, determined and true meaning; the meaning of a word is steadily

constructing by the speakers of a language. If people in the US use *ethnicity* | 16 annotators : 0
MFESC | 2 @ synonym of *race*, the term *ethnicity™* acquires also that meaning, 8 annotators : 1

moreover the anthropological meaning.I guess if they have French flags

celebrating Macron’s victory, they’d likely feel French.",

"More or less. Clinton was regarded as a ""female candidate"", but Le Pen

. . .. 4 annotators : 0
was a ""far-right candidate"". The left calls for diversity of
. . 20 annotators: 1
ethnicity/gender/etc, but conservatives don’t seem to count. ",
"**ing bootlickers, all of them. They WANT a Trump monarchy.
. 24 annotators: 1
All of them are traitors."

Table 5: Examples from each dataset alongside their annotations.

work outperforms both baselines demonstrating the
benefit of our two-stage design.

Brexit Dataset
0.514

0.52 -

0.50 -

0.49

o 0.48 -
o 0.471
%3
wn
-
[T

0.46 -

nas- 0.44

0.432
0.42 - i | ] ] |
MTL Ensemble Ours:3/6  Ours:4/6  Ours:5/6
Method
MFSC Dataset
0.86 -
0.854
0.849 0.848

0.84 -
o 0.82 -
o
A
a 0.804
I

0.80 -

078" 0,775

0.76 - i | ] ] |

MTL Ensemble Ours:6/24 Ours:12/24 Ours:18/24

Method

Figure 5: Comparison of our framework with baselines
for the two datasets
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Interestingly, Ensemble model outperforms
MTL for these datasets, contrary to the findings
of previous research comparing these two methods.

C Individual Moral Concern Results

We evaluate our framework on an additional
binary label of Care moral concern from our
MFSC dataset. This moral concern is defined as
"Care/Harm: Intuitions about avoiding emotional
and physical damage or harm to another individ-
ual. It underlies virtues of kindness, gentleness,
and nurturing, and vices of meanness, violence,
and abuse." (Trager et al., 2022). Table 7 presents
the results for this task. Our framework outper-
forms the baseline MTL approach with 25% and
50% of the annotation budget. Notably, with only
25% of the budget, our framework has a 1.4% gain
in F7 score compared to MTL with 100% budget.
The experiments were conducted with the same
hyper-parameter tuning described in Section 4.3.

D Experiments on GHC

To ensure the generalizability of our framework, we
evaluate it on a larger dataset with an imbalanced
number of annotations among annotators.

Gab Hate Corpus (GHC) consists of 27,665 posts
from the social network service gab.ai, each an-
notated by a minimum of three trained annotators,
and 18 total annotators. It is coded for hate-based
rhetoric and has labels of “assaults on human dig-
nity” or “calls for violence”. The annotators with



MFSC (Care)

tri :FOverall

metrte = T oos%  so% % 100%
X% x \Dai| 25%|Dai\ 50%|Dai\ 75%\Dai\ |Dai\
MTL 0474 0476 049  0.469

X% x |A| 50%]|.A| 66%|.A| 83%|.A|

Shal 0.462 0471 0485

ko 1g Stis 046  0.467 0485

N S 0.476  0.473 0.49

Srand 0.469 0468 0482

Shal 0.467 0477  0.487

f— gy Sais 0.463 0463  0.483

Smw 0475 0475  0.488

Srand 047 0468 0484

Shal 047 0475 0486

b gy Sais 0467 0471  0.478

Smo 0479 048  0.487

Srand 0472 0477 049

Shal 0473 0477  0.488

L 1og Sis 0.474 0474 0481

o 0477 0482  0.488

Srand 0.483 0481  0.487

Table 7: Overall F} scores on MFSC dataset, Care label,
with varying annotation budgets (% B).

less than 1000 annotations were filtered out result-
ing in 16 annotators. Figure 6 shows the number of
annotated instances by each annotator.

Experiments: We replicate the experiment de-
scribed in Section 4.2 with the same implemen-
tation details outlined in Section 4.3. We employ
varying budgets of 25%, 50%, and 75%, using the
two best-performing sampling methods identified
in our experiments (Spq; and S,qnq), and compare
the results to the MTL baseline. The overall re-
sults are presented in Table 8. It is evident that our

Number of annotations across annotators in GHC dataset
12669

8884
8464
7715 8016
4945
4515I
3

2 0 12 7 13 11

12000

10000

8000

6000

Number of annotations

4000

o

3987 4062
3343 3400 3445 3539 3550 2B
1384

0 IIII “‘\ “‘\ “‘\ “‘\ “‘\ “‘\ “‘

15 8 4 10 17 9 5 1 6
Annotator

2000

Figure 6: The number of annotated instances by each
annotator in GHC dataset
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framework consistently outperforms MTL across
all numbers of shots, sampling methods, and bud-
get variations. Specifically, with 25% of the budget,
our model achieves a gain of 1.6% with k = 64
and S,.4nq, and with 75% of the budget, our model
performs the best, achieving a gain of 2%.

FIOUerall T GHC
25% 50% 75% 100%
X% X |Da;| | 25%|Da,| 50%|Da,| 75%|Da,| |Da,|
MTL .417(_004) .433(_007) .442(_013) .451(_005)
X% x | A| 50%|A|  66%|A|  83%|A|
k=16 Shai 450004y 460002  464003)
Srand | 4550008y -469005) 468003
k= 32 Shar | 456002y 459001y 464003
Srand | 461003y 472001y -468(001)
ki — 64 Svar | 458008y 461002y 466003
Srand | 467003 474002) -468(002)
Srand | 463007 4750003y 47001

Table 8: Overall I scores on GHC dataset, Hate label,
with varying annotation budgets (%B).

GHC
Fleq
i

25% 50% 75% 100%

X% % |Da;| | 25%|Da,| 50%|Da,| 75%|Da,| |Da,|
X% x |A| 50%|.A| 66%).4| 83%|.A|
k—16 Shal 443004y 454 006) .476(_0()5)
Srand | 450000  -473008) -491c006)
k= 32 Shai 4500020  454004) 4750005
Srand | 458003y 48003y  493(008)
i — 64 Star | 454003y 457003  482(00s)
Srand | 466005y 484003 493009
b — 198 Shar | 4650001y 468002 483006
rand | 46101y  4850007) 498003

Table 9: Few-shot F; scores on GHC dataset, Hate label,
with varying annotation budgets (%B).

Table 9 displays the results for the few-shot stage
of our framework (Flf %). These results are in line
with the overall findings, demonstrating that our
framework outperforms MTL by 4.5% with 75%
of the original budget.



D.1 Impact of the Imbalanced Number of
Annotations on Performance

Results on the GHC dataset indicate a consistent
and significant advantage of our framework, even
when applied to larger datasets with imbalanced
numbers of annotations across annotators. To fur-
ther investigate the impact of varying numbers of
annotations across annotators on the performance
of our framework, we conducted a correlation anal-
ysis between each annotator’s performance and
their number of annotations. The results revealed
no statistically significant correlation between the
number of annotations and the overall F; score of
an annotator, as indicated by the correlation coef-
ficients for S,qnq (1 = —0.17,p = 0.25) and Spy
(r = —0.14,p = 0.32). The plots in Figure 7 illus-
trate the annotator-level F} scores as the number
of annotations of the annotators increases.

GHC Dataset: Annotator-Level F1 Scores
Relative to Number of Annotations
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Figure 7: F) scores of annotators as the number of
annotations increases
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E Additional Details and Results

E.1 Implementation Details

Choice of model architecture: We chose to in-
corporate RoBERTa-base in our framework as a
simple and robust model architecture. It is impor-
tant to note that our focus is not on identifying the
best model architecture. Rather, our primary goal
is to demonstrate that even with a straightforward
model, we can observe the advantages of our frame-
work. This is a common practice in recent papers in
the subjective modeling domain (Wang and Plank,
2023; Davani et al., 2022; Baumler et al., 2023).

We employ a weighted random sampler for the
Brexit dataset to account for the imbalance in the
labels of each annotator. Our training batch size
is 128, and we use AdamW optimizer. In the train-
ing, we prevent overfitting by selecting the best
model according to the validation F score. All
models converged within 5 epochs for MTL and
50 epochs for few-shot learning. Hyperparam-
eter tuning was conducted for learning rates of
[3e — 06,5e¢ — 05, 1e — 06, 2e — 05] and weight
decays of [0,0.01].

E.2 Hardware Configuration

The experiments were conducted on 4 NVIDIA
RTX A6000 GPUs with 48GB RAM and overall
they were completed in about 330 GPU hours.

E.3 Overall Performance for all Sampling
Methods

For completeness of our analysis in Section 5.2,
Table 10 presents the overall performance (F¥eral)
for all sampling strategies described in Section 3.

E.4 Impact of the Annotators’ Disagreement
on Performance

In Figure 8 we demonstrate the impact of agree-
ment (as a measure of similarity) between the first
and second-stage annotators (A,,; and Ay,) on
the performance of the model for the second stage
annotators. Importantly, we do not observe perfor-
mance degradation as the agreement between the
two sets decreases.

F Mathematical Symbols

Table 11 provides a directory of mathematical sym-
bols used in our paper, along with their respective
meanings, to facilitate ease of understanding for
the reader.
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Table 10: Overall F} results on Brexit and MFSC datasets for different budgets of annotation (B), with various few
shot sampling strategies; mean and standard deviation calculated over repeated runs.
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Figure 8: Each plot demonstrates the effect of a single annotator’s agreement with the initial set of annotators used
for MTL training (A,,¢), on its F} score performance, when adopted as a few-shot task. The x-axis represents the
agreement measure, and the y-axis represents the I score. The darker color of the scatter plot corresponds to a
higher number of positive labels provided by the respective annotator.

Symbol Meaning
Ays Annotators in MTL model
Al Annotators adopted as few shot task
S Sampling based on majority vote

Shar | Sampling based on balanced samples across classes
Sadis |Sampling based on high disagreement of annotaions

Srand Random sampling
B Budget
D All annotations for a dataset

Flf ? Avg. F1 scores of the few-shot model for Ay,
F™ | Avg. F) scores of the multi-task model for A,

Table 11: Mathematical notations used throughout the
paper with their explanations
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