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Although supervised fine-tuning (SFT) and reinforcement learning (RL) enhance
the performance of language and vision-language models, their roles in enhancing
model generalization capabilities remain unclear. In this work, we study the differ-
ent effects of SFT and RL on generalization and overfitting in rule-based tasks. We
introduce GeneralPoints, an arithmetic reasoning card game, and adopt V-IRL,
a real-world navigation environment, to assess how models trained with SFT/RL
generalize to unseen rule variants. Our results consistently demonstrate that RL,
especially when trained with an outcome-based reward, generalizes across both
textual and visual rule variations. SFT, on the contrary, memorizes training data
and does not generalize to unseen rules or out-of-distribution scenarios. Further
analysis reveals that RL improves the model’s underlying visual recognition capa-
bilities, contributing to its generalization. However, we also find that SFT plays a
necessary role in stabilizing RL training by providing a structured output format.
These findings highlight the distinct learning dynamics of SFT and RL, demon-
strating the importance of RL for acquiring generalizable rule-based knowledge in
complex, multi-modal tasks.

1. Introduction
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Figure 1: A comparative study of RL and
SFT on the visual navigation environment
V-IRL [1]. An example of generalization experi-
ments in a rule-based navigation task [1]. Out-of-
distribution curves represent performance on the
same task but under a different rule. See detailed
descriptions of the task in Section 5.1.

Post-trainingmethods, such as supervised fine-
tuning (SFT) or reinforcement learning (RL)
improve the performance of large language
models (LLM) and vision language models
(VLM) on various tasks [2–8]. Specifically, SFT
demonstrates significant performance gains
across a range of tasks [4, 6, 7, 9, 10], while
RL is crucial for aligning models with human
preferences [3, 11, 12] or task outcomes [13,
14] hence improving reasoning capabilities [15,
16]. Although SFT and RL are commonly
used, their learning dynamics remain under-
explored. This paper investigates the differ-
ent effects of SFT and RL on generalization and
overfitting, specifically focusing on rule-based
knowledge [17].
For verifying learned knowledge, standard vi-
sion and language benchmarks [7, 18–22] may
not be ideal, as the fixed pre-trainedmodel may
suffer from data contamination. This is because pre-trainedmodels can suffer from data contamina-
tion, where the pretraining data (sourced from the internet) may inadvertently include information
present in the test sets [23]. Inspired by Allen-Zhu and Li [24], we investigate knowledge general-
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ization in rule-based tasks. Specifically, we study whether performance gains on one rule, learned
during SFT or RL, generalize to new rules within the same task.
We employ two rule-based tasks for our study. First, we introduce GeneralPoints, an original card
game task similar to the Points24 task from RL4VLM [14], designed to evaluate a model’s arith-
metic reasoning capabilities. In GeneralPoints, the model receives four cards (presented as text or
images), and is required to compute a target number (24 by default) using each card’s numerical
value exactly once. Rule variations in GeneralPoints involve changing the target number and al-
tering how suit cards ('J', 'Q', and 'K') are interpreted. Second, we utilize V-IRL [1], a real-world
navigation environment, which focuses on testing spatial reasoning capabilities. The rule variants in
V-IRL involves using an absolute or a relative orientation action space.
In both tasks, we observe that RL learns generalizable rules (expressed in text), where in-
distribution performance gains also transfer to unseen rules. In contrast, supervised fine-tuning
(SFT) appears to memorize training rules and fails to generalize (an example is shown in Figure 1).
Beyond this rule-based generalization (in text), we further investigate generalization in the visual
domain and observe that RL also generalizes to visual OOD tasks, whereas SFT continues to strug-
gle. With this visual strength, our RL approach achieves state-of-the-art performance on the V-IRL
mini benchmark, by +33.8% (44.0%→77.8%) [1]. To understand how RL impacts a model’s vi-
sual abilities, we conduct additional analysis on GeneralPoints, revealing that training RL with
an outcome-based reward function [25] improves visual recognition capabilities. Finally, while RL
exhibits superior generalization compared to SFT, we show that SFT is still crucial for stable RL
training, as SFT stabilizes the model’s output format, enabling RL to achieve its performance gains.

2. Related Works
Post-Training. Post-training is crucial for enhancingmodel performance [5, 26–28]. This stage com-
monly utilizes large-scale supervised fine-tuning (SFT) [2, 29–33] and/or reinforcement learning
(RL) [3, 11, 12, 14, 34, 35]. SFT adapts pre-trained language models to downstream tasks by train-
ing them on task-specific, often instruction-formatted datasets. Previous work, such as FLAN [2],
demonstrate that fine-tuning ondiverse instruction-tuning datasets significantly enhances zero-shot
performance on unseen tasks. Furthermore, LIMA [33] shows that supervised fine-tuning acts as
a “format teacher” effectively adapting the model’s responses to a desired format while leveraging
the capabilities of pre-trained LLMs. In contrast, RL [3, 11, 12, 14, 34–36] has been primarily used to
align models with human preferences or to train models to solve specific tasks [3, 11, 12] or using
training the foundational model to solve a specific task with RL [14, 34, 35]. Our work differs from
prior studies on both SFT and RL; we aim to comparatively analyze the generalization and memo-
rization characteristics of SFT and RL, while previous studies have focused primarily on only one
of these two post-training methods.
Overfitting and generalization in LLMs. A significant body of research studying the overfitting
and generalization in neural networks [37–40]. In LLMs, overfitting canmanifest as themodelmem-
orizing training data [38, 41], while generalization reflects the divergence between the model’s out-
put distribution and the pre-training data distribution [42]. Prior studies suggest that LLMs exhibit
more overfitting on simpler, knowledge-intensive tasks and greater generalization on more com-
plex, reasoning-intensive ones [43, 44]. For example, research [17, 23, 24, 45–48] demonstrates that
LLMs develop reasoning skill sets beyond their training data by pre-computing reasoning graphs
before the autoregressive generation, providing compelling evidence of generalization. Our study
takes a different approach by investigating the role of different post-training paradigms on overfit-
ting versus generalization in the context of rule-based tasks. We conduct controlled studies in both
unimodal (LLM) and multimodal (VLM) settings, demonstrating that RL facilitates generalization
more than SFT.
Scaling up inference-time compute. Recent research has increasingly focused on scaling up
inference-time computation to improve model performance [15, 49–51]. Early studies [49, 50]
prompt models to generate intermediate reasoning steps and extended responses before produc-

2



ing a final answer. Subsequent works [51–55] have demonstrated that fine-tuning verifiers during
inference improvesmodel accuracy, effectively utilizing test-time computation. Notably, recent find-
ings [15] reveal “scaling laws” for inference-time compute, highlighting significant performance
gains with increased computational resources. Our work builds upon these findings in two ways.
First, we integrate insights from inference-time verification into a multi-turn RL formulation, allow-
ing the model to identify and correct its errors. Second, we examine the impact of inference-time
verification on RL generalization, demonstrating that scaling up inference-time verification is the
key for RL to generalize. Together, we demonstrate that these techniques are effective across both
training and inference stages.

Improving visual capability inVLMs. While VLMs have demonstrated remarkable skills in awide
range of challenging tasks, such as solving advanced college exam questions [56–58] and visual
understanding tasks [1, 59], they also exhibit limitations in visual perception [60–63]. Prior efforts
to enhanceVLMs’ visual perception include combiningmultiple visual encoders [7, 62, 64], curating
high-quality SFT data [7, 65, 66], and improving the SFT training recipe by unfreezing the visual
backbone [7, 67]. While prior works primarily focus on experiments during the SFT stage, our work
demonstrates that RL can also improve visual perception, beyond its generalization capabilities.

3. Preliminaries

Standard RL terminologies. We adopt the standard notation from classic RL literature [68, 69],
where we use S denotes the state space, A denotes the action space, r : S × A → R denotes the
reward function, and T denotes the maximum number of steps per episode. The goal is of RL is to
learn the a policy π : S → A that maximizes the overall returnmaxπ∈Π Eπ

[∑T
t=0 r(st, at)

]
. Without

loss of generality, we use π(a|s) ∈ [0, 1] to denote probability of π choosing a at s.

Adapting RL terminologies to foundation models. We adopt a multi-turn RL setting for founda-
tion model training [14, 34, 35]. Let V represent the discrete and finite vocabulary (token) space.
The input and output text spaces are denoted by Vm,Vn, where m and n are the maximum to-
ken length of the input sequence vin and output sequence vout. For models requiring visual inputs
(VLMs), we define O as the space of all RGB images. The state space, denoted by S is dedined as
S := Vm ×O for VLM, and S := Vm for LLM. The action space A is defined as A := Vn. We utilize
a verifier function VER : Vn → R×Vk to denote a verifier, which evaluates the outcome of vout and
generates an outcome-based reward function [25, 51, 70, 71] r along with textual information vver.
Mathematically, at time t, VER(vout

t ) 7→ (rt,v
ver
t ), where we use rt to denote r(st, at) for simplicity.

Sequential revision with a verifier. For modeling state-action transition, we adopt the sequential
revision formulation [51]. Specifically, at time step t = 0 the initial input vin

0 consists of the system
prompt. For subsequent time steps (t ≥ 1), the input prompt vin

t comprises the system prompt
concatenated with all prior model and verifier outputs, denoted by [vout

k ,vver
k ]t−1

k=0. An illustration
of the sequential revision formulation is provided in Figure 2, and an example of the state-action
transition is shown in Figure 3.

Q: Compute 24 using these four cards: [5, 4, 10, 7]

(V)LM 10+7+4+5 (7-4)*10-6 (7-5)*10+4

wrong 
calculation



Reward: -1

illegal number 
used



Reward: -5

correct answer




Reward: +10

Verifier Info:

Figure 2: An example of the sequential revision formulation with a verifier. The model generate the next
answer vout

t+1 conditioned on all previous answers and information (vout
i ,vver

t , 0 ≤ i ≤ t) from the verifier.
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System Prompt (vin
0 )

[Task Description] You are an expert in {task name}, you are observing {purely
language/vision-language inputs + <image>}. You are currently at {state related
info}. Please follow {tasks rules}.
[Output] Your response should be a valid json file in the following format:
{task related information and answer}

Appending previous model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Model output (vout

t ) and Verifier Output (vver
t )

{Task related json outputs}, {You success/fail}. ▷ vin
t+1 = concat(vin

t ,v
out
t ,vver

t )

Figure 3: An example of our prompt update. for constructing vin
t+1. The brown parts marks the task and

related information, and the purple parts denote the state (st) specific info. The blue and red describe the
output from the model and verifier, respectively.

4. Evaluation Tasks
To evaluate the generalization of different post-training methods, we select two rule-base tasks
which require the model to tackle the task varying rule sets. First, we develop an original
GeneralPoints environment designed to assess models’ arithmetic abilities (Section 4.1). Second,
we adopt the V-IRL environment [1] to examine foundation models’ reasoning capabilities in an
open-world visual navigation domain (Section 4.2).

4.1. The General Points Environment
Our original GeneralPoints environment is based on the Points24 environment [14] and is de-
signed to evaluate generalization of arithmetic abilities. Each state s of the environment con-
tains 4 cards, described as text or presented as an image (see Figure 2 for a visual example of
GeneralPoints). Note that when the input from GeneralPoints is presented in an image, it natu-
rally introduces additional visual challenges requiring the VLM to recognize cards before solving the
equation. The goal is to produce an equation that equals a target number using all 4 numbers from the
cards only once.
Rule variants for verifying arithmetic reasoning capabilities. To study whether the model learns
arithmetic operations or simply overfits by memorizing the post-training data, we introduce rule
variations in GeneralPoints. These variations consist of: (1) changing the target number to dif-
ferent positive integers, and (2) interpreting the symbols 'J', 'Q', and 'K' either as 11, 12, and 13,
respectively, or all as the same number 10. These variations ensure a rigorous evaluation of the
model’s ability to generalize arithmetic reasoning across diverse settings. Detailed examples of the
state-action transitions of GeneralPoints are provided in Appendix A.1.

4.2. The V-IRL Environment
While the GeneralPoints environment is designed to assess arithmetic abilities, we further utilize
the V-IRL environment [1] to study the foundation model’s spatial reasoning capability in an open-
world navigation domain with realistic visual input (can be parsed into pure text description, see
more details in Yang et al. [1] and an illustration in Figure 4). The major visual challenge in V-IRL
involves recognizing different landmarks from the visual observation,2 before taking an action, and the
goal is to navigate to a target location by following instructions containing spatial information.

2See Figure 4, the model needs to recognize landmarks like The Dutch, Lola Taverna, and Shuka from the
visual observation, and relate these landmarks with the textual instructions for taking the right action.
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Shuka
Mediterranean

⭐ First, turn slightly right towards the northeast and walk a short distance until you reach the next intersection, 
where you‘ll see The Dutch on your right. Next, make a sharp left turn to head northwest. Continue for a while 
until you reach the next intersection, where Lola Taverna will be on your right. Finally, turn slightly right to face 
northeast and walk a short distance until you reach your destination, Shuka, which will be on your right.

The Dutch
American restaurant

Lola Taverna
Greek

[OBSERVATION]
“Start!”
[ACTION]
“Turn to northeast.”

[OBSERVATION]
“See Lola Taverna on my right.”
[ACTION]
“Left turn to northwest.”

[OBSERVATION]
“See Shuka on my right.”
[ACTION]
“Stop.”

[OBSERVATION]
“See The Dutch on my right.”
[ACTION]
“Left turn to northwest.”

Figure 4: Demonstration of one navigation task in V-IRL. Agent navigates from place to place following the
given linguistic navigation instructions in V-IRL. The demonstration of the navigationprocedure is shownat the
top, with the corresponding navigation instructions displayed below. Visual observation-related information
is highlighted in green, while action-related information is marked in orange.

Rule variations for assessing spatial reasoning. To evaluate whether the model possesses spatial
knowledge or simply overfits post-training data, we consider two distinct action space configura-
tions. The first variant utilizes an absolute orientation action space, which includes {'north', 'north-
east', 'east', 'southeast', 'south', 'southwest', 'west', 'northwest'}. In contrast, the second variant em-
ploys a relative orientation action space, containing {'left', 'right', 'slightly left', 'slightly right'}. This
relative configuration adjusts the model’s current orientation by 90 degrees or 45 degrees to the
left or right, respectively. An overview of a navigation task in V-IRL is provided in Figure 4, and a
detailed example of an environment step using relative orientation is shown in Appendix B.1.

5. Results

In this section, we present experimental results focusing on the generalization of RL and SFT. Our
experiments adopt the Llama-3.2-Vision-11B [72] as the backbone model. Following pipelines of
RLHF [3] and RL4VLM [14], we initialize the model with SFT before running RL. We specifically
study the following questions: (1) How does RL/SFT affect the generalization to different rules?
(Section 5.1); (2) When the model contains visual component, how does RL/SFT affect the general-
ization to different visual variants? (Section 5.2); (3) Howdoes RL/SFT affect the visual recognition
capability in the case of VLM (Section 5.3) (4)What roles do SFT play for RL training? (Section 5.4).
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5.1. SFT memorizes, RL generalizes
We evaluate the performance of different post-trainingmethods on GeneralPoints and V-IRL, each
ofwhich containsmultiple rule-base variants. For each task, we separately scale up the training com-
putes of RL and SFT on a single rule. We consider the results on the trained rule as in-distribution
(ID) performance, while results on the unseen rules measures out-of-distribution (OOD) general-
ization. In GeneralPoints, the ID case treats all 'J', 'Q', 'K' as 10, and the OOD cases interprets them
as 11, 12, and 13. As for V-IRL, the ID case adopts the absolute orientation coordinate system and the
OOD case uses the relative orientation action space. Other details of the experimental setups can be
found in Appendix C.
RL generalizes, SFT overfits. As illustrated in Figure 5, RL consistently improves OOD perfor-
mance on all tasks, including both unimodal (LLM) and multimodal (VLM). Specifically, Figure 6
demonstrates that RL increase of +1.7% on GP-L (9.8% → 11.5%) and +11.0% on V-IRL-L (80.8%
→ 91.8%). Even with the additional challenge of visual recognition in the vision-language vari-
ants, RL maintains consistent performance improvements of+3.0% (11.2%→ 14.2%) on GP-VL and
+9.3% (35.7% → 45.0%) on V-IRL-VL, respectively. In contrast, SFT consistently exhibits perfor-
mance degradation across all OODevaluations on all tasks: -5.9% on GP-L (9.8%→ 3.9%), -79.5% on
V-IRL-L (80.8%→ 1.3%), -5.6% (11.2%→ 5.6%) on GP-VL, and -33.2% (35.7%→ 2.5%) on V-IRL-VL.
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Figure 5: Success rate (%) - GFLOPs trendlines for RL and SFT on GeneralPoints and V-IRL.
The top row shows in-distribution performance, while the bottom row shows out-of-distribution
performance. Results are presented for both pure language (-L) and vision-language (-VL) variants
of each task. For GeneralPoints, we report the episode success rate, while for V-IRL, we report per-
step accuracy with overall success rate in Figures 1 and 16. Detailed evaluation setups are provided
in Appendix C.1.

5.2. Generalization in Visual Out-of-Distribution Tasks
In Section 5.1, we demonstrate that RL generalizes in language-only rule-based tasks, whereas SFT
exhibits the opposite trend. Given this observation, and that VLM include an additional visual
modality, wemove one-step forward beyond rule-based tasks, to study the generalization capability
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Figure 6: Comparison of out-of-distribution performance under rule variants. We report the suc-
cess rate for GeneralPoints and per-step-accuracy for V-IRL. For each subplot, RL and SFT are
trained with equal computation, and their shared initial checkpoint (marked as Init) is set as base-
line. Detailed evaluation setups are provided in Appendix C.1.

in visual OOD scenarios. For the visual OOD task, we design visual variants of GeneralPoints and
V-IRL. For GeneralPoints, we train the foundation model using black suits (♠, ♣) and test out-
of-distribution performance on red suits (♥, ♦). For V-IRL, we train the model on New York City
routes and evaluate it on original V-IRL VLN mini benchmark [1] containing routes from various
cities worldwide. Note that the rules remain consistent across all comparative experiments.
RL generalizes in visual OOD tasks. As shown in Figure 7, we observe that RL still generalizes
in visual OOD tasks, while SFT continues to suffer. Specifically, in GP-VL and VIRL-VL, RL achieves
performance improvement of +17.6% (23.6% → 41.2%), +61.1% (16.7% → 77.8%), whereas SFT
suffers from performance decrease of -9.9% (23.6% → 13.7%) and -5.6% (16.7% → 11.1%). As a
byproduct of our visual OOD study, we also show that our multi-turn RL formulation improves
state-of-the-art results on the V-IRLmini benchmark [1] by +33.8% (44.0% → 77.8%).3
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Figure 7: Comparison of out-of-distribution performance under visual variants. Similar to Fig-
ures 5 and 6, we present both the performance dynamics (shown as lines) and final performance
(shown as bars) for visual out-of-distribution evaluations. We additionallymark the previous state-
of-the-art on V-IRL VLN mini benchmark [1] (right).

5.3. RL Improves Visual Capabilities
Continuing our studies in VLMs, we have shown that VLMs trained with RL generalize to rule-
based OOD tasks (Section 5.1) and visual OOD tasks (Section 5.2). This leads us to question: how
does RL enhance VLMs’ visual capabilities? To study this question, we conduction additional ablation
studies on the OOD performance of RL and SFT in GP-VL along with the model’s visual recognition
accuracy, in terms of the recognizing all 4 cards from the input image. In particular, we study how

3As shown in Table 5 of Yang et al. [1], the previous state-of-the-art performance of V-IRLVLNmini bench-
mark is 44.0%, while we achieve an result of 77.8%.
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scaling the post-training compute via RL or SFT affect the generalization and visual recognition
accuracy in the language-only rule-based OOD (Figure 8 left) and visual OOD (Figure 8 right).
Scaling RL Improves Visual Recognition Accuracy in VLM Training. As shown in Figure Fig-
ure 8, we observe that the VLM’s visual recognition accuracy largely affects the overall performance,
as similarly observed in Zhong et al. [73]. In addition, scaling up RL compute also improve the
visual recognition accuracy, as a byproduct of its generalization capability, while scaling SFT de-
teriorates both the visual recognition accuracy and overall performance. Additional experimental
results are provided in Figures 14 and 15 of Appendix D.1.
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Figure 8: Recognition vs. success rate for RL and SFT under different variants. The results show
that increasing SFT compute leads to degraded performance in both reasoning and recognition ca-
pabilities, while scaling up RL compute yields improvements in both areas. Connected datapoints
are evaluated using the same checkpoint (same compute).

5.4. Role of SFT
Despite the superiority of RL in generalizing reasoning andvisual capabilities, SFT remains essential
as necessary initialization stage. Without SFT, direct RL training fails, as demonstrated in Figure 9
where all three experiments crash due to poor instruction following. Detailed example outputs
in Figure 17 (in Appendix D.3) reveal that the original Llama-3.2-Vision-11B tends to generate long,
tangential, and unstructured responses. This issue makes it extremely hard to retrieve task-related
information and properly reward responses during RL training.
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Figure 9: RL experiments on GP-L without SFT initialization. All of our 3 trials with different
learning rate fail due to poor zero-shot instruction following capability of the base model.
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A. Details on the General Points Environment

A.1. Detailed examples on the transition dynamics
As shown in Figure 10 and Figure 11, we treat the system prompt as vin

0 and then subsequently
appending the future outputs vout

1:t and verifier info vver
1:t into the prompt for getting the t+1 output.

Figure 10 provides an examplewith the visual inputs, while Figure 11 shows the language only case.

System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are observing
these four cards in the image. Note that 'J', 'Q', and 'K' count as '10',
and each card must be used once. Your goal is to output a formula
that evaluates to 24 using numbers from the cards and operators
such as '+', '-', '*', '/', '(', ')', and '='.
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Model output (vout

t )
{
"cards": ['A', '3', 'K', '6'],
"number": [1, 3, 13, 6],
"formula": "(1+6)*3+13=24",
}

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t ,v
out
t ,vver

t )

Figure 10: An example of our prompt update for constructing vin
t+1 using vin

t ,v
out
t and vver

t . This example
provides an optional vision input for VLMs, adding a visual recognition challenge. The brown parts marks the
task and related information, and the purple parts denote the state (st) specific info. The blue and red describe
the output from the model and verifier, respectively.

A.2. Additional details on the environmental design
Arguments. The GeneralPoints environment supports the following configurable arguments:

• Target point: Any positive integer
• Face cards rule: Two options

– 'J', 'Q', and 'K' all count as '10'
– 'J', 'Q', and 'K' count as '11', '12', and '13' respectively

• Card sampling: Two options
– Sample 4 cards without replacement from full set of 52 poker cards
– Sample at least one card from 'J', 'Q', and 'K'

• Card color: Three options
– Black suits only: ♣, ♠
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System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are observing these four cards in the im-
age. Note that 'J', 'Q', and 'K' count as '11', '12', and '13' respectively, and each card must be
used once. Your goal is to output a formula that evaluates to 24 using numbers from the
cards and operators such as '+', '-', '*', '/', '(', ')', and '='.
[Input]
Cards: ['A', '3', 'K', '6']
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Model output (vout

t )
{
"cards": ['A', '3', 'K', '6'],
"number": [1, 3, 13, 6],
"formula": "(1+6)*3+13=24",
}

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t ,v
out
t ,vver

t )

Figure 11: An example of our prompt update for constructing vin
t+1 using vin

t ,v
out
t and vver

t . This example
provides an optional vision input for VLMs, adding a visual recognition challenge. The brown parts marks the
task and related information, and the purple parts denote the state (st) specific info. The blue and red describe
the output from the model and verifier, respectively.

– Red suits only: ♥, ♦.
– All suits: ♠, ♥, ♣, ♦.

For all experiments, we fix the target point at 24. In Figure 5, training and in-domain evaluation use
the rule where face cards count as '10'. For out-of-domain evaluation, we use the alternative face
cards rule and require at least one face card, forcing calculations with numbers above 10 that are
not encountered during training. For visual distribution shift experiments (Section 5.2), we train
the model on black suits ♠, ♣ and evaluate out-of-domain performance on red suits ♥, ♦.
Reward design. An episode terminates when either a correct equation is generated or the maxi-
mum verification step of 5 is reached. The reward function is as follows:

• r = 5: For generating a legal equation that equals the target point
• r = −1: For legal equations using each card once but not equaling the target point
• r = −1: For exceeding maximum verification step
• r = −2: For legal equations containing numbers not among the given choices
• r = −3: For all other illegal equations

In the vision-language variant (GeneralPoints-VL), an additional penalty of r = −1.5 is applied
when the agent fails to correctly recognize the given cards.
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B. Details on the V-IRL Environment

B.1. Detailed examples on the transition dynamics

B.2. Additional details on the environmental design
Basics. The route serves as the fundamental navigation object in the V-IRL environment. As illus-
trated in Figure 4, each route corresponds to a real-world pathwith associated language instructions
and visual signals. Using Figure 4 as an example, a route comprises:

• Destination: Shuka
• Starting point: Start
• Turning points: The Dutch, Lola Taverna
• Straight road: Roads connecting turning points, starting point, and destination
• Street views: 360-degree panoramic views at each movable point
• Oracle information: Expert observation data for each movable point
• Expert trajectory
• Instruction

Although the instructions in Figures 4, 12 and 13 are presented in different formats, they convey
equivalent information, with Figure 4 using natural language.
Simplification and arguments. We simplify the original V-IRL design from Yang et al. [1] to better
accommodate RL training. The modifications include eliminating the 2-stage navigation pipeline
that required a separate visual detector for street view processing, and removing online queries to
reduce training time and cost. Our V-IRL environment contains 2 additional configuration argu-
ments compared with the original design:

• Action space: two options
– Absolute direction: "forward()", "turn_direction(x)" where x∈['north', 'northeast',
'east', 'southeast', 'south', 'southwest', 'west', 'northwest'], "stop()"

– Relative direction: "forward()", "turn_direction(x)" where x∈['left', 'right', 'slightly
left', 'slightly right'], "stop()"

• Maximum straight road length: any positive integer

The action space argument accommodates the rule variants described in Section 4. For experiments
shown in Figure 5, we use absolute direction action space during training and in-domain evalu-
ation, while using the alternative rule for out-of-domain evaluation. We implement a maximum
straight road length to limit the number of movable coordinates between turning points, prevent-
ing sequences of repetitive "forward()" actions. We conduct visual distribution shift experiments
(Section 5.2) via training the model on New York City regions and evaluating the out-of-domain
performance on the worldwide navigation routes from the benchmark released by Yang et al. [1].
Reward design. An episode terminates when either the navigation agent stops at the destination
or the maximum verification step of 2 is reached. The reward function is as follows:

• r = 1: For generating a correct action at the current coordinate
• r = −1: For generating wrong action at the current coordinate
• r = −1: For exceeding maximum verification step
• r = −1.5: For failed detection of landmarks
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C. Experimental Setup
This section details the experimental setup used in Section 5.

C.1. Evaluation Metric
Per-step accuracy. We report the per-step accuracy for V-IRL-VL task in Figures 5 and 6. An indi-
vidual step is considered correct when the model’s chosen action matches the expert trajectory at
that position. Note that intermediate verification steps are counted as independent samples here.
Success rate. We report the success rate (%) of GeneralPoints-L, GeneralPoints-VL, V-IRL-L
in Figures 5 and 6. In GeneralPoints task, success is defined as succeeding at least once during
the inference time verification. In V-IRL task, a sample is recorded as success when the model takes
correct action at eachmovable point on the route. For V-IRL, the overall success rate is a significantly
more demanding metric than per-step accuracy. For example, a random policy achieving 10% per-
step accuracy would yield approximately 1e-10 success rate on routes averaging 10 steps in length.
Computation estimation. We estimate the FLOPs for training X following the similar manner of
[27, 51], where Xtrain = 6NDtrain and Xinference = 2NDinference. Here, N represents the model
parameters and Dtrain represents the number of tokens during training. Suppose our SFT and RL
experients starts from a checkpoint trained on Dinit tokens, we can estimate the training computa-
tion of SFT and RL via the following equations:

XSFT = 6N(Dinit +DSFT )

XRL = 6N(Dinit +DRL) + 2NDbuffer

Note that RL (PPO [74]) contains iterative replay buffer collection and optimization, hence requir-
ing additional inference computation. For simplicity, we approximate the term via:

Dbuffer ≈ Ed̄id̄o
DRL

·DRL

= λDRL

where E ∈ N denotes the number of auto-regressive generation processes, d̄i, d̄o denote average
input tokens and output tokens. We estimate the λ for GeneralPoints and V-IRL as 6 and 5.1 re-
spectively after calculation.

D. Additional Experimental Results
In this section, we provide additional experimental results that are not covered in the main body.

D.1. Ablation Studies on GeneralPoints-VL RL and SFT
SFT. We ablate the hyperparameter choices under the same task setting of GneralPoints-VL
in Section 5.1. For experiments fine-tuning all parameters, we search learning rates from {1 ×
10−4, 1 × 10−4, 1 × 10−5, 1 × 10−6, 5 × 10−7, 1 × 10−7}. Freezing the vision encoder, we search
learning rates {1 × 10−6, 1 × 10−7}. Freezing vision encoder and adapter, we search learning rates
{1× 10−6, 5× 10−7, 1× 10−7}. We provide the in-distribution success rate curve in Figure 14.
RL. Finding suitable hyperparameters for RL experiments requires minimal effort. We conduct
a search over learning rates 2× 10−6, 1× 10−6, with the in-distribution success rate curves shown
in Figure 15. All parameters are tunable in our RL experiments.

D.2. More results on V-IRL-VL

D.3. Failure Cases
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System Prompt (vin
0 )

[Task Description]
You are an expert in navigation. You will receive a sequence of in-
structions to follow while observing your surrounding street views.
You are also provided with your observation and action history in
text. your goal is to take the action based on the current observation
and instruction.
[Instruction]
1. First, turn left to face east.
2. Move forward until you reach the next intersection where Hotel
32One is on your right behind.
3. Turn right to face north.
4. Move forward until you reach the next intersection where Dragon Gate Chinatown SF is on
your right front.
5. Turn left to face east.
6. Move forward until the destination Café de la Presse is on your right.
[Current observation]
You observe a 2x2 grid of street view images with the following headings:
[front, right
back, left]
You need to identify if any of the landmarks in the instruction are visible in the street view
grid.
[Action space]
- "forward()": indicates moving forward for 1 step;
- "turn_direction(x)": indicates turn direction to the target heading, where x∈[’north’, ’north-
east’, ’east’, ’southeast’, ’south’, ’southwest’, ’west’, ’northwest’];
- "stop()": indicates the navigation is finished;
[Observations and actions sequence]
O_1: No landmarks nearby;
A_1: turn_direction(east)
O_2: No landmarks nearby;
A_2: forward()
O_3: No landmarks nearby;
A_3: forward()
O_4: You observe an image of 4 views; You observe an intersection
A_4:
[Output]
Your response should be a valid json file in the following format:
{
"current observation": latest observation from the street view grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Model output (vout

t )
{
"current observation": "Hotel 32One is on my right behind; I observe an intersection",
"current instruction": "Turn right to face north.",
"action": "turn_direction(north)",
}

Verifier Output (vver
t )

Correct solution. ▷ Move to the next scene upon correct action

Figure 12: An example of our prompt update for constructing vin
t+1 using vin

t ,v
out
t and vver

t . The brown parts
marks the task and related information, and the purple parts denote the state (st) specific info. The brown
parts marks the task and related information, and the purple parts denote the state (st) specific info. The blue
and red describe the output from the model and verifier, respectively.
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System Prompt (vin
0 )

[Task Description]
You are an expert in navgation. You will receive a sequence of instructions to follow. You are
also provided with your observation and action histroy in text. Your goal is to first analyze
the instruction and identify the next sentence to be executed. Then, you need to provide the
action to be taken based on the current observation and instruction.
[Instruction]
1. First, turn left to face east.
2. Move forward until you reach the next intersection where Hotel 32One is on your right
behind.
3. Turn right to face north.
4. Move forward until you reach the next intersection where Dragon Gate Chinatown SF is on
your right front.
5. Turn left to face east.
6. Move forward until the destination Café de la Presse is on your right.
[Action space]
- "forward()": indicates moving forward for 1 step;
- "turn_direction(x)": indicates turn direction to the target heading, where x∈['north', 'north-
east', 'east', 'southeast', 'south', 'southwest', 'west', 'northwest'];
- "stop()": indicates the navigation is finished;
[Observations and actions sequence]
O_1: No landmarks nearby;
A_1: turn_direction(east)
O_2: No landmarks nearby;
A_2: forward()
O_3: No landmarks nearby;
A_3: forward()
O_4: Hotel 32One is on your right behind; You observe an intersection
A_4:
[Output]
Your response should be a valid json file in the following format:
{
"current observation": latest observation from the street view grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Model output (vout

t )
{
"current observation": "Hotel 32One is on my right behind; I observe an intersection",
"current instruction": "Turn right to face north.",
"action": "turn_direction(north)",
}

Verifier Output (vver
t )

Correct solution. ▷ Move to the next scene upon correct action

Figure 13: An example of our prompt update for constructing vin
t+1 using vin

t ,v
out
t and vver

t . This example
provides an optional vision input for VLMs, adding a visual recognition challenge. The brown parts marks the
task and related information, and the purple parts denote the state (st) specific info. The blue and red describe
the output from the model and verifier, respectively.
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Figure 14: Ablation studies on GeneralPoints-VL SFT. We ablate the learning rate and report the
episode success rate (%) of all experiments.
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Figure 15: Ablation studies on GeneralPoints-VL RL. Echoing Figure 14, we ablate the learning
rate and rreport the episode success rate (%) of the two experiments. All components are tunable
here.
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Figure 16: Overall success rate (%) - GFLOPs for V-IRL-VL under rule variants. Due to the task’s
complexity, neither training method achieves reasonable out-of-domain performance. Evaluation
metric details can be found in Appendix C.1.

20



System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are observing these four cards in the im-
age. Note that 'J', 'Q', and 'K' count as '11', '12', and '13' respectively, and each card must be
used once. Your goal is to output a formula that evaluates to 24 using numbers from the
cards and operators such as '+', '-', '*', '/', '(', ')', and '='.
[Input]
Cards: ['2', 'J', '3', 'K']
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 ,vver
0 ,vout

1 ,vver
1 , . . . ,vout

t−1,v
ver
t−1] ▷ vin

t = concat (vin
0 , [v

out
k ,vver

k ]t−1
k=0

)
Failed model output (vout

t )
To solve this problem, we can use a brute force approach by generating all possible combina-
tions of the cards and checking if any of them can be used to form an equation that equals 24.
Here is a Python solution for this problem:
“‘python
def calculate_formula(cards):
# Define the mapping of cards to their corresponding numbers
. . .

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t ,v
out
t ,vver

t )

Figure 17: Example model outputs without SFT initialization. We record model responses using
prompts similar to the one shown in Figure 10. The results demonstrate that Llama-3.2-Vision-11B
fails to follow instructions properly. We omit the long response which tries to solve the puzzle via
code but fails to finish within finite context length.
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