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Abstract

When agents trade in a Duality-based Cost Function prediction market, they collec-
tively implement the learning algorithm Follow-The-Regularized-Leader [Aber-
nethy et al., 2013]. We ask whether other learning algorithms could be used to
inspire the design of prediction markets. By decomposing and modifying the
Duality-based Cost Function Market Maker’s (DCFMM) pricing mechanism, we
propose a new prediction market, called the Smooth Quadratic Prediction Market,
the incentivizes agents to collectively implement general steepest gradient descent.
Relative to the DCFMM, the Smooth Quadratic Prediction Market has a better
worst-case monetary loss for AD securities while preserving axiom guarantees such
as the existence of instantaneous price, information incorporation, expressiveness,
no arbitrage, and a form of incentive compatibility. To motivate the application
of the Smooth Quadratic Prediction Market, we independently examine agents’
trading behavior under two realistic constraints: bounded budgets and buy-only
securities. Finally, we provide an introductory analysis of an approach to facilitate
adaptive liquidity using the Smooth Quadratic Prediction Market. Our results
suggest future designs where the price update rule is separate from the fee structure,
yet guarantees are preserved.

1 Introduction

What are Prediction Markets? Prediction markets allow traders to buy and sell securities whose
payoffs depend on the realization of future events [Hanson, 2003]. Prediction market platforms
such as Kalshi and Polymarket on average move millions of dollars per event-based market. In this
work, we examine prediction markets that trade Arrow-Debreu (AD) securities, which pay $1 if
a particular state of the world is reached and $0 otherwise [Arrow, 1964]. Given a finite random
variable Y = {y1,...,yq} over d mutually exclusive and exhaustive outcomes, AD securities are
designed to elicit a full probability distribution with respect to ), reflected by the current prices of
the securities.

Duality-based CFMM The work of Abernethy et al. [2013] introduced a general framework for
designing automated prediction markets over combinatorial or infinite state outcome spaces named
the Duality-based Cost Function Market Maker (DCFMM). As stated by Abernethy et al. [2013],
“An automated market maker is a market institution that adaptively sets prices for each security
and is always willing to accept trades at these prices.” The DCFMM satisfies the desirable market
axioms of no arbitrage, bounded worst-case loss, information incorporation, expressiveness, incentive
compatibility, and efficient computability. The DCFMM over the last decade has been examined in
numerous works such as Abernethy et al. [2014], Devanur et al. [2015], Frongillo and Waggoner
[2017], Frongillo et al. [2023]. A core observation of Abernethy et al. [2013] is that the DCFMM
uses Follow-The-Regularized-Leader (FTRL) to set prices for securities, by interpreting past trades
as loss vectors. Although not our main contribution, as it has been hinted at in the literature before by
Devanur et al. [2015], to our knowledge, we are the first to formally show (in Appendix C) a tight
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equivalence between Continuous FTRL and DCFMM in terms of regret and worst-case monetary loss
of the mechanism. Inspired by this relation, we ask if other machine learning algorithms could be
used to design a new prediction market with at least the same or better properties than the DCFMM.
This work proposes a new market maker payment mechanism called the Smooth Quadratic Prediction
Market, which is analogous to the learning algorithm general steepest descent in terms of trader’s
incentives.

Smooth Quadratic Prediction Markets We propose the Smooth Quadratic Prediction Market,
which increases profitability for the market maker relative to the DCFMM but still has the performance
guarantees of the DCFMM, such as no arbitrage, bounded worst-case loss, information incorporation,
expressiveness, computational efficiency, and a form of incentive compatibility. We show that the
Smooth Quadratic Market can be interpreted as replacing a Bregman divergence term in the DCFMM
payments by a simpler quadratic “fee”. In the body of this work, we show that the Smooth Quadratic
Prediction Market has many of the same axiom guarantees as that of the DCFMM, demonstrate how
agents are incentivized to follow general steepest descent when trading, examine how agents trade
under either bounded budgets or a buy-only market, and provide an approach to facilitate adaptive
liquidity.

2 Background and Notation

Let us denote the all ones vector by 1 = (1,...,1) € R% Let us denote by the vector §; =
(0,...,1,...,0), i.e. all-zero except for a one in the i-th position. Comparison between vectors is
pointwise, e.g. ¢ > ¢’ if ¢; > ¢} foralli =1,..., d and similarly for =. We say ¢ = ¢’ when ¢; > ¢}
for all 7 and g # ¢'. We denote ((u)); = max(u;,0). Foraset Y C RY, we denote by closure(Y")
as the smallest closed set containing all of the limit points of Y. Define Ri to be the nonnegative
orthant. Let Ay = {p € R | ||p|| = 1} be the set of probability distributions over d outcomes,
represented as vectors. Let relint(Ag) = Ag \ {p € Ay|Fi € [d],p; = 0}. Welet|| - || : RT — Ry
denote a general p-norm. Given a norm || - ||, we define it’s dual norm ||y||. = sup, < (¥, y). Let
f: R% — (—o0, +-00] be a function. We define the Fenchel conjugate of f by f* : RY — [—o0, +00]
such that f*(y) = sup,eqom(s) (¥> ) — f(z). We will use the following definitions for a function f.

e convex: Vz,y € RL A€ [0,1], f(Az + (1 = N)y) < Af(z) + (1= N f(y).
* increasing: f(q) > (¢')V ¢,¢' € R? withq = ¢'.
s l-invariant: f(¢ + al) = f(¢) + aforqg € R, a € R.

* probability mapping: f is twice-differentiable, Vf : RY — Ay, and closure({V f(q) |
qE< Rd}) = Ay.

We shall refer to a function which is convex, increasing, 1-invariant, and a probability mapping as
CIIP.

2.1 Bregman Divergences, Smoothness, and Strong Convexity

This section presents core concepts used throughout this work. We emphasize that we define both
L-smoothness and K-strong convexity through a general norm || - ||, not just via the 2-norm, as is
common in some literature.

Lemma 1 (Hiriart-Urruty and Lemaréchal [2004], Proposition 6.1.1). For a convex differentiable
function f : R — (—o00, +00), it holds that (V f(x) — V f(y),z —y) > 0V 2,y € RL

Definition 1 (Bregman divergence, L-smoothness, & K-strongly convex). For a differentiable
function f : R? — (—o0, +oc], we define the Bregman divergence as Dy(z,y) = f(z) — [f(y) +
(Vf(),z —y). If f : R* - (—o0, +0o0] is convex and differentiable, we say that f is L-smooth
wrt. ||| ifV z,y € R it holds that Dy (z,y) < £|lz —y||* where L > 0. If f : R — (—o0, +00]
is convex and differentiable, we say that f is K-strongly convex w.rt. || - || if V z,y € R it holds that
Bz — y||? < Dy(x,y) where K > 0.



Conceptually, K-strongly convex acts as a quadratic lower bound of a convex function, while L-
smoothness serves as a quadratic upper bound of a convex function. Finally, we present a theorem
demonstrating the dual relationship between strong convexity and smoothness.

Theorem 1 (Shalev-Shwartz [2009]). Assume that f is a closed and convex function. Then f is
K-strongly convex w.r.t. a norm || - || i.ff. f* is 7-smooth w.rt. the dual norm || - ||...

2.2 Automated Market Makers for AD Securities

We first introduce the general framework for an automated market maker.

Definition 2 (Automated Market Maker for AD Securities). Say we have a finite random variable
Y =A{y1,...,ya} over d mutually exclusive and exhaustive outcomes. An automated market maker
for AD securities, with initial state qo € R, operates as follows. At round t € N,

1. A trader can request any bundle of securities r; € R,
2. The trader pays the market maker some amount Pay(q:, ) € R in cash.

3. The market state updates to q;+1 = q; + 4.

After an outcome of the form'Y = y; occurs, for each round t, the trader responsible for the trade r;
is paid (r4); in cash, i.e. the number of shares purchased in outcome y;. The market payout for the
bundle ry and the outcome Y =y is expressed via (r¢, p(y)) where p : Y — &,. At any state ¢, the
market maker can infer the belief of the market via the instsantaneous price InstPrice(q;) = f(q¢,0)

where f(qe, 1) = Vi, Pay(qe, ¢).

Intuitively, the instantaneous price of security ¢ is the amount that would be paid for an arbitrarily
small amount of security . We now define a particular family of automated market makers, which
captures the DCFMM and the Smooth Quadratic Prediction Market.

Definition 3 (Price-Plus-Fee Market). A Price-Plus-Fee Market is an automated market maker of the
following form. Let C : R — R be CIIP. Then

Pay(qi, ) = (VC(qr), 1) + Fee(qr, 1) = (pe, 1e) + Fee(qe, )
where Fee(q:, 1) = o(||7¢]|). We note that in this case, InstPrice(q;) = p: = VC(qy).

Given that both markets we examine in this work are Price-Plus-Fee markets, we shall use VC'(g;)
and InstPrice(q;) interchangeably.

Generally, it is common practice to expect prediction markets to satisfy some form of the following
axioms.

Axiom 1. (Existence of Instantaneous Price): C' is continuous and differentiable everywhere on R?.
Axiom 2. (Information Incorporation): for any q,r € R%, Pay(q +r,r) > Pay(q,r).
Axiom 3. (No Arbitrage) For all ¢,v € R%, 3y € Y such that Pay(q,r) > (r, p(y)).

Axiom 4. (Expressiveness): For any p € Ay and € > 0, 3 q¢ € R such that ||InstPrice(q) — p|| < e.

Axiom 5. (Incentive Compatibility): Assume that the market is at state q; and that the agent has a
belief n € Ag4. To maximize expected return

argmax  (u,r)  — Pay(q,me) ,
re€RY NG —_— 1
Expected Payout  Payment to Market

the agent will purchase a bundle ry such that for g1 = q; + ¢ it holds that InstPrice(qi+1) = .

Intuition of Axioms Axiom 1 states that any market state can mapped to a distribution. Axiom 2
states that if a trader were to purchase the same bundle twice, the price would be larger the second
time. Axiom 3 states that for any bundle purchase there exists an outcome where the trader losses
money. Axiom 4 states that the state of the market can mapped to a distribution that expresses a belief
arbitrarily close. Axiom 5 states that a trader desires to move the market to a state such that VC
maps the market state to their belief of the distribution of ). See Abernethy et al. [2013] for further
discussion regarding the intuition of axioms.



2.3 CIIP Construction

It may seem unclear how one could construct a C' which is CIIP. We later show that via a C'
being CIIP, a Price-Plus-Fee Market is able to automatically satisfy many of our desired axioms In
this subsection we provide supporting lemmas for constructing CIIP functions and provide some
examples.

Lemma 2 (Abernethy et al. [2013], Theorem 4.2, Lemma 4.3). Let C:RY = R be defined over
relint(Ay), C be strictly convex over its domain, and define C' = C*. As C is strictly convex,

VC(q) = argmax (0 p) — C(p). Furthermore, assuming dom(C) is restricted to either
relint(Ag) or Ag, we also have closure({VC(q) | ¢ € RY}) = Ay

Note, if ¢ : RY — R was 1 -strongly convex w.r.t. || - || then C' would be L-smooth w.r.t. || - ||, via
Theorem 1.

A C which is one-invariant allows for InstPrice(q;) = InstPrice(g:11) where ¢:11 = ¢ + al
such that o € R. This is a desirable property since the purchase of ¢;+1 = ¢; + a1 incorporates
information uniformly.

Lemma 3. W.rt. a function f restricted to the Ay (or relint(Ag)), the Fenchel conjugate f* is
one-invariant.

Proof. Let ¢ € R? and o € R. Observe the following f*(q + al) = SUp,en, (¢ +al,p) — f(p) =
SuppGAd <Q7p> - f(p) + O[<]]_’p> = f*(q) +a. O

We proceed to give examples of C and the corresponding C' which satisfies CIIP. For the case of
C‘(p) =L! Z?Zl p; log p;, the derived C' is softmax.

Softmax Let C(p) = L'Y%  pilogp;. Then C(q) = Suppcemman(@p) — C0) =

€

L~ log(37;L, e). Furthermore, VC(q) = arg max, e efin(a ) (4> P) — Cp) = E% where
i=1

C(q) is L-smooth w.r.t. || - ||z and || - || s Also, it holds that {VC(q) | ¢ € R¢} = int(A,) and thus
closure({VC(q) | ¢ € RY}) = Ay

For the case of C(p) = L|p|13. the derived C is referred to in the machine learning literature as

sparsemax [Martins and Astudillo, 2016, Niculae and Blondel, 2017].

Sparsemax Let C(p) = §||p||§ for L > 0. Then C(q) = sup,ea,(q:p) — Clp) =

suppea, (@) — %|p|3. Furthermore, VC(g) = argmax,ea, (¢,p) — C(p) = argmin,ea, [lg -
L3 where C(q) is +-smooth w.r.t. || - [|2. Also, it holds that {VC(q) | ¢ € R} = A, and thus
closure({VC(q) | ¢ € RY}) = Ay

2.4 Duality-based CFMM

We now define the DCFMM which provides a construction scheme for a cost function C' respectively
and a particular Pay(-, -) scheme.
Definition 4 (Abernethy et al. [2013], DCFMM for AD Securities). Let C' : R* — R be CIIP such

that C := C* where C'is strictly convex and continuous over all of relint(A). At state q; for bundle
1, we define the payment of a DCFMM by Pay (g, 1) = C(q: +7¢) — C(qt).

With respect to the Price-Plus-Fee Market (Definition 3), one could think of the DCFMM market
payment as a linear term plus an implicit fee based on the Bregman divergence by

Pay (gt 1) = Clgi+1) — Clar) = (pe,7e) + Do (qes1, at)
—————
Breg.-Fee
since De(qit+1,qt) = Clqi+1) — Clqr) — (pt, i) and 441 = ¢ + 7. Intuitively, the DCFMM
charges the instantaneous price per share in a bundle r; via (p;, r;) and then charges a a “curvature

fee” via the Bregman Fee to hedge the potential loss for large trades. The DCFMM satisfies Axioms
1-5, which we now show.



Theorem 2 (Abernethy et al. [2013], Theorem 3.2). The DCFMM satisfies Axioms 1-4.

Trivially, with Pay ;, plugged into Eq (1) and taking the gradient with respect to g;1 and setting it
equal to zero, we can see that Axiom 5 is also satisfied for the DCFMM. Furthermore, the DCFMM
has the nice property that the worst-case loss of the market is bounded.

Theorem 3 (Abernethy et al. [2013], Theorem 4.4). The DCFMM has a worst-case loss no more
than sup,,c ,(y) C(p) — minpea, C(p).
As noted by Abernethy et al. [2013], FTRL’s regrate rate and DCFMM’s worst-case loss are similar.

We show in Appendix C the equivalence to Continuous FTRL’s regret rate and DCFMM’s worst-case
loss.

3 Smooth Quadratic Prediction Markets

3.1 Smooth Quadratic Prediction Market Design

We now introduce the Smooth Quadratic Prediction Market. Given a smooth CIIP function C w.r.t. a
general norm || - ||, we propose charging a fee based on the upper quadratic bound obtained via the
L-smoothness condition.

Definition 5 (Smooth Quadratic Prediction Market). Let C' : R* — R be CIIP. Assume that C

is L-smooth w.r.t. || - ||. At state q; for bundle ry, we define the payment of a Smooth Quadratic
Prediction Market by
L
Payp (g, re) = (pe,me) + §||7"t|\2 .
—
Q-Fee

In the remainder of this section, we show that the Smooth Quadratic Prediction Market satisfies
Axioms 1-4 and has a better worst-case loss than the DCFMM. Note, we don’t claim that the Smooth
Quadratic Prediction Market satisfies Axiom 5 Incentive Compatibility. Later in Section 3.2 and 3.3,
we show that the traders within the Smooth Quadratic Prediction Market satisfy instead a form of
incremental incentive compatibility, and interestingly, the traders mimic the update steps of gradient
(general) steepest descent while trading.

Lemma 4. By the assumption that C' is CIIP, the Smooth Quadratic Prediction Market satisfies
Axiom 1 Existence of Instantaneous Price.

Lemma 5. The Smooth Quadratic Prediction Market satisfies Axiom 2 Information Incorporation.

Proof. Since C'is convex and differentiable, by the monotonicity of gradients (Lemma 1), we have
that

(VC(gt+1) = VCO(qt); gr+1 — qr) = 0= (VO (g +11), 1) > (VC(qr), )
where g;11 = q¢ + 7. Then by adding %Hrt ||? to both sides we get
L L
(VC (g + 1), 7e) + §H7"t||2 > (VC(qt),me) + §||7’t||2 < Pay (g +re,me) > Payp (qi,7e) -
O

Lemma 6. The Smooth Quadratic Prediction Market satisfies Axiom 3 No Arbitrage.

Proof. By (Theorem 3.2, Abernethy et al. [2013]) the DCFMM satisfies no arbitrage, i.e, C(q; +
re) — C(qe) > (re, p(y)) for some y € Y. However, it also holds that

L
Clg + 7)) — Clar) = (pt,re) + De(Grs1, gr) < {pe, ) + 5\\rt\|2

via Definition 1. Therefore by combing the two inequalities we have that (ry, p(y)) < (pg, ) +
Ll |12
3 el O

Lemma 7. The Smooth Quadratic Prediction Market satisfies Axiom 4 Expressiveness.



Proof. By the CIIP assumption on C, it holds that closure({VC(q) | ¢ € R?}) = A, which states
every limit point of the set {VC(q) | ¢ € R?} is in A,. Hence, by definition of Expressiveness, the
claim holds. O

Theorem 4. For any fixed trade history h = (1o, ..., ), the Smooth Quadratic Prediction Market
has a better worst-case loss then the DCFMM.

Proof. Observe for any (g;,r;) fori € 0... ¢t that

L
C(qi +1i) — Cqi) = (pisri) + Do(qivr, @) < (pi,ri) + §H7‘i||2

via Definition 1. Hence, the collected revenue of the the Smooth Quadratic Prediction Market is
greater overall than that of the DCFMM implying a better worst-case loss then the DCFMM. O

3.2 /5-based Smooth Quadratic Prediction Markets

As mentioned, the core purpose of a prediction market with AD securities is to elicit a distribution
over a finite set of outcomes. Hence, it is of essence to show that traders are incentivized to move
the market state such that VC' maps the market state to a trader’s belief; however, recall that we
stated the Smooth Quadratic Prediction Market does not satisfy the Axiom of Incentive Compatibility.
Interestingly, the expectation maximizing trading behavior of an agent w.r.t. the ¢5-based Smooth
Quadratic Prediction Market is expressible via gradient descent. We show that the /5-based Smooth
Quadratic Prediction Market satisfies a form of incremental incentive compatibility. Overall, the core
result of this section, Theorem 6, states that a trader is incentivized to move the market state such
that the market state maps to their belief via a sequence of bundle purchases instead of via a single
transaction. We formally define incremental incentive compatibility as follows.

Axiom 6. (Incremental Incentive Compatibility): Assume the market is at state qo and that a sequence
of agents with the same belief 11 € Ay purchases bundles ry relative to maximizing their expected
payout
argmax  (u, 1)  — Pay(q,re) -
~—— ———

ryERA
Expected Payout Payment to Market

Then limy_, oo VC(qt) = p.

We now formally define gradient descent (GD) and provide a supporting Theorem and Lemma for GD
which will be used in proving incremental incentive compatibility for the ¢5-based Smooth Quadratic
Prediction Market.

Definition 6 (Gradient Descent). Let 2o € R?, and lety > 0 be a step size. Given a differentiable
function f, the gradient descent (GD) algorithm defines a sequences (x+)ien, Satisfying xe11 =
Tt — ’)/Vf(l‘t)

Theorem 5 (Garrigos and Gower [2023], Theorem 3.4). Assume that f is convex and {s-based
L-smooth, for some L > 0. Let (x4)ien, be the sequence of iterates generated by the GD algorithm,
with a stepsize satisfying 0 < v < % Then, for all x* € argmin f and for all t € Ny we have that

(0) _ %2
Lemma 8 (Sidford [2024], Lemma 6.1.6). If f : R? — R is L-smooth w.r.t. || - || then for all

x* € argmin f and x € R? it holds that

SVI@IE < f@) ~ f@*) < Zlle— a7

Theorem 6. With respect to some CIIP C, define a {s-based Smooth Quadratic Prediction Market.
The market satisfies Axiom 6 Incremental Incentive Compatibility furthermore lim;_, oo VC(q¢) = 1
at a rate of %

Proof. Let C(q) = C(q) — (i, q) and note that VC(q) = VC(q) — u. Note that the utility of an
agent is equivalent to the following

. L
min (<VC(%)7 Q1 — 1) + 5 llgerr — QtHg) — (1 Gey1 — q1)-
q¢+1€]Rd 2 N——————

E P
Payment to Market xpected Payout
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Figure 1: Let go = (10, 20, 10), C is softmax with smoothness of L = 1, and px = (1/6,1/6,2/3).
The blue square expresses p and the orange path towards the blue square demonstrates the updating
market distribution states. As denote by the titles’s of each plot, we vary the norm used for the
Smooth Quadratic Prediction Market. Note although softmax is not ¢;-smooth, we use said norm
experimentally for the sake of comparison.

Hence, the update of the market state g;1 < ¢: — (+)(VC(q) — ) = ¢ — (+)VC () is a GD step
performed on C'. Observe, setting VC'(¢) = 0 we get that VC'(q) = p, i.e. for ¢* € argmin C(q) it
holds that VC(¢*) = p. Hence, g1 < g — (£)(VC(q) — p) = ¢t — (+)VC(g,) is a GD update
for C'(q) = C(q) — (. g) with learning rate + whose minimum point is a ¢* such that VC(g*) = p.
Also note that if VC(gq¢) = p then g1 + ¢ — (£)(VC(qt) — p) = ¢t — (+)VC(q;) hence, any
minimizer of C is a stationary point. Observe that C is £5-based smooth and hence Theorem 5 and
Lemma 8 apply. O

3.3 /,-based Smooth Quadratic Prediction Markets

We now generalize our results for the Smooth Quadratic Prediction Market defined w.r.t. || - ||,, for
p € [1,00]. By altering the norm, the Smooth Quadratic Prediction Market gets varying behavior
pertaining to the charge for Q-fee and path of convergence of {q; }+en, — argmingcga C(q). In this
generalized setting, agents are incentivized to trade following the general steepest descent algorithm
in order to maximize their expected return. We now formally define general steepest descent (SD)
and provide a supporting Theorem for SD which will be used in proving incremental incentive
compatibility for the £,-based Smooth Quadratic Prediction Market.
Definition 7 (General Steepest Descent). Given a function f that is differentiable and L-smooth w.r.t.
| - ||, the general steepest descent (SD) method w.r.t. the norm || - || iteratively defines a sequences
(z4)ten, via Teyp1 € argmingcpa(V f(zy), 2 — 24) + £z — 2%
Theorem 7 (Kelner et al. [2014], Theorem 1). If f is convex and L-smooth w.rt. || - ||, then SD w.r.t.
. . 2 . .
|| - || satisfies f(x¢) —inf f < QtL_ﬁ with K := maXy. (2)< f(zo) Mg f(z*)=inf f [|T — 2| where
(2¢)ten, is a sequence of iterates generated by the SD algorithm.

Theorem 8. With respect to some CIIP C, define an {,-based Smooth Quadratic Prediction Market.
The market satisfies Axiom 6 Incremental Incentive Compatibility furthermore lim;_, oo VC(q¢) = 1
at a rate of %

Proof. Observe that the utility of an agent is equivalent to the following

. L
arg min ((Vc(%), Q1 — @) + §||(It+1 - Qt||127) — (s Q1 — 1)
qi+1€ER4 —_—————

Payment to Market Expected Payout

@

. — L
& argmin (VO (qt), @41 — @) + §||Qt+1 - Qt||12)
qi+1€R4



as qi+1 = q; + 1. Hence, Eq. (2) is a SD step for C = C(q) — (i, q). Observe that C is £,,-based
smooth and hence Theorem 7 and Lemma 8 apply. O

In Figure 1, we demonstrate the varying convergence behavior of the Smooth Quadratic Prediction
Market when using different norms. There are numerous convergence results for gradient (general
steepest) descent. To avoid redundancy with the literature, we refer the reader to Appendix D
for further convergence results, which may be of interest to the application of Smooth Quadratic
Prediction Markets.

4 Smooth Quadratic Prediction Markets with Constraints

In this section, we examine the trading behavior of expectation-maximizing agents under two realistic
constraints (independently): budget-bounded traders and buy-only markets. For mathematical sake,
we solely examine the ¢5-based Smooth Quadratic Prediction Market buy-only market and perform
experiments for the budget-bounded trader setting. Furthermore, for both types of constraints, we
perform simulations for the ¢; and ¢, cases. Overall, either analytically or experimentally, we
observe that in both situations, the market state converges to the belief of a sequence of traders,
regardless of the used p-norm, motivating the use of the Smooth Quadratic Prediction Market in
either of these realistic scenarios.” We refer the reader to Appendix E for the omitted analysis within
this section.

Budget-Bounded Traders Following the work of Fortnow and Sami [2012], we consider the
notation of natural budget constraint, which states that the loss of the agent is at most their budget,
for all y € V. The objective of an agent is expressed by

min, ((VC(a) )+ FInlB) = )
——

rsERA

E P
Payment to Market xpected Payout

L
st. ((VC(a)r)+Flrel}) = (1) < B, Vyey

Budget

Payment to Market Realized Payout

where B € R+ (. Experimentally, using VC' equal to softmax, we were able to observe convergence
regardless of the initial state, belief distribution, and budget used. The rate of convergence was

proportional to the size of the budget. Figure 2 in Appendix E demonstrates the convergence behavior
of the market under budget constraints.

Buy-Only Market The Buy-Only Market Li and Vaughan [2013] assumes that 0 < r; for all
t € Np; hence, only positive bundles purchases are allowed. The objective of the trader is expressed
via the equation below.

min ((VC’(qt),Tt> + gllrtH%) - {y7e)
——

ri€ERA
Payment to Market Expected Payout
S.t. 0 = Tt
~——
Buy Only Constraint

From solving the Lagrange dual problem, we get that the update step is g;+1 = ¢: + 1 (VC(q:) —
1)+ — (VC(q) — p)) and observe when VC'(q;) = u we have a stationary point. Observe the update
is a coordinate GD update for C' when (VC(g;) — pt); < 0 and ¢;41,; = ¢¢; when (VC(q;) — p); >
0. Hence, not just experimentally but analytically, we are able to show incremental incentive
compatibility.

*Code can be found at: https://github.com/EnriqueNueve/Smooth-Quadratic-Prediction-Markets



S Smooth Quadratic Prediction Markets with Adaptive Liquidity

Inspired by the paper A General Volume-Parameterized Market Making Framework [Abernethy et al.,
2014], we adapt aspects of the framework to our setting to facilitate adaptive liquidity. Liquidity in
this context can be thought of as the sensitivity of price changes with respect to bundle purchases. A
high liquidity would indicate that a large bundle purchase would not cause a significant price change
and vice-versa. Adaptive liquidity can be facilitated by decreasing the smoothness of C' as the volume
of trades increases.

Let S = (R%)* denote the history space of the market consisting of finite (and possibly empty)
sequences of bundles. We define a volume update function via an asymmetric norm.

Definition 8 (VPM). Say we have a finite random variable Y = {y1,...,ya} over d mutually
exclusive and exhaustive outcomes. Let C° : R? x R, — R be CIIP and increasing in v (it’s
second argument). Assume C° is L-smooth w.r.t. some general norm || - ||. Furthermore, as v
increases, the smoothness of C° should decrease. Let g : R — R be an asymmetric norm (refer
to Def. 15 in Appendix F) and define w.rt. as = ro...,rt € S the volume update function
V(s) = vo + ZZ:O g(r;). The VPM for AD securities defined by C°, with initial state qo, and initial
volume vy € R operates as follows. At round t € Ny,

1. A trader can request any bundle of securities r; € R

2. The trader pays the market maker some amount Pay(q;,ri;v:) € R (such that Pay is
dependent on C°) in cash.

3. The market state updates to qz+1 = q; + ¢ and vey1 = V(8) such that s = 1o, ..., e

After an outcome of the form'Y = y; occurs, for each round t, the trader responsible for the trade
ry is paid (r¢); in cash, i.e. the number of shares purchased in outcome y;. The market payout
for the bundle ry and the outcome Y = y is expressed via (ry, p(y)) where p : Y — 0,. At
any state (qi, vy), the market maker can infer the belief of the market via the instsantaneous price
InstPrice(qe; ve) = f(qe,0;v) where f(qe, 13 ve) = Vi, Pay(qe, 745 v¢).
For the case of the VPM-DCFMM, the pay function is the following

Pay o (e, 75 v0) = C°(qr + 1500 + g(re)) — C°(qe; ve) -

The following inequality due to the smoothness of C'° motivates our proposed payment of Pay; .
Pay po (g, 7e;v0) = C°(qe + res v + g(re)) — C° (a5 v)

= (€ +rive + g(re)) = Cais v+ 9(r))) = (C*asvu + 9(r)) = C°(awsw0) )

Payment to Breg. Market Liquidity Fee>0
= (<V00(Qt;vt +9(r4))) + Do (o, tg(r)) (@ + T Qt)) - (CO(Qt; v +g(re)) — CO(QtWt))
Payment to Breg. Market Liquidity Fee>0
< (€ (@ + () re) + ) + (O Gausve + 9(r) — O )
Payment to Smooth-Quad Market Liquidity Fee>0

= Pay;.(q¢, re;01).
Using this approach, we can easily show that Pay ;. (g, 7:; v:) facilitates no arbitrage (proof in
Appendix F).
Lemma 9. Pay;. satisfies Axiom 3 No Arbitrage.
However, proving other important properties such as bounded-worst case loss, information incorpora-

tion, and some form of incentive compatibility becomes challenging due to the non-convexity of the
expected return

arg max (1) —Paypo(qe, re;vr).
r€ER4 —
Expected Payout Payment to Market

We leave proving said results to future work. So, although this approach facilitates adaptive liquidity
and no arbitrage, more work is required to justify its use.



6 Conclusion

Recap In this work, we proposed a new prediction market framework based on the traditional
DCFMM framework. By doing so, the Smooth Quadratic Prediction Market satisfies many of the
same axioms of the DCFMM while facilitating higher profits for the market maker. Although the
Smooth Quadratic Prediction does not satisfy the axiom of incentive compatibility, we show that the
axiom is satisfied in an incremental sense and interestingly relate the methodology of general steepest
descent with said behavior. We also examined the Smooth Quadratic Prediction Market under the
constraints of budget-bounded traders and buy-only markets. Finally, we also presented introductory
work on how the Smooth Quadratic Prediction Market could facilitate adaptive liquidity. Although
this work provides some core insights into the properties of the Smooth Quadratic Prediction Market,
there are many future directions for this work.

Future Directions One direction would be to generalize this work beyond AD securities. The
original work of Abernethy et al. [2013] demonstrates how the DCFMM can be used for combinatorial
and infinite space outcome securities. Given the close relation between the design of the Smooth
Quadratic Prediction Market and the DCFMM, we believe this generalization to more securities
would be a feasible future direction. Another interesting future direction would be to analyze the
convergence of the market when agents have varying beliefs. Using a random selection mechanism
to select whose trades get processed, the analysis could be reduced to stochastic gradient descent.
Another direction would be to further prove/disprove axiom guarantees regarding our proposed
approach to adaptive liquidity. Finally, inspired by the shown equivalence of DCFMM and constant-
function market makers (CFMMs) for asset exchanges by Frongillo et al. [2023], one application
would be to use the Smooth Quadratic Prediction Market to run an asset exchange.

Broader Impacts: Our work informs the design of prediction markets, and thus, our work may
influence the choices of prediction market makers and traders. Due to the inherent risk of losing
money in prediction markets, we acknowledge the possibility of negative impacts due to this work.
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A Gradient Theorem of Line Integrals

Definition 9 (Vector field). A vector field is a map F : R* — R®.

Definition 10 (Conservative Vector Field). If the vector field F is the gradient of a function f, then
F is called a gradient or a conservative vector field. The function [ is called the potential or scalar

of F.
Definition 11 (Differentiable Multivariable Function). The function f : R™ — R™ is differentiable
at the point a if there exists a linear transformation T' : R™ — R™ that satisfies the condition

_ T —
@)~ f@) - T —a)l
z2—a |lz — all
A function f is said to be differentiable if f is differentiable at all points within dom( f).

Definition 12 (Line integral of a Vector Field). For a vector field F : U C R? — R, the line
integral along a piecewise smooth curve s C U, in the direction of r, is defined as

b
/ F(r)-dr = / (F(r(), v (8))dt

where - is the dot product and r]a,b] — s is a bijective parametrization of the curve s such that r(a)
and r(b) give the endpoints of s.

Theorem 9 (Gradient Theorem of Line Integrals). For ¢ : U C R? — R as a differentiable function
and s as any continuous curve in U which starts at a point p and ends at a point q, then

/V¢(r) ~dr = ¢(q) — ¢(p)
where NV ¢ denotes the gradient vector field of ¢.

B Continuous FTRL

A variety of works have examined FTRL in the continuous setting (CFTRL) such as Kwon and
Mertikopoulos [2017], Mertikopoulos et al. [2018], Cheung and Piliouras [2021]. Let C C R¢ denote
a non-empty compact convex set.

Definition 13 (Regularizer). A convex function R : R? — R U {400} will be called a regularizer
Sunction on C if dom(R) = C and R)|c is strictly convex and continuous.

For a given regularizer function R on C, we let R4, = max,cc R(z) and Ryip = mingec R(z).
Definition 14 (Choice Map). The choice map associated to a regularizer function R on C will be the
map Qg : R? — C defined as

Qrly) = arggax{@,w — R(z)}, yeR:.

Note: Qp is the convex conjugate of R and we have argmax since R is strict convex and continuous
hence has a well-defined unique sup.

In continuous time, instead of a sequence of payoff vectors (u, )nen, in R?, the agent will be facing
a measurable and locally integrable stream of payoff vectors (u;);cr., in R?. Consider the process:

t t
xy = QR(m/o usds) = arg max{(x,m/o usds) — R(z)},

zeC

where (7;)icr, is a positive, nonincreasing and piecewise continuous parameter, while 2§ € C
denotes the agent’s action at time ¢ given the history of payoff vectors us, 0 < s < ¢t. The dynamics
of CFTRL can be expressed by

y(t) = y(0) + [y u(x(s))ds
(t) = Qrlye)

It is worth noting that when R is the entropy function, the dynamics reduce to replicator dynamics of
evolutionary game theory.
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Theorem 10 (Kwon and Mertikopoulos [2017], Theorem 4.1). If R is a regularizer function on
C and (nt)ter, is a positive, non-increasing and piecewise continuous parameter, then, for every

locally intergrable payoff stream (u;)icr, € R?, we have:

t t
Rmam - Rmzn
max/ (us,x)ds—/ (ug, xS)ds < ——=
zeC Jo 0 Tt

C Constructing a DCFMM with AD securities via CFTRL

Protocol 1 Constructing a DCFMM with AD securities via Continuous FTRL

Given: regularizer R : R¢ 5 R, VC =R,C = Ay, and ty = 0.

Repeat:
1. Market receives trade bundle r, € R?

2. Charge trader for bundle r;:

1
Clai + 1) — Clar) = / (21 (a0 + 572), 7o) ds
0

where

i1 (qe 4 sre) = VC(qi + sry) = arg max(p,/ gt + tridt) — R(p)
PEA4 0
which is CFTRL.

3. Set qt+1 = Gt —+ 7y andt+=1

Theorem 11. By CFTRL defined via Protocol 1 with a fixed learning rate of n = 1, the pricing of
a bundle at a given state for a DCFMM can be expressed by an action taken by CFTRL. Thus, the
worst-case loss of DCFMM is equivariant to the regret of CFTRL.

Proof. At any round, the market receives a bundle r; € R4 and runs CFTRL

i (ar+ s) = VC{g: + sr1) = argmax(p, / Go + trdt) — R(p)
PEAy 0

where the equality holds by Kwon and Mertikopoulos [2017][Proposition 2]. Also, observe that

1
/ (xiy1(qe + sme),me)ds = Clge +1¢) — Clqr)
0

parametric form

where the equality holds by the Fundamental Theorem of Line Integrals. Thus,

n

Clan) = Clan) = 3 Clar+0) = Cla) = Y- [ {otslar+ sr).ryds

t=0

Payments to Market

CFTRL Loss
and that

n n 1
ax (p, qn, = max(p, qo + = ma , ds .
fé&i@ In) ;gg;(p o ;m m X;/o (p, g + sm4)ds

N———
Worst-Case Market Payout Worst-Case Action

Hence, via the equalities, the regret rate of CFTRL matches the worst-case loss of the DCFMM. [

Corollary 1. Given a DCFMM defined via a strictly convex and differentiable R defined over all of
A, then the worst-case loss is lower bounded by Ry,q0 — Riin = maxpep(y) R(p) —minyea, R(p).
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Observe this worst-case loss matches the original derived worst-case loss in Abernethy et al.
[2013][Theorem. 4.4.] for DCFMM with AD securities (up to a difference of max and sup in
terms of R, we leave generalizing in terms of sup to future work).

D Gradient and Steepest Descent Results

Theorem 12 (Ang [2025], Theorem 1). If f is convex and l3-based L-smooth, then for gradient
descent where x11 = x; — YV [(2), |vps1 — 2*||3 < ||zx — 2*||3 if o ¢ argmin f and
lrs1 — 2|3 = ||zx — 2|3 otherwise.

Lemma 10 (Sidford [2024], Lemma 6.1.5). For differentiable f : R* — R, norm Il -, and x € R™
define Q : R" — R as
L 2
Qy) = f(z) + (Vf(2),y —2) + S llz —yll
where || - || is an arbitrary norm and L > 0. If f is smooth w.rt. || - || and y* = argmin, cga Q(y)

then f(y*) < f(z) — 2 [V f(@)]I3.
Theorem 13 (Wright and Recht [2022], Theorem 3.5). Suppose that f is bounded below and is

L-smooth w.rt. || - ||. Then all accumulation points T of the sequence {x:} generated by a scheme
that satisfies

1
F(@e) < fla) = 57 IV F@)]12
are stationary, that is, V f(Z) = 0. If in addition f is convex, each such T is a solution of
minxGRd’ f(ﬂ?)

Lemma 11 (Sidford [2024], Lemma 6.1.7). If f : R — R is differentiable and ji-strong convex w.rt.
I - || then for all z, € argmin f and x € R™ it holds that

Blle .| < fle) = £(2) < - IVF@IE.

Lemma 12. If f : R — R is differentiable, ji-strong convex w.r.t. || - || ., and L-smooth w.rt. || - || 1

then it holds that ||y — x||% < %Hx — z.||2 where x.. € argmin f and x and y are from Lemma 10.

Proof. By Lemma 8, 10, and 11, we get

Bl = 2l < £0) ~ f(2) < f2) — Flw) < olle — 2l

Hence, we get ||y — 2|7, < &|lx — 2|7 O
E Smooth Quadratic Prediction Markets with Constraints Analysis

Buy-Only Market For analysis sake, we substitute min argument of r, with ¢;+1 = q¢ + 74.

. L
min - ((VC(a), g1 — a0) + 5l — all3) = (b aes — a0)
qe41€R 2 N———’

E P
Payment to Market xpected Payout

St g 2 Qe

Letr = q;+1 — ¢+ and ¢ = VC(q;) — p. This simplifies the objective too

) L
min (¢, r) + 2 |l

st. —r=0.
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Budget-Bounded £, Norm Budget-Bounded #; Norm Budget-Bounded {.. Norm

Asset 3 Asset 3 Asset 3

Figure 2: Let go = (10, 20, 10), C is softmax with smoothness of L = 1, and x = (1/6,1/6,2/3).
The agents had a budget of B = .01. The blue square expresses p and the orange path towards the
blue square demonstrates the updating market distribution states. As denote by the titles’s of each
plot, we vary the norm used for the Smooth Quadratic Prediction Market. Note although softmax is
not ¢;-smooth, we use said norm experimentally for the sake of comparison.

Buy-Only £, Norm Buy-Only £; Norm Buy-Only £.. Norm

Asset 3 Asset 3 Asset 3

Figure 3: Let go = (10, 20, 10), C is softmax with smoothness of L = 1, and px = (1/6,1/6,2/3).
The blue square expresses p and the orange path towards the blue square demonstrates the updating
market distribution states in a buy-only market. As denote by the titles’s of each plot, we vary the
norm used for the Smooth Quadratic Prediction Market. Note although softmax is not ¢;-smooth, we
use said norm experimentally for the sake of comparison.

Let the Lagrangian be denoted by £(r, A) = {(c,r) + |r[|3 — (\,r) where A € R%. Solving for r
from min,.cga £(r, \), we get 7* = 1 (X — ¢). Note the dual problem is

-1 1 1
—L<c,c> — ﬁ</\’)\> + Z(A,c) .

ax
A=0

We claim that A* = . We verify r* = L(cy — ¢) and A* = ¢4 via KKT conditions.

* Stationarity (gf_* (r*, X)=0Vie[d)c+cy—c—cy =0

+ Complimentary Slackness (—\;7; = 0V i € [d]): If ¢; > 0 then we have = (c; —¢;) =0
and if ¢; < 0 we have 7%(c; — 0) = 0.

Primal Feasibility: If ¢; > 0 then we have %(c,- —¢;) = 0andif ¢; < 0 we have ¢; < 0.

Dual Feasibility: 0 < ¢, by definition

16



Hence, we get that the update step is

@ =4+ 7 (VC(@) — ) — (VC(a) - )

and observe when VC/(q;) = p we have a stationary point.

F Smooth Quadratic Prediction Markets with Adaptive Liquidity

Definition 15 (Asymmetric norm). A function g : R — R, is an asymmetric norm if it satisfies ¥
z,y € R%:

* Non-negativity: g(x) >0

* Definiteness: g(x) = g(—x) = 0 ifand only if x = 0
* Positive homogeneity: g(ax) = ag(z) forall a > 0
e Triangle inequality: g(z +y) < g(z) + g(y).

Lemma 9. Pay;. satisfies Axiom 3 No Arbitrage.

Proof. By (Lemma 3.6, Abernethy et al. [2014]) the VPM-DCFMM satisfies no arbitrage, i.e, for
all 7o, ..., 7 € Sitholds that (p(y), >2¢_, r:) < S2'_, Paypo(gi,7i; v;) for some y € V. However,
it also holds that Z::o Pay o (gi, 45 vi) < ZE:O Pay;.(qi, r;;v;). Therefore by combing the two
inequalities we have that (p(y), Sr_ i) < Sr_, Pay o (g, 74 vi). O
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims of results made in the abstract and intro are proved within the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We specify in the paper what axioms are satisfied by our proposed method
which are commonly expected and those that are not.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide cohesive defintions and proofs for our claims either in the body or
appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify or objective functions and how our figures were generated, allowing
for reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide link to our code in a footnote on page 8.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify in Figure 1 are initial states used to generate our plots which
consists of our primary test.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our type of experiments are not data driven hence, error bars would not make
sense.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our experiments are limited and require not specific type of specialized
computer resources.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Nothing in this work to our knowledge violates the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mention possible societal impacts within the broader impact section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t use data in this work.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released with this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Work does not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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