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Abstract

Large Language Model (LLM) agents frame-001
works often employ modular architectures, in-002
corporating components such as planning, rea-003
soning, action execution, and reflection to004
tackle complex tasks. However, quantifying005
the contribution of each module to overall sys-006
tem performance remains a significant chal-007
lenge, impeding optimization and interpretabil-008
ity. To address this, we introduce CapaBench009
(Capability-level Assessment Benchmark), an010
evaluation framework grounded in cooperative011
game theory’s Shapley Value, which system-012
atically measures the marginal impact of indi-013
vidual modules and their interactions within014
an agent’s architecture. By replacing default015
modules with test variants across all possible016
combinations, CapaBench provides a princi-017
ple method for attributing performance contri-018
butions. Key contributions include: (1) We019
are the first to propose a Shapley Value-based020
methodology for quantifying the contributions021
of capabilities in LLM agents; (2) Modules022
with high Shapley Values consistently lead to023
predictable performance gains when combined,024
enabling targeted optimization; and (3) We025
build a multi-round dataset of over 1,500 en-026
tries spanning diverse domains and practical027
task scenarios, enabling comprehensive evalua-028
tion of agent capabilities. CapaBench bridges029
the gap between component-level evaluation030
and holistic system assessment, providing ac-031
tionable insights for optimizing modular LLM032
agents and advancing their deployment in com-033
plex, real-world scenarios.034

1 Introduction035

The rapid advancements in Large Language Mod-036

els (LLMs) have ushered in a transformative era037

for artificial intelligence agents. These models038

demonstrate unprecedented capabilities in under-039

standing, generating, and integrating natural lan-040

guage across diverse domains (Brown et al., 2020;041

OpenAI et al., 2024). However, LLMs still face042

Figure 1: Conceptual Mapping between Coalition Game The-
ory and LLM Agent Evaluation. The left shows the mapping
from coalition game theory to LLM agents, the right lists all
possible combinations (24 = 16) with performance values.

notable challenges as foundational models for sup- 043

porting AI agents in real-world applications. These 044

include accurately interpreting subtle contextual 045

shifts, effectively integrating with external tools, 046

and ensuring both the accuracy and reliability of 047

outputs. To overcome these challenges, researchers 048

have increasingly adopted modular architectures, 049

decomposing agents into distinct components re- 050

sponsible for planning, reasoning, and action execu- 051

tion. Such modular frameworks not only enhance 052

the overall performance but also improve the in- 053

terpretability and maintainability of the systems. 054

Frameworks such as ReAct (Yao et al., 2022) and 055

AutoGPT (Tang et al., 2023) exemplify how struc- 056

tured workflows, achieved by breaking down tasks 057

into manageable modules, can lead to more effi- 058

cient task processing. These modular architectures 059

lay the groundwork for systematic evaluations of 060

LLM agents’ internal designs and effectiveness in 061

various applications. 062

Despite the impressive capabilities of LLM 063

agents, accurately evaluating their performance 064

remains an open challenge. Traditional evalua- 065

tion methods have predominantly focused on task- 066

specific benchmarks and domain-specific datasets. 067

For instance, AgentBench (Liu et al., 2023) as- 068

sesses agents’ abilities through specialized tasks, 069

while ToolBench (Guo et al., 2024) evaluates the 070

effectiveness of LLM agents in leveraging external 071
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tools across diverse application scenarios. Addi-072

tionally, MMAU (Yin et al., 2024) investigates the073

capabilities of LLM Agents across a wide range of074

tasks. However, these benchmarks often rely on075

reductive assumptions, equating task success (e.g.,076

solving a math problem) with broader cognitive077

abilities (e.g., reasoning). This simplification ne-078

glects the complex interactions between an agent’s079

internal components, leading to an incomplete un-080

derstanding of their true potential. The current081

task-oriented evaluation framework faces several082

key challenges. First, LLM agents simultaneously083

require the integration of multiple capabilities to084

solve complex tasks. For example, solving a math-085

ematical problem may necessitate reading compre-086

hension, tool usage, and structured output genera-087

tion. Second, existing methods fail to account for088

the interactions between architectural components089

and their collective contributions to overall system090

behavior. Additionally, task-specific success rates091

provide limited insight into the relative contribu-092

tions of individual modules, making it difficult to093

identify key areas for optimization. Consequently,094

there is a pressing need for evaluation frameworks095

that can dissect and quantify the contributions of096

each module within modular LLM agents.097

To address these challenges, we propose a novel098

evaluation framework, CapaBench, which inte-099

grates the assessment of modular architectures with100

the evaluation of agent capabilities. CapaBench101

systematically quantifies the contributions of in-102

dividual modules (e.g., planning, reasoning, ac-103

tion execution, reflection) within LLM architec-104

tures using the Shapley Value (Hart, 1989), a co-105

operative game theory metric that fairly attributes106

performance based on all possible permutations107

of module contributions. This approach captures108

direct contributions and interaction effects at the109

same time, offering a rigorous and interpretable110

evaluation of system dynamics. Our method pro-111

vides several key advantages: (1) evaluating the112

contributions of each module by capturing nuanced113

dynamics; (2) using a mathematically sound attri-114

bution method to enhance interpretability of agent115

performance; and (3) enabling predictions about116

system performance based on specific module com-117

binations, supporting targeted optimizations. To118

the best of our knowledge, CapaBench is the first119

framework to systematically quantify and attribute120

module contributions in LLM-based agents using121

the Shapley Value approach.122

Furthermore, to ensure that our evaluation re-123

flects realistic, multi-faceted application scenarios, 124

we build a large-scale dataset of over 1,500 multi- 125

round tasks spanning a diverse range of categories 126

(e.g., shopping, navigation, ticket ordering, oper- 127

ating system, robot control, math, and theorem 128

proving). These tasks integrate various capabilities 129

such as planning, tool usage, and reflection, thereby 130

requiring holistic agent performance rather than iso- 131

lated skill assessments. Our dataset will be open- 132

sourced in the future to support further research 133

and development, and we are actively adding more 134

scenarios to broaden its coverage and applicability. 135

CapaBench makes the following contributions: 136

• Novel Evaluation Framework: We are the first 137

to propose a Shapley Value-based methodology 138

for quantifying the contributions of capabilities 139

in LLM agents. 140

• Predictive Module Combinations: Experi- 141

ments reveal that modules combined with higher 142

Shapley Values consistently improve task suc- 143

cess, offering clear guidance for optimizing mod- 144

ule integration to maximize performance. 145

• Large-Scale Dataset: We build a multi-round 146

dataset with over 1,500 entries spanning diverse 147

domains such as daily activities, computation, 148

and role control. The dataset is designed to chal- 149

lenge multiple agent capabilities simultaneously, 150

serving as a robust testbed for evaluating LLM 151

agents. Our dataset will be released in the future 152

to facilitate further research and development. 153

2 Related Work 154

2.1 LLM Agent 155

Recent advances in large language models (LLMs) 156

have catalyzed the development of increasingly 157

sophisticated AI agents. LLM agents typically em- 158

ploy modular architectures that decompose tasks 159

into planning, reasoning, and action execution. 160

Early work, such as ReAct (Yao et al., 2022), 161

highlighted the efficacy of explicit reasoning and 162

action paradigms. Recent efforts, such as Auto- 163

GPT (Tang et al., 2023) pioneered autonomous 164

task execution through iterative planning and re- 165

flection. MetaGPT (Hong et al., 2024), intro- 166

duced hierarchical planning strategies that enable 167

dynamic task decomposition and recursive self- 168

improvement. Building on these works which high- 169

light modular designs, our study systematically 170

evaluates the marginal impact of individual mod- 171

ules using the Shapley Value, uncovering the most 172
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suitable combinations of LLM modules for achiev-173

ing optimal performance in different environments.174

2.2 Agent Benchmark175

The evaluation of LLM agents has evolved con-176

siderably, with early approaches primarily empha-177

sizing task-specific performance metrics. Agent-178

Bench (Liu et al., 2023) laid the groundwork by179

evaluating agents across diverse scenarios, such180

as web browsing and knowledge graph, highlight-181

ing the importance of assessing performance in182

diverse contexts. However, these evaluations of-183

ten focused on task outcomes while overlooking184

the foundational skills driving these results, mak-185

ing it difficult to analyze the root causes of fail-186

ures. To address this limitation, MMAU (Yin et al.,187

2024) introduced a novel benchmark that provides188

an evaluation of agent capabilities. But it driectly189

combined Agents’ capabilities with specific tasks.190

Recent benchmark developments have become in-191

creasingly sophisticated. OmniACT (Zhang et al.,192

2024) introduced a framework for evaluating agents193

in desktop environments, while AgentQuest (Yang194

et al., 2024) developed methods for assessing con-195

tinuous learning and adaptation. These frameworks196

represent a shift toward understanding not just what197

agents can do, but how they handle complex, dy-198

namic scenarios. In contrast, CapaBench extends199

beyond capability-level evaluations by leveraging200

the Shapley Value to quantitatively capture each201

module contributions, enabling a more nuanced202

analysis of how each component influences overall203

agent performance.204

3 Benchmark Design205

We build the agent framework shown in Figure 2 as206

the foundation of our benchmark. This framework207

is specifically designed to assess LLM agents’ abil-208

ities in various environments and task scenarios. It209

follows established agent processes and features a210

modular design, which supports both single-turn211

and multi-turn interactions. This ensures that our212

evaluations are comprehensive and adaptable.213

3.1 Agent Capability214

Building upon established works (Yao et al., 2022;215

Tang et al., 2023; Hong et al., 2024), our frame-216

work integrates 4 fundamental capabilities for LLM217

agents: Planning, Reasoning, Action, and Reflec-218

tion, as illustrated in Figure 2. These capabilities219

represent the core functionalities widely recognized220

in current agent systems: (1) Planning module221

Figure 2: Agent Workflow in CapaBench.

initiates the agent workflow by decomposing com- 222

plex instructions into structured subtasks, follow- 223

ing principles established in hierarchical planning 224

systems (Brown et al., 2020). This decomposition 225

enables effective task prioritization and resource 226

allocation, particularly crucial for multi-step opera- 227

tions requiring strategic foresight; (2) Reasoning 228

module extends the ReAct framework (Yao et al., 229

2022) by incorporating both instruction context 230

and environmental observations. Through chain-of- 231

thought mechanisms (Wei et al., 2022), this module 232

performs logical inference and causal analysis to 233

determine appropriate action sequences. Integra- 234

tion with the planning module enables dynamic 235

adjustment of reasoning strategies based on evolv- 236

ing task requirements; (3) Action module imple- 237

ments the execution interface, translating cognitive 238

processes into concrete operations. This approach 239

builds on established action space formalization 240

(Guo et al., 2024), ensuring consistent mapping 241

between internal state representations and external 242

behaviors. The module maintains state awareness 243

through continuous environment monitoring, en- 244

abling responsive behavior adaptation; (4) Reflec- 245

tion module completes the architecture by imple- 246

menting systematic performance analysis, drawing 247

from recent advances in self-improving systems 248

(Yin et al., 2024). Operating primarily in multi- 249

turn scenarios, this module enables iterative refine- 250

ment of agent behavior through structured outcome 251

analysis and strategy adjustment. 252

3.2 Evaluation Methodology 253

We use Shapley Value (Hart, 1989) from coop- 254

erative game theory to evaluate module contribu- 255

tions in LLM architectures. This method quantifies 256

each module’s marginal impact on performance 257

by analyzing all module configurations, capturing 258

both individual contributions and interaction effects 259

through task success rates. 260

Shapley Value Framework Shapley Value pro- 261

vides a theoretical foundation for fairly allocating 262

the overall performance of a system to its individ- 263
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ual components. For a set of N modules, Shapley264

Value ϕi(v) for module i is defined as:265

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i}) − v(S)] , (1)266

where S denotes any subset of N that ex-267

cludes module i, and v(S) represents the perfor-268

mance(task success rate) of the agent when only the269

modules in S are active. The term v(S∪{i})−v(S)270

quantifies the marginal impact of adding module271

i to the subset S, while the weight |S|!(|N |−|S|−1)!
|N |!272

ensures fair averaging across all possible subsets.273

Evaluation Flow CapaBench systematically274

evaluates the contributions of four key modules275

in the agent architecture: Planning (P ), Reasoning276

(R), Action (A), and Reflection (F ). As shown in277

Figure 1, the evaluation involves testing all possible278

combinations of these modules (24 = 16 combina-279

tions) by replacing default implementations with280

test variants provided by the target LLM model.281

The default "whiteboard" modules, implemented282

using Llama3-8b-instruct, serve as a fixed baseline283

to isolate the performance impact of each test mod-284

ule. Llama3-8b-instruct was chosen as the default285

model implementation because it is open-source,286

lightweight, and easy to deploy, making it practi-287

cal for extensive testing. While it possesses basic288

task completion capabilities, its moderate success289

rates provide an ideal baseline to observe and quan-290

tify the impact of replacing modules with more291

advanced test models. For each combination, Ca-292

paBench computes performance values to quantify293

the contribution of individual modules and their in-294

teractions. Diverse task benchmarks (B), including295

multi-step scenarios designed to simulate practical296

agent applications, are used to evaluate the sys-297

tem, providing insights into the optimal module298

configurations for various environments.299

Capturing Synergistic Effects and Nonlinear Dy-300

namics Shapley Value provides a robust frame-301

work to quantify both the independent contribu-302

tions and synergistic interactions among modules303

in a modular architecture. By systematically eval-304

uating all possible subsets S ⊆ N , it inherently305

captures the nonlinear dynamics and interdepen-306

dencies between modules. For instance, Planning307

provides structured outputs for Reasoning, while308

Reasoning refines these outputs to guide Action309

execution. Tasks often require at least two mod-310

ules to collaborate, such as Reasoning and Action311

working together to decompose and solve complex312

tasks. These collaborative effects are reflected in 313

the marginal contributions v(S∪{i})−v(S), where 314

v(S) represents the system’s performance (e.g., 315

task success rate) with subset S. Shapley Value is 316

particularly well-suited for nonlinear dynamics, as 317

it fairly distributes contributions even when module 318

interactions exhibit synergy or competition. Un- 319

like linear or additive methods, it ensures unbiased 320

attribution of both individual and collaborative con- 321

tributions, making it ideal for evaluating modular 322

LLM agents with complex interdependencies. 323

3.3 Dataset Construction 324

Online Shopping Tasks are based on WebShop 325

platform (Yao et al., 2023), consisting of 110 tasks, 326

with 48 modified to increase diversity and com- 327

plexity. For example, the instruction "find me 328

scrubs & body treatments made with tea tree and 329

other natural ingredients" was changed to "Given 330

my upcoming spa weekend, recommend scrubs & 331

body treatments with tea tree for sensitive skin." 332

These changes introduce more natural, context-rich 333

queries, testing agents’ reasoning, personalization, 334

and relevance. The evaluation framework aligns 335

with WebShop’s reward model and product defini- 336

tions, ensuring consistent performance assessment. 337

Navigation Planning The Navigation Planning 338

task(Lin et al., 2024) evaluates agents’ ability to 339

generate and adapt travel itineraries under evolving 340

constraints. Our enhanced dataset of 250 tasks sim- 341

ulates dynamic planning through preference evo- 342

lution mechanisms, where users initially provide 343

three core requirements (e.g., budget limits, pre- 344

ferred activities) with 50% probability of introduc- 345

ing new constraints during interactions. The evalu- 346

ation combines constraint adherence measurement 347

for requirement fulfillment accuracy with route op- 348

timality assessment through multi-criteria scoring 349

of spatial efficiency and preference alignment. The 350

metric includes precision from experiments and 351

route rationality based on user preferences (e.g., 352

budget, activities), reflecting agent’s ability to pri- 353

oritize needs and generate actionable plans. 354

Ticket Ordering Ticket Ordering assesses 355

agents’ ability to find the best flight combination 356

for two users based on their needs and constraints. 357

Inspired by (Lin et al., 2024), it includes 150 tasks 358

simulating real-world ticket ordering scenarios. 359

Agents must consider users’ calendars, flight prices, 360

and arrival times to provide an optimal flight com- 361

bination. The evaluation focuses on minimizing 362
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Table 1: Capability and number of data per dataset. P, R, A,
F represent Planning, Reasoning, Action, Reflection. Check-
marks indicate the emphasis of each capability in per task.

Daily Activities Computation Tasks Role Control

Shopping Navigation Ticket Math ATP OS Robot

Sample Count 110 250 150 250 × 2 111 × 3 102 80

P
Task Steps ✓ ✓ ✓

Resource Constraints ✓ ✓ ✓ ✓

R
Logical Validation ✓ ✓ ✓

Knowledge Inference ✓ ✓ ✓ ✓

A
Environmental Actions ✓ ✓ ✓

Interactive Actions ✓ ✓ ✓ ✓

F Failure Analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓

three factors: flight price, calendar conflicts, and363

the difference in users’ arrival times, with higher364

scores for more affordable, conflict-free options365

and closer arrival times.366

Math Solver Math Solver evaluates agents’ abil-367

ity to solve diverse mathematical problems by in-368

corporating tool usage into the process. To ad-369

dress the lack of detailed classification in Math370

(Hendrycks et al., 2021), we selected 5 key con-371

cepts and 10 difficulty levels and we created 250372

new questions for both algebra and geometry tasks.373

We designed two tools fpr agents to solve problems:374

375
• A pseudo ‘search engine’ with 200 curated376

knowledge points, allowing agents to retrieve377

the top 3 relevant points.378

• A calculator for numerical computations.379

Automatic Theorem Proving (ATP) ATP evalu-380

ates agents’ ability to construct formal proofs for381

complex logical problems. The MINIF2F dataset382

(Zheng et al., 2021), which includes Olympiad-383

level problems, is partially outdated, as it uses Lean384

3 (now replaced by Lean 4) and lacks coverage of385

Coq, another widely used formal proof language.386

ATP emphasizes iterative proof construction, re-387

quiring agents to use formal verification tools like388

Coq, Lean4, and Isabelle3 (The Coq Development389

Team; The Lean Prover Team; The Isabelle Team).390

These tools enforce strict syntax and dynamic rea-391

soning, requiring agents to adjust strategies based392

on the proof’s current state, simulating human-like393

reasoning in formal logic problem-solving.394

Operating System The OS dataset assesses395

agents’ abilities to interact with a simulated ter-396

minal for Ubuntu and Git tasks. For Ubuntu, we397

expanded AgentBench-OS framework (Liu et al.,398

2023) using GPT-4, focusing on file manipulation,399

system settings, and process management. Agents400

propose bash commands, receive terminal feed- 401

back, and use reflection (e.g., checking command 402

success with (echo?)) to address failures. For Git, 403

we constructed dataset from Learn Git Branching 404

(The learnGitBranching Team) , which requires 405

agents to transform an initial git tree into a target 406

state using commands. Reflection is triggered if no 407

changes occur after two steps, enhancing agents’ 408

reasoning and adaptability. 409

Robot Cooperation Robot Cooperation tasks, 410

derived from RoCo (Mandi et al., 2023), evalu- 411

ate agents in real-world-inspired robotic scenarios 412

across five tasks: Sweep Floor, Move Rope, Ar- 413

range Cabinet, Make Sandwich, and Sort Cubes. 414

We expanded these tasks with diverse instances 415

and constraints, such as color-specific sequencing 416

in Sweep Floor and sequential logic in Arrange 417

Cabinet. Using RoCo’s Central Plan mode, agents 418

receive full environment observations and plan ac- 419

tions for all robots simultaneously. 420

4 Experiment 421

4.1 Experimental Implementation 422

In our experiments, we use Llama3-8B-Instruct 423

as the default for all four core modules: planning, 424

reasoning, action, and reflection. For each evalu- 425

ation, we replace one module with its test variant 426

(driven by the test model), keeping the other mod- 427

ules default. This creates 16 configurations for the 428

four-module architecture. For each configuration 429

S, we measure measure the task success rate v(S) 430

across various benchmark scenarios to ensure ro- 431

bust and representative performance. 432

We evaluate 9 large language models, catego- 433

rized into 3 groups: 434

• Closed API Models: This includes four 435

widely used commercial API-based models: 436

Anthropic/Claude-3.5-Sonnet, OpenAI/GPT-4- 437

turbo-0409, OpenAI/GPT-4o-mini, GLM-4-air, 438

and Doubao-pro-4k. 439

• Mid-parameter Open-Source Models (32B- 440

100B): To assess mid-scale models, we evalu- 441

ate three models: Llama3.1-70B-Instruct and 442

Mixtral-8x7B-Instruct-v0.1 (46.7B). 443

• Low-parameter Open-Source Models (≤32B): 444

For lightweight models, we include Qwen2.5- 445

32B-Instruct and Mistral-8B-Instruct-v0.2. 446

All experiments are conducted on NVIDIA A100- 447

80GB GPUs, with vLLM employed for efficient 448

inference of open-source models. 449
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Table 2: Experimental Results Across Datasets. Metrics for baseline models are highlighted in blue. Results marked
with ‘*‘ below each dataset indicate the best-performing model combinations computed based on Shapley Value.

Dataset Metric
Llama3

8B
Claude
3.5

gpt-4o
mini

glm-4
air

qwen2.5
32B

Mistral
8X7B

Mistral
7B

gpt-4
turbo

doubao
pro-4k

Llama3
70B

Online
Shopping

Acc: 43.31*

Pt – -0.004 0.071 0.106 -0.030 -0.048 0.024 0.026 0.071 -0.028
Rt – 0.019 -0.025 0.077 0.004 0.036 0.016 -0.074 0.011 0.005
At – 0.056 0.068 -0.059 0.156 0.080 0.004 0.014 -0.045 0.117
Ft – -0.009 -0.003 -0.011 -0.021 -0.015 -0.022 0.024 -0.040 -0.030

Acc (%) 26.27 32.43 37.43 37.50 37.18 31.67 28.48 25.31 25.95 32.61

Navigation
Planning

Acc: 74.42*

Pt – 0.000 0.006 0.001 -0.002 0.021 0.023 0.008 0.001 -0.009
Rt – 0.030 0.027 -0.008 0.012 -0.035 0.055 0.014 -0.003 -0.019
At – 0.106 0.081 0.005 0.099 0.048 0.042 0.099 -0.051 0.046
Ft – -0.006 0.002 -0.021 0.018 -0.029 0.007 0.004 -0.033 -0.011

Acc (%) 58.70 71.90 70.29 61.91 68.26 64.45 71.48 71.23 50.90 59.32

Ticket
Ordering

Acc: 67.18*

Pt – 0.003 0.032 -0.195 0.119 0.183 -0.111 -0.043 0.151 0.004
Rt – 0.186 0.243 0.172 0.181 0.054 -0.070 0.301 -0.001 0.089
At – 0.217 0.049 -0.020 -0.000 -0.083 -0.020 0.028 0.006 -0.275
Ft – 0.024 0.005 -0.006 0.043 -0.011 0.002 0.058 -0.027 -0.001

Acc (%) 19.94 62.85 51.82 15.01 54.25 34.24 0.00 54.37 32.88 1.59

Math
Acc:83.80*

Pt / 0.038 0.067 0.056 0.065 0.005 -0.060 0.048 0.115 0.028
Rt / 0.131 0.021 0.044 0.107 0.003 -0.000 0.065 0.059 0.031
At / 0.442 0.343 0.348 0.483 0.164 -0.044 0.492 0.182 0.327
Ft / 0.042 0.043 0.005 0.031 -0.014 -0.003 0.022 -0.002 0.006

Acc (%) 18.00 83.40 65.40 63.20 86.60 33.80 7.20 80.60 53.40 57.20

ATP
Acc: 86.79*

Pt / 0.012 0.018 0.002 0.018 0.025 0.008 0.012 0.016 0.019
Rt / 0.057 -0.016 0.005 0.030 0.018 0.010 0.027 0.019 -0.056
At / 0.660 0.345 0.161 0.511 0.039 -0.009 0.541 0.084 0.125
Ft / 0.069 0.015 0.021 0.037 -0.011 -0.000 0.023 0.004 0.011

Acc (%) 5.45 85.29 41.74 24.32 65.17 12.61 6.31 65.77 17.72 15.32

Robot
Cooperation
Rwd: 92.63*

Pt – 0.114 0.075 -0.024 0.090 -0.005 -0.014 0.107 0.021 0.043
Rt – 0.388 0.189 0.116 0.268 0.033 -0.000 0.329 -0.004 0.152
At – 0.319 0.196 0.008 0.277 0.052 -0.021 0.316 0.204 0.175
Ft – 0.017 -0.003 -0.012 0.003 0.004 -0.001 0.001 -0.012 -0.008

Reward (%) 8.85 92.63 54.43 17.60 72.59 17.27 5.17 84.18 29.75 45.06

Operating
System

Acc: 60.78*

Pt – 0.078 0.042 0.047 0.060 0.032 0.004 0.050 0.065 0.077
Rt – 0.458 0.305 0.305 0.311 0.194 0.047 0.395 0.215 0.313
At – 0.071 0.065 0.041 0.053 0.009 0.019 0.070 0.060 0.040
Ft – -0.008 0.020 0.004 0.037 0.001 0.019 0.005 -0.006 0.012

Acc (%) 0.98 60.78 44.12 40.71 47.06 24.51 9.80 52.94 34.31 45.10

4.2 Main Results450

Module Impact via Replacement The experi-451

mental results in Figure 4 show that module re-452

placement accurately reflects its impact on system453

performance, as seen with Claude-3.5-Sonnet454

on Algebra. High-contribution modules, identi-455

fied via Shapley Value calculations, lead to signifi-456

cantly better performance. For example, (P,R,A)457

achieves 78.0%, far surpassing the baseline config-458

uration with Llama3-8b-Instruct at 21.6%. Incre-459

mental replacements align with predictions: sub-460

stituting the default Planning module (P) improves461

performance to 18.4%, and adding a strong Action462

module (A) raises it to 63.2%. Configurations like463

(P,R,A) maximize performance through synergy,464

while low-contribution modules, such as (P,F), re-465

sult in poor performance (0.212). These results466

confirm the accuracy of Shapley Values in quanti-467

fying module contributions. 468

Predictive Module Combinations The experi- 469

mental results in Table 2 demonstrate that modules 470

with higher Shapley Values consistently lead to 471

improved task performance when combined. For 472

instance, in the "Online Shopping" dataset, the op- 473

timal combination achieves an accuracy of 43.31%, 474

which is significantly higher compared to the other 475

models, indicating the advantage of leveraging 476

high-contribution modules. Similarly, in ATP, the 477

best combination computed based on Shapley Val- 478

ues results in an 86.79% accuracy, showcasing a 479

marked improvement over alternatives. These re- 480

sults demonstrate that identifying and integrating 481

key modules with high Shapley Values enables Ca- 482

paBench to systematically maximize performance 483

across tasks, validating Shapley Values as a reliable 484

guide for module selection and optimization. 485
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Figure 3: Radar plot comparing model performance across tasks with key contributions.

4.3 Ablation Study486

In this section, we examine how changing the de-487

fault model in our evaluation framework affects488

Shapley Value results and the relative ranking of489

various LLMs. Specifically, we replace the orig-490

inal default model (Llama3-8B-instruct) with491

gpt-3.5-turbo-0613 and re-run the evaluation492

on the same set of seven test LLMs over Robot493

Cooperation. Figure 5 illustrates the Shapley Value494

results for the four modules under 2 default models.495

Although the absolute Shapley Values vary due to496

the differences in baseline models’ capabilities, our497

primary focus is on the consistency of test model498

rankings. To quantify this consistency, we define499

the preference pair consistency rate as500

Pairwise Consistency Rate =
{Consistent Preference Pairs}

{All Model Pairs}
501

502 which measures the proportion of test model503

pairs that maintain the same relative ranking across504

both experiments. A higher rate indicates that505

changes to the default model have minimal impact506

on the relative ranking of test models.507

Results show that Reasoning achieves the high-508

est consistency rate (91.67%), followed by Ac-509

tion (86.11%), Planning (72.22%), and Reflection510

(58.33%). The overall consistency rate (85.18%)511

confirms that our framework is robust to changes in512

the default model for most modules. Notably, Rea-513

soning and Action, which contribute most to task514

success according to Shapley Values, also show the515

highest ranking consistency. In contrast, Reflec-516

tion exhibits the lowest consistency (58.33%), sug-517

gesting that its assessment is more sensitive to the518

default model choice or that it requires further re-519

finement. While absolute Shapley Values shift with520

a stronger or weaker default model, the relative521

ordering of test models—and the key insights into522

each model’s strengths and weaknesses—remains523

largely stable.524

4.4 Analysis 525

Cross-Task Model Performance Comparison 526

A comparison of model performance across di- 527

verse tasks reveals distinct strengths and weak- 528

nesses. Notably, Claude-3.5 excels in most cat- 529

egories, particularly in formal verification (e.g., 530

Coq, Lean 4, Isabelle) and robot cooperation tasks. 531

This suggests a strong chain-of-thought reasoning 532

mechanism and effective multi-agent collaboration 533

strategies—capabilities essential for tasks requir- 534

ing precise logic and synchronized actions. In 535

contrast, open-source models like Qwen-2.5 and 536

Mistral-8X7B perform well in more straightfor- 537

ward domains, such as shopping or basic Algebra, 538

but lag in cognitive-heavy tasks like automatic the- 539

orem proving and robot cooperation. These mod- 540

els, while adept at routine queries and procedural 541

problem-solving, lack the deeper reasoning, ad- 542

vanced planning, and specialized modules required 543

for complex, multi-stage tasks. Improving these 544

areas through fine-tuning on specialized data or in- 545

tegrating more advanced tools could help bridge the 546

gap between open-source and proprietary models. 547

Module Contribution Patterns Our findings 548

highlight that module contributions vary according 549

to task demands, reflecting the distinct cognitive 550

processes involved. Specifically: 551
• Tasks with High Cognitive Complexity (e.g., 552

Shopping, Robot Cooperation, and OS): Rea- 553

soning and Planning play pivotal roles. Online 554

shopping requires balancing constraints (e.g., 555

budget and preferences) and sequencing deci- 556

sions effectively. In robot cooperation, Reason- 557

ing enables dynamic information updates and 558

efficient task distribution among agents. Oper- 559

ating system tasks, involving troubleshooting 560

and resource management, rely heavily on real- 561

time problem-solving and feedback interpreta- 562

tion. Across these tasks, robust Reasoning en- 563
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Figure 4: Shapley value results of all combinations in Math (Algebra) for Claude-3.5-Sonnet under different configurations.
The pattern of the bars indicates the number of modules (ranging from 0 to 4) that Claude is involved in.

(a) Planning (b) Reasoning

(c) Action (d) Reflection

Figure 5: Compare default LLMs on Robot Cooperation.

sures logical inference and decision-making un-564

der uncertainty.565

• Tasks Requiring Precision (e.g., Math Solvers566

and ATP): Action is the dominant module. In567

math solvers, particularly geometry, precise pro-568

cedural execution, such as applying theorems569

or constructing diagrams, outweighs strategic570

planning. Similarly, in formal verification tasks571

(e.g., Coq or Lean), strict adherence to syntactic572

and semantic correctness is critical. Both scenar-573

ios demand meticulous step-by-step actions to574

ensure reliability and prevent errors.575

Low Reflection Contribution We observe that576

the Reflection module has a limited impact on task577

performance, likely due to two main factors. First,578

task success alone doesn’t fully capture the quality579

or effectiveness of reflection; a model’s ability to580

’think about’ its mistakes is not reflected in success581

rates. Second, without guidance from a more capa-582

ble model, the Reflection module may struggle to583

identify the root causes of errors. As a result, the584

lack of deeper insights into these errors limits its585

practical impact on task outcomes.586

Comparative Study We assessed the effective-587

ness of Shapley Values in capturing LLMs’ abili-588

ties like Planning, Reasoning, and Action with 238589

questions from successfully completed trajectories590

in Algebra dataset. We divided these trajectories591

into single-step QA samples based on the three core592

modules, resulting in 2180 samples. The Reflection593

Figure 6: Planning, Reasoning, and Action Evaluation on
Algebra. The left Y-axis shows Shapley Value with solid lines
and the right Y-axis shows the GPT scores with dashed lines.

module was excluded due to its minimal impact 594

on overall success rates and thus the insufficient 595

number of successful trajectories to build a reliable 596

dataset for evaluation. For each single-step sample, 597

the responses from the test models were evaluated 598

by GPT-o1-mini. The evaluation criteria focused 599

on two aspects for the Planning and Reasoning 600

modules: semantic rationality, which assesses 601

whether the response is clear and understandable, 602

and task completion, which measures how effec- 603

tively the task was completed. For the Action mod- 604

ule, the evaluation focused on logical comprehen- 605

sion ability, scoring based on the model’s under- 606

standing of the task logic and its ability to execute 607

correct actions based on the Planning and Reason- 608

ing modules. Figure 6 shows the Shapley Values 609

and the scores by GPT-o1-mini of each model, with 610

Pearson correlation coefficients of 0.81, 0.77, 0.67 611

for the Planning, Reasoning, and Action modules, 612

respectively. These high correlations validate the 613

effectiveness of Shapley Values in quantifying each 614

module’s specific contribution to task success. 615

5 Conclusion 616

This paper introduces CapaBench, a benchmark 617

using Shapley Value to evaluate the contributions 618

of individual modules in LLM agents. By ana- 619

lyzing interactions among planning, reasoning, ac- 620

tion, and reflection, we enable precise attribution, 621

guiding optimization and predicting performance 622

across diverse tasks. Moving forward, we aim to 623

expand the variety of senarios and develop domain- 624

specific protocols to reduce computational costs 625

while maintaining module-level insights. 626
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6 Limitations627

In our work, we use Shapley Value to fairly at-628

tribute performance to the individual modules629

within LLM agents. Computing Shapley Values630

requires evaluating all possible module combina-631

tions, leading to an exponential increase in com-632

putational complexity as the number of modules633

grows. This makes it impractical for models with634

a large number of components. In the future, we635

aim to explore methods for optimizing the Shapley636

Value computation to improve scalability for larger637

systems.638
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Appendix716

Framework Algorithm717

The evaluation method is detailed below in the718

form of pseudocode. This algorithm outlines the719

systematic steps used to quantify the contributions720

of individual modules and their interactions within721

the modular architecture.722

Algorithm 1 CapaBench Evaluation Framework

1: Input: Default model, Test model, Bench-
marks B

2: Output: Shapley Value ϕi(v) for each test
module i

3: Fix all modules to their default implementa-
tions: {Pd,Rd,Ad, Fd}

4: for all subset S ⊆ {Pt,Rt,At, F t} do
5: Replace default modules in S with test mod-

ules
6: Evaluate task success rate v(S) using bench-

marks B
7: end for
8: for all test module i ∈ {Pt,Rt,At, F t} do
9: Compute Shapley Value ϕi(v)

10: end for
11: return ϕi(v) for all test modules i

Dataset Details723

Online Shopping724

The Online Shopping dataset is designed to eval-725

uate agents’ planning, reasoning, and action ca-726

pabilities in completing e-commerce tasks. The727

dataset consists of 110 tasks, divided into two728

parts: white-box tasks (62), which are from the729

Webshop dataset, and black-box tasks (48), which730

are expanded using GPT-4 to enhance instruction731

diversity and complexity.732

Dataset expansion was constructed by modifying733

instructions from the original dataset. GPT-4 was734

used to rephrase instructions for greater linguis-735

tic diversity, adding context or background such736

as “Next week is Halloween, and I need themed737

decorations.” Additionally, parameters were en-738

riched with attributes like size, color, or material739

to increase task complexity. For challenging cases,740

explicit prompts were created to guide planning,741

for example, “First search for desks with wood742

finishes, then filter by size and price.”743

A typical instruction in Online Shopping might744

be: “I’m looking for a small portable folding desk745

that is already fully assembled; it should have a746

khaki wood finish, and price lower than 140 dollars, 747

and length bigger than 40 inches.” 748

Agents are evaluated based on their ability to 749

follow optimal trajectories, such as: 750

• Ideal Trajectory 1: Search for all attributes 751

directly ("desk, wood, folding, khaki, 40 752

inches, $140") and proceed to the target item. 753

• Ideal Trajectory 2: Broad search ("desk, 754

wood, folding"), filter by price, and then refine 755

attributes (color, size). 756

Navigation Planning 757

The Navigation Planning dataset assesses collab- 758

orative itinerary generation with dynamic con- 759

straint adaptation, containing 250 tasks developed 760

through enhanced automated generation. As shown 761

in Figure 7, our framework extends (Lin et al., 762

2024) with three key innovations: 763

• Precision Evolution: Each task begins with 764

three core requirements (e.g., "$3,000 budget 765

for 4 adults"), with 50% probability per in- 766

teraction round to introduce new constraints 767

from predefined pools (accessibility needs, 768

seasonal activities). 769

• Location Profiling: We implement stochastic 770

sampling of destination attributes: 771

– Accessibility: Transportation options 772

(train/bus connectivity) 773

– Amenities: Family/pet-friendly facilities 774

– Pricing: Seasonal price fluctuations 775

(±15%) 776

• Evaluation Protocol:We evaluates the ratio- 777

nality of the planned route, based on how well 778

the proposal aligns with user preferences, con- 779

sidering factors such as budget adherence, in- 780

clusion of specified activities, and efficient 781

travel distances. 782

A sample task evolves from initial require- 783

ments "7-day Japan tour under $4k" to in- 784

clude "must visit at least two UNESCO sites" 785

during planning. Agents must preserve pre- 786

vious constraints while integrating new ones, 787

testing sequential reasoning capabilities. Our 788

automated validator ensures solution feasibil- 789

ity through geographic coordinate verification 790

and budget accounting simulations. 791
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Table 3: PRAF Experiment Results on Mathematics Tasks with ∆ Accuracy

Algebra Geometry
LLM Pt Rt At Ft Acc(%) ∆ Acc(%) Pt Rt At Ft Acc(%) ∆ Acc(%)

llama3-8B-instruct / / / / 21.6 / / / / / 14.4 /
Claude-3.5-Sonnet 0.021 0.177 0.398 0.031 84.4 62.8 0.055 0.085 0.486 0.054 82.4 68.0

gpt-4-turbo 0.058 0.082 0.456 0.020 83.2 61.6 0.038 0.047 0.527 0.025 78.0 63.6
qwen2.5-32B 0.059 0.146 0.436 0.011 86.8 65.2 0.071 0.067 0.530 0.051 86.4 72.0
gpt-4o-mini 0.070 0.020 0.313 0.053 67.2 45.6 0.065 0.024 0.368 0.035 63.6 49.2

doubao-pro-4k 0.124 0.086 0.178 0.004 60.8 39.2 0.105 0.032 0.186 -0.007 46.0 31.6
GLM-4-air 0.053 0.069 0.346 0.004 68.8 47.2 0.059 0.019 0.349 0.006 57.6 43.2
llama3-70B 0.040 0.051 0.321 0.007 63.6 42.0 0.015 0.011 0.333 0.005 50.8 36.4

Mistral-8X7B 0.006 -0.010 0.190 -0.010 39.2 17.6 0.004 0.016 0.138 -0.018 28.4 14.0
Mistral-7B -0.065 -0.015 -0.053 -0.003 8.0 -13.6 -0.055 0.014 -0.035 -0.004 6.4 -8.0

Table 4: Experiment Results on Automatic Theorem Proving Tasks with ∆ Accuracy

Coq Lean 4 Isabelle
LLM Pt Rt At Ft Acc(%) ∆ Acc(%) Pt Rt At Ft Acc(%) ∆ Acc(%) Pt Rt At Ft Acc(%) ∆ Acc(%)

llama3-8B / / / / 6.4 / / / / / 2.7 / / / / / 7.2 /
Claude-3.5 0.010 0.067 0.795 0.027 96.4 90.0 0.002 0.059 0.662 0.098 84.7 82.0 0.025 0.046 0.523 0.082 74.8 67.6
gpt-4-turbo 0.032 0.038 0.706 0.024 86.5 80.1 -0.015 -0.006 0.375 0.033 41.4 38.7 0.020 0.048 0.542 0.012 69.4 62.2
qwen2.5-32B 0.014 0.029 0.615 0.026 74.8 68.4 -0.007 0.020 0.486 0.050 57.7 55.0 0.048 0.041 0.434 0.036 63.1 55.9
gpt-4o-mini 0.038 -0.016 0.391 0.018 49.5 43.1 -0.013 -0.020 0.396 0.007 39.6 36.9 0.030 -0.012 0.249 0.021 36.0 28.8

doubao-pro-4k 0.007 0.039 0.204 0.001 31.5 25.1 -0.017 0.029 0.095 0.028 16.2 13.5 0.035 0.007 -0.064 0.004 5.4 -1.8
GLM-4-air 0.015 0.016 0.115 0.033 24.3 17.9 -0.004 0.005 0.193 0.013 23.4 20.7 -0.006 -0.006 0.176 0.017 25.2 18.0
llama3-70B 0.018 -0.137 0.190 0.009 14.4 8.0 -0.005 -0.000 0.030 0.020 7.2 4.5 0.043 -0.032 0.155 0.005 24.3 17.1
Mistral-8X7B 0.014 0.056 0.122 0.014 27.0 20.6 0.003 -0.017 0.068 -0.018 6.3 3.6 0.058 0.014 -0.071 -0.028 4.5 -2.7
Mistral-7B 0.018 0.013 0.028 -0.015 10.8 4.4 0.020 0.011 0.012 0.012 8.1 5.4 -0.014 0.006 -0.068 0.003 0.0 -7.2

best / / / / 94.6 +88.2 / / / / 87.4 +84.7 / / / / 78.4 +71.2

Math Solver792

The Math Solver dataset evaluates agents’793

planning, reasoning, and action capabilities in794

solving diverse mathematical problems, with795

a particular focus on tool usage during the796

problem-solving process. This dataset is di-797

vided into two categories: Algebra and Ge-798

ometry, comprising a total of 500 tasks (250799

Algebra tasks and 250 Geometry tasks).800

Dataset Construction. The dataset is de-801

rived from the MATH dataset and enhanced802

with GPT-4 to improve diversity and rele-803

vance. The MATH dataset’s original struc-804

ture includes a large number of highly similar805

questions without detailed knowledge point806

categorization, making evaluation costly and807

inefficient. To address this, we synthesized808

new data by:809

(1) Summarizing Knowledge Points: All810

problems in the MATH dataset were an-811

alyzed using GPT-4 to extract a compre-812

hensive list of key concepts.813

(2) Condensing Categories: GPT-4 dis-814

tilled the extracted concepts into 10 key815

knowledge points for Algebra and Ge-816

ometry, respectively.817

(3) Mapping Labels: Each problem in the818

original dataset was mapped to one of819

the 10 knowledge points and assigned a 820

difficulty level (1–5). 821

(4) Synthesizing New Problems: For each 822

unique combination of knowledge point 823

and difficulty level, GPT-4 generated five 824

new problems, ensuring coverage across 825

all categories. 826

Overall, both algebra and geometry each in- 827

clude ten knowledge points. Each knowl- 828

edge point is divided into five levels, and 829

for each combination, there are five prob- 830

lems. Therefore, the total amount of data is 831

2 × 10 × 5 × 5 = 500. Knowledge points 832

and corresponding examples can be seen in 833

Table.5. 834

Automatic Theorem Proving 835

The Automatic Theorem Proving dataset eval- 836

uates agents’ capabilities in solving formal 837

proof problems, focusing on generating code 838

for logical proofs. The dataset includes three 839

categories: Coq, Lean 4, and Isabelle, with a 840

total of 333 tasks (111 tasks per category). 841

Dataset Construction. The dataset originates 842

from 111 Coq problems curated from course 843

material, covering the following topics: 844

(1) Algebraic Calculations, e.g., derivation 845

of linear systems. 846
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Figure 7: An Example Problem in Three Languages.

Figure 8: An Example Problem in Three Languages.

(2) Properties of Functions, e.g., translation847

and monotonicity of functions.848

(3) Properties of Recursive Structures, e.g.,849

operations on tree structures.850

(4) Logical Problems, e.g., relationships be-851

tween AND, OR, and NOT.852

(5) Properties of Natural Numbers, e.g.,853

proving 6 is not a prime number.854

These proof problems serve as introductory855

exercises in college formal proof courses, fo-856

cusing on basic syntax and simple logical re-857

lationships. They are challenging for students,858

making them a suitable benchmark for evalu-859

ating the performance of LLMs.860

To comprehensively assess LLMs’ formal861

proof capabilities, these problems were fur-862

ther translated into Lean 4 and Isabelle ver-863

sions. Coq, Lean 4, and Isabelle are widely864

used formal proof languages, and using mul-865

tiple languages allows for a more rigorous866

comparison of model capabilities.867

Operating System868

The Operating System dataset evaluates an869

agent’s ability to interact with a simulated OS870

terminal by executing commands to address871

OS-related tasks, comprising 71 Ubuntu ter- 872

minal tasks and 31 Git tasks. 873

In Ubuntu tasks, agents are required to pro- 874

pose bash commands to execute in Ubuntu 875

Terminal and get feedback from the termi- 876

nal to complete the task. We utilized the 877

AgentBench-OS framework to employ the 878

evaluation. 879

We enhanced the automated data generation 880

method from AgentBench-OS to construct our 881

new dataset, primarily generating operation- 882

type data. The original method leverages 883

LLMs to generate tasks and employs unit tests 884

to ensure their accuracy. While creating the 885

dataset, we used specific prompts to guide the 886

generation of desired data types. The dataset 887

comprises 71 AgentBench-OS tasks, catego- 888

rized into 40 file system manipulation, 20 sys- 889

tem setting, and 11 process running tasks. 890

For the git tasks, we selected data from learn- 891

gitbranching. The learngitbranching website 892

itself is a tutorial git beginner. It provides ter- 893

minal and sandbox environment that simulates 894

git using a tree structure. Git tree dynamically 895

updates along with each git command from 896

the terminal. Given initial and target states for 897

both local and remote git trees, agents must 898
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interact with the git tree via the terminal to899

transform it from its initial state to the target900

state. The dataset assesses proficiency in fun-901

damental git commands and their combination902

to execute advanced git functionalities.903

Robot Cooperation904

The Robot Cooperation dataset evaluates905

agents’ planning, reasoning, action, and re-906

flection capabilities in multi-robot collabora-907

tion tasks. The dataset includes 100 tasks,908

designed to benchmark performance in robot909

planning scenarios.910

Framework and Dataset Construction. The911

dataset is built upon the RoCoBench environ-912

ment framework, which provides an environ-913

ment simulator and reward mechanisms for914

multi-robot collaboration tasks. We extended915

the original task set by introducing sequen-916

tial constraints and leveraging random seed917

variations to generate diverse task instances.918

– Task Extension: Sequential constraints919

were added to existing tasks, making920

them more complex. Examples include:921

* Sweep Floor Task: Added order con-922

straints. In the Sweep RGB task,923

robots must first sweep the Red Cube924

into the dustpan and dump it into the925

bin, followed by the Green Cube, and926

finally the Blue Cube.927

* Arrange Cabinet Task: Introduced928

sequential object retrieval. In the929

CabinetCup task, robots must first930

place the Cup on the Cup Coaster,931

followed by placing the Mug on the932

Mug Coaster.933

* Sandwich Task: Expanded with ad-934

ditional recipes requiring more plan-935

ning steps.936

– Task Instances: Random seed variations937

in the RoCoBench environment were938

used to create different initial states, gen-939

erating 100 unique task instances. Each940

instance was manually verified to ensure941

it has a correct solution, ensuring robust-942

ness and reliability for model evaluation.943

Reward Mechanism Improvements. To bet-944

ter evaluate model capabilities, we proposed945

new reward methods tailored to the character-946

istics of the extended tasks:947

– Tasks were divided into smaller sub- 948

tasks with rewards granted for complet- 949

ing each sub-task in sequence. 950

– For example, in the Sweep RGB task, re- 951

wards are distributed as 1
3 for success- 952

fully completing each step (e.g., sweep- 953

ing the Red Cube, Green Cube, and Blue 954

Cube in order). This approach incen- 955

tivizes correct sequencing and provides 956

granular feedback on agent performance. 957

– These new reward methods ensure even 958

smaller models can effectively receive 959

feedback, improving evaluation sensitiv- 960

ity. 961

Model Differentiation Enhancements. To 962

further enhance the differentiation capability 963

of the models, we adopt a method where mul- 964

tiple actions are proposed within a single in- 965

teraction. This approach, combined with a 966

constraint on the number of timesteps, im- 967

proves the differentiation among models. By 968

allowing the agent to plan and propose multi- 969

ple actions at once, we can better assess the 970

agent’s planning and reasoning abilities. The 971

constraint on timesteps ensures that the agent 972

must efficiently utilize its planning capabil- 973

ities within a restricted timeframe, thereby 974

providing a clearer distinction between the 975

performance of different models. 976

Prompt Example 977

Planning Module 978

979
prompt_system_planning = """ 980
Welcome to the Online Shopping 981

Challenge! Four LLM agents are 982
working together to do web - 983
shopping tasks step by step ( 984
planning -> reasoning -> acting 985
-> reflecting). They are 986
responsible for planning , 987
reasoning , acting , and 988
reflecting respectively. 989

You are the first llm agent , who is 990
a helpful web -shopping guidance 991
assistant in charge of planning. 992

Your role is to assist players by 993
generating strategic plans based 994
on the game's instructions. 995

996
Here is how the game is structured: 997
- Each round , you will be given an 998

instruction that describes the 999
objective need to achieve. 1000

- Based on the instruction , you are 1001
to generate a clear and brief 1002
strategic plan. 1003
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Table 5: Categories and Examples of Operating System Datasets

Category Category Description Related Commands Example Task Description

File System
Manipulation

Evaluate the knowledge of basic
file system manipulation

operation such as creating,
deleting, copying, moving,

compressing and listing files and
directories.

mkdir, touch, zip,
tar, ls, rm

List all files larger than 1MB
inside the ’/var/log’ directory

and write the list to a file named
’large_files.txt’ in the home

directory.

System Setting

Evaluate the knowledge of
system setting such as disk
partition, OS version, user

management.

df, useradd,
groupadd, uname,
chmod, whoami,

chown

A user needs permission to read
a file in ’/var/private/info.txt’.
Grant read access to all users.

Process Running
Evaluate the knowledge of

processes management
renice, gcc, g++,

python

Change the priority of the
process with PID stored in

/tmp/pidfile to a nice value of 10.

Figure 9: Illustration of OS-git task

- Your plan will be used to guide1004
other agents through the1005
shopping site efficiently.1006

- If there is no response click[Buy1007
Now] within 15 actions , the game1008
fails.1009

1010
Your Responsibilities:1011
- Analyze the original problem and1012

break it into clear , actionable1013
steps.1014

- Ensure the steps are logically1015
ordered and comprehensive for1016
achieving the goal.1017

- Use concise language , focusing1018
only on the key actions needed1019
to complete the task1020
successfully.1021

1022
OUTPUT FORMAT:1023
Keep your response concise and1024

structure:1025
Strategic Plan: (A list of1026

sequential steps to achieve1027
the objective)1028

Step 1: ...1029
Step 2: ...1030
Step 3: ...1031

(Add more steps as necessary , but1032
keep it streamlined and goal -1033
oriented)1034

1035

Enclose the plan with three 1036
backticks ```. 1037

1038
For example: 1039
""" 10401041

Reasoning Module Prompt 1042

1043
prompt_system_reasoning = """ 1044
Welcome to the Online Shopping 1045

Challenge! 1046
Four llm agents are working together 1047

to do web -shopping tasks step 1048
by step(planning -> reasoning -> 1049
acting -> reflecting). They are 1050
responsible for planning , 1051

reasoning , acting and reflecting 1052
respectively. 1053

You are the second LLM agent , who is 1054
a helpful web -shopping guidance 1055
assistant in charge of 1056

reasoning. 1057
Your reasoning thought will guide 1058

the acting agent in making 1059
informed decisions. You should 1060
generate a thought that will be 1061
used as part of the PROMPT for 1062
acting agents. 1063

1064
In each round , following information 1065

will be given to you: 1066
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1. CURRENT OBSERVATION AND AVAILABLE1067
ACTIONS1068

2. PLANNING STRATEGY1069
3. HISTORICAL ACTIONS1070
4. REFLECTION INFORMATION(if any)1071

1072
Here is what you need to focus on:1073
- Every round , you will receive1074

updated information about the1075
shopping scenario , including the1076
current observation , available1077

actions , planning strategy , and1078
past actions.1079

- Based on the current state ,1080
develop a clear thought process1081
to guide the acting a g e n t s1082
next move.1083

- Ensure your response is directly1084
actionable and aligns with the1085
goal of achieving success in the1086
game within 15 actions.1087

- If the game is nearing the1088
interaction limit , prioritize1089
quick decisions over perfect1090
matches to ensure a [Buy Now]1091
action happens promptly.1092

- When you determine that a1093
sufficient match is found (even1094
if not perfect), guide the1095
acting agent to click [Buy Now]1096
immediately.1097

1098
OUTPUT FORMAT:1099
Based on the provided observation1100

and available actions , generate1101
a clear and brief thought in one1102
sentence that outlines your1103

analysis and considerations for1104
the next move.1105

Note: Please surround the reasoning1106
content you generated with three1107
backticks. That is:1108

"""11091110

Action Module Prompt1111

1112
prompt_system_action = """1113
Welcome to the Online Shopping1114

Challenge!1115
Four llm agents are working together1116

to do web -shopping tasks step1117
by step(planning -> reasoning ->1118
acting -> reflecting). They are1119
responsible for planning ,1120

reasoning , acting and reflecting1121
respectively.1122

You are the third LLM agent , who is1123
a helpful web -shopping guidance1124
assistant in charge of acting.1125

As an acting agent , your role is to1126
integrate various elements such1127
as the instruction , the current1128
state , historical actions ,1129
strategic planning , and current1130
reasoning to recommend the best1131
possible action for the next1132
step.1133

1134

In each round , the following 1135
information will be given to you 1136
: 1137

1. ORIGINAL PROBLEM 1138
2. PLANNING STRATEGY 1139
3. HISTORICAL ACTIONS 1140
4. CURRENT REASONING 1141

1142
Your Role: 1143
- Each round , you will receive 1144

updated information , including 1145
the current observation , 1146
available actions , strategic 1147
plan , reasoning , and past 1148
actions. 1149

- Based on this information , decide 1150
and respond with the best 1151
possible action to move closer 1152
to completing the objective. 1153

- Actions you can perform: 1154
Search if a search bar is 1155

available. 1156
Click one of the provided 1157

clickable buttons. 1158
- Follow the reasoning closely , but 1159

only deviate if you are 1160
confident that your choice is 1161
better. 1162

1163
Important Rules: 1164
- You must click [Buy Now] as soon 1165

as you are confident that a 1166
suitable match has been found to 1167
avoid exceeding the 15-round 1168

limit. 1169
- If no valid action is available , 1170

perform no action and wait for 1171
the next round. 1172

- Ensure the clicked value exactly 1173
matches the available options , 1174
including case sensitivity and 1175
punctuation. 1176

- Attention: Although you need to 1177
click to buy as early as 1178
possible to get rewards , 1179
remember that you must click on 1180
a product before clicking to buy 1181
; 1182

if you 1183
click 1184
to buy 1185
without 1186

1187
clicking 1188
on the 1189

1190
product 1191
, you 1192
will 1193
receive 1194
0 1195

rewards 1196
. 1197

1198
OUTPUT FORMAT: 1199
Use the following formats for your 1200

action: 1201
- searching: search [ 1202

keywords] 1203
- clicking: click [value] 1204
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- For example: click [b06xdg8xfx]1205
- Keywords in search is up to you ,1206

but value in click must be a1207
value in the list of available1208
actions.1209

- The value must exactly match the1210
original text , including case1211
sensitivity (uppercase/lowercase1212
) and all symbols/punctuation.1213

1214
Note: Please surround the action1215

content you generated with three1216
backticks. That is:1217

"""12181219

Reflection Module Prompt1220

1221
prompt_system_reflection = """1222
Welcome to the Online Shopping1223

Challenge!1224
Four llm agents are working together1225

to do web -shopping tasks step1226
by step(planning -> reasoning ->1227
acting -> reflecting). They are1228
responsible for planning ,1229

reasoning , acting and reflecting1230
respectively.1231

You are the fourth llm agent in1232
charge of reflecting. Your role1233
is to reflect on whether there1234
was an error in the previous1235
reasoning and action sequence.1236

Remember , your clear and brief1237
reflection will be used as part1238
of the PROMPT for the later1239
agents to guide them to make1240
wise decisions and succeed in1241
the game.1242

1243
In each round , the following1244

information will be given to you1245
:1246

1. ORIGINAL PROBLEM1247
2. HISTORICAL REASONINGS1248
3. HISTORICAL ACTIONS1249

1250
Here is your role:1251
As an LLM Agent , your role is to1252

reflect on the recent outcomes1253
and consider the following1254
points:1255

1. Identify why the current result1256
is unsatisfactory. Explore1257
factors such as inadequate1258
search queries , irrelevant1259
clicks , or repeated useless1260
actions.1261

2. Evaluate the effectiveness of1262
past actions and thoughts. Were1263
there missed signals or1264
incorrect assumptions?1265

3. Propose improvements for the next1266
steps. Suggest specific actions1267
or adjustments in search1268

strategies , clicking behaviors ,1269
or decision -making processes.1270

4. Consider the overall goal of1271
achieving successful purchases1272
within the game's constraints.1273

How can future actions better 1274
align with this objective? 1275

Use these as a guide , and generate a 1276
plan for the next reasoning and 1277
action steps. Outline 1278

actionable insights and 1279
strategies to improve outcomes 1280
in the upcoming rounds. 1281

1282
OUTPUT FORMAT: 1283
- You should carefully examine 1284

reasoning history and action 1285
history to find out where things 1286
may have gone wrong , summarize 1287

where they went wrong. 1288
- Your reflection output should 1289

provide clear and concise 1290
suggestions for the next few 1291
reasoning and action agents , 1292
facilitating informed decision - 1293
making and guiding the LLM agent 1294
towards achieving better 1295

performance in subsequent 1296
interactions. 1297

- Ideally , it should contain: 1298
- Flaw: One sentence that 1299

summarizes key factors 1300
causing the 1301
unsatisfactory result. 1302

- Improvement: One sentence 1303
that includes 1304
specifically how to 1305
adjust improve reasoning 1306
and action steps to 1307

achieve better outcomes 1308
in the future. 1309

1310
Note: Please enclose the flaw and 1311

improvement with three backticks 1312
: 1313

""" 13141315
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