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Abstract

Large Language Model (LLM) agents frame-
works often employ modular architectures, in-
corporating components such as planning, rea-
soning, action execution, and reflection to
tackle complex tasks. However, quantifying
the contribution of each module to overall sys-
tem performance remains a significant chal-
lenge, impeding optimization and interpretabil-
ity. To address this, we introduce CapaBench
(Capability-level Assessment Benchmark), an
evaluation framework grounded in cooperative
game theory’s Shapley Value, which system-
atically measures the marginal impact of indi-
vidual modules and their interactions within
an agent’s architecture. By replacing default
modules with test variants across all possible
combinations, CapaBench provides a princi-
ple method for attributing performance contri-
butions. Key contributions include: (1) We
are the first to propose a Shapley Value-based
methodology for quantifying the contributions
of capabilities in LLM agents; (2) Modules
with high Shapley Values consistently lead to
predictable performance gains when combined,
enabling targeted optimization; and (3) We
build a multi-round dataset of over 1,500 en-
tries spanning diverse domains and practical
task scenarios, enabling comprehensive evalua-
tion of agent capabilities. CapaBench bridges
the gap between component-level evaluation
and holistic system assessment, providing ac-
tionable insights for optimizing modular LLM
agents and advancing their deployment in com-
plex, real-world scenarios.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have ushered in a transformative era
for artificial intelligence agents. These models
demonstrate unprecedented capabilities in under-
standing, generating, and integrating natural lan-
guage across diverse domains (Brown et al., 2020;
OpenAl et al., 2024). However, LLMs still face
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Figure 1: Conceptual Mapping between Coalition Game The-
ory and LLM Agent Evaluation. The left shows the mapping
from coalition game theory to LLM agents, the right lists all
possible combinations (2* = 16) with performance values.

notable challenges as foundational models for sup-
porting Al agents in real-world applications. These
include accurately interpreting subtle contextual
shifts, effectively integrating with external tools,
and ensuring both the accuracy and reliability of
outputs. To overcome these challenges, researchers
have increasingly adopted modular architectures,
decomposing agents into distinct components re-
sponsible for planning, reasoning, and action execu-
tion. Such modular frameworks not only enhance
the overall performance but also improve the in-
terpretability and maintainability of the systems.
Frameworks such as ReAct (Yao et al., 2022) and
AutoGPT (Tang et al., 2023) exemplify how struc-
tured workflows, achieved by breaking down tasks
into manageable modules, can lead to more effi-
cient task processing. These modular architectures
lay the groundwork for systematic evaluations of
LLM agents’ internal designs and effectiveness in
various applications.

Despite the impressive capabilities of LLM
agents, accurately evaluating their performance
remains an open challenge. Traditional evalua-
tion methods have predominantly focused on task-
specific benchmarks and domain-specific datasets.
For instance, AgentBench (Liu et al., 2023) as-
sesses agents’ abilities through specialized tasks,
while ToolBench (Guo et al., 2024) evaluates the
effectiveness of LLM agents in leveraging external



tools across diverse application scenarios. Addi-
tionally, MMAU (Yin et al., 2024) investigates the
capabilities of LLM Agents across a wide range of
tasks. However, these benchmarks often rely on
reductive assumptions, equating task success (e.g.,
solving a math problem) with broader cognitive
abilities (e.g., reasoning). This simplification ne-
glects the complex interactions between an agent’s
internal components, leading to an incomplete un-
derstanding of their true potential. The current
task-oriented evaluation framework faces several
key challenges. First, LLM agents simultaneously
require the integration of multiple capabilities to
solve complex tasks. For example, solving a math-
ematical problem may necessitate reading compre-
hension, tool usage, and structured output genera-
tion. Second, existing methods fail to account for
the interactions between architectural components
and their collective contributions to overall system
behavior. Additionally, task-specific success rates
provide limited insight into the relative contribu-
tions of individual modules, making it difficult to
identify key areas for optimization. Consequently,
there is a pressing need for evaluation frameworks
that can dissect and quantify the contributions of
each module within modular LLM agents.

To address these challenges, we propose a novel
evaluation framework, CapaBench, which inte-
grates the assessment of modular architectures with
the evaluation of agent capabilities. CapaBench
systematically quantifies the contributions of in-
dividual modules (e.g., planning, reasoning, ac-
tion execution, reflection) within LLM architec-
tures using the Shapley Value (Hart, 1989), a co-
operative game theory metric that fairly attributes
performance based on all possible permutations
of module contributions. This approach captures
direct contributions and interaction effects at the
same time, offering a rigorous and interpretable
evaluation of system dynamics. Our method pro-
vides several key advantages: (1) evaluating the
contributions of each module by capturing nuanced
dynamics; (2) using a mathematically sound attri-
bution method to enhance interpretability of agent
performance; and (3) enabling predictions about
system performance based on specific module com-
binations, supporting targeted optimizations. To
the best of our knowledge, CapaBench is the first
framework to systematically quantify and attribute
module contributions in LLM-based agents using
the Shapley Value approach.

Furthermore, to ensure that our evaluation re-

flects realistic, multi-faceted application scenarios,
we build a large-scale dataset of over 1,500 multi-
round tasks spanning a diverse range of categories
(e.g., shopping, navigation, ticket ordering, oper-
ating system, robot control, math, and theorem
proving). These tasks integrate various capabilities
such as planning, tool usage, and reflection, thereby
requiring holistic agent performance rather than iso-
lated skill assessments. Our dataset will be open-
sourced in the future to support further research
and development, and we are actively adding more
scenarios to broaden its coverage and applicability.
CapaBench makes the following contributions:

* Novel Evaluation Framework: We are the first
to propose a Shapley Value-based methodology
for quantifying the contributions of capabilities
in LLM agents.

* Predictive Module Combinations: Experi-
ments reveal that modules combined with higher
Shapley Values consistently improve task suc-
cess, offering clear guidance for optimizing mod-
ule integration to maximize performance.

¢ Large-Scale Dataset: We build a multi-round
dataset with over 1,500 entries spanning diverse
domains such as daily activities, computation,
and role control. The dataset is designed to chal-
lenge multiple agent capabilities simultaneously,
serving as a robust testbed for evaluating LLM
agents. Our dataset will be released in the future
to facilitate further research and development.

2 Related Work

2.1 LLM Agent

Recent advances in large language models (LLMs)
have catalyzed the development of increasingly
sophisticated Al agents. LLM agents typically em-
ploy modular architectures that decompose tasks
into planning, reasoning, and action execution.
Early work, such as ReAct (Yao et al., 2022),
highlighted the efficacy of explicit reasoning and
action paradigms. Recent efforts, such as Auto-
GPT (Tang et al., 2023) pioneered autonomous
task execution through iterative planning and re-
flection. MetaGPT (Hong et al., 2024), intro-
duced hierarchical planning strategies that enable
dynamic task decomposition and recursive self-
improvement. Building on these works which high-
light modular designs, our study systematically
evaluates the marginal impact of individual mod-
ules using the Shapley Value, uncovering the most



suitable combinations of LLM modules for achiev-
ing optimal performance in different environments.

2.2 Agent Benchmark

The evaluation of LLLM agents has evolved con-
siderably, with early approaches primarily empha-
sizing task-specific performance metrics. Agent-
Bench (Liu et al., 2023) laid the groundwork by
evaluating agents across diverse scenarios, such
as web browsing and knowledge graph, highlight-
ing the importance of assessing performance in
diverse contexts. However, these evaluations of-
ten focused on task outcomes while overlooking
the foundational skills driving these results, mak-
ing it difficult to analyze the root causes of fail-
ures. To address this limitation, MMAU (Yin et al.,
2024) introduced a novel benchmark that provides
an evaluation of agent capabilities. But it driectly
combined Agents’ capabilities with specific tasks.
Recent benchmark developments have become in-
creasingly sophisticated. OmniACT (Zhang et al.,
2024) introduced a framework for evaluating agents
in desktop environments, while AgentQuest (Yang
et al., 2024) developed methods for assessing con-
tinuous learning and adaptation. These frameworks
represent a shift toward understanding not just what
agents can do, but how they handle complex, dy-
namic scenarios. In contrast, CapaBench extends
beyond capability-level evaluations by leveraging
the Shapley Value to quantitatively capture each
module contributions, enabling a more nuanced
analysis of how each component influences overall
agent performance.

3 Benchmark Design

We build the agent framework shown in Figure 2 as
the foundation of our benchmark. This framework
is specifically designed to assess LLM agents’ abil-
ities in various environments and task scenarios. It
follows established agent processes and features a
modular design, which supports both single-turn
and multi-turn interactions. This ensures that our
evaluations are comprehensive and adaptable.

3.1 Agent Capability

Building upon established works (Yao et al., 2022;
Tang et al., 2023; Hong et al., 2024), our frame-
work integrates 4 fundamental capabilities for LLM
agents: Planning, Reasoning, Action, and Reflec-
tion, as illustrated in Figure 2. These capabilities
represent the core functionalities widely recognized
in current agent systems: (1) Planning module
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Figure 2: Agent Workflow in CapaBench.

initiates the agent workflow by decomposing com-
plex instructions into structured subtasks, follow-
ing principles established in hierarchical planning
systems (Brown et al., 2020). This decomposition
enables effective task prioritization and resource
allocation, particularly crucial for multi-step opera-
tions requiring strategic foresight; (2) Reasoning
module extends the ReAct framework (Yao et al.,
2022) by incorporating both instruction context
and environmental observations. Through chain-of-
thought mechanisms (Wei et al., 2022), this module
performs logical inference and causal analysis to
determine appropriate action sequences. Integra-
tion with the planning module enables dynamic
adjustment of reasoning strategies based on evolv-
ing task requirements; (3) Action module imple-
ments the execution interface, translating cognitive
processes into concrete operations. This approach
builds on established action space formalization
(Guo et al., 2024), ensuring consistent mapping
between internal state representations and external
behaviors. The module maintains state awareness
through continuous environment monitoring, en-
abling responsive behavior adaptation; (4) Reflec-
tion module completes the architecture by imple-
menting systematic performance analysis, drawing
from recent advances in self-improving systems
(Yin et al., 2024). Operating primarily in multi-
turn scenarios, this module enables iterative refine-
ment of agent behavior through structured outcome
analysis and strategy adjustment.

3.2 Evaluation Methodology

We use Shapley Value (Hart, 1989) from coop-
erative game theory to evaluate module contribu-
tions in LLM architectures. This method quantifies
each module’s marginal impact on performance
by analyzing all module configurations, capturing
both individual contributions and interaction effects
through task success rates.

Shapley Value Framework Shapley Value pro-
vides a theoretical foundation for fairly allocating
the overall performance of a system to its individ-



ual components. For a set of N modules, Shapley
Value ¢;(v) for module 7 is defined as:

W (S U {i) — v(S)], ()

bi(v) = >
SCN\{1}
where S denotes any subset of N that ex-
cludes module 4, and v(.S) represents the perfor-
mance(task success rate) of the agent when only the
modules in S are active. The term v(SU{i})—v(5)
quantifies the marginal impact of adding module
i to the subset S, while the weight W

ensures fair averaging across all possible subsets.

Evaluation Flow CapaBench systematically
evaluates the contributions of four key modules
in the agent architecture: Planning (P), Reasoning
(R), Action (A), and Reflection (F'). As shown in
Figure 1, the evaluation involves testing all possible
combinations of these modules (2* = 16 combina-
tions) by replacing default implementations with
test variants provided by the target LLM model.
The default "whiteboard" modules, implemented
using Llama3-8b-instruct, serve as a fixed baseline
to isolate the performance impact of each test mod-
ule. Llama3-8b-instruct was chosen as the default
model implementation because it is open-source,
lightweight, and easy to deploy, making it practi-
cal for extensive testing. While it possesses basic
task completion capabilities, its moderate success
rates provide an ideal baseline to observe and quan-
tify the impact of replacing modules with more
advanced test models. For each combination, Ca-
paBench computes performance values to quantify
the contribution of individual modules and their in-
teractions. Diverse task benchmarks (B), including
multi-step scenarios designed to simulate practical
agent applications, are used to evaluate the sys-
tem, providing insights into the optimal module
configurations for various environments.

Capturing Synergistic Effects and Nonlinear Dy-
namics Shapley Value provides a robust frame-
work to quantify both the independent contribu-
tions and synergistic interactions among modules
in a modular architecture. By systematically eval-
uating all possible subsets S C N, it inherently
captures the nonlinear dynamics and interdepen-
dencies between modules. For instance, Planning
provides structured outputs for Reasoning, while
Reasoning refines these outputs to guide Action
execution. Tasks often require at least two mod-
ules to collaborate, such as Reasoning and Action
working together to decompose and solve complex

tasks. These collaborative effects are reflected in
the marginal contributions v(SU{i})—v(S), where
v(S) represents the system’s performance (e.g.,
task success rate) with subset .S. Shapley Value is
particularly well-suited for nonlinear dynamics, as
it fairly distributes contributions even when module
interactions exhibit synergy or competition. Un-
like linear or additive methods, it ensures unbiased
attribution of both individual and collaborative con-
tributions, making it ideal for evaluating modular
LLM agents with complex interdependencies.

3.3 Dataset Construction

Online Shopping Tasks are based on WebShop
platform (Yao et al., 2023), consisting of 110 tasks,
with 48 modified to increase diversity and com-
plexity. For example, the instruction "find me
scrubs & body treatments made with tea tree and
other natural ingredients" was changed to "Given
my upcoming spa weekend, recommend scrubs &
body treatments with tea tree for sensitive skin."
These changes introduce more natural, context-rich
queries, testing agents’ reasoning, personalization,
and relevance. The evaluation framework aligns
with WebShop’s reward model and product defini-
tions, ensuring consistent performance assessment.

Navigation Planning The Navigation Planning
task(Lin et al., 2024) evaluates agents’ ability to
generate and adapt travel itineraries under evolving
constraints. Our enhanced dataset of 250 tasks sim-
ulates dynamic planning through preference evo-
lution mechanisms, where users initially provide
three core requirements (e.g., budget limits, pre-
ferred activities) with 50% probability of introduc-
ing new constraints during interactions. The evalu-
ation combines constraint adherence measurement
for requirement fulfillment accuracy with route op-
timality assessment through multi-criteria scoring
of spatial efficiency and preference alignment. The
metric includes precision from experiments and
route rationality based on user preferences (e.g.,
budget, activities), reflecting agent’s ability to pri-
oritize needs and generate actionable plans.

Ticket Ordering Ticket Ordering assesses
agents’ ability to find the best flight combination
for two users based on their needs and constraints.
Inspired by (Lin et al., 2024), it includes 150 tasks
simulating real-world ticket ordering scenarios.
Agents must consider users’ calendars, flight prices,
and arrival times to provide an optimal flight com-
bination. The evaluation focuses on minimizing



Table 1: Capability and number of data per dataset. P, R, A,
F represent Planning, Reasoning, Action, Reflection. Check-
marks indicate the emphasis of each capability in per task.

Daily Activities Computation Tasks Role Control

Shopping Navigation Ticket Math ATP  OS Robot
Sample Count 110 250 150 250 x 2 111 x3 102 80
Task Steps v v v
Resource Constraints v v v v
Logical Validation v v v
Knowledge Inference \/ \/ \/ ‘/
A Environmental Actions \/ \/ \/
Interactive Actions \/ \/ \/ \/

F Failure Analysis \/ \/ \/ \/ \/ \/ \/

three factors: flight price, calendar conflicts, and
the difference in users’ arrival times, with higher
scores for more affordable, conflict-free options
and closer arrival times.

Math Solver Math Solver evaluates agents’ abil-
ity to solve diverse mathematical problems by in-
corporating tool usage into the process. To ad-
dress the lack of detailed classification in Math
(Hendrycks et al., 2021), we selected 5 key con-
cepts and 10 difficulty levels and we created 250
new questions for both algebra and geometry tasks.
We designed two tools fpr agents to solve problems:

* A pseudo ‘search engine’ with 200 curated
knowledge points, allowing agents to retrieve
the top 3 relevant points.

* A calculator for numerical computations.

Automatic Theorem Proving (ATP) ATP evalu-
ates agents’ ability to construct formal proofs for
complex logical problems. The MINIF2F dataset
(Zheng et al., 2021), which includes Olympiad-
level problems, is partially outdated, as it uses Lean
3 (now replaced by Lean 4) and lacks coverage of
Coq, another widely used formal proof language.
ATP emphasizes iterative proof construction, re-
quiring agents to use formal verification tools like
Coq, Lean4, and Isabelle3 (The Coq Development
Team; The Lean Prover Team; The Isabelle Team).
These tools enforce strict syntax and dynamic rea-
soning, requiring agents to adjust strategies based
on the proof’s current state, simulating human-like
reasoning in formal logic problem-solving.

Operating System The OS dataset assesses
agents’ abilities to interact with a simulated ter-
minal for Ubuntu and Git tasks. For Ubuntu, we
expanded AgentBench-OS framework (Liu et al.,
2023) using GPT-4, focusing on file manipulation,
system settings, and process management. Agents

propose bash commands, receive terminal feed-
back, and use reflection (e.g., checking command
success with (echo?)) to address failures. For Git,
we constructed dataset from Learn Git Branching
(The learnGitBranching Team) , which requires
agents to transform an initial git tree into a target
state using commands. Reflection is triggered if no
changes occur after two steps, enhancing agents’
reasoning and adaptability.

Robot Cooperation Robot Cooperation tasks,
derived from RoCo (Mandi et al., 2023), evalu-
ate agents in real-world-inspired robotic scenarios
across five tasks: Sweep Floor, Move Rope, Ar-
range Cabinet, Make Sandwich, and Sort Cubes.
We expanded these tasks with diverse instances
and constraints, such as color-specific sequencing
in Sweep Floor and sequential logic in Arrange
Cabinet. Using RoCo’s Central Plan mode, agents
receive full environment observations and plan ac-
tions for all robots simultaneously.

4 Experiment

4.1 Experimental Implementation

In our experiments, we use Llama3-8B-Instruct
as the default for all four core modules: planning,
reasoning, action, and reflection. For each evalu-
ation, we replace one module with its test variant
(driven by the test model), keeping the other mod-
ules default. This creates 16 configurations for the
four-module architecture. For each configuration
S, we measure measure the task success rate v(.5)
across various benchmark scenarios to ensure ro-
bust and representative performance.

We evaluate 9 large language models, catego-
rized into 3 groups:

* Closed API Models: This includes four
widely used commercial API-based models:
Anthropic/Claude-3.5-Sonnet, OpenAl/GPT-4-
turbo-0409, OpenAl/GPT-40-mini, GLM-4-air,
and Doubao-pro-4k.

* Mid-parameter Open-Source Models (32B-
100B): To assess mid-scale models, we evalu-
ate three models: Llama3.1-70B-Instruct and
Mixtral-8x7B-Instruct-v0.1 (46.7B).

¢ Low-parameter Open-Source Models (<32B):
For lightweight models, we include Qwen2.5-
32B-Instruct and Mistral-8B-Instruct-v0.2.

All experiments are conducted on NVIDIA A100-

80GB GPUs, with vLLM employed for efficient

inference of open-source models.



Table 2: Experimental Results Across Datasets. Metrics for baseline models are highlighted in blue. Results marked
with “** below each dataset indicate the best-performing model combinations computed based on Shapley Value.

Llama3 Claude 8pt-40 glm-4 qwen2.5 Mistral Mistral 8&Pt-4 doubao Llama3

Dataset Metric 8B 3.5 mini air 32B 8X7B 7B turbo pro-4k 70B
Pt - -0.004 0071 0106 -0.030 -0.048 0024 0026 0.071 -0.028

. Rt - 0.019 -0.025 0.077 0004  0.036 0016 -0.074 0011  0.005
Sl?;;};}flg At ~ 0056 0068 -0059 0156 0080 0004 0014 -0045 0.117
Ace: 43.31% Ft - 0009 -0.003 -0.011 -0.021  -0.015 -0.022 0.024 -0.040 -0.030
Acc (%) 2627 3243 3743 3750 37.18  31.67 2848 2531 2595  32.61

Pt . 0.000 0.006 0.001 -0.002  0.021  0.023 0.008 0001 -0.009

Navigation Rt - 0.030 0.027 -0.008 0012  -0035 0055 0014 -0.003 -0.019
Planning At - 0.106 0.081 0005 0.099  0.048 0.042 0099 -0.051 0.046
Acc: 74.42% Ft - -0.006 0.002 -0.021 0.018  -0029 0007 0004 -0.033 -0.011
Acc (%) 5870 7190 7029 6191  68.26 64.45 7148 7123 5090  59.32

Pt - 0.003 0.032 -0.195 0.119 0.183  -0.111 -0.043 0.5 0.004

i Rt - 0.186 0243 0172  0.181 0.054  -0.070 0301 -0.001 0.089
Ofﬁ%';‘i’;g At - 0217  0.049 -0.020 -0.000 -0.083  -0.020 0.028 0.006 -0.275
Ace: 67.18% Ft - 0.024  0.005 -0.006 0.043  -0.011 0002 0.058 -0.027 -0.001
Acc (%) 1994 6285 51.82 1501 5425 34.24 0.00 5437 32838 159

Pt / 0.038  0.067 0.056  0.065 0.005  -0.060 0048 0.115  0.028

Rt / 0.131 0021 0044 0.107 0003  -0.000 0.065 0059 0031

Math At / 0442 0343 0348 0483  0.164  -0.044 0492 0.182 0327
Acc:83.80% Ft / 0.042  0.043 0.005 0.031 -0.014  -0.003 0.022 -0.002  0.006
Acc (%)  18.00 8340 6540 6320  86.60 33.80 720 8060 5340  57.20

Pt / 0.012 0.018 0002 0018 0.025 0.008 0012 0016 0.019

Rt / 0.057 -0016 0005 0030 0018 0.010 0027 0019 -0.056

ATP At / 0.660 0345 0.161 0511 0.039  -0.009 0541 0.084  0.125
Acc: 86.79* Ft / 0.069 0015 0021 0.037 -0.011 -0.000 0.023 0.004 0.011
Acc (%) 545 8529 4174 2432  65.17 12.61 631 6577 1772 1532

Pt - 0.114 0075 -0.024 009  -0.005 -0.014 0.107 0.021  0.043

Rt - 0388  0.189 0.116  0.268 0.033  -0.000 0329 -0.004 0.152

CO&‘;‘;‘;&OH At - 0319 0.196 0.008 0277 0052  -0.021 0316 0204 0.175
Rwd: 92.63% Ft - 0.017 -0.003 -0.012  0.003 0.004  -0.001 0.0l -0.012 -0.008
Reward (%) 885  92.63 5443 17.60 7259 17.27 517  84.18 2975  45.06

Pt - 0.078 0.042 0047  0.060 0.032 0.004 0050 0065 0.077

Operating Rt - 0.458 0305 0305 0311 0.194 0047 0395 0215 0313
System At - 0.071  0.065 0041  0.053 0.009 0.019 0070 0060  0.040
Acor 60.78% Ft - 20008 0.020 0004  0.037 0.001 0.019 0005 -0.006 0.012
Acc (%) 098  60.78 44.12 4071  47.06 24.51 980 5294 3431  45.10

4.2 Main Results

Module Impact via Replacement The experi-
mental results in Figure 4 show that module re-
placement accurately reflects its impact on system
performance, as seen with Claude-3.5-Sonnet
on Algebra. High-contribution modules, identi-
fied via Shapley Value calculations, lead to signifi-
cantly better performance. For example, (P,R,A)
achieves 78.0%, far surpassing the baseline config-
uration with Llama3-8b-Instruct at 21.6%. Incre-
mental replacements align with predictions: sub-
stituting the default Planning module (P) improves
performance to 18.4%, and adding a strong Action
module (A) raises it to 63.2%. Configurations like
(P,R,A) maximize performance through synergy,
while low-contribution modules, such as (P, F), re-
sult in poor performance (0.212). These results
confirm the accuracy of Shapley Values in quanti-

fying module contributions.

Predictive Module Combinations The experi-
mental results in Table 2 demonstrate that modules
with higher Shapley Values consistently lead to
improved task performance when combined. For
instance, in the "Online Shopping" dataset, the op-
timal combination achieves an accuracy of 43.31%,
which is significantly higher compared to the other
models, indicating the advantage of leveraging
high-contribution modules. Similarly, in ATP, the
best combination computed based on Shapley Val-
ues results in an 86.79% accuracy, showcasing a
marked improvement over alternatives. These re-
sults demonstrate that identifying and integrating
key modules with high Shapley Values enables Ca-
paBench to systematically maximize performance
across tasks, validating Shapley Values as a reliable
guide for module selection and optimization.
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Figure 3: Radar plot comparing model performance across tasks with key contributions.

4.3 Ablation Study

In this section, we examine how changing the de-
fault model in our evaluation framework affects
Shapley Value results and the relative ranking of
various LLMs. Specifically, we replace the orig-
inal default model (L1ama3-8B-instruct) with
gpt-3.5-turbo-0613 and re-run the evaluation
on the same set of seven test LLMs over Robot
Cooperation. Figure 5 illustrates the Shapley Value
results for the four modules under 2 default models.
Although the absolute Shapley Values vary due to
the differences in baseline models’ capabilities, our
primary focus is on the consistency of test model
rankings. To quantify this consistency, we define
the preference pair consistency rate as

{ Consistent Preference Pairs}

Pairwise Consistency Rate —
{All Model Pairs }

which measures the proportion of test model
pairs that maintain the same relative ranking across
both experiments. A higher rate indicates that
changes to the default model have minimal impact
on the relative ranking of test models.

Results show that Reasoning achieves the high-
est consistency rate (91.67%), followed by Ac-
tion (86.11%), Planning (72.22%), and Reflection
(58.33%). The overall consistency rate (85.18%)
confirms that our framework is robust to changes in
the default model for most modules. Notably, Rea-
soning and Action, which contribute most to task
success according to Shapley Values, also show the
highest ranking consistency. In contrast, Reflec-
tion exhibits the lowest consistency (58.33%), sug-
gesting that its assessment is more sensitive to the
default model choice or that it requires further re-
finement. While absolute Shapley Values shift with
a stronger or weaker default model, the relative
ordering of test models—and the key insights into
each model’s strengths and weaknesses—remains
largely stable.

4.4 Analysis

Cross-Task Model Performance Comparison
A comparison of model performance across di-
verse tasks reveals distinct strengths and weak-
nesses. Notably, Claude-3.5 excels in most cat-
egories, particularly in formal verification (e.g.,
Coq, Lean 4, Isabelle) and robot cooperation tasks.
This suggests a strong chain-of-thought reasoning
mechanism and effective multi-agent collaboration
strategies—capabilities essential for tasks requir-
ing precise logic and synchronized actions. In
contrast, open-source models like Qwen-2.5 and
Mistral-8X7B perform well in more straightfor-
ward domains, such as shopping or basic Algebra,
but lag in cognitive-heavy tasks like automatic the-
orem proving and robot cooperation. These mod-
els, while adept at routine queries and procedural
problem-solving, lack the deeper reasoning, ad-
vanced planning, and specialized modules required
for complex, multi-stage tasks. Improving these
areas through fine-tuning on specialized data or in-
tegrating more advanced tools could help bridge the
gap between open-source and proprietary models.

Module Contribution Patterns Our findings
highlight that module contributions vary according
to task demands, reflecting the distinct cognitive

processes involved. Specifically:
» Tasks with High Cognitive Complexity (e.g.,

Shopping, Robot Cooperation, and OS): Rea-
soning and Planning play pivotal roles. Online
shopping requires balancing constraints (e.g.,
budget and preferences) and sequencing deci-
sions effectively. In robot cooperation, Reason-
ing enables dynamic information updates and
efficient task distribution among agents. Oper-
ating system tasks, involving troubleshooting
and resource management, rely heavily on real-
time problem-solving and feedback interpreta-
tion. Across these tasks, robust Reasoning en-
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Figure 4: Shapley value results of all combinations in Math (Algebra) for Claude-3.5-Sonnet under different configurations.
The pattern of the bars indicates the number of modules (ranging from O to 4) that Claude is involved in.
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Figure 5: Compare default LLMs on Robot Cooperation.

sures logical inference and decision-making un-
der uncertainty.

* Tasks Requiring Precision (e.g., Math Solvers
and ATP): Action is the dominant module. In
math solvers, particularly geometry, precise pro-
cedural execution, such as applying theorems
or constructing diagrams, outweighs strategic
planning. Similarly, in formal verification tasks
(e.g., Coq or Lean), strict adherence to syntactic
and semantic correctness is critical. Both scenar-
ios demand meticulous step-by-step actions to
ensure reliability and prevent errors.

Low Reflection Contribution We observe that
the Reflection module has a limited impact on task
performance, likely due to two main factors. First,
task success alone doesn’t fully capture the quality
or effectiveness of reflection; a model’s ability to
"think about’ its mistakes is not reflected in success
rates. Second, without guidance from a more capa-
ble model, the Reflection module may struggle to
identify the root causes of errors. As a result, the
lack of deeper insights into these errors limits its
practical impact on task outcomes.

Comparative Study We assessed the effective-
ness of Shapley Values in capturing LLMs’ abili-
ties like Planning, Reasoning, and Action with 238
questions from successfully completed trajectories
in Algebra dataset. We divided these trajectories
into single-step QA samples based on the three core
modules, resulting in 2180 samples. The Reflection
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Figure 6: Planning, Reasoning, and Action Evaluation on
Algebra. The left Y-axis shows Shapley Value with solid lines
and the right Y-axis shows the GPT scores with dashed lines.

module was excluded due to its minimal impact
on overall success rates and thus the insufficient
number of successful trajectories to build a reliable
dataset for evaluation. For each single-step sample,
the responses from the test models were evaluated
by GPT-ol-mini. The evaluation criteria focused
on two aspects for the Planning and Reasoning
modules: semantic rationality, which assesses
whether the response is clear and understandable,
and task completion, which measures how effec-
tively the task was completed. For the Action mod-
ule, the evaluation focused on logical comprehen-
sion ability, scoring based on the model’s under-
standing of the task logic and its ability to execute
correct actions based on the Planning and Reason-
ing modules. Figure 6 shows the Shapley Values
and the scores by GPT-01-mini of each model, with
Pearson correlation coefficients of 0.81, 0.77, 0.67
for the Planning, Reasoning, and Action modules,
respectively. These high correlations validate the
effectiveness of Shapley Values in quantifying each
module’s specific contribution to task success.

5 Conclusion

This paper introduces CapaBench, a benchmark
using Shapley Value to evaluate the contributions
of individual modules in LLLM agents. By ana-
lyzing interactions among planning, reasoning, ac-
tion, and reflection, we enable precise attribution,
guiding optimization and predicting performance
across diverse tasks. Moving forward, we aim to
expand the variety of senarios and develop domain-
specific protocols to reduce computational costs
while maintaining module-level insights.



6 Limitations

In our work, we use Shapley Value to fairly at-
tribute performance to the individual modules
within LLLM agents. Computing Shapley Values
requires evaluating all possible module combina-
tions, leading to an exponential increase in com-
putational complexity as the number of modules
grows. This makes it impractical for models with
a large number of components. In the future, we
aim to explore methods for optimizing the Shapley
Value computation to improve scalability for larger
systems.
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Appendix

Framework Algorithm

The evaluation method is detailed below in the
form of pseudocode. This algorithm outlines the
systematic steps used to quantify the contributions
of individual modules and their interactions within
the modular architecture.

Algorithm 1 CapaBench Evaluation Framework

1: Input: Default model, Test model, Bench-
marks B

Output: Shapley Value ¢;(v) for each test
module ¢

Fix all modules to their default implementa-
tions: { Pd, Rd, Ad, Fd}

4: for all subset S C {Pt, Rt, At, F't} do

5:  Replace default modules in .S with test mod-
ules

6:  Evaluate task success rate v(.5) using bench-
marks B

7: end for

8: for all test module i € { Pt, Rt, At, F't} do
Compute Shapley Value ¢;(v)

end for

return ¢;(v) for all test modules 7

10:
11:

Dataset Details
Online Shopping

The Online Shopping dataset is designed to eval-
uate agents’ planning, reasoning, and action ca-
pabilities in completing e-commerce tasks. The
dataset consists of 110 tasks, divided into two
parts: white-box tasks (62), which are from the
Webshop dataset, and black-box tasks (48), which
are expanded using GPT-4 to enhance instruction
diversity and complexity.

Dataset expansion was constructed by modifying
instructions from the original dataset. GPT-4 was
used to rephrase instructions for greater linguis-
tic diversity, adding context or background such
as “Next week is Halloween, and I need themed
decorations.” Additionally, parameters were en-
riched with attributes like size, color, or material
to increase task complexity. For challenging cases,
explicit prompts were created to guide planning,
for example, “First search for desks with wood
finishes, then filter by size and price.”

A typical instruction in Online Shopping might
be: “I'm looking for a small portable folding desk
that is already fully assembled; it should have a
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khaki wood finish, and price lower than 140 dollars,
and length bigger than 40 inches.”

Agents are evaluated based on their ability to
follow optimal trajectories, such as:

* Ideal Trajectory 1: Search for all attributes
directly ("desk, wood, folding, khaki, 40
inches, $140") and proceed to the target item.

* Ideal Trajectory 2: Broad search ('desk,
wood, folding"), filter by price, and then refine
attributes (color, size).

Navigation Planning

The Navigation Planning dataset assesses collab-
orative itinerary generation with dynamic con-
straint adaptation, containing 250 tasks developed
through enhanced automated generation. As shown
in Figure 7, our framework extends (Lin et al.,
2024) with three key innovations:

* Precision Evolution: Each task begins with
three core requirements (e.g., "$3,000 budget
for 4 adults"), with 50% probability per in-
teraction round to introduce new constraints
from predefined pools (accessibility needs,
seasonal activities).

* Location Profiling: We implement stochastic
sampling of destination attributes:

— Accessibility: Transportation options
(train/bus connectivity)

— Amenities: Family/pet-friendly facilities

— Pricing: Seasonal price fluctuations
(x15%)

* Evaluation Protocol: We evaluates the ratio-
nality of the planned route, based on how well
the proposal aligns with user preferences, con-
sidering factors such as budget adherence, in-
clusion of specified activities, and efficient
travel distances.

A sample task evolves from initial require-
ments "7-day Japan tour under $4k" to in-
clude "must visit at least two UNESCO sites"
during planning. Agents must preserve pre-
vious constraints while integrating new ones,
testing sequential reasoning capabilities. Our
automated validator ensures solution feasibil-
ity through geographic coordinate verification
and budget accounting simulations.



Table 3: PRAF Experiment Results on Mathematics Tasks with A Accuracy

Algebra Geometry
LLM Pt Rt At Ft  Acc(%) | AAcc(%) | Pt Rt At Ft  Acc(%) | A Acc(%)

1lama3-8B-instruct / / / / 21.6 / / / / / 14.4 /
Claude-3.5-Sonnet | 0.021 0.177 0.398 0.031 844 62.8 0.055 0.085 0486 0.054 824 68.0
gpt-4-turbo 0.058 0.082 0456 0.020 83.2 61.6 0.038 0.047 0.527 0.025 78.0 63.6
gwen2.5-32B 0.059 0.146 0.436 0.011 86.8 65.2 0.071 0.067 0.530 0.051 86.4 72.0
gpt-4o-mini 0.070 0.020 0.313  0.053 67.2 45.6 0.065 0.024 0368 0.035 63.6 49.2
doubao-pro-4k 0.124 0.086 0.178 0.004 60.8 39.2 0.105 0.032 0.186 -0.007 46.0 31.6
GLM-4-air 0.053 0.069 0.346 0.004 68.8 472 0.059 0.019 0349 0.006 57.6 432
1lama3-70B 0.040 0.051 0.321 0.007 63.6 42.0 0.015 0.011 0333 0.005 50.8 36.4
Mistral-8X7B 0.006 -0.010 0.190 -0.010 39.2 17.6 0.004 0.016 0.138 -0.018 284 14.0
Mistral-7B -0.065 -0.015 -0.053 -0.003 8.0 -13.6 -0.055 0.014 -0.035 -0.004 6.4 -8.0

Table 4: Experiment Results on Automatic Theorem Proving Tasks with A Accuracy

Coq Lean 4 Isabelle
LLM Pt Rt At Ft  Acc(%) | A Acc(%) | Pt Rt At Ft  Acc(%) | A Acc(%) | Pt Rt At Ft  Acc(%) | A Acc(%)
1lama3-88B / / / / 6.4 / / / / / 27 / / / / / 7.2 /

Claude-3.5 | 0.010 0.067 0.795 0.027  96.4 90.0 0.002  0.059 0.662 0.098  84.7 82.0 0.025 0046 0523 0.082 748 67.6
gpt-4-turbo | 0.032 0.038 0706 0.024 865 80.1 20.015 -0006 0375 0033 414 387 0.020 0.048 0542 0012 694 62.2
qwen2.5-328 | 0.014 0.029 0.615 0026 748 68.4 -0.007 0.020 048 0.050 57.7 55.0 0.048 0041 0434 0036  63.1 55.9
gpt-do-mini | 0.038 -0.016 0391 0018 495 43.1 ©0.013 0020 039 0007  39.6 36.9 0.030 -0.012 0249 0021 360 28.8
doubao-pro-4k | 0.007 0.039 0204 0001 315 25.1 20017 0029 0095 0028 162 13.5 0.035  0.007 -0064 0004 54 1.8
GLM-4-air | 0.015 0016 0.115 0.033 243 17.9 -0.004 0005 0.193 0013 234 20.7 0.006 -0.006 0.176 0017 252 18.0
1lama3-708 | 0.018 -0.137 0.190 0.009  14.4 8.0 -0.005 -0.000 0.030 0020 7.2 45 0.043 -0.032 0.155 0005 243 17.1
Mistral-8X78 | 0.014 0.056 0.122 0014  27.0 20.6 0.003 -0.017 0068 -0018 63 3.6 0.058 0014 -0.071 -0.028 45 27
Mistral-78 | 0.018 0.013 0.028 -0.015 10.8 44 0.020 0011 0012 0012 8.1 54 0.014  0.006 -0.068 0.003 0.0 72
best / / / / 94.6 +88.2 / / / / 87.4 +84.7 / / / / 78.4 +71.2

Math Solver the 10 knowledge points and assigned a

The Math Solver dataset evaluates agents’
planning, reasoning, and action capabilities in
solving diverse mathematical problems, with
a particular focus on tool usage during the
problem-solving process. This dataset is di-
vided into two categories: Algebra and Ge-
ometry, comprising a total of 500 tasks (250
Algebra tasks and 250 Geometry tasks).

Dataset Construction. The dataset is de-
rived from the MATH dataset and enhanced
with GPT-4 to improve diversity and rele-
vance. The MATH dataset’s original struc-
ture includes a large number of highly similar
questions without detailed knowledge point
categorization, making evaluation costly and
inefficient. To address this, we synthesized
new data by:

(1) Summarizing Knowledge Points: All
problems in the MATH dataset were an-
alyzed using GPT-4 to extract a compre-
hensive list of key concepts.

(2) Condensing Categories: GPT-4 dis-

tilled the extracted concepts into 10 key

knowledge points for Algebra and Ge-
ometry, respectively.

(3) Mapping Labels: Each problem in the

original dataset was mapped to one of
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difficulty level (1-5).

(4) Synthesizing New Problems: For each
unique combination of knowledge point
and difficulty level, GPT-4 generated five
new problems, ensuring coverage across
all categories.

Overall, both algebra and geometry each in-
clude ten knowledge points. Each knowl-
edge point is divided into five levels, and
for each combination, there are five prob-
lems. Therefore, the total amount of data is
2 x 10 x 5 x 5 = 500. Knowledge points
and corresponding examples can be seen in
Table.5.

Automatic Theorem Proving

The Automatic Theorem Proving dataset eval-
uates agents’ capabilities in solving formal
proof problems, focusing on generating code
for logical proofs. The dataset includes three
categories: Coq, Lean 4, and Isabelle, with a
total of 333 tasks (111 tasks per category).

Dataset Construction. The dataset originates
from 111 Coq problems curated from course
material, covering the following topics:

(1) Algebraic Calculations, e.g., derivation
of linear systems.
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Figure 7: An Example Problem in Three Languages.

Require Import Coq.Arith.PeanoNat. open Nat

Inductive nat := | O: nat | S (n: nat): nat.
def add :

Fixpoint add (n m: nat): nat := match n with | zero, m=>m
0 =>m
‘ Sn' => 5 (add n' m)
end.
def mul :

match n with | zero,

Fixpoint mul (n m: nat): nat := => zero
0 =>0 i
‘ Sp=>addm (mul p m) end.
Theorem mul_comm: forall nm, mul n m = mul m n.
Proof .
Admitted.

Theorem mul_add_distr_r: forall n m p,
mul (add n m) p = add (mul n p) (mul m p).

Proof.

Admitted.

Theorem mul_add_distr l: forall n m p,
mul n (add m p) = add (mul n m) (mul n p).

(*rrxrrkink)

(** Fill in your proof here*)

(xxxxrrrrnx)

Nat - Nat - Nat

Nat - Nat - Nat

| succ n', m => succ (add n' m)

| succ n', m =>add m (mul n' m)

theorem mul_comm (n m : Nat) :
mul nm=mulmn := sorry

theorem mul_add_distr_r (nmp :
mul (add n m) p = add (mul n p) (mul m p) := sorry

theorem mul_add_distr_L (n mp :
mul n (add m p) = add (mul n m) (muln p) := by

theory MulAddDistrl
imports Main
begin

datatype mynat = MyZero ("0") | MySuc mynat

fun myadd :: "mynat = mynat = mynat" where
"myadd MyZero m = n" |
“myadd (MySuc n) m = MySuc (myadd n m)"

fun mymul :: “mynat = mynat = mynat® where
"mymul MyZero m = MyZero" |
“mynul (MySuc n) m = myadd m (mymul n m)"

theorem myadd_assoc:
“myadd n (myadd m p) = myadd (myadd n m) p"
by (induction n; simp)

theorem mymul add distr r:
"mymul (myadd n m) p = myadd (mymul n p) (mymul m p)"
by (induction n; simp add: myadd assoc)

theorem mymul_comm: "mymul n m = mymul m n"
sorry

theorem mul_add distr 1:
“mymul n (myadd m p) = myadd (mymul n m) (mymul n p)"
(* Fill Your Proof Here *)

end

Figure 8: An Example Problem in Three Languages.

(2) Properties of Functions, e.g., translation
and monotonicity of functions.

(3) Properties of Recursive Structures, e.g.,
operations on tree structures.

(4) Logical Problems, e.g., relationships be-
tween AND, OR, and NOT.

(5) Properties of Natural Numbers, e.g.,
proving 6 is not a prime number.

These proof problems serve as introductory
exercises in college formal proof courses, fo-
cusing on basic syntax and simple logical re-
lationships. They are challenging for students,
making them a suitable benchmark for evalu-
ating the performance of LLMs.

To comprehensively assess LLMs’ formal
proof capabilities, these problems were fur-
ther translated into Lean 4 and Isabelle ver-
sions. Coq, Lean 4, and Isabelle are widely
used formal proof languages, and using mul-
tiple languages allows for a more rigorous
comparison of model capabilities.

Operating System

The Operating System dataset evaluates an
agent’s ability to interact with a simulated OS
terminal by executing commands to address
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OS-related tasks, comprising 71 Ubuntu ter-
minal tasks and 31 Git tasks.

In Ubuntu tasks, agents are required to pro-
pose bash commands to execute in Ubuntu
Terminal and get feedback from the termi-
nal to complete the task. We utilized the
AgentBench-OS framework to employ the
evaluation.

We enhanced the automated data generation
method from AgentBench-OS to construct our
new dataset, primarily generating operation-
type data. The original method leverages
LLMs to generate tasks and employs unit tests
to ensure their accuracy. While creating the
dataset, we used specific prompts to guide the
generation of desired data types. The dataset
comprises 71 AgentBench-OS tasks, catego-
rized into 40 file system manipulation, 20 sys-
tem setting, and 11 process running tasks.

For the git tasks, we selected data from learn-
gitbranching. The learngitbranching website
itself is a tutorial git beginner. It provides ter-
minal and sandbox environment that simulates
git using a tree structure. Git tree dynamically
updates along with each git command from
the terminal. Given initial and target states for
both local and remote git trees, agents must



interact with the git tree via the terminal to
transform it from its initial state to the target
state. The dataset assesses proficiency in fun-
damental git commands and their combination
to execute advanced git functionalities.

Robot Cooperation

The Robot Cooperation dataset evaluates
agents’ planning, reasoning, action, and re-
flection capabilities in multi-robot collabora-
tion tasks. The dataset includes 100 tasks,
designed to benchmark performance in robot
planning scenarios.

Framework and Dataset Construction. The
dataset is built upon the RoCoBench environ-
ment framework, which provides an environ-
ment simulator and reward mechanisms for
multi-robot collaboration tasks. We extended
the original task set by introducing sequen-
tial constraints and leveraging random seed
variations to generate diverse task instances.

— Task Extension: Sequential constraints
were added to existing tasks, making
them more complex. Examples include:

* Sweep Floor Task: Added order con-
straints. In the Sweep RGB task,
robots must first sweep the Red Cube
into the dustpan and dump it into the
bin, followed by the Green Cube, and
finally the Blue Cube.

* Arrange Cabinet Task: Introduced
sequential object retrieval. In the
CabinetCup task, robots must first
place the Cup on the Cup Coaster,
followed by placing the Mug on the
Mug Coaster.

* Sandwich Task: Expanded with ad-
ditional recipes requiring more plan-
ning steps.

— Task Instances: Random seed variations
in the RoCoBench environment were
used to create different initial states, gen-
erating 100 unique task instances. Each
instance was manually verified to ensure
it has a correct solution, ensuring robust-
ness and reliability for model evaluation.

Reward Mechanism Improvements. To bet-
ter evaluate model capabilities, we proposed
new reward methods tailored to the character-
istics of the extended tasks:
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— Tasks were divided into smaller sub-
tasks with rewards granted for complet-
ing each sub-task in sequence.

— For example, in the Sweep RGB task, re-
wards are distributed as % for success-
fully completing each step (e.g., sweep-
ing the Red Cube, Green Cube, and Blue
Cube in order). This approach incen-
tivizes correct sequencing and provides
granular feedback on agent performance.

— These new reward methods ensure even
smaller models can effectively receive
feedback, improving evaluation sensitiv-
ity.

Model Differentiation Enhancements. To
further enhance the differentiation capability
of the models, we adopt a method where mul-
tiple actions are proposed within a single in-
teraction. This approach, combined with a
constraint on the number of timesteps, im-
proves the differentiation among models. By
allowing the agent to plan and propose multi-
ple actions at once, we can better assess the
agent’s planning and reasoning abilities. The
constraint on timesteps ensures that the agent
must efficiently utilize its planning capabil-
ities within a restricted timeframe, thereby
providing a clearer distinction between the
performance of different models.

Prompt Example

Planning Module

nnn

prompt_system_planning =

Welcome to the Online Shopping
Challenge! Four LLM agents are
working together to do web-
shopping tasks step by step (
planning -> reasoning -> acting
-> reflecting). They are
responsible for planning,
reasoning, acting, and
reflecting respectively.

You are the first 1lm agent, who is
a helpful web-shopping guidance
assistant in charge of planning.

Your role is to assist players by
generating strategic plans based

on the game's instructions.

Here is how the game is structured:

- Each round, you will be given an
instruction that describes the
objective need to achieve.

- Based on the instruction, you are
to generate a clear and brief
strategic plan.




Table 5: Categories and Examples of Operating System Datasets

Category Category Description Related Commands Example Task Description
Evaluate the knowledge of basic .
8 O List all files larger than IMB
file system manipulation . , s 1
. . . . . inside the ’/var/log’ directory
File System operation such as creating, mkdir, touch, zip, . .
. . . . . and write the list to a file named
Manipulation deleting, copying, moving, tar, Is, rm , .
. L. large_files.txt’ in the home
compressing and listing files and .
. . directory.
directories.
Evaluate the knowledge of df, useradd, L.

. . A user needs permission to read

. system setting such as disk groupadd, uname, ., . . ,

System Setting .. . . a file in ’/var/private/info.txt’.

partition, OS version, user chmod, whoami,
Grant read access to all users.
management. chown
. Evaluate the knowledge of renice, gcc, g++, Change tbe priority of th.e
Process Running ocesses manacement thon process with PID stored in

P g py /tmp/pidfile to a nice value of 10.

\ 2. wrong command fermat pla”m"g s “
\\ g / vefore the 1st Iteratloy

Y
X-th step begins J

A
// S~

/
" Reflection Trigger: .

Yes—< Analyze tree )%
T~ differences —
- T~ — No
\ ~—
Reflection Module(LLM): / Plan Generated by

Lwrong git command

Reasoning
\ Mod ule(LLM] /’
ReasonmgThought
+

(_ActionModule(u) j—{  X-thstepends )

Init git tree

Env

Current git tree Target git tree Terminal

# Leam Git Branching

#Level Rolative Refs #2(-) | Instuctons |

$ clear

$ git checkout C1

Figure 9: Illustration of OS-git task

- Your plan will be used to guide
other agents through the
shopping site efficiently.

- If there is no response click[Buy
Now] within 15 actions, the game

fails.

Your Responsibilities:

- Analyze the original problem and
break it into clear, actionable
steps.

- Ensure the steps are logically
ordered and comprehensive for
achieving the goal.

- Use concise language, focusing
only on the key actions needed
to complete the task
successfully.

OUTPUT FORMAT:
Keep your response concise and
structure:

Strategic Plan: (A list of
sequential steps to achieve
the objective)

Step 1:
Step 2:
Step 3:
(Add more steps as necessary, but
keep it streamlined and goal-
oriented)
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Enclose the plan with three
backticks ~°°

For example:

nonn

Reasoning Module Prompt

nnn

prompt_system_reasoning =

Welcome to the Online Shopping
Challenge!

Four 1lm agents are working together

to do web-shopping tasks step
by step(planning -> reasoning ->
acting -> reflecting). They are
responsible for planning,
reasoning, acting and reflecting
respectively.

You are the second LLM agent, who is
a helpful web-shopping guidance
assistant in charge of

reasoning.

Your reasoning thought will guide
the acting agent in making
informed decisions. You should
generate a thought that will be
used as part of the PROMPT for
acting agents.

In each round, following information
will be given to you:




1. CURRENT OBSERVATION AND AVAILABLE
ACTIONS

2. PLANNING STRATEGY

3. HISTORICAL ACTIONS

4. REFLECTION INFORMATION(if any)

Here is what you need to focus on:

- Every round, you will receive
updated information about the
shopping scenario, including the

current observation, available
actions, planning strategy, and
past actions.

- Based on the current state,
develop a clear thought process
to guide the acting agents
next move.

- Ensure your response is directly
actionable and aligns with the
goal of achieving success in the

game within 15 actions.

- If the game is nearing the
interaction limit, prioritize
quick decisions over perfect
matches to ensure a [Buy Now]
action happens promptly.

- When you determine that a
sufficient match is found (even
if not perfect), guide the
acting agent to click [Buy Now]
immediately.

OQUTPUT FORMAT :
Based on the provided observation
and available actions, generate
a clear and brief thought in one
sentence that outlines your
analysis and considerations for
the next move.
Note: Please surround the reasoning
content you generated with three
backticks. That is:

nnn

Action Module Prompt

nnn

prompt_system_action =

Welcome to the Online Shopping
Challenge!

Four 1lm agents are working together

to do web-shopping tasks step
by step(planning -> reasoning ->
acting -> reflecting). They are
responsible for planning,
reasoning, acting and reflecting
respectively.

You are the third LLM agent, who is
a helpful web-shopping guidance
assistant in charge of acting.

As an acting agent, your role is to
integrate various elements such
as the instruction, the current
state, historical actions,
strategic planning, and current
reasoning to recommend the best
possible action for the next
step.

In each round, the following
information will be given to you

ORIGINAL PROBLEM

PLANNING STRATEGY
HISTORICAL ACTIONS
CURRENT REASONING

A w N =

Your Role:

- Each round, you will receive
updated information, including
the current observation,
available actions, strategic
plan, reasoning, and past
actions.

- Based on this information, decide
and respond with the best
possible action to move closer
to completing the objective.

- Actions you can perform:

Search if a search bar is
available.

Click one of the provided
clickable buttons.

- Follow the reasoning closely, but
only deviate if you are
confident that your choice is
better.

Important Rules:

- You must click [Buy Now] as soon
as you are confident that a
suitable match has been found to

avoid exceeding the 15-round
limit.

- If no valid action is available,
perform no action and wait for
the next round.

- Ensure the clicked value exactly
matches the available options,
including case sensitivity and
punctuation.

- Attention: Although you need to
click to buy as early as
possible to get rewards,
remember that you must click on
a product before clicking to buy

if you
click
to buy
without

clicking
on the

product
, you
will
receive
0
rewards

OUTPUT FORMAT:
Use the following formats for your
action:
- searching: search [
keywords]
- clicking: click [valuel




- For example: click [b0@6xdg8xfx]

- Keywords in search is up to you,
but value in click must be a
value in the list of available
actions.

- The value must exactly match the
original text, including case
sensitivity (uppercase/lowercase
) and all symbols/punctuation.

Note: Please surround the action
content you generated with three
backticks. That is:

nnn

Reflection Module Prompt

noaun

prompt_system_reflection =

Welcome to the Online Shopping
Challenge!

Four 1lm agents are working together

to do web-shopping tasks step
by step(planning -> reasoning ->
acting -> reflecting). They are
responsible for planning,
reasoning, acting and reflecting
respectively.

You are the fourth 1llm agent in
charge of reflecting. Your role
is to reflect on whether there
was an error in the previous
reasoning and action sequence.

Remember , your clear and brief
reflection will be used as part
of the PROMPT for the later
agents to guide them to make
wise decisions and succeed in
the game.

In each round, the following
information will be given to you

1. ORIGINAL PROBLEM
2. HISTORICAL REASONINGS
3. HISTORICAL ACTIONS

Here is your role:

As an LLM Agent, your role is to
reflect on the recent outcomes
and consider the following
points:

1. Identify why the current result
is unsatisfactory. Explore
factors such as inadequate
search queries, irrelevant
clicks, or repeated useless
actions.

2. Evaluate the effectiveness of
past actions and thoughts. Were
there missed signals or
incorrect assumptions?

3. Propose improvements for the next
steps. Suggest specific actions
or adjustments in search

strategies, clicking behaviors,
or decision-making processes.

4. Consider the overall goal of
achieving successful purchases
within the game's constraints.
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How can future actions better
align with this objective?

Use these as a guide, and generate a
plan for the next reasoning and
action steps. Outline

actionable insights and
strategies to improve outcomes
in the upcoming rounds.

OUTPUT FORMAT:

- You should carefully examine
reasoning history and action
history to find out where things

may have gone wrong, summarize
where they went wrong.

- Your reflection output should
provide clear and concise
suggestions for the next few
reasoning and action agents,
facilitating informed decision-
making and guiding the LLM agent

towards achieving better
performance in subsequent
interactions.

- Ideally, it should contain:

- Flaw: One sentence that
summarizes key factors
causing the
unsatisfactory result.

- Improvement: One sentence
that includes
specifically how to
adjust improve reasoning

and action steps to
achieve better outcomes
in the future.

Note: Please enclose the flaw and
improvement with three backticks

nonn
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