
Quest2ROS: An App to Facilitate Teleoperating Robots
Nils Ingelhag*
ingelhag@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Michael C. Welle*
mwelle@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Martina Lippi
martina.lippi@uniroma3.it

Roma Tre University
Rome, Italy

Maciej Wozniak
maciejw@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Andrea Gasparri
andrea.gasparri@uniroma3.it

Roma Tre University
Rome, Italy

Danica Kragic
dani@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
Teleoperation is an integral part of robotics research. In this work,
we present Quest2ROS, a stand-alone app available for Oculus
Quest 2 and 3 that facilitates the teleoperation of robots via ROS.
Quest2ROS publishes the position and velocity of both hand-held
controllers, the button pressed as well as enables haptic feedback
via the controller vibration. The Quest headset does not have to be
worn at teleoperation time to not restrict the operator, furthermore,
a simple way to align the coordinate frame of the controller with
any given robot in the real world is provided. We measure the
tracking accuracy of a Quest 2 to be 0.46 mm on average, with
mean latency between the Quest 2 and a ROS node being 82 ms
and update frequency of relevant ROS topics being 71.96 Hz.
ACM Reference Format:
Nils Ingelhag*, Michael C. Welle*, Martina Lippi, Maciej Wozniak, Andrea
Gasparri, and Danica Kragic. 2024. Quest2ROS: An App to Facilitate Teleop-
erating Robots. In 7th International Workshop on Virtual, Augmented, and
Mixed-Reality for Human-Robot Interactions at HRI 2024. ACM, Boulder, CO,
USA, 5 pages.

1 TELEOPERATION OF ROBOTS
Teleoperation is fundamental in multiple robotics applications. To
mention a few, it can be used to remotely operate robots in haz-
ardous environments [1, 2], to perform demonstrations of wanted
trajectories to bootstrap different learning approaches such as DAG-
GER [3] or Diffusion Policy [4]. A successful teleoperation system
should mainly be i) intuitive, ii) robot agnostic, and iii) cost-efficent.
To fully teleoperate a manipulator, its Cartesian coordinates, i.e.,
position and orientation of the end effector, should be controlled.
However, operating intuitively in the Cartesian space is rather chal-
lenging. One common, and cost-efficient solution is the use of a
computer mouse adapted to work in 3D space as demonstrated in
[5]. While experienced users can perform impressive teleoperation
tasks with such a setup [4], the user does not directly mimic the
*These authors contributed equally (listed in alphabetical order).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
7th Int. Work. on VAM for HRI at HRI 2024, 03/2024, Boulder, CO, USA
© 2024 Association for Computing Machinery.

Figure 1: Example usage of the Quest2ROS teleoperation on a
Franka Panda robot. The headset is placed on the table with
an unobstructed view of the handheld controller, which in
turn is used to teleoperate the robot.

movement of the robot in the Cartesian space. Other works ad-
dress this by following a master-slave or puppeteer setup where
the robotic system in question consists of a master robot that can
be manually moved and the movements are mirrored to the slave
robot or puppet. While this approach excels in achieving precise
teleoperation and has proven its effectiveness in handling delicate
tasks such as lid opening, juggling and cable tie zipping in [6], its
implementation is generally costly. Other teleoperation systems
are highly specific and only applicable for the robot they were
developed for such as [7–9].

In recent years, numerous Augmented Reality (AR) or Virtual
Reality (VR) teleoperation projects for human-robot interaction
have emerged, due to advancements in communication technologies
and Virtual and Augmented Reality (VAM) hardware [10]. These
projects have been developed for a variety of tasks, including cloth
folding [11], pick-and-place operations [12], and diagnostics and
debugging [13]. Additionally, VAM technologies have been used for
demonstration learning [14] or enhancing action explainability and



7th Int. Work. on VAM for HRI at HRI 2024, 03/2024, Boulder, CO, USA Nils Ingelhag*, Michael C. Welle*, Martina Lippi, Maciej Wozniak, Andrea Gasparri, and Danica Kragic

Figure 2: Overview of Quest2ROS architecture. The VR controller (a) is tracked by the VR headset (b). The telemetry is streamed
by the headset via Wi-Fi to a TCP endpoint (c) running on a specified host. The data is then made available in ROS via different
topics (d). The telemetry data can then be used to control a robot (e) via ROS subscriber nodes.

human-robot understanding [15, 16]. Additionally, many studies
such as [17] and [18] have made significant efforts to enhance
the visualization of robot sensory information within AR or VR
environments. While these projects serve as impressive proof of
concepts, their developers often had to begin from scratch due to
the absence of required software and specific tools. Moreover, these
projects tend to be specific to particular VAM and robot hardware.

In this work, we present Quest2ROS, an app that facilitates in-
tuitive robot-agnostic teleoperation on consumer-grade hardware
using ROS middleware. In detail, the app is available for the Oculus
Quest 2 and 3 and allows users to use the VR controller to teleop-
erate the robot, as shown in Fig. 1. The VR headset needs to be
placed with an unobstructed view of the VR controller for optimal
tracking performances. The app is available in Metas Applab envi-
ronment via an alpha version invitation link1. Further instructions,
demonstration/evaluation videos as well as links to the ROS code
repository can be found on the project’s website2.

2 QUEST2ROS
Quest2ROS is a stand-alone app for Oculus 2 and 3 that lets the
user easily retrieve the position, velocity, button inputs as well as
controlling the haptic feedback of both hand controllers via ROS.
It is based on the teleoperation framework presented in [19]. The
Oculus app streams telemetry data via Wi-Fi to a TCP-endpoint
running on a host specified by the user. The streamed controller
data is then made available via ROS topics to other ROS nodes.
An overview of the system is shown Figure 2. To make the app
more usable for controlling physical robots and actuators, the app is
provided with built-in functionality to let the user set the reference
frame in which the VR controller’s pose and twist information are
given.

The app is implemented using the Unity game engine together
with the Oculus Integration3 and ROS-TCP-endpoint4 packages.
The position and velocity of the controllers are continuously tracked
by the headset using a combination of internal sensors and visual
tracking. It is therefore important that there exists no visual occlu-
sion between the headset and the controllers at all times during
operation.
1https://www.meta.com/s/1stEAnW1u
2https://quest2ros.github.io/q2r-web/
3https://developer.oculus.com/downloads/package/unity-integration/
4https://github.com/Unity-Technologies/ROS-TCP-Connector

Figure 3: The figure shows the configuration window within
the app. The window lets the user set the IP address and port
of the TCP endpoint.

2.1 User interface (UI)
The user interface is a configuration window accessible within the
VR world of the app. It lets the user set the IP and port of the TCP
to ROS gateway running on a host. This configuration has to match
the configuration to the TCP-to-ROS endpoint. The configuration
is by default locked to prevent accidental reconfiguration but can
be unlocked by pressing A and B buttons, and both triggers on the
right VR controller. The IP and port can then be set using a virtual
keyboard. After both the IP and port are set, the user has to press
Apply & Lock to set the configuration as well as to lock the screen
again. An image of the user interface is shown in Figure 3.

2.2 Coordinate frame alignment
The coordinate frame alignment lets the user set a new reference
frame based on the position of one of the controllers. All pose
and twist information is thereafter given in reference to the newly
set coordinate system. The purpose of the coordinate frame align-
ment functionality is to make it easy for users to use the controller
telemetry for robotic teleportation without complex coordinate
transformations. Since the initial coordinate system is arbitrarily
set to the momentary position of the VR headset at startup, coordi-
nate frame alignment lets the user align the coordinate system to
a physical stationary system within the room, e.g., with the robot
coordinate system. The process of coordinate system alignment
is shown in Figure 4. Either controller is aligned to the desired
reference frame and the buttons A and B for the right controller or
X and Y for the left controller are pressed for 4 seconds to set the
new coordinate system.

https://www.meta.com/s/1stEAnW1u
https://quest2ros.github.io/q2r-web/
https://developer.oculus.com/downloads/package/unity-integration/
https://github.com/Unity-Technologies/ROS-TCP-Connector


Quest2ROS: An App to Facilitate Teleoperating Robots 7th Int. Work. on VAM for HRI at HRI 2024, 03/2024, Boulder, CO, USA

Table 1: Overview of the ROS topic publisher and subscriber available from the Quest2ROS app.

Topic Description Sub/Pub Msg type Frequency

/q2r_left_hand_pose Pose of the left hand controller given as a 3D vector
and quaternions Publisher PoseStamped 72.08 Hz

/q2r_left_hand_twist Twist of the left hand given as a 3D vector and angular
velocities around each axis Publisher Twist 71.83 Hz

/q2r_left_hand_inputs Inputs from the left hand controller Publisher Custom 71.83 Hz

/q2r_right_hand_pose Pose of the right hand controller given as a 3D vector
and quaternions Publisher PoseStamped 71.87 Hz

/q2r_right_hand_twist Twist of the right hand given as a 3D vector and angular
velocities around each axis Publisher Twist 71.78 Hz

/q2r_right_hand_inputs Inputs from the right hand controller Publisher Custom 71.81 Hz
/q2r_left_hand_haptic_feedback Haptic feedback control for the left hand Subscriber Custom NA
/q2r_right_hand_haptic_feedback Haptic feedback control for the right hand Subscriber Custom NA

Figure 4: The figure shows the process of coordinate system
alignment. First, either controller is aligned to the desired
reference frame and the buttons A and B for the right con-
troller or X and Y for the left controller is pressed (step 1).
All telemetry data from the controllers are now given in the
newly set coordinate system (step 2).

2.3 Publisher and Subscriber
The position, rotation and velocities in and around each axes of
the controllers are made available via ROS-topics. The coordinate
axes of the controllers follow the right-hand rule, with x pointing
forward, y to the left, and z pointing up , as shown in Figure 5.

Figure 5: The figure shows the positions and directions of the
axes of the controllers. The axes follow the right-hand rule,
with x pointing forward, y to the left, and z pointing up.

The VR controller telemetry is given as separate pose and twist
messages. The pose consists of two vectors

®𝑝 =


𝑥

𝑦

𝑧

 and ®𝑞 =


𝑞𝑤
𝑞𝑥
𝑞𝑦
𝑞𝑧

 ,
corresponding to the position and orientation, represented in quater-
nions, of the controller, respectively. The twist is given by the vec-
tors

®𝑣 =


𝑣𝑥
𝑣𝑦
𝑣𝑧

 and ®𝜔 =


𝜔𝑥

𝜔𝑦

𝜔𝑧

 ,
which represent the linear and angular velocity in and around each
axis, respectively. Via ROS publishers, the user is able to access real-
time pose, twist, and controller inputs, i.e., buttons’ state, of left and
right controllers. A subscriber is available for each VR controller to
facilitate haptic feedback to the user by specifying the vibration of
the controller. The full list of topics is reported in Table 1.

2.4 Brief instructions
To use Quest2ROS, the user needs to:

(1) Install and start the TCP-to-ROS endpoint on a host.
(2) Connect the VR headset to a Wi-Fi network from which the

host is available.
(3) Install and start the Quest2ROS app on an Occulus Quest 2

or 3.
(4) Specify the TCP-to-ROS endpoint’s IP address and port within

the app and connect.
(5) Remove the headset from the head and place it where it has

direct sight of the controllers by its cameras.
(6) (optional) Create a new reference frame within the room by

aligning the right controller and pressing buttons A and B
simultaneously for 4 seconds.

More details on the setup and use of Quest2ROS system can be
found on the project website.



7th Int. Work. on VAM for HRI at HRI 2024, 03/2024, Boulder, CO, USA Nils Ingelhag*, Michael C. Welle*, Martina Lippi, Maciej Wozniak, Andrea Gasparri, and Danica Kragic

Figure 6: Example usage of the Quest2ROS app on a bottle opening task using a Franka Panda Robot.

Figure 7: The figure shows the setup used to fix the controller
to follow a circular path used for accuracy evaluation.

3 PERFORMANCE EVALUATION
To evaluate the performance of the Quest2ROS system, the accuracy,
latency, and update frequency of the controller telemetry were mea-
sured. In this section, the methods and results of these experiments
are presented.
Accuracy: The accuracy of the streamed controller data was eval-
uated by recording the measured positions while physically con-
straining a controller to follow a fixed circular path. By calculating
howmuch the positional data deviates from the circle, we can assess
how much the data fluctuates over time and space. The setup used
to fix the controller to follow a circular path is shown in Figure 7.
The controller was manually rotated four turns while the headset
was placed at a distance of approximately 1 meter while facing
the controller unobstructed resulting in 2180 datapoints. Since the
position of the circle in the VR reference system is not known be-
forehand, the position of the circle was optimized to minimize the
mean distance from each recorded data point.

Themean distance from the recorded data points to the optimized
circle was 0.46 mm. A histogram showing the frequency of the
recorded data points within different distance ranges is shown in
Figure 8.
Latency: The latency of the streamed telemetry data was measured
by recording the time from when a controller was physically moved
till that the movement was registered in a subscriber ROS node.
The time was measured using a high-speed camera with both the
controller and the output of the ROS subscriber within its view.
The high-speed camera used recorded 940 frames per second. The
time was measured seven times using this method. The latency

Figure 8: The figure shows the distribution of distances of the
recorded data points to the circle in the accuracy experiment.

measured in the eight tests were 106, 76, 89, 95, 79, 67, and 63 ms
with a mean latency of 82 ms. The latency measurement videos are
available on the project website.
Frequency: The update frequency of the telemetry data was mea-
sured with the built-in ROS command ’rostopic hz’ on all publishers
to the ROS node. The average measured update frequency was 71.86
Hz. The individual measurements for each topic are reported in
table 1.
Example usage:We showcase the usability of the App by connect-
ing it to a Panda Franka Robot which has a bottle opener on the end
effector and is teleoperated to open a bottle as shown in Fig 6. We
relay the twist message received on the topic q2r_right_hand_twist
to a velocity cartesian controller which translates the received ve-
locity to robot action as long as the left trigger button is held which
is received via the q2r_right_hand_inputs topic. A full 30 min video
of an operator performing the task is shown on the project website.

4 CONCLUSION
Quest2ROS lowers the entry barrier for researchers and engineers
to perform intuitive control of high degree of freedom robotic sys-
tems. The Meta Quest 2 and 3 are readily available consumer-grade
electronics, and ROS is a common framework of choice within the
research field of robotics. Joining these technologies in a seamless
solution results in a tool that has the potential to be highly useful
within the community. Videos showing the framework being used
on different robotic platforms are available on the project website.



Quest2ROS: An App to Facilitate Teleoperating Robots 7th Int. Work. on VAM for HRI at HRI 2024, 03/2024, Boulder, CO, USA

REFERENCES
[1] Bartlomiej Stanczyk and Martin Buss. Development of a telerobotic system for

exploration of hazardous environments. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages
2532–2537. IEEE, 2004.

[2] Cosimo Gentile, Giacomo Lunghi, Luca Rosario Buonocore, Francesca Cordella,
Mario Di Castro, Alessandro Masi, and Loredana Zollo. Manipulation tasks in
hazardous environments using a teleoperated robot: A case study at cern. Sensors,
23(4):1979, 2023.

[3] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning, 2011.

[4] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burch-
fiel, and Shuran Song. Diffusion policy: Visuomotor policy learning via action
diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[5] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert
Tung, Julian Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and
Li Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill learning through
imitation, 2018.

[6] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-
grained bimanual manipulation with low-cost hardware, 2023.

[7] Tamim Asfour, Lukas Kaul, Mirko Wächter, Simon Ottenhaus, Pascal Weiner,
Samuel Rader, Raphael Grimm, You Zhou, Markus Grotz, Fabian Paus, Dmitriy
Shingarey, and Hans Haubert. Armar-6: A collaborative humanoid robot for
industrial environments. In 2018 IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids), pages 447–454, 2018.

[8] Christoph Borst, Thomas Wimbock, Florian Schmidt, Matthias Fuchs, Bernhard
Brunner, Franziska Zacharias, Paolo Robuffo Giordano, Rainer Konietschke, Wolf-
gang Sepp, Stefan Fuchs, Christian Rink, Alin Albu-Schaffer, and Gerd Hirzinger.
Rollin’ justin - mobile platform with variable base. In 2009 IEEE International
Conference on Robotics and Automation, pages 1597–1598, 2009.

[9] Sébastien Mick, Mattieu Lapeyre, Pierre Rouanet, Christophe Halgand, Jenny
Benois-Pineau, Florent Paclet, Daniel Cattaert, Pierre-Yves Oudeyer, and Aymar
de Rugy. Reachy, a 3d-printed human-like robotic arm as a testbed for human-
robot control strategies. Frontiers in neurorobotics, 13:65, 2019.

[10] Maciej Wozniak, Christine T Chang, Matthew B Luebbers, Bryce Ikeda, Michael
Walker, Eric Rosen, and Thomas Roy Groechel. Virtual, augmented, and mixed

reality for human-robot interaction (vam-hri). InCompanion of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction, pages 938–940, 2023.

[11] Marco Moletta, Maciej K Wozniak, Michael C Welle, and Danica Kragic. A virtual
reality framework for human-robot collaboration in cloth folding. arXiv preprint
arXiv:2305.07493, 2023.

[12] Maciej K Wozniak, Rebecca Stower, Patric Jensfelt, and Andre Pereira. Hap-
pily error after: Framework development and user study for correcting robot
perception errors in virtual reality. arXiv preprint arXiv:2306.14589, 2023.

[13] Bryce Ikeda and Daniel Szafir. Advancing the design of visual debugging tools
for roboticists. In 2022 17th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 195–204. IEEE, 2022.

[14] Matthew B Luebbers, Connor Brooks, Carl L Mueller, Daniel Szafir, and Bradley
Hayes. Arc-lfd: Using augmented reality for interactive long-term robot skill
maintenance via constrained learning from demonstration. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 3794–3800. IEEE,
2021.

[15] Max Pascher, Kirill Kronhardt, Til Franzen, Uwe Gruenefeld, Stefan Schneegass,
and Jens Gerken. My caregiver the cobot: Comparing visualization techniques to
effectively communicate cobot perception to people with physical impairments.
Sensors, 22(3):755, 2022.

[16] Maciej K Wozniak, Rebecca Stower, Patric Jensfelt, and Andre Pereira. What you
see is (not) what you get: A vr framework for correcting robot errors. In Compan-
ion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction,
pages 243–247, 2023.

[17] Thomas R Groechel, Amy O’Connell, Massimiliano Nigro, and Maja J Matarić.
Reimagining rviz: Multidimensional augmented reality robot signal design. In
2022 31st IEEE International Conference on Robot and Human Interactive Commu-
nication (RO-MAN), pages 1224–1231. IEEE, 2022.

[18] Andre Cleaver, Darren Vincent Tang, Victoria Chen, Elaine Schaertl Short, and
Jivko Sinapov. Dynamic path visualization for human-robot collaboration. In
Companion of the 2021 ACM/IEEE International Conference on Human-Robot Inter-
action, pages 339–343, 2021.

[19] Michael C. Welle, Martina Lippi, Maciej K. Wozniak, Andrea Gasparri, and Danica
Kragic. Low-cost teleoperation with haptic feedback through vision-based tactile
sensors for rigid and soft object manipulation. In under review, 2024.


	Abstract
	1 Teleoperation of Robots
	2 Quest2ROS
	2.1 User interface (UI)
	2.2 Coordinate frame alignment
	2.3 Publisher and Subscriber
	2.4 Brief instructions

	3 Performance evaluation
	4 Conclusion
	References

