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Abstract

We study the problem of efficiently aggregat-
ing the preferences of items from multiple in-
formation sources (oracles) and infer the rank-
ing under both the weak stochastic transitiv-
ity (WST) and the strong stochastic transitivity
(SST) conditions. When the underlying pref-
erence model satisfies the WST condition, we
propose an algorithm named Rank-with-Multiple-
Oracles (RMO-WST), which has a bi-level design:
at the higher level, it actively allocates compar-
ison budgets to all undetermined pairs until the
full ranking is recovered; at the lower level, it
attempts to compare the pair of items and selects
the more accurate oracles simultaneously. We
prove that the sample complexity of RMO-WST is
Õ(N

∑N
i=2 Hσ−1(i),σ−1(i−1)), where N is the

number of items to rank, Hi,j is a problem-
dependent hardness factor for correctly compar-
ing item i and item j, and σ−1(i) represents the i-
th best item. We also provide a tight lower bound
that matches the upper bound of approximate
ranking under the WST condition, answering a
previously open problem. Additionally, when the
SST condition is satisfied, we propose an algo-
rithm named RMO-SST, which can achieve a sam-
ple complexity of Õ(

∑N
i=1 Hi log(N)), where

Hi = maxj∈[N ],j ̸=i Hi,j . This outperforms the
best-known sample complexity by a factor of
log(N). The theoretical advantages of our algo-
rithms are verified by empirical experiments in a
simulated environment.
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1. Introduction
The problem of learning to rank with multiple oracles, some-
times known as rank aggregation, is ubiquitous in many
applications, such as the recommendation system (Oliveira
et al., 2020; Bałchanowski and Boryczka, 2023), user classi-
fication (Minka et al., 2018; Ebtekar and Liu, 2021) and drug
discovery (Agarwal et al., 2010; Ru et al., 2021). More re-
cently, learning-to-rank has regained attention in the context
of evaluating large language models (LLM). For example,
human feedback is used to rank the performance of LLMs
across different tasks. Each task can be seen as an oracle,
where two LLMs generate responses to a given prompt for
that task, and the human annotator indicates which one is
more helpful or informative.

In many applications, the oracles that provide preference
feedback are usually human annotators, who may provide
inherently noisy feedback. Moreover, oracles may show
varying accuracy for different pairs of responses. For ex-
ample, the performance gap between two LLMs may be
negligible in one task but quite obvious in another. One nat-
ural question is then how to identify the underlying ranking
of different LLMs efficiently, especially by taking advantage
of those more accurate oracles (i.e., tasks). For example,
when creating an LLM leaderboard, we have two different
criteria or “tasks”: honesty and helpfulness. When ranking
two LLMs, we may ask a human annotator to rate which
LLM is more honest and which LLM is more helpful. The
two tasks/criteria may exhibit different preference behav-
iors.

Our goal is to accurately determine the ranking with as few
queries as possible. To ensure the problem is well defined
and an underlying ranking exists, it is commonly postu-
lated (Falahatgar et al., 2017; Ren et al., 2018; Saha and
Gopalan, 2019) that a ranking exists and it is harder to dif-
ferentiate between items that rank in adjacent compared to
those that rank apart. Formally speaking, if i ≻ j ≻ k,
then pi,k ≥ max{pi,j , pj,k} > 1

2 , where pi,j denotes the
winning probability of i over j. This principle is known
as Strong Stochastic Transitivity (SST). Notably, Saad et al.
(2023) solves the multi-oracle learning-to-rank tasks under
a special case of the SST condition. In particular, they as-
sume numerical feedback with sub-Gaussian noise, which
satisfies the SST condition. Saad et al. (2023) established
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tight results for comparing two items, and directly swapped
it with the deterministic comparison in a classic binary in-
sertion sort algorithm to establish an upper bound for the
noisy ranking problem.

Nevertheless, the application of SST can be overly restric-
tive in contexts where preference probabilities do not hinge
on a single numerical attribute. Items can possess multi-
faceted attributes, leading people to evaluate different pairs
based on different attributes. For example, LLM A is fa-
vored over LLM B because A produces longer responses,
although both are equally informative. LLM B is preferred
over LLM C because B’s response is short and informa-
tive, while C’s response is long and less informative. While
human annotators can identify A ≻ B and B ≻ C easily,
they may find it difficult to compare A and C for the long
responses from both LLMs.

This phenomenon is pervasive in human behaviors and is
defined as Weak Stochastic Transitivity (WST) (Feige et al.,
1994; Mohajer et al., 2017; Falahatgar et al., 2018; Lou et al.,
2022). It only assumes that if item i ≻ j, then pi,j > 1

2 .
Therefore, a pair that is closely ranked might not always
be more challenging to compare than one with a wider
disparity. Driven by these real-world scenarios, this paper
mainly focuses on the challenge of identifying the complete
ranking of N items in a broader context, where only WST is
applicable and SST is not a requirement. Our primary goal
is to minimize the number of comparisons while ensuring a
high level of confidence.

In this paper, we study the problem of learning-to-rank with
multiple oracles, where a set of oracles provides noisy pair-
wise comparisons for the items. We propose an algorithm
that queries comparisons for pairs of items from an adap-
tively chosen user set. We summarize our contributions as
follows:

1. We study learning-to-rank with multiple preference or-
acles. We assume all oracles obey the same underlying
ranking but demonstrate various accuracy and there is
no ‘best’ oracle for all pairs of comparisons. We pro-
pose an algorithm named Rank-with-Multiple-Oracles
(RMO-WST) that can efficiently rank N candidates given
that each oracle satisfies the weak stochastic transitivity
(WST) condition. The achieved sample complexity up-
per bound is Õ(N

∑N
i=2 Hσ−1(i),σ−1(i−1)), where N is

the number of items to rank, Hi,j is a problem-dependent
hardness factor for correctly comparing item i and item
j, and σ−1(i) represents the i-th best item.

2. We provide a lower bound on the query complexity of
solving multi-oracle ranking under the WST condition.
In particular, Lou et al. (2022) studied the single-oracle
ranking under the WST condition and conjectured that
the lower bound is of order Ω̃(N2/∆2), where ∆ :=

min(i,j)∈[N ]×[N ] |pi,j−1/2| is the gap of the comparison
probability from 1/2. Our lower bound answers this
open question raised by Lou et al. (2022) and shows that
our algorithm can attain the lower bound in terms of the
number of candidates N .

3. We also propose an algorithm for learning to rank with
multiple preference oracles in the presence of SST
condition, namely RMO-SST. It can achieve a sam-
ple complexity of Õ(

∑N
i=1 Hi log(N)), where Hi =

maxj∈[N ],j ̸=i Hi,j . Compared with the existing result
of Saad et al. (2023), our algorithm enjoys an improved
sample complexity by a factor of logN and matches the
lower bound of the sample complexity.

2. Related work
Rank aggregation with preference data. Rank aggrega-
tion generally refers to the combination of multiple stochas-
tic pairwise or listwise comparison results into a ranking that
is considered a consensus (Negahban et al., 2012; Thonet
et al., 2022). Each aggregation method usually assumes
an underlying model. Maystre and Grossglauser (2015)
discovers the connection between the maximum likelihood
estimate of the Plackett-Luce model with the stationary
distribution of a Markov chain, vastly accelerating the infer-
ence time given the pairwise preference data. For general
estimation that also contains listwise comparisons, maxi-
mum likelihood is a common practice (Vojnovic and Yun,
2016). For Mallow’s model, a recent work proposed using
a partition scheme for a ranked item to discover the ranker
quality and produce a ranking simultaneously (Zhu et al.,
2023).

Heterogeneous ranking and multi-task ranking. With
the rise of crowdsourcing, data scientists are motivated to
design algorithms adapted to this scenario to account for
the variable quality of workers to achieve cost-efficient data
acquisition rather than assigning tasks uniformly to workers
regardless of their performance (Niu et al., 2015). When
data is already given and the algorithm is unable to affect
the collection process, due to the varying precision of the
workers, a model that considers or estimates the quality of
the source while ranking shows a significant benefit over
those that do not (Takanobu et al., 2019; Jin et al., 2020).
In practical cases, the data collection has not happened yet;
then an adaptive algorithm can be chosen to optimize query
collection. Existing methods usually maintain two sets of
estimates: one for ranking and one for worker quality (Wu
et al., 2022; Saad et al., 2023). Low-accuracy workers are
usually gradually eliminated, leaving high-quality responses
to be collected more efficiently. A low-rank assumption can
be made when the similarity between two parties within a
subset of tasks can also be extrapolated to a broader set of
tasks. Methods derived from probability matrix factorization
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Table 1: A comparison among the related works and the proposed method. The table is divided into two major sections. The
upper section mainly shows the sample complexities of three related algorithms under the SST condition. The lower section
of the table shows the result under the WST condition.

Algorithm Sample Complexity Multi-Oracle

IIR
(Ren et al., 2019) O

(∑
i∈[N ] ∆

−2
i

(
log log

(
∆−1

i

)
+ log(N/δ)

))
No

Binary-Search
(Saad et al., 2023) Õ

(∑
i∈[N ] Hi

(
log log(Hi) + log2(N) + log(1/δ)

))
Yes

RMO-SST
(this work, Algorithm 7) Õ

(∑
i∈[N ] Hi

(
log log

(
Hi

)
+ log(N/δ)

))
Yes

Probe-Max
(Lou et al., 2022) Õ

(
N

∑N
i=2 ∆

−2
σ−1(i),σ−1(i−1)

)
No

RMO-WST
(this work, Algorithm 1) Õ

(
N

∑N
i=2 Hσ−1(i),σ−1(i−1)

)
Yes

Lower Bound for WST
(this work, Theorem 5.8) Ω̃

(
N2 mini Hσ−1(i),σ−1(i−1)

)
Yes

are usually adopted in this case (Wang et al., 2016; Jun et al.,
2019).

Active ranking. Online ranking from noisy comparisons
requires a careful algorithm design to ensure that the es-
timations of the relative order of the two items are cor-
rect to ensure accuracy and make as few comparisons as
possible. With the objective of ranking items according
to their Borda score, the Active Ranking (AR) algorithm
(Heckel et al., 2019) divides items into partitions accord-
ing to the estimated score of uniformly sampling an op-
ponent item. This sampling method matches directly that
of the definition of Borda score. Partitions group items
into the same set if their confidence interval overlaps. After-
wards, items in disjoint sets are considered correctly ordered
with high confidence. With a slightly stronger imposed as-
sumption of stochastic transitivity. Ren et al. (2019) pro-
pose the Iterative-Insertion-Ranking (IIR) al-
gorithm that uses preference interval trees to perform binary
search to sequentially insert items into an already ranked
list. It achieves a provable optimal upper bound when the
instance satisfies the SST condition. However, if only WST
is assumed, the algorithm may fail to terminate in extreme
cases.

In light of this, the Probe-Rank algorithm (Lou et al.,
2022) solves this problem by sampling uniformly over the
unranked pairs until the order of a pair is revealed. Af-
terwards, this order information is added as an edge of a
directed acyclic graph. Then a transitive closure is com-
puted to take advantage of stochastic transitivity when the
order of unranked pairs can be inferred so that there can be
some savings in sample complexity.

Dueling bandits. In the context of dueling bandits, the
agent can only request a pair to be compared and get prefer-
ential feedback as opposed to stochastic bandits where the

feedback is a single value tied to the pulled arm (Yue et al.,
2012). As in the common case in bandits, not only must
the rankings be inferred correctly, but also the optimization
of regret (reward) must be taken into account. Contextual
dueling bandits usually imply strong stochastic transitivity
if the reward is defined on the actual utility gained from
arm pulls (Dudík et al., 2015). Methods developed for these
settings are ideal for online user interaction systems, where
the collection of the reward is on-the-fly and cannot be
postponed until the whole ranking is derived. Stochastic
transitivity assumptions rarely hold in real-world situations,
since the “rock-scissor-paper” relationship happens quite
often in tournaments and preferences in real life. To cover
these conditions, methods targeted for rewards defined on
Copeland score 1

N

∑
j∈[N ] 1(pi,j >

1
2 ) or the Borda score

1
N

∑
j∈[N ] pi,j are widely studied in the dueling bandits lit-

erature (Wu and Liu, 2016; Zoghi et al., 2015; Saha et al.,
2021).

We summarize our contributions and compare them with
the related work in Table 1. Due to the lengthy form of the
exact result of Binary-Search and RMO-SST that does
not fit in one line. We use Õ in the table to omit insignificant
terms. In addition, we keep relevant log terms inside the
Õ to showcase the improvement obtained by the proposed
method.

3. Preliminaries
In this paper, we consider actively ranking N items, with M
oracles (also known as users or experts). We assume there
exists an ordering ‘≻’ over these items which is character-
ized as a mapping σ(·) : [N ]→ [N ] indicating the position
of a given item in the ranking in descending order. Equiva-
lently, the inverse mapping σ−1(·) lists the items in order:
σ−1(1) ≻ σ−1(2) ≻ · · · ≻ σ−1(n). For two items i and
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j, we assume that the result of the comparison is sampled
independently from the Bernoulli distribution with mean
pui,j . More specifically, we denote pui,j as the probability that
the response is “i is preferred over j” when a query is sent
to oracle u. In particular, pui,j >

1
2 is considered as the item

i is preferred over the item j by the oracle u. We will omit
u in pui,j if the discussion is restricted to a single oracle.

For a fixed pair of items i and j, each oracle exhibits its
preference, represented by the probability pui,j . It is yet to
decide how to aggregate them into a ‘consensus preference’.
If the consensus is defined as an average over pui,j or a
majority vote over sign(pui,j − 1/2), it is required that all
oracles must be queried for each pair. In this case, there is
no point to identify a more accurate expert to save queries.
Instead, we make the following assumption that all oracles
show a consistent preference for any item pair.

Assumption 3.1 (Consistency). For any item pair (i, j), the
preferences of all oracles are the same. More formally, for
any two oracles u and v, we always have:

sign(pui,j − 1/2) = sign(pvi,j − 1/2).

This assumption states that the oracles can show different
levels of noise but must agree with the same underlying
true ranking. This assumption also enables us to only se-
lect the more accurate oracles to recover the ranking with
fewer comparisons. An equivalent assumption named the
‘monotonicity’ assumption is made by Saad et al. (2023).

We study the ranking problem under two different assump-
tions: Weak Stochastic Transitivity (WST) and Strong
Stochastic Transitivity (SST) (Falahatgar et al., 2017):

Assumption 3.2 (Weak Stochastic Transitivity). For a given
oracle u, for any item pairs (i, j) and (j, k), if pui,j ≥ 1

2 and
puj,k ≥ 1

2 then pui,k ≥ 1
2 .

WST implies that if i ≻ j and j ≻ k, then i ≻ k, which
eliminates the possible cyclic order dependency and guaran-
tees that an exact order of items can be inferred.

Assumption 3.3 (Strong Stochastic Transitivity). For each
oracle u and for any pair of items (i, j) and (j, k), if pui,j ≥
1
2 and puj,k ≥ 1

2 , then pui,k ≥ max{pui,j , puj,k} ≥ 1
2 .

SST implies that items that are more distant in the ranking
are easier to compare. Combining the consistency assump-
tion and either of the stochastic transitivity assumptions, we
conclude that there must exist a ground-truth ranking σ on
which all oracles agree. We use σ(i) to denote the rank of
item i and σ−1(k) to denote the index of the k-th best item.

Ranking two items The hardness of estimating the prefer-
ence of two items i and j under oracle u can be captured
by the gap between their preferential probability and 1/2:
∆u

i,j = |pui,j − 1/2|. Intuitively, the closer the preferential

probability to 1/2, the harder it is to estimate the prefer-
ence of the two items since the collected responses are more
noisy. In our multi-oracle setting, a trivial method would be
querying one oracle at a time in a uniformly random fash-
ion and aggregating them as if from a single oracle, which
leads to an average gap of ∆̄i,j :=

∑M
u=1 ∆

u
i,j/M. In other

words, any single-oracle algorithm can be trivially applied
to the multi-oracle setting as if one oracle has a gap of ∆̄i,j .

Ranking under WST condition Given that the hardness of
inferring the rank of a pair is inversely proportional to the
(squared) gap, we introduce the average hardness for a given
pair (i, j) as H̄i,j := 1/(∆̄i,j)

2. Another definition that we
will use frequently is Hi,j := M/

∑M
u=1(∆

u
i,j)

2, which is
the hardness of a given pair (i, j). It is straightforward to
prove that Hi,j ≤ H̄i,j by the Cauchy-Schwartz inequality,
so any algorithm that can achieve a sample complexity re-
lated to Hi,j instead of H̄i,j is a strict improvement over the
trivially adapted single-oracle algorithm.

Ranking under SST condition For ranking under the SST
condition, the hardness depends on each item’s most difficult
pair. Here, for each item i, we define the minimum gap
∆i := minj∈[N ],j ̸=i ∆i,j and maximum hardness Hi :=
maxj∈[N ],j ̸=i Hi,j .

Finally, we define a δ-correct ranking algorithm as an algo-
rithm that returns the true ranking with probability 1 − δ
within finite number of queries.

Additional notations Let a ∨ b := max(a, b). We use
standard asymptotic notations, including O(·),Ω(·),Θ(·),
and Õ(·), Ω̃(·), Θ̃(·) will hide logarithmic factors. For a
positive integer N , [N ] := {1, 2, . . . , N}. For a set of
items S, denote the set of all possible pairs of items as
S2 := {(i, j) : i, j ∈ S, i ̸= j}.

4. Main algorithms
In this section, we propose algorithms called Rank-with-
Multiple-Oracles (RMO) under both WST and SST condi-
tions.

4.1. Proposed algorithm under WST condition

The ranking algorithm under the WST condition is called
RMO-WST, which is displayed in Algorithm 1 and has a
bi-level design. At the high level, it calls Probe-Max (Al-
gorithm 2) to select the maximal item from the pool of candi-
dates repeatedly. After N−1 rounds of finding the maximal
item, the algorithm finds the ranking of all the items. At the
low level, the Compare algorithm (Algorithm 3) perform
comparisons that are necessary to rank a pair of items i
and j, which also accounts for the heterogeneous quality of
oracles that provide preferential feedback. Try-Compare
(Algorithm 4) is where the actual comparison takes place
and the order of pairs of items is determined.
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In detail, RMO-WST (Algorithm 1, a variant of
Probe-Sort in Lou et al. (2022)) takes a set of items
labeled by 1, 2, · · · , N as input and outputs a δ-correct rank-
ing of them.

The set St contains the items to be ranked, each of which
corresponds to a node in the directed graph T . It is also
called “partial order preserving graph” in prior work (Lou
et al., 2022). The graph starts with empty, where each node
represents an item (Line 3). A directed edge is created
between the two items, originating from the winning item,
once the pair’s order is determined. The maximal items are
nodes of the current graph T such that there is no incoming
edge towards them, which means they have not yet lose to
any other items in comparison.

The WST assumption can also be employed to introduce
additional edges during this process by getting the transitive
closure of the graph. Furthermore, τi,j records a factor that
determines the number of comparisons required to confi-
dently determine the direction of a pair (i, j). It is initialized
at 1 and its value will increase by one each time to deter-
mine the number of comparisons required throughout the
algorithm. Inside each loop, the maximal item is found by
Probe-Max with a confidence level of 2δ/N2 and then
removed from the graph T . This process repeats and finds
the top items in the set of unranked items St sequentially.

Next, in Probe-Max, let U be the set that contains all the
possible maximal items (i.e., all maximal items). Each item
in U is paired with items whose order between them is not
yet revealed (Line 2-Line 6). After revealing the order of
a new pair using the Compare method, the losing item is
removed from the set of possible maximal items U , and the
graph T is also updated to include this directional edge and
any other possible edges according to transitivity by running
a standard method to compute the transitive closure of the
graph (Line 9). The sub-routine Compare (Algorithm 3,
modified from Saad et al. (2023)), is designed to account
for the multiple-oracles situation. The high-level idea is to
enumerate different possible parameters: the subset size sr
and the gap width hr. In Line 3-Line 10, the guessed subset
size sr and the gap width hr will be sent to Try-Compare
(Algorithm 4), until both reach the actual quantities. Then
Try-Compare will return the correct comparison result
with high probability (Line 8).

Try-Compare (Algorithm 4) is where the actual query
and estimation for the pair direction takes place. In Line 2,
a query size of m is determined by the subset size s given
from the argument. Note that this value halves each time
since s is doubled each time this subroutine is called on the
same pair.

Then, a total number of n0m comparisons is evenly as-
signed to the set of oracles that has not been eliminated
yet (Line 6). Note that in our setting, the feedback is a

binary indicator for a pair of items rather than a bounded
scalar value for a single item as described in Saad et al.
(2023). After comparison, a Bernoulli parameter estimate
is calculated for each individual oracle as µ̂(u,ℓ)

i,j and a joint

estimate as µ̂(ℓ)
i,j (Line 7). In Line 8-Line 9, the order of the

pair is called when the confidence threshold is reached. If
not, it continues to the elimination phase (Line 10), where
oracles with accuracy lower than the medium of the group
in the common statistical sense according to the estimate
are removed from the active set Sij

ℓ and Sij
ℓ .

Algorithm 1 RMO-WST (N, δ): Rank-with-Multiple-
Oracles

1: input: number of items to rank N , confidence level δ
2: initialize: S1 = [N ], ans = [0]N , a directed graph T

with N nodes and no edges, for (i, j) ∈ S2
1 set τi,j = 1

3: define: τ = {τi,j}(i,j)∈[N ]2

4: for t = 1 to N − 1 do
5: imax, T, τ ← Probe-Max(St, 2δ/N

2, T, τ)
6: remove imax from T
7: ans[t− 1] = imax

8: St+1 = St \ {imax}
9: end for

10: ans[N − 1] = SN [0], return ans

Algorithm 2 Probe-Max(S, δ, T, τ)
1: input: set of unranked items S, confidence level δ,

partial order preserving graph T , exponential factors
{τi,j}(i,j)∈[N ]2 as τ .

2: Let U be the set of possible maximal items in T .
3: while |U | > 1 do
4: P = {(i, j)|(i ∈ U ∨ j ∈ U), (i, j) ∈ S2, (i, j) /∈

T}
5: for (i, j) in argmin(x,y)∈P τx,y do
6: ans = Compare(i, j, 6δ

π2τ2
i,j
, τi,j), τi,j = τi,j +1

7: if ans ̸= unsure then
8: w, l = ans, T = TransClosure(T ∪ (w ≻ l))
9: if |U | > 1 and l ∈ U then U = U \ {l}

10: end if
11: end for
12: end while
13: return U [0], T, τ

5
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Algorithm 3 Compare(i, j, δ, τ)

1: input: pair (i, j), confidence level δ, precision factor τ
2: initialize: rmax = 1, ϵτ = 2−τ , ans = unsure.
3: while ans = unsure and ϵ2τ < 4 log(2M)M2−rmax

do
4: for r = 0, · · · , rmax do
5: sr = 2rM

2rmax , hr = 2−
r
2

6: δrmax
= δ/(10(rmax)

3 log(M))
7: ans = Try-Compare (i, j, δrmax

, sr, hr)
8: if ans ̸= unsure, break.
9: end for

10: rmax = rmax + 1
11: end while
12: return ans

Algorithm 4 Try-Compare(i, j, δ, s, h)

1: input: pair to query (i, j), confidence level δ, subset
size s, estimated gap width h.

2: m = 2⌈log2(26 log(1/δ)M/s)⌉, n0 = 64/h2.
3: Sample a set of m oracles with replacement from all M

oracles as S1.
4: Let Sij

1 = Sji
1 = S1 and L = ⌈log4/3(M/s)⌉.

5: for ℓ = 0, · · · , L do
6: Request tℓ = n0m/|Sij

ℓ | comparisons for pair (i, j)
from each oracle u ∈ Sij

ℓ ∪ Sji
ℓ . Denote ciju as the

number of times i ≻ j.

7: µ̂
(u,ℓ)
i,j =

ciju,ℓ

tℓ
, µ̂

(u,ℓ)
j,i = 1 − µ̂

(u,ℓ)
i,j , µ̂

(ℓ)
i,j =

1

|Sij
ℓ |

∑
u∈Sij

ℓ
µ̂
(u,ℓ)
i,j .

8: if µ̂(ℓ)
i,j − 1

2 ≥
√
2 log(2/δ)/n0m then return i ≻ j

9: if µ̂(ℓ)
i,j − 1

2 < −
√
2 log(2/δ)/n0m then return i ≺ j

10: Sij
ℓ+1 ← {v ∈ Sij

ℓ |µ̂
(v,ℓ)
i,j ≥ medium of µ̂(u,ℓ)

i,j , u ∈
Sij
ℓ }

11: Sji
ℓ+1 ← {v ∈ Sji

ℓ |µ̂
(v,ℓ)
j,i ≥ medium of µ̂(u,ℓ)

j,i , u ∈
Sji
ℓ }

12: end for
13: return unsure.

4.2. Proposed algorithm under SST condition

We propose another algorithm that works under the SST
condition called RMO-SST, which is derived from the
Iterative-Insertion-Ranking (IIR) routine by
Ren et al. (2019). It also has a bi-level design like the algo-
rithm discussed in the previous subsection. The low-level
component is Compare (Algorithm 3). The detailed algo-
rithm description is deferred to Appendix D due to space
limit.

5. Main theoretical results
In this section, we present the upper bound on the sample
complexity of the proposed algorithms, as well as a new
lower bound.

5.1. Upper bound of sample complexity under WST
condition

To start with, we introduce the following theorem, which
guarantees the performance of Compare (Algorithm 3).

Theorem 5.1. (Restatement of Theorem 4.1 from Saad et al.
(2023)) For any given τ, δ and any pair (i, j), with proba-
bility at least 1− δ, Algorithm 3 satisfies:

1. It outputs the correct order or unsure for any given
τ and δ > 0.

2. If τ > − 1
2 log(M/Hi,j), the correct order is returned.

3. When the correct order is returned, the sample com-
plexity is Õ(log(1/δ)Hi,j).

To obtain the above theorem, we replace the ϵ in the original
theorem with 2−τ to suit our application. A detailed reason-
ing is available in Appendix B.1. This theorem guarantees
the pairwise comparisons are correct with desired accuracy.

With a robust routine to return the correct order for each
queried pair, a carefully designed ranking algorithm (Algo-
rithm 1) orchestrates such pairwise comparisons to recover
the ranking with high probability. In RMO-WST, the max-
imal item in the candidate set is identified and removed
iteratively to rank all items. Thus, the total sample complex-
ity is the summation of the sample complexity to identify
each maximal item. And such cost can be upper bounded
by N times the hardness to compare it with the item imme-
diately smaller than it. We present the following theorem to
characterize the total sample complexity upper bound of Al-
gorithm 1. The detailed proof is deferred to Appendix B.2.

Theorem 5.2. (Instance-dependent sample complexity up-
per bound for RMO-WST) For a given set of items [N ] and
desired confidence level δ, Algorithm 1 terminates with sam-
ple complexity bounded by

Õ
(
N
∑N

i=2Hσ−1(i),σ−1(i−1)

)
.

With probability at least 1 − δ, Algorithm 1 will output a
ranking that exactly matches the true ranking.

Remark 5.3. A baseline algorithm is to uniformly randomly
choose one oracle and apply the Probe-Rank algorithm
with the average oracle. This leads to an averaged oracle
with average gap ∆̄i,j or average hardness H̄i,j as described
near the end of Section 3. The resulting sample complexity
is Õ

(
N
∑N

i=2 H̄σ−1(i),σ−1(i−1)

)
, which is strictly worse

than our sample complexity, since Hi,j ≤ H̄i,j .

6
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5.2. Upper bound of sample complexity under SST
condition

We state the sample complexities resulting from running the
RMO-SST as follows:
Theorem 5.4. (Instance-dependent sample complexity
upper bound for RMO-SST) For a given set of items
[N ] and desired confidence level δ, Algorithm 7 in Ap-
pendix D terminates with sample complexity bounded by
Õ
(∑

i∈[N ]Hi

(
log log(Hi) + log(N/δ)

))
.

A sketch of proof of the theorem is deferred to Ap-
pendix B.3.
Remark 5.5. Theorem 5.1 in Saad et al. (2023)
presented an algorithm with upper bound of
Õ
(∑

i∈[N ] Hi

(
log log(Hi) + log2(N) + log(1/δ)

))
,

which suffers an extra logN factor compared with ours.
The two logN factors come from assigning a failure
probability of δ/N to insert one item into the sorting tree
and adding the number of queries over logN comparisons.
This gives approximately Hilog(N log(N)/δ) × logN
total comparisons. The last logN is removable by applying
a more sophisticated insertion procedure we presented here.
Also, Ren et al. (2019, Theorem 2) suggests that the lower
bound is of order Ω

(∑
i∈[N ] Hi

(
log log(Hi)+log(N/δ)

))
,

which tightly matches our result.

5.3. Lower bound of sample complexity

Since the lower bound for the SST case is well-established,
this section will focus on the lower bound for the WST case.
This remains an open problem to the best of our knowledge.

To solve the single-oracle ranking problem, Lou et al. (2022)
proposed a class of hard instances for any (ϵ, δ)-correct
algorithm. The definition of (ϵ, δ)-correctness is that, with
probability at least 1−δ, the algorithm will output a ranking
σ̂ such that for all i ≻σ̂ j, p(i, j) ≥ 1

2 − ϵ. Intuitively,
this means the algorithm will only mis-rank those pairs
satisfying |p(i, j)− 1/2| < ϵ.

Lou et al. (2022) conjectured that any (ϵ, δ)-correct algo-
rithm must query at least Ω(N2 log(1/δ)/ϵ2), but did not
formally prove it. We will first present a proof that fills this
gap, and then extend the results into the multi-oracle setting.

Single Oracle Similar to Lou et al. (2022), we construct a
class of hard instances for the single-oracle setting. Each
instance is indexed by a ranking σ.
Problem 1 (IWST). Consider N items with an underlying
ordering σ. For all i ≻σ j,

pσ(i, j) =

{
1
2 + ϵ, if σ(i) = 1 and σ(j) = 2,
1
2 , otherwise,

and for i ≺σ j, p(i, j) = 1− p(j, i).

Solving the instance class above can be reduced to solving
the one-sided instance class described below in Problem 2.
The reduction is done by query (i, j) and (j, i) on IWST’
equally likely to simulate the same environment as in IWST.
Therefore, IWST is at least as hard as IWST’, up to constants.
Problem 2 (IWST’). Consider N items with an underlying
ordering σ. For all i, j,

pσ(i, j) =

{
1
2 + 2ϵ, if σ(i) = 1 and σ(j) = 2,
1
2 , otherwise.

For any (2ϵ, δ)-correct ranking algorithm that outputs a 2ϵ-
correct ranking under IWST’ with probability at least 1− δ,
we have that the algorithm must correctly rank between
the largest item σ−1(1) and the second-largest one σ−1(2).
Intuitively, this implies that the algorithm has to go over
almost all pairs to correctly identify σ−1(1) and σ−1(2),
which is signified by a biased coin among N2 fair coins. We
have the following result:
Theorem 5.6. For any (ϵ, δ)-correct algorithm A, there
exist a ranking σ and corresponding p(i, j) such that with

probability at least δ,
∑

i,jCi,j = Ω

(
N2 log(1/δ)

ϵ2

)
, where

Ci,j denotes the queries made at (i, j).

The lower bound is tight up to logarithmic factors because a
simple algorithm that allocates comparisons evenly to each
pair will guarantee an ϵ-approximate estimation of p(i, j),
thus ensuring the ranking is (ϵ, δ)-correct.

Further, we define the (ϵ, δ)-correctness for multiple oracles:
Definition 5.7. An algorithm A is called (ϵ, δ)-correct, if
with probability at least 1 − δ, A will output a ranking σ̂
such that for all i ≻σ̂ j but j ≻σ i,

∑M
u=1(∆

u
i,j)

2 < ϵ2.

Intuitively, the equivalent probability margin√∑M
u=1(∆

u
i,j)

2 must be small for any mis-ranked
pair (i, j).

We have the following result:
Theorem 5.8. For any (ϵ, δ)-correct algorithm A, there
exist a ranking σ and corresponding {pu(i, j)}u∈[M ] such
that with probability at least δ,∑

i,jCi,j = Ω
(
N2M log(1/δ)/ϵ2

)
= Ω̃

(
N2Hσ−1(1),σ−1(2)

)
,

where Ci,j denotes the queries made at (i, j).

Again, the lower bound is tight and can be reached by allo-
cating the comparison budget evenly to each pair and call
Algorithm 3.

6. Experiments
We study the practical performance of the proposed algo-
rithm and compare it with existing methods. We compare
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Figure 1: Sample complexities of ranking N ∈ {2, 4, 8, 16, 32, 64} items with M − 1 oracles have low accuracy and one
oracle has high accuracy.

two methods in the experiment 1:

Probe-Max: the main algorithm proposed (Lou et al.,
2022), however, their algorithm does not account for multi-
ple oracles. In this case, as a naive implementation, when-
ever a pair is requested, it chooses an oracle from [M ]
uniformly at random.

RMO-WST: Algorithm 1 proposed in this work. However,
we notice that due to multiple uses of the union bound,
excessive sampling can occur, which is unrealistic in real-
world scenarios.

For instance, repetitive sampling of m tasks as seen in Al-
gorithm 4 at Line 2 can enhance the precision of the overall
estimate µ̂(u,ℓ)

i,j . However, since s diminishes at an exponen-
tial rate, the quantities m and tl also increase exponentially.
Our hypothesis is that setting S1 = [M ]—in other words,
maintaining a constant size of m at M—can lead to greater
efficiency. Additionally, the distribution of the accuracy of
active candidates is the same with or without the sampling
without replacement in Line 6. Furthermore, note that the
confidence interval used from Line 8 to Line 9 still holds af-
ter the change. We also notice that, in Line 7 the individual
estimate and the global estimate depend only on the samples
collected within a single iteration of the for loop starting
Line 4. This can also be improved by reusing the statis-
tics collected in previous rounds. We present the improved
algorithm in Algorithm 5 in supplementary material.

To start with, we randomly generate the comparison matrix
according to the following rules: a) There are N items
to rank and a random permutation of [N ] is generated as
the ground truth ranking. There are M oracles that can
conduct pairwise evaluation each with a comparison matrix
for pi,j . b) One of the M oracles is very accurate and we
assign a probability value for pi,j sampled from [0.85, 0.95]
uniformly at random if i ≻ j for every pair of items. c) For
the rest of M − 1 oracles, we assign a value to pi,j sampled
uniformly at random from [0.55, 0.65] if i ≻ j.

1Upon acceptance of the paper, the code will be posted on
GitHub.

We tested N ∈ {2, 4, 8, 16, 32, 64} to explore how the sam-
ples grow with the size of the problem. The mix of accurate
responses can also affect the performance gain. The average
sample complexity of 32 runs with one standard deviation
error bar calculated by Python numpy library is plotted
in Figure 1a, Figure 1b and Figure 1c for the case where
M = 2, M = 4 and M = 6, respectively. In general, it is
harder to derive estimated rankings while the majority of
the information is noisy (M = 6), as in this case the sample
complexity is much higher for both algorithms. However,
regardless of the noisiness of oracles, the proposed method
always beats the baseline. In addition, if the proportion of
the noisy oracles are high, then our proposed method bene-
fits more which is illustrated by the wider gap compared to
the baseline method from M = 2 to M = 6.

7. Conclusion and future work
In this work, we introduce an active ranking algorithm that
works in the WST setting when there are multiple experts
with different degrees of precision in multiple tasks. An
instance-independent upper bound is proven for this case.
We also solved an open problem for the lower bound in this
setting. In addition, we extend a state-of-the-art active rank-
ing algorithm under SST conditions into the multi-oracle
setting. Whether there is an instance-dependent lower bound
remains an open question.

We also conjecture that for the single oracle WST algorithm,
its search efficiency could be improved with a better worse
case sample complexity by redesigning the graph construc-
tion method. After which this can be extended into the
multi-oracle case. It is also of great interest to design an
algorithm that works for both WST and SST conditions to
achieve a best-of-both-worlds result.

Limitations The monotonic assumption might not hold in
general. The empirical experiments are performed assuming
only one such user is more accurate. If the set of experts
have uniform accuracy level, our method may have addi-
tional overhead.
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A. Proof of technical lemmas
We first show that Compare (Algorithm 3) returns the correct outcomes between the given two items with high probability.
In the following, without loss of generality, we assume the correct ordering between item i and item j is i ≻ j. The proof
follows those done similarly by (Saad et al., 2023), except that we deal with binary feedback representing the preference
instead of numerical feedback for i and j respectively.

We first present the following lemma that characterizes the behavior of Try-Compare (Algorithm 4).
Lemma A.1. In Algorithm 4, for each iteration ℓ, for any fixed pair of items i ≻ j, we have that probability of getting
incorrect probability estimation bounded as:

P

(
µ̂
(ℓ)
i,j −

1

2
< −

√
2 log(1/δ)

|Sℓ|n0

)
≤ δ,

where Sℓ is the subset of active oracles and n0 is the number of repeated comparisons.

Proof. According to the assumption that i ≻ j, so E[µ̂(ℓ)
i,j ] =

1
|Sℓ|

∑
u∈Sℓ

pui,j ≥ 1
2 . Then we have

P

(
µ̂
(ℓ)
i,j −

1

2
< −

√
2 log(1/δ)

|Sℓ|n0

)
≤ P

(
µ̂
(ℓ)
i,j − E[µ̂(ℓ)

i,j ] < −

√
2 log(1/δ)

|Sℓ|n0

)
≤ δ.

The last inequality is due to Chernoff’s inequality given that µ̂(ℓ)
i,j is a summation of |Sℓ|n0 bounded independent random

variables in [0, 1].

Then we have the following lemma stating the correctness of Try-Compare (Algorithm 4).
Lemma A.2. In Algorithm 4, the probability of returning an incorrect result or order is bounded by:

P(return i ≺ j) ≤ 1.75 log(M)δ.

Proof. If i ≺ j is returned, then in Algorithm 4, there exists some ℓ such that the condition in Line 9 is true. Formally, we
have

P(return i ≺ j) ≤ P
(
∃ℓ ∈ [log4/3(M/m)] : µ̂

(ℓ)
i,j − 1/2 < −

√
2 log(2/δ)/n0m

)
≤ log4/3(M/m)δ/2

≤ 1.75 log(M)δ.

The first inequality holds due to the reasoning above; the second inequality comes from the union bound and Lemma A.1; in
the last inequality we drop m and rearrange terms.

Lemma A.3. Assume i ≻ j. In Algorithm 3, the wrong result will appear with probability P(return i ≺ j) ≤ 0.6δ.

Proof. Let ansrmax,r denote the output of Algorithm 4 when it is called with arguments (δrmax
, sr, hr). We have

P(return i ≺ j) ≤ P
(
∃rmax ≥ 1,∃r ≤ rmax : ansrmax,r = (i ≺ j)

)
≤

∞∑
rmax=1

rmax∑
r=0

P(ansrmax,r = (i ≺ j))

(1)

≤
∞∑

rmax=1

rmax∑
r=0

1.75 log(M)δ

10(rmax)3 log(M)

=

∞∑
rmax=1

1.75δ

10

rmax + 1

rmax
3

(2)

≤ 0.6δ,

where (1) is due to Lemma A.2 and the definition δrmax = δ/(10(rmax)
3 log(M)), and (2) holds because

∑∞
rmax=1

1+rmax

rmax
3 ≤

3.
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B. Proofs of theorems
B.1. Full statement of Theorem 5.1

Our restatement also follows the structure of three conclusion claims towards the end of the proof by Saad et al. (2023,
Theorem 4.1, Section B).

Note that one difference between our version of Compare (Algorithm 3) and their original algorithm is that their ϵ is
replaced with τ by us to control the desired accuracy gap of one pairwise comparison. More specifically, in Line 2 of
Algorithm 3, we calculated an equivalent ϵ as ϵτ = 2−τ based on the input argument τ .

In their notation, d is the number of experts (oracles), which is equivalent to M in our notation.

The problem hardness factor Hi,j is similarly defined. The setting is slightly different in that Saad et al. (2023) considered
the difference of two 1-sub-Gaussian variables while we consider a Bernoulli variable shifted by 1/2. The central problem
is to identify the sign of the expectation of the said random variables (which determines the order between i and j), and thus
the problem hardness factors are defined in the same spirit.

Now, we are ready to restate the theorem.

Claim 1: The first part of the theorem can be directly derived from Lemma A.3 or Saad et al. (2023, Lemma B.3). Indeed,
since Lemma A.3 states that Algorithm 3 will return the wrong result with probability at most 0.6δ. Therefore, Algorithm 3
returns either unsure or the correct order with probability at least 1− δ.

Claim 2: The second part of the theorem states that when τ is sufficiently large, the algorithm will return the correct result
with a high probability of at least 1− δ.

To see this, when ϵ2τ = 2−2τ < M/Hi,j , that is, when τ > − 1
2 log(M/Hi,j), the algorithm returns unsure with

probability less than 0.4δ by the same argument as in Saad et al. (2023, Eq.5 and Lemma B.8). And by Lemma A.3, it
returns the wrong order with probability less than 0.6δ. In total, the probability of returning the incorrect result is less than δ.

Claim 3: The third part deals with the sample complexity. It is calculated under two conditions regarding the relationship
between τ (hence ϵτ ) and M/Hi,j , where c1 is a constant. According to the end of the proof of Saad et al. (2023, Theorem
4.1, Section B) and replace it with our notation we have the following two cases:

1. When ϵ2τ ≥M/Hi,j , Algorithm 3 finishes with a sample complexity of

c1 log
2(2M) log

(
log(2M)

2−2τ

)
log

(
2 log(2M/2−2τ )

δ

)
M

2−2τ
= Õ

(
log(1/δ)

M

2−2τ

)
. (B.1)

2. When ϵ2τ < M/Hi,j , the total sample complexity is:

c1 log
2(M) log(Hi,j) log (log(Hi,j) log(M)/δ)Hi,j = Õ(log(1/δ)Hi,j). (B.2)

B.2. Proof of Theorem 5.2

Proof. As stated in Theorem 5.1, for any pair (i, j) and τ , with probability 1 − δ, the following event will hold for
Compare(i, j, δ, τ):

1. Compare(i, j, δ, τ) outputs the correct order or unsure.

2. If τ > − 1
2 log(M/Hi,j), Compare(i, j, δ, τ) outputs the correct order.

3. The sample complexity is Õ(Hi,j).

For each i, j and τ , denote Ei,j(τ) as the high-probability event described above regarding Compare(i, j, 6δ/π2τ2i,j , τi,j)

in Algorithm 4, which is called within Probe-Max(St, 2δ/N
2, T, τ) in Algorithm 1. Then, we have that

P(Ei,j(τ)) ≥ 1− 12δ

π2N2τ2i,j
.
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By union bound, the probability that there exists one pair (i, j) that is compared wrongly by Compare(i, j, δ/τ2i,j , τi,j) for
some τi,j is

P

( ⋃
(i,j)∈[N ]2

∞⋃
τ=1

Ei,j(τ)

)
≤ N2

2

∞∑
τ=1

12δ

π2N2τ2
≤ δ, (B.3)

where the last inequality comes from
∑∞

τ=1 τ
−2 = π2/6.

In the following proof, we assume that Compare(i, j, 6δ/π2τ2i,j , τi,j) always runs successfully. Now, using Equation (B.1),
Equation (B.2), define the following two terms:

1. When ϵ2τ ≥M/Hi,j , for any t > 0,

n(t) :=c1 log
2(2M) log

(
log(2M)

4−t

)
log

(
2π2N2t2 log(M/4−t)

12δ

)
M

4−t
= Õ(4tM), (B.4)

2. When ϵ2τ < M/Hi,j , that is 2−τi,j < M/Hi,j , which is applied in the first inequality below:

n
(∗)
i,j := c1 log

2(M) log(Hi,j) log

(
τ2i,j log(Hi,j) log(M)N2π2

12δ

)
Hi,j ≤ Õ(Hi,j). (B.5)

Given the fact that RMO-WST only compares the pair contains at least one maximal element. In this case, for every call
of Compare on pair (i, j) if i is maximal, we say that item i initializes the comparison, and the number of comparisons
is charged to i. If both i, j are maximal, then the cost is charged to both items. We denote the total number of charged
comparisons to i as c(i), i ∈ [N ]. And the sample complexity of RMO-WST is at most

∑
i∈[N ] c(i).

Without loss of generality, assume the true ranking of items is 1 ≻ 2 ≻ · · · ≻ N . Given i ∈ [N ], we use τ◦i to denote the
value of τi,i−1 when the order between i and i− 1 is revealed. Let τ◦1 = 0. The order of adjacent items of i under WST
condition can only be revealed when Compare(i, i − 1, 2δ/N2, τ◦i ) returns a value other than unsure. According to
Lemma A.3, τ◦i ≤ ⌈ 12 log

Hi,i−1

M ⌉.

Define b
(τ)
i,j as follows, where n(τ) is defined in Equation (B.4):

b
(τ)
i,j =

{
n(τ), if τ < τ◦i,j∑τ−1

t=1 n(t) + n
(∗)
i,j , otherwise

For each j ̸= i, let τ∗i,j be the value of τi,j when last time Compare is initialized by i and called before
Probe-Max(Si, 2δ/N

2). For any τ > τ∗i,j , if Compare(i, j, 2δ/N2, τ) is called in Probe-Max(St, 2δ/N
2) for

some t < i, then it must not be initialized by i. In light of this, let τ ti,j be the value of τi,j after completion of
Probe-Max(St, 2δ/N

2). We break down c(i) into two parts as follows:

c(i) ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

b
(τ)
i,j +

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

b
(τ)
i,j (B.6)

We now move on to bound the first summation term on the right-hand side of Equation (B.6). Before
Probe-Max(Si−1, 2δ/N

2) terminates, item i − 1 is in T . Therefore, whenever i is a maximal item, the order be-
tween i and i− 1 is not revealed. So when i initializes the comparison Compare(i, j, 2δ/N2, τ∗i,j), the item pair (i, i− 1)
is also in the set of legitimate pairs P . Therefore, τ∗i,j is no larger than the value of τi,i−1 at that point, and is further no
larget than τ◦i :

∑
j ̸=i

τ∗
i,j∑

τ=1

b
(τ)
i,j ≤ N

τi,i−1∑
τ=1

bτ ≤ N

τ◦
i∑

τ=1

b
(τ)
i,i−1. (B.7)
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We then continue to bound the second summation term in c(i) in Equation (B.6). Consider the last group of Compare
called in Probe-Max(Si, 2δ/N

2), here the groups mean that there might be multiple item pairs whose values τ are the
minimum in P . Denote their τ values by τ i. There must be some Compare(ai, bi, 2δ/N2, τ i) returning bi ≻ ai such that
ai is a maximal item, otherwise no maximal item is removed from U and Probe-Max will not terminate. When every
Compare call is returning the correct order, ai is not the maximal in Si so ai > i. Thus, item ai − 1 is also in Si and
before the call of Compare(ai, bi, 2δ/N2, τ i), the order between ai and ai − 1 is not revealed, that is, τ i ≤ τ◦ai

. Moreover,
τ ii,j ≤ τ i because we always compare pairs of items with the smallest τ values, it follows that

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

b
(τ)
i,j ≤ N

τ◦
i∑

τ=1

b
(τ)
i,i−1. (B.8)

In summary, the total sample complexity is

N∑
i=1

c(i) ≤ 2N

N∑
i=1

τ◦
i∑

τ=1

b
(τ)
i,i−1 = 2N

N∑
i=2

τ◦
i∑

τ=1

b
(τ)
i,i−1, (B.9)

where the last equality is due to τ◦1 = 0. Plug in τ◦i ≤ ⌈ 12 log
Hi,i−1

M ⌉ into the above equation to get:

2N

N∑
i=2

τ◦
i∑

τ=1

b
(τ)
i,j = N

[ N∑
i=2

O
(
log2(M) log(Hi,i−1) log (log(Hi,i−1) log(M))Hi,i−1

)
(B.10)

+

N∑
i=2

log2(2M) log

(
log(2M)

Hi,i−1

M

)
log

(
4N2 log(

Hi,i−1

M
M)/δ

)
O(

Hi,i−1

M
M)

]
(B.11)

= Õ

(
N

N∑
i=2

Hi,i−1

)
(B.12)

Given we assumed w.l.o.g. that the correct ranking is 1 ≻ 2 ≻ 3 ≻ · · ·N and the sample complexity is Equation (B.12).

Now we conclude without this assumption the sample complexity would be Õ

(
N
∑N

i=2 Hσ−1(i),σ−1(i−1)

)
.

B.3. Sketch of Proof of Improved Sample Complexity Upper Bound with SST Assumption

The proof of the upper bound of the sample complexity is similar to Theorem 11 in (Ren et al., 2019). Notice that our
algorithm listed in Appendix D differs from theirs by switching the all the usage of ATC to Compare (Algorithm 3). The
rest of the procedure does not change. We establish our claim by stating the equivalence of this exchange in terms of
algorithm guarantee.

First of all, we note that Lemma 8 in (Ren et al., 2019) ATC states that

1. With probability 1− δ, ATC returns the correct order or unsure.

2. If ϵ < ∆i,j , ATC returns the correct order.

3. The sample complexity is O(ϵ−2 log(1/δ)).

In Algorithm 6, we notice that it differs with Algorithm 3 in that τ is no longer supplied through input arguments and
ϵ = 2−τ is calculated outside of this subroutine. In this case, ϵτ in Algorithm 3 is equivalent to ϵ in Algorithm 6, which
turns out to be a slight change in notation.

With this in mind, we can restate the Theorem 5.1 as follows:

1. With probability 1− δ, Compare returns the correct order or unsure.

2. If ϵ <
√
Hi,j/M , Compare returns the correct order.

14
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3. The sample complexity is Õ(log(1/δ)Hi,j).

Define Hi := maxj ̸=i,j∈[N ] Hi,j . With this established claim, we plugin the condition ϵ <
√

Hi,j/M and sample
complexity Õ(log(1/δ)Hi,j) for a single pair to be correctly compared to the proof of Lemman 10 and Theorem 11 in (Ren
et al., 2019) to get the sample complexity as:

Õ

(∑
i∈[N ]

Hi

(
log log

(
Hi

)
+ log(N/δ)

))
(B.13)

B.4. Proof of Theorem 5.6

Let A be an δ-correct algorithm. For any ranking σ, it correspond to a problem instance in IWST’. We denote PA
a,b as the

canonical bandit distribution of algorithm A under environment with p(i, j) = 1
2 + ϵ when (i, j) = (a, b) and p(i, j) = 1

2
otherwise. We also denote PA

0 as the canonical bandit distribution of algorithm A under environment with p(i, j) = 1
2

everywhere.

Since A is an δ-correct algorithm, its prediction on the ranking between a and b, denoted as σ̂(a) and σ̂(b), must align with
the true ranking σ(a) > σ(b) with probability at least 1− δ:

PA
a,b

(
σ̂(a) < σ̂(b)

)
≤ δ, ∀a, b ∈ [N ], a ̸= b.

Denote X =
∑

i,j Ci,j the total number of queries made by A before it stops. Define the constant

x̄ := inf
{
x : max

a,b
PA
a,b(X > x) ≤ δ

}
.

Here, x̄ serves as a probabilistic lower bound of the total number of queries for all instances. This is the quantity we aim to
bound from below in the coming reasoning.

Lemma B.1. For the fixed x̄, we have that

PA
0 (X > x̄) ≥ 1− 2δ.

Proof of Lemma B.1. We define two new distributions P̃A
1,2 and P̃A

2,1, where P̃A
1,2 denotes the canonical bandit distribution

of algorithm A under environment with p(i, j) = 1
2 + α when (i, j) = (1, 2) and p(i, j) = 1

2 otherwise. P̃A
2,1 is defined

similarly.

We have that

PA
0 (X ≤ x̄) = PA

0 (σ̂(1) > σ̂(2), X ≤ x̄) + PA
0 (σ̂(1) < σ̂(2), X ≤ x̄),

and for PA
0 (σ̂(1) > σ̂(2), X ≤ x̄), we have for any α,

PA
0 (σ̂(1) > σ̂(2), X ≤ x̄) ≤ P̃A

2,1(σ̂(1) > σ̂(2), X ≤ x̄)

+ sup
F∩{w:X≤x̄}

|PA
0 (F ∩ {w : X ≤ x̄})− P̃A

2,1(F ∩ {w : X ≤ x̄})|

≤ δ + sup
F∩{w:X≤x̄}

|PA
0 (F ∩ {w : X ≤ x̄})− P̃A

2,1(F ∩ {w : X ≤ x̄})|︸ ︷︷ ︸
dTV(PA

0 ,P̃A
2,1|X≤x̄)

,

where the first inequality comes from the definition of total variance distance; the second inequality comes from A being
δ-correct so that PA

2,1(σ̂(1) > σ̂(2)) ≤ δ. Let α converge to 0, we have that the total variance distance will also converge to
0 when X ≤ x̄. Therefore, the above inequality implies that PA

0 (σ̂(1) > σ̂(2), X ≤ x̄) ≤ δ.

Applying the same argument to PA
0 (σ̂(1) < σ̂(2), X ≤ x̄), we then conclude with PA

0 (X > x̄) ≥ 1− 2δ.
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Consider a new algorithm A′ that performs exactly the same as A, until A stops or its total number of queries reaches x̄. In
the latter case, A′ will stop and return ‘null’. We have that A′ is an algorithm such that:

PA′

a,b

(
σ̂ = ‘null’

)
≤ δ, ∀a, b ∈ [N ], a ̸= b; PA′

0

(
σ̂ ̸= ‘null’

)
≤ 2δ,

where 2δ comes from two cases of failure: 1. outputting a wrong ranking as A with probability at most δ; 2. outputting
‘null’ when the queries exceed limit x̄ with probability at most δ.

By the Bretagnolle–Huber inequality, we have exp
(
− dKL(PA′

0 ∥PA′

a,b)
)
≤ 6δ. Further, denoting we have

exp

(
− 1

N(N − 1)

∑
a,b

∑
i,j

C ′
i,jKL

(
p0(i, j)

∥∥pa,b(i, j)))

≤ 1

N(N − 1)

∑
a,b

exp

(
−
∑
i,j

C ′
i,jKL

(
p0(i, j)

∥∥pa,b(i, j)))
=

1

N(N − 1)

∑
a,b

exp
(
− dKL(PA′

0 ∥PA′

a,b)
)

≤ 6δ,

where the first inequality comes from Jensen’s inequality and C ′
i,j denotes the queries made byA′ at (i, j); the first equation

comes from the decomposition of KL-divergence for the canonical bandit model. KL(p∥q) denotes the KL-divergence
between two Bernoulli random variables with expectation p and q. Note that for (i, j) ̸= (a, b), p0(i, j) = pa,b(i, j) = 1/2.

Rearranging the terms and remove those terms with p0(i, j) = pa,b(i, j) gives∑
a,b

C ′
a,b ≥

N(N − 1) log(1/(6δ))

KL(1/2∥1/2 + ϵ)
= Ω

(
N2 log(1/δ)

ϵ2

)
.

Notice that, C ′
i,j denotes the queries made by A′ at (i, j), which satisfies that

∑
a,b C

′
a,b ≤ x̄, which as defined, serves as a

high-probability lower bound on the sample complexity of A.

B.5. Proof of Theorem 5.8

We define the following multi-oracle problem class:

Problem 3 (IWST”). Consider N items with an underlying ordering ‘σ’. For any items i, j and oracle u,

pσu(i, j) =

{
1
2 + ϵ√

M
, if σ(i) = 1 and σ(j) = 2,

1
2 , otherwise.

For any (ϵ, δ)-correct ranking algorithm that outputs a ϵ-correct ranking under IWST” with probability at least 1− δ, we have
that the algorithm must correctly rank between the largest item σ−1(1) and the second-largest one σ−1(2).

Because all oracles have the same comparison probability, the problem is equivalent to ranking with a single oracle, with the
lower bound being Ω

(
N2M log(1/δ)

ϵ2

)
.

C. Improved Algorithm in Empirical Study
In this section, we present the algorithm that is modified for practical usage. Instead of using an estimator µ̂i,j that only
depends on the data collected in the same iteration of the for loop. A global estimator is derived from the statistics collected
from multiple iterations to save sample complexity (Line 6).

D. Improved Algorithm with SST Assumption
In this section, we display the improved algorithm that can lead to a log factor improvement of the BinarySearch
algorithm that is proposed by Saad et al. (2023) for active ranking problems. We replace the Attempt-to-Compare
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Algorithm 5 (Improved version for practical adoption) Try-Compare(i, j, δ, s, h)

1: input: pair to query (i, j), confidence level δ, subset size s, estimated gap width h.
2: m = M .
3: S1 = [M ].
4: Let Sij

1 = Sji
1 = S1 and L = ⌈log4/3(M/s)⌉.

5: for ℓ = 0, · · · , L do
6: Request tℓ = n0m/|Sij

ℓ | comparisons for pair (i, j) from each oracle u ∈ Sij
ℓ ∪ Sji

ℓ . Denote ciju as the number of
times i ≻ j.

7: µ̂
(u,ℓ)
i,j =

∑
ℓ′∈[ℓ] c

ij

u,ℓ′∑
ℓ′∈[ℓ] tℓ′

, µ̂(u,ℓ)
j,i = 1− µ̂

(u,ℓ)
i,j , µ̂(ℓ)

i,j = 1

|Sij
ℓ |

∑
u∈Sij

ℓ
µ̂
(u,ℓ)
i,j .

8: if µ̂(ℓ)
i,j − 1

2 ≥
√
2 log(2/δ)/n0m then

9: return i ≻ j
10: end if
11: if µ̂(ℓ)

i,j − 1
2 < −

√
2 log(2/δ)/n0m then

12: return i ≺ j
13: end if
14: Sij

ℓ+1 ← {v ∈ Sij
ℓ |µ̂

(v,ℓ)
i,j ≥ medium of µ̂(u,ℓ)

i,j , u ∈ Sij
ℓ }

15: Sji
ℓ+1 ← {v ∈ Sji

ℓ |µ̂
(v,ℓ)
j,i ≥ medium of µ̂(u,ℓ)

j,i , u ∈ Sji
ℓ }

16: end for
17: return unsure.

(ATC) subroutine in the Iterative-Insertion-Ranking (IIR) by Ren et al. (2019) with the Compare (Algorithm 3)
proposed in this work to achieve this.
Algorithm 7 Main Procedure: RMO-SST
input: N,M, δ
initialize: C = N = 0

1: L1 ← a list containing only 1
2: for i← 2 to N do
3: Li ← IAI(i,Li−1, δ/(N − 1)) ▷ Algorithm 8
4: end for

Output: LN

Algorithm 8 Subroutine: Iterative-Attempt-To-Insert (IAI)
input: i,L, δ
initialize: t = 0, F lag ← unsure

1: repeat
2: t = t+ 1, ϵt = 2−(t+1), δt = 6δ

π2t2

3: Flag,L ←ATI(i,L, ϵt, δt) ▷ Algorithm 9
4: until Flag = inserted
5: return L
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Algorithm 6 ATC(i, j, ϵ, δ) (modified version of Compare in Algorithm 3)

1: input: pair (i, j), confidence level δ, precision factor ϵ
2: initialize: rmax = 1, ans = unsure.
3: while ans = unsure and ϵ2 < 4 log(2M)M2−rmax do
4: for r = 0, · · · , rmax do
5: sr = 2rM

2rmax , hr = 2−
r
2

6: δrmax = δ/(10(rmax)
3 log(M))

7: ans← Try-Compare (i, j, δrmax
, sr, hr)

8: if ans ̸= unsure, break.
9: end for

10: rmax ← rmax + 1
11: end while
12: if ans = i ≻ j then
13: ans← i
14: end if
15: if ans = j ≻ i then
16: ans← j
17: end if
18: return ans

—-
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Algorithm 9 Subroutine: Attempt-To-Insert (ATI)
input: i,L, ϵ, δ
initialize: Let T be a PIT constructed from L, h← ⌈1 + log2(1 + |L|)⌉, the depth of T
For all leaf nodes u of T , initialize cu ← 0; Set tmax ← ⌈max{4h, 512

25 log 2
δ }⌉ and q ← 15

16

1: X ← the root node of T
2: for t← 1 to tmax do
3: if X is the root node then
4: q ← ATC(i,X .mid, ϵ, 1− q) ▷ Algorithm 6
5: if q = i then
6: X ← X .rchild
7: else
8: X ← X .lchild
9: end if

10: else if X is a leaf node then
11: q1 ← ATC(i,X .left, ϵ, 1−√q)
12: q2 ← ATC(i,X .right, ϵ, 1−√q)
13: if q1 = i ∧ q2 = X .right then
14: cX ← cX + 1

15: if cX > bt := 1
2 t+

√
t
2 log

π2t2

3δ + 1 then
16: Insert i into the corresponding interval of X and
17: return inserted
18: end if
19: else if cX > 0 then
20: cX ← cX − 1
21: else
22: X ← X.parent
23: end if
24: else
25: q1 ← ATC(i,X .left, ϵ, 1− 3

√
q)

26: q2 ← ATC(i,X .right, ϵ, 1− 3
√
q)

27: q3 ← ATC(i,X .mid, ϵ, 1− 3
√
q)

28: if q1 = X .left ∨ q2 = i then
29: X ← X.parent
30: else if q3 = i then
31: X ← X .rchild
32: else
33: X ← X .lchild
34: end if
35: end if
36: end for
37: if there is a leaf node u with cu ≥ 1 + 5

16 t
max then

38: Insert i into the corresponding interval of u
39: return inserted
40: else
41: return unsure
42: end if
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