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ABSTRACT

Population dynamics is the study of temporal and spatial variation in the size
of populations of organisms and is a major part of population ecology. One of
the main difficulties in analyzing population dynamics is that we can only obtain
observation data with coarse time intervals from fixed-point observations due to
experimental costs or measurement constraints. Recently, modeling population
dynamics by using continuous normalizing flows (CNFs) and dynamic optimal
transport has been proposed to infer the sample trajectories from a fixed-point
observed population. While the sample behavior in CNFs is deterministic, the
actual sample in biological systems moves in an essentially random yet directional
manner. Moreover, when a sample moves from point A to point B in dynamical
systems, its trajectory typically follows the principle of least action in which the
corresponding action has the smallest possible value. To satisfy these requirements
of the sample trajectories, we formulate the Lagrangian Schrödinger bridge (LSB)
problem and propose to solve it approximately by modeling the advection-diffusion
process with regularized neural SDE. We also develop a model architecture that
enables faster computation of the loss function. Experimental results show that
the proposed method can efficiently approximate the population-level dynamics
even for high-dimensional data and that using the prior knowledge introduced by
the Lagrangian enables us to estimate the sample-level dynamics with stochastic
behavior.

1 INTRODUCTION

Figure 1: Example of
trajectories by NLSB.

The population dynamics of time-evolving individuals appears in various
scientific fields, such as cell population in biology (Schiebinger et al., 2019;
Yang & Uhler, 2018), air in meteorology (Fisher et al., 2009), and healthcare
statistics (Manton et al., 2008) in medicine. However, tracking individuals
over a long period is often difficult due to experimental costs. Furthermore, it
can sometimes be impossible to track the time evolution. For example, since
single-cell RNA sequencing (scRNA-seq) destroys all measured cells, we
cannot analyze the behavior of individual cells over time in cell transcriptome
measurements. Instead, we only obtain individual samples from cross-
sectional populations without alignment across time steps at a few distinct
time points. Under these constraints on data measurements, our goal is to
better understand the time evolution of samples in the populations.

Existing methods attempt to estimate population-level dynamics following the Wasserstein gradient
flow using a recurrent neural network (RNN) (Hashimoto et al., 2016) or the Jordan-Kinderlehrer-Otto
(JKO) flow (Bunne et al., 2021). Recent studies have attempted to interpolate the trajectories of
individual samples between cross-sectional populations at multiple time points by using optimal
transport (OT) (Schiebinger et al., 2019; Yang & Uhler, 2018), or CNF (Tong et al., 2020). Using a
CNF generates continuous-time non-linear sample trajectories from multiple time points. In addition,
Tong et al. (2020) proposed a regularization for CNF that encourages a straight trajectory on the basis
of the OT theory. Since the probability distribution transformation based on ordinary differential
equations (ODEs) is used in CNF, the behavior of each sample is described by its initial condition in a
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completely deterministic manner. However, samples in population are known to move stochastically
and diffuse in nature, e.g., biological system (Kolomgorov et al., 1937).

To handle the stochastic and complex behavior of individual samples, we propose to model the
advection-diffusion processes by using SDEs to describe the time evolution of the sample. Further-
more, on the basis of the principle of least action, we estimate the sample trajectories that minimize
action, defined by the time integral of the Lagrangian determined from the prior knowledge. We
formulate this problem as the Lagrangian Schrödinger bridge (LSB) problem, which is a special case
of the stochastic optimal transport (SOT) problem, and propose an approximate solution method
neural Lagrangian Schrödinger bridge (NLSB). In NLSB, we train regularized neural SDE (Li et al.,
2020; Tzen & Raginsky, 2019a;b) by minimizing the Wasserstein loss between the ground-truth and
the predicted population. The Lagrangian design defining regularization allows the sample-level
dynamics to reflect various prior knowledge such as OT, manifold geometry, and local velocity arrows
proposed by Tong et al. (2020). In addition, we parameterize a potential function instead of the drift
function. Adopting the model architecture of the potential function from OT-Flow (Onken et al.,
2021) will speed up the computation of the potential function’s gradient and the regularization term.
As a result, we capture the population-level dynamics as well as or better than conventional methods,
and can more accurately predict the sample trajectories.

In short, our contributions are summarized as follows.

1. We formulate the LSB problem to estimate the stochastic sample trajectory according to the
principle of least action.

2. We propose NLSB to approximate the LSB problem practically by modeling the advection-
diffusion process with regularized neural SDE on the basis of the prior knowledge introduced
by the Lagrangian.

3. We adopt the model architecture of the potential function from OT-Flow(Onken et al., 2021)
to speed up the computation of the regularization term to minimize HJB-PDE loss.

2 BACKGROUND

In Section 2.1, we introduce the method of combining CNF and the OT theory, the basis of our
method. Then, we explain dynamics modeling techniques: the diffusion modeling using neural SDE
(Section 2.2) and the SOT theory (Section 2.3).

2.1 FLOWS REGULARIZED BY OPTIMAL TRANSPORT

CNFs (Chen et al., 2018) are a method for learning the continuous transformation between two
distributions p and q by modeling the ordinary differential equation (ODE):

dx(t)

dt
= fθ(x, t), subject to x(t0) ∼ p, x(t1) ∼ q,

where fθ is the velocity model with learnable parameters θ.

Several regularizations of CNFs leading to straight trajectories have been proposed on the basis of
the OT theory. The likelihood maximization problem of regularized CNF is derived by replacing
the terminal constraint of the Brenier-Benamou formulation (Benamou & Brenier, 2000) with
Kullback–Leibler (KL) divergence. RNODE (Finlay et al., 2020), OT-Flow (Onken et al., 2021), and
TrajectoryNet (Tong et al., 2020) introduced a regularization R̃e in Eq. (1). Potential Flow (Yang &
Karniadakis, 2020) and OT-Flow modeled the potential function Φ that satisfies f = −∇Φ instead
of modeling the velocity function f . They also proposed an additional OT-based regularization R̃h

derived from the Hamilton–Jacobi–Bellman (HJB) equation (Evans, 1983) satisfied by the potential
function shown in Eq. (2). These OT-based regularizations have resulted in faster CNFs (Finlay et al.,
2020; Onken et al., 2021) and improved the modeling of cellular dynamics (Tong et al., 2020).

R̃e =

∫ t1

t0

∫
Rd

1

2
∥fθ(x, t)∥2 dρt(x) dt, (1)

R̃h =

∫ t1

t0

∫
Rd

∣∣∣∣∂tΦθ(x, t)−
1

2
||∇xΦθ(x, t)||2

∣∣∣∣ dρt(x) dt, (2)
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Figure 2: Overview

where ρt is the law of the sample x at the time t.

2.2 NEURAL SDE AND APPLICATIONS TO DIFFUSION MODELING

SDE has been used to model real-world random phenomena in a wide range of areas, such as
chemistry, biology, mechanics, economics and finance (Higham, 2001). As an extension of neural
ODEs, neural SDE has been proposed to model drift and diffusion functions with neural networks
(NNs), as follows.

dXt = fθ(Xt, t) dt+ gϕ(Xt, t) dWt, (3)

where {Xt}t∈[t0,tK−1] is a continuous Rd-valued stochastic process, fθ : Rd × [t0, tK−1] 7→ Rd

is a drift function, gϕ : Rd × [t0, tK−1] 7→ Rd×m is a diffusion function and {Wt}t∈[t0,tK−1]

is an m-dimensional Wiener process. Score-based generative models (SGM) (Song et al., 2020),
which use score matching to learn the reverse diffusion process of generating images from noise as
SDE, have demonstrated the ability to produce high-quality data. Other recent studies on diffusion
modeling using SDE (De Bortoli et al., 2021; Wang et al., 2021; Vargas et al., 2021; Chen et al.,
2021a; Zhang & Chen, 2022) have proposed learning SDE solutions to the SB problem. Vargas et al.
(2021) and De Bortoli et al. (2021) solved the SB problem by combining iterative proportional fitting
(IPF) with mean-matching regression of the SDE drift function using Gaussian process (GP) and NN,
respectively.

2.3 STOCHASTIC OPTIMAL TRANSPORT

Mikami (2008) generalized the OT problem and defined the SOT problem as a random mechanics
problem determined by the principle of least action. The SOT problem with the endpoint marginals
fixed to µ0 and µ1 is represented as

V (µ0, µ1) := inf
X∈A

{
E
[∫ t1

t0

L (t,Xt; fX(Xt, t)) dt

] ∣∣∣∣ Xt0 ∼ µ0, Xt1 ∼ µ1

}
, (4)

where L(t,x,u) is continuous and convex in u and A is the set of all Rd-valued, continuous
semimartingales {Xt}t0≤t≤t1 on a complete filtered probability space such that there exists a Borel
measurable drift function fX(Xt, t) for which satisfies several conditions (see Appendix A.3). The
function L, called the Lagrangian, is the transport cost defined on the space-time of the system and
allows us to describe phenomena consistently regardless of the choice of coordinate system.

Mikami (2008) also introduced another variational version of the SOT problem for a flow of marginal
distributions which satisfies the Fokker–Planck (FP) equation, which is a advection-diffusion equation
describing the time evolution of the probability density function.

v(µ0, µ1) := inf
f

{∫ t1

t0

∫
Rd

L (t,x; f(x, t)) dρt(x)dt

∣∣∣∣ ρtk = µk, (f , pt) satisfies the FP eq
}
,

(5)
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where ρt and pt are the law and density of the random variable Xt, respectively.

When L(t,x,u) = 1
2 ||u||

2, the SOT problem is regarded as the special case of Schrödinger bridge
(SB) (Jamison, 1975; Chen et al., 2021b; Dai Pra, 1991; Léonard, 2013; Mikami, 1990) problem.
See Appendix A.3 for details on the SOT theory.

3 PROPOSED METHOD

In this section, we first introduce Lagrangian-Schrödinger bridge (LSB) problem. We next present an
approximate solution for the LSB problem: neural Lagrangian Schrödinger bridge (NLSB). Finally,
we give specific examples of our method for specific use cases. Figure 2 illustrates the position of the
LSB problem in the transport problem and the relationship between the NLSB and existing methods.

3.1 LAGRANGIAN SCHRÖDINGER BRIDGE

We consider the problem of estimating dynamics at both the population and individual sample levels
by using probability distributions at two known end points. We make two realistic assumptions about
the target system model.

1. The stochastic behavior of individual samples yields the population diffusion phenomenon.
2. Individual samples are encouraged to move according to the principle of least action.

Samples in populations, such as a biological system (Kolomgorov et al., 1937), are known to move
stochastically and diffuse. The principle of least action is known as a fundamental principle in
dynamical systems, which states that when a sample moves from point A to point B, its trajectory is
the one that has least action. We formulate this dynamics estimation problem on the target system as
a special case of the SOT problem and call it the Lagrangian-Schrödinger Bridge (LSB) problem.
The position of the LSB problem in the SOT problem is clarified in Appendices A.3 and B.1.
Definition 3.1 (LSB problem).

minimize
f ,g

∫ t1

t0

∫
Rd

L(t,x, f(x, t)) dρt(x; f ,g) dt,

subject to dXt = f(Xt, t) dt+ g(Xt, t) dWt,

X0 ∼ ρt0 = µ0, X1 ∼ ρt1 = µ1,

(6)

where ρt is the law of the random variable Xt, depending on the functions f and g.

The LSB problem is the problem of exploring the sample paths that minimize action defined by the
time integral of the Lagrangian, given the distributions at the two endpoints. The stochastic movement
of samples and diffusion phenomena are explicitly modeled by using SDEs. The diffusion coefficient
g is also optimized together with the drift f to reveal the effect of noise in real environments.

3.2 NEURAL LAGRANGIAN SCHRÖDINGER BRIDGE

In the setting of our paper, it is difficult to solve the LSB problem because the exact endpoint
constraints µ0 and µ1 are unknown and only samples from them are available. Therefore, we propose
a practical solution method for the LSB problem using neural SDEs (Eq. (3)) with regularization.
We propose to approximate the LSB problem by learning neural SDEs with the gradients of the loss
(See Appendix B.2 for theoretical justification and connections to existing works.):

minimize
θ,ϕ

D(µ1, ρt1) +Re(θ; t0, t1) +Rh(θ, ϕ; t0, t1), (7)

Re(θ; t0, t1) =

∫ t1

t0

∫
Rd

L(t,x, fθ(x, t)) dρt(x)dt, (8)

Rh(θ, ϕ; t0, t1) =

∫ t1

t0

∫
Rd

∣∣∣∣∣∣∂tΦθ(x, t) +

d∑
i,j=1

Di,j(x, t;ϕ)
[
∇2

xΦθ

]
i,j
−H∗

θ (x, t)

∣∣∣∣∣∣ dρt(x)dt,

H∗
θ (x, t) := H(t,x,−∇xΦθ(x, t)) = ⟨−∇xΦθ(x, t), fθ(x, t)⟩ − L(t,x, fθ(x, t)),

(9)
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where D is the distribution discrepancy measure, Di,j(·;ϕ) is the entry in the i-th row and j-th column
of the diffusion coefficient matrix Dϕ = 1

2gϕg
⊤
ϕ , H is the Hamiltonian defined by H(t,x, z) :=

⟨z, fθ⟩ − L(t,x, fθ), and Φθ is the potential function satisfying fθ = ∇zH(t,x,−∇xΦθ(x, t)).

We briefly explain the action costRe and the HJB regularizationRh. Equation 7 is actually computed
by Eq. (11). First, we relax the constraint at time t1, i.e. Re + D(µ1, ρt1), by using Wasserstein
distance (Bunne et al., 2021; Hashimoto et al., 2016), KL-divergence (Finlay et al., 2020; Onken
et al., 2021; Tong et al., 2020), or a combination of these (Lavenant et al., 2021) for the discrepancy
measure D. This objective function can be reinterpreted with D(µ1, ρt1) as the data-fitting term and
the action cost Re as the regularization. Second, we exploit SOT theory by incorporating further
structure into the modeling. Similar to OT-Flow (Onken et al., 2021), we model the drift functions by
using the potential function fθ = ∇zH(t,x,−∇xΦθ(x, t)) and encourage the potential function Φθ

to satisfy the (stochastic) HJB equation (Yong & Zhou, 1999) by minimizing the PDE lossRh. The
relation between the drift and the potential function is an analogue of Hamilton’s equations of motion.
The HJB equation represents Bellman’s principle of optimality in continuous-time optimization.

3.3 EXAMPLES OF LAGRANGIAN IN NEURAL LAGRANGIAN SCHRÖDINGER BRIDGE

In this section, we provide the three Lagrangian examples of the NLSB and their use cases. The
examples demonstrate that the Lagrangian design allows a variety of prior knowledge to be reflected
in the sample trajectories. See Appendix E.5 for more examples.

Potential-free system. Without a specific external force on the individual sample, the principle of
least action typically indicates that when a sample moves from point A to point B, it tries to minimize
energy by reducing the travel distance. This means that the drift is encouraged to be straight and the
stochastic movement to be small, i.e., the Lagrangian is formulated by L(t,x,u) = 1

2 ||u||
2, and the

drift function is given as fθ = −∇xΦθ(x, t).

Cellular system. Tong et al. (2020) proposed to introduce the prior knowledge of manifold geometry
and local velocity arrows such as RNA-velocity for modeling cellular systems. In the NLSB, these
prior knowledge can be handled consistently by designing the Lagrangian. First, we introduce a
density-based penalty to constrain the sample trajectories on the data manifold. We estimate the
density function U(x, t) from the data, e.g., by using Gaussian mixture models (GMM) and add it to
the Lagrangian. Next, we redefine the velocity regularization, which is formulated as cosine similarity
maximization by Tong et al. (2020), as a squared error minimization and add it to the Lagrangian as
well. Therefore, the Lagrangian for the cellular system is defined by

L(t,x,u) =
1

2
||u(x, t)||2︸ ︷︷ ︸

Energy

−U(x, t)︸ ︷︷ ︸
Density

+
1

2
||u(x, t)− v(x, t)||2︸ ︷︷ ︸

Velocity

, (10)

where v(x, t) is the reference velocity of the cell at the position x and the time t. The drift function
is obtained by fθ = 1

2 (v(x, t)−∇xΦθ(x, t)).

Random dynamical system. Let U(x) be the potential energy of the system, R be the mass matrix,
which is symmetric and L(t,x,u) = 1

2u
⊤Ru− U(x) be the Lagrangian in the random dynamical

system. The drift function is given by fθ = −R−1∇xΦθ(x, t). Then, the individual samples are
encouraged to follow a stochastic analogue of the equations of motion of the Newtonian mechanics.
In practice, the potential function can be used to roughly incorporate information such as obstacles
and regions where samples are not likely to exist. Practical examples are shown in Figs. 1, 12 and 13.

4 IMPLEMENTATION OF NEURAL LAGRANGIAN SCHRÖDINGER BRIDGE

4.1 TRAINING FOR NEURAL LAGRANGIAN SCHRÖDINGER BRIDGE

In this section, we describe a practical learning method for neural SDEs by minimizing loss in Eq. (7)
on the training data, as described in Algorithm 1. First, for the data, only individual samples from a
cross-sectional population with no alignment across time steps at K separate time points are available.
Let T = {t0, . . . , tK−1} be a set of time points and denote the data set at time ti as Xti . Next,
we describe how we calculate the loss in Eq. (7) using the training data {Xti}ti∈T . We compute
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the distribution discrepancy using the L2-Sinkhorn divergenceWϵ between the observed data and
the predicted sample at all observation points in T except the initial point at time t0. The Sinkhorn
divergence can efficiently approximate the Wasserstein distance and solve the entropic bias problem
when using the Sinkhorn algorithm, i.e. µ = ν ⇔Wϵ(µ, ν) = 0. The prediction sample is obtained
by numerically simulating neural SDE from the training data at one previous time point by a standard
SDE solver such as the Euler-Maruyama method. The second and third terms, Re and Rh, are
also approximated on the sample paths obtained from the numerical simulations of SDE. Therefore,
the computational cost of empirical Re and Rh is not high and can be further accelerated by the
model architecture described in the next section. To summarize, we simultaneously solve K − 1
approximated LSB problems by minimizing the subsequent loss for the model parameters θ, ϕ.

ℓ(θ, ϕ) =
∑

tk∈T\t0

Wϵ(µk, ρ
θ,ϕ
tk

) + λe(tk−1, tk)R̂θ
e(tk−1, tk) + λh(tk−1, tk)R̂θ,ϕ

h (tk−1, tk), (11)

where µk, ρ
θ,ϕ
tk

are the ground-truth and predicted probability measures at time tk expressed by data
samples, respectively. R̂θ

e(tk−1, tk) and R̂θ,ϕ
h (tk−1, tk) are empirical quantities computed on the

simulated sample paths from tk−1 to tk with data ∀x(tk−1) ∈ Xtk−1
as the initial value. The weight

coefficients λe(tk−1, tk) and λh(tk−1, tk) are tuned for each interval [tk−1, tk] respectively.

4.2 MODEL ARCHITECTURE SELECTION FOR SPEEDUP

We adopt the model of the potential function Φθ proposed by OT-Flow (Onken et al., 2021) because
it has two advantages in our framework. First, it can compute the gradient ∇xΦ explicitly, which
enables us to calculate the drift function easily. Second, the model is designed for the fast and exact
computation of the diagonal component of the potential function’s Hessian. Moreover, when we
assume that the diffusion model’s output is a diagonal matrix, i.e. gϕ(x, t) ∈ Rd×d and gi,j = 0 (i ̸=
j), the function Dϕ is also a diagonal matrix, and the

∑
i,j in the second term ofRh shown in Eq. (9)

turns into the sum of the diagonal components only. Combining these two tricks enables speeding up
the computation of Rh, which requires the expensive computation of the Hessian of the potential
function Φ. While this model architecture trick was originally used for speeding up the computation
of the Jacobian term in neural ODE maximum likelihood training, we propose for the first time to
use it as a technique to speed up the computation of Rh in neural SDE. We use a two-layer fully
connected NN for the diffusion function. We also adopt the device used by Kidger et al. (2021) in
which the activation function tanh is used after the final layer to prevent the output of the diffusion
function from becoming excessively large. See Appendix C for details on the model of Φ.

5 EXPERIMENTS

We evaluated our methods on two datasets. First, we used artificial synthetic data generated from
one-dimensional SDEs, where the predicted trajectory and uncertainty can be compared with the
ground-truth and easily evaluated by visualization. We set the Lagrangian for the potential-free
system,i.e. L(t,x,u) = 1

2 ||u||
2. Second, we used the evolution of single-cell populations obtained

from a developing human embryo system. We used the Lagrangian for the cellular system and
compared several combinations of the regularization terms. In Tables 1 and 2, “E” is the energy term,
“D” is the density term, and “V” is the velocity term. The density term U(x, t) is the log-likelihood
function of the data estimated by GMM. We compared our methods against standard neural SDE,
OT-Flow (Onken et al., 2021), TrajectoryNet (Tong et al., 2020), IPF with GP (Vargas et al., 2021)
and NN (De Bortoli et al., 2021), and SB-FBSDE (Chen et al., 2021a). We trained the standard
neural SDE using only the Sinkhorn divergence. The velocity model of TrajectoryNet includes the
concatsquash layers used in Grathwohl et al. (2018). The base models of OT-Flow and TrajectoryNet
were trained with the standard neural ODEs scheme. +OT represents a model trained with the
OT-based regularization defined by Eqs. (1) and (2). We used only R̃e for TrajectoryNet; we used
both R̃e and R̃h for OT-Flow. We set the interval-dependent coefficients λ̃e, λ̃h for the OT-based
regularization as well as Eq. (11). The drift model of IPF (GP) was changed to sparse GP from vanilla
GP (Vargas et al., 2021) to save computation cost. The drift model of IPF (NN) and SB-FBSDE
are the same networks as the NLSB for a fair comparison. The diffusion coefficients of IPF and
SB-FBSDE were tuned as hyperparameters. See Appendix E for more details on hyperparameters.
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(a) MDD at 12 time points on synthetic OU process data.(b) CDD at 12 time points on synthetic OU process data.

Figure 3: Numerical evaluation on synthetic OU process data. All MDD and CDD values were
computed between the ground-truth and the estimated samples within generated trajectories all-step
ahead from initial samples x(t0).

(a) ground-truth SDE (b) Neural SDE (c) NLSB (Ours) (d) TrajectoryNet + OT

Figure 4: 1D OU process data and predictions. The five colored point clouds in the background are
the ground-truth data given at each time point. The pink area and the light blue line are the one-sigma
empirical confidence intervals and their boundaries for each trajectory, respectively. All trajectories
were generated by all-step prediction from the initial samples at the time t = 0.

5.1 SYNTHETIC POPULATION DYNAMICS: ORNSTEIN–UHLENBECK PROCESS

Data. We used a time-dependent one-dimensional Ornstein–Uhlenbeck (OU) process defined by:

dXt = (µt− θXt) dt+

(
2tσ

tK−1

)
dWt,

where µ = 0.4, θ = 0.1, σ = 0.8, and tK−1 = 4. First, we simulated the several trajectories from
t = 0 to 4 and then extracted only the data at the time of T = {0, 1, 2, 3, 4} as snapshots for training.
We generated 2048 and 512 samples for each time point as training and validation data, respectively.

Performance metrics. We evaluated the estimation performance of the dynamics in the time interval
[t0, tK−1] by using two metrics on test data: marginal distribution discrepancy (MDD) and conditional
distribution discrepancy (CDD).

A smaller MDD between µt and ρt calculated with the Wasserstein-2 distance indicates better
prediction of population-level dynamics at time t. We calculated MDD at 12 equally spaced time
points and the square root of the earth mover’s distance with L2 cost (EMD-L2) between 1000
samples generated from the ground-truth SDE and predicted by the model. When evaluating the
SDE-based method, we ran 100 simulations from the same initial values, computing the MDD value
each time and computing their mean and variance. A smaller CDD between µx(t)|x(t0) and ρx(t)|x(t0)
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using the Wasserstein-2 distance indicates better prediction of the time evolution of the initial sample
x(t0). In short, it is a metric for evaluating the time evolution of at the individual sample level. In
the actual CDD calculation, we first prepared 1000 samples x(t0) at the initial time point. We then
generated 100 trajectories from each initial sample by the trained model and the ground-truth SDE,
and calculated the EMD-L2 for the samples from µx(t)|x(t0) and ρx(t)|x(t0) at 12 equally spaced time
points.

Results. The evaluation results are shown in Fig. 3, and the visualization of trajectories is shown
in Fig. 4. Figure 3 shows that NLSB and IPF outperform neural SDE and is comparable to other
ODE-based methods in estimating populations with small variance. In contrast, the SDE-based
methods outperform ODE-based methods when estimating populations with a large variance. That
indicates that NLSB and IPF can estimate population-level dynamics even when the population
variance is large or small. Furthermore, NLSB and IPF have a smaller CDD value than neural SDE.
Figure 4b shows that the average behavior of samples E[X(t)|X(0)] estimated by neural SDE is
different from that of the ground-truth SDE (see Fig. 4a), especially in the interval [0, 1]. In contrast,
the predictions by NLSB and IPF in Figs. 6c to 6e are much closer to the ground-truth. These
results show that the prior knowledge of the potential-free system helps to estimate the sample-level
dynamics. See Appendix E.2 for further results and analysis.

5.2 SINGLE-CELL POPULATION DYNAMICS

Data. We evaluated on embryoid body scRNA-seq data (Moon et al., 2019). This data shows
the differentiation of human embryonic stem cells from embryoid bodies into diverse cell lineages,
including mesoderm, endoderm, neuroectoderm, and neural crest, over 27 days. During this period,
cells were collected at five different snapshots (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15, t3:
day 18 to 21, t4: day 24 to 27). The collected cells were then measured by scRNAseq, filtered at the
quality control stage, and mapped to a low-dimensional feature space using a principal component
analysis (PCA). For details, see Appendix E.2 in (Tong et al., 2020). We split the dataset into train,
validation(∼ 8.5%) and test data (∼ 15%).

Performance metrics. Unlike the experiment described in Section 5.1, there are no ground-truth
trajectories in the real data. Thus, MDD can be calculated only at the time of observation, and CDD
between the ground truth and predicted trajectories cannot be calculated. To evaluate the sample-level
dynamics, the model was trained on the full data and the data without only one intermediate snapshot,
respectively. We then calculated CDD between the predicted trajectories by those models. Let D−tk
be the training data without a snapshot at time tk. Larger CDD between them indicates the prediction
of the sample-level dynamics is not robust to the exclusion of intermediate snapshots, representing
poorer performance in interpolating the sample-level dynamics. When evaluating the SDE-based
methods, we calculated the mean and standard deviation of 100 MDD scores. All performance
metrics are calculated on the test data.

Results. Table 1 and Figure 5 show that the NLSB can predict population-level dynamics with better
performance and can be trained in a shorter time against all existing ODE-based methods as the
data become higher dimensional. In particular, the SDE-based methods significantly outperform
the ODE-based ones in predicting the transitions where the samples from t1 to t2 and from t3 to
t4 are highly diffuse, indicating that the explicit modeling of diffusion is effective. (see Fig. 10
in Appendix E). Overall, the standard deviation of the MDD values is smaller for NLSB than for neural
SDE, demonstrating less variation in the approximation accuracy of the marginal distribution. Table 2
shows that NLSB estimates the sample-level dynamics robustly with and without population at the
intermediate time point than neural SDE with some exceptions. Especially, energy regularization is
the most stable and effective. This result suggests that the LSB-based regularization helps interpolate
the sample-level dynamics. See Appendix E.3 for further results and analysis.

6 DISCUSSION AND CONCLUSION

In this work, we proposed a novel framework for estimating population dynamics that reflect prior
knowledge about the target system. Unlike existing methods with OT (Schiebinger et al., 2019;
Yang & Uhler, 2018), or CNF (Tong et al., 2020) for a biological system, we explicitly modeled the
diffusion phenomena by using SDEs for the samples with stochastic behavior. This allowed us to
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Table 1: Evaluation results for population-level dynamics on five-dimensional (5D) PCA space at
time of observation for scRNA-seq data. The MDD value at tk is computed between the ground-truth
and the samples predicted from the previous ground-truth samples at tk−1 for each k = 1, 2, 3 and 4.

MDD (EMD-L2) ↓ t1 t2 t3 t4

NLSB (E) 0.71± 0.020 0.86± 0.027 0.83± 0.016 0.79± 0.012
NLSB (D) 0.67± 0.017 0.90± 0.029 0.87± 0.018 0.79± 0.016
NLSB (V) 0.70± 0.023 0.89± 0.030 0.83± 0.022 0.81± 0.019
NLSB (E+D+V) 0.68± 0.016 0.84± 0.030 0.81± 0.018 0.79± 0.017

Neural SDE 0.69± 0.020 0.91± 0.029 0.85± 0.025 0.81± 0.017
OT-Flow 0.83 1.10 1.07 1.05
OT-Flow + OT 0.85 1.05 1.09 1.00
TrajectoryNet 0.73 1.06 0.90 1.01
TrajectoryNet + OT 0.76 1.05 0.88 1.10
IPF (GP) 0.70± 0.015 1.04± 0.041 0.94± 0.029 0.98± 0.033
IPF (NN) 0.73± 0.019 0.89± 0.030 0.84± 0.019 0.83± 0.020
SB-FBSDE 0.56± 0.010 0.80± 0.017 1.00± 0.019 1.00± 0.010

Table 2: Mean value of CDD on 5D PCA space evalu-
ated at 7 equally spaced time points within time pe-
riod [tk−1, tk+1] around excluded time point tk for
each k = 1, 2 and 3. The CDD value at the time
t ∈ [tk−1, tk+1] was computed between the two groups
of predicted samples generated from the samples at tk−1

using the model trained on all data and the data D−tk .

Mean CDD ↓ [t0, t2] [t1, t3] [t2, t4]

NLSB (E) 0.88 0.72 0.79
NLSB (D) 1.64 0.76 0.77
NLSB (V) 1.15 0.82 0.86
NLSB (E+D+V) 0.96 0.83 0.84

Neural SDE 1.36 0.85 0.87
IPF (GP) 0.97 1.03 1.06
IPF (NN) 0.90 0.95 0.97
SB-FBSDE 0.84 1.06 1.49

Figure 5: Relationship between data dimen-
sion, performance, and training time. The
x-axis is the learning time until sufficient
convergence. The y-axis is the mean value
of MDD over time points t1 to t4, represent-
ing population-level performance.

handle the uncertainty of the trajectory (Fig. 9) and to successfully capture the diffuse transitions
(Table 1 and Fig. 10). In contrast, Vargas et al. (2021) and Bunne et al. (2022) estimated the sample
trajectories of biological systems using the SDE solution to the SB problem. Vargas et al. (2021)
proposed GP-based IPF to solve the SB problem. Bunne et al. (2022) proposed GSB-Flow, in
which two SB problems are solved sequentially. Compared with these methods, our method handled
a wider class of SDEs, and the diffusion function of the SDE was learned from the data using a
backpropagation. In addition, designing the Lagrangian enables us to flexibly incorporate prior
knowledge about the target system into the model. Our Lagrangian-based regularization also treated
the biological constraints proposed by Tong et al. (2020) and Maoutsa & Opper (2021) in a unified
manner. We demonstrated that NLSB can efficiently estimate the population-level dynamics with
better performance than existing methods even for high-dimensional data and that the prior knowledge
introduced by the Lagrangian is useful to estimate the sample-level dynamics. Our method is limited
in that it cannot model reaction phenomena such as cell birth and death, and restriction to the diagonal
diffusion matrix (Section 4.2) may cause the model to be less expressive. Future work includes
developing methods that can handle reaction phenomena with advection and diffusion.
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Algorithm 1 Training of NLSB

Input: Dataset {Xt}t∈T , potential function Φθ, diffusion function gϕ, Lagrangian L, regularization
coefficients λe, λh.
while θ, ϕ have not converged do

Set loss L = 0.
for k ← 0 to K − 2 do

Sample mini-batch x(k) from Xtk . Set ytk = x(k).
Numerically solve augmented SDE dst = f̃θ(st, t) dt+ g̃ϕ(st, t) dWt from tk to tk+1.

f̃θ(st, t) =

 ∇zH(t,yt,−∇Φθ(yt, t))
L(t,yt,∇zH(t,yt,−∇Φθ(yt, t)))∣∣∣∂tΦθ(yt, t) +

∑
i,j Di,j(yt, t)∇2Φθ(yt, t) +H∗

θ (yt, t)
∣∣∣
 ,

g̃ϕ(st, t) =

[
gϕ(yt, t)

0
0

]
, st =

 yt

R̂e(tk, t)

R̂h(tk, t)

 , stk =

[
ytk
0
0

]
.

Sample mini-batch x(k+1) from Xtk+1
and calculate the loss function ℓ(tk, tk+1).

ℓ(tk, tk+1) =Wϵ(ytk+1
,x(k+1)) + λe(tk, tk+1)R̂e(tk, tk+1) + λh(tk, tk+1)R̂h(tk, tk+1),

stk+1
=

 ytk+1

R̂θ
e(tk, tk+1)

R̂θ,ϕ
h (tk, tk+1)

 .

Accumulate loss L ← L+ ℓ(tk, tk+1).
Update θ, ϕ with gradient∇θL and∇ϕL, respectively.

Output: Φθ,gϕ

A THEORY OF STOCHASTIC OPTIMAL TRANSPORT

The SOT problem is the problem of finding a stochastic process that minimizes the expected cost
under fixed marginal distributions at several time points. The SOT problem is a stochastic analog
of the OT problem, especially related to the dynamic formulation of the OT problem introduced by
Benamou & Brenier (2000). It is also considered as a stochastic optimal control (SOC) problem
with additional terminal constraint. Furthermore, the classical Schrödinger Bridge (SB) problem is a
special case of the SOT problem and is related to Nelson’s stochastic mechanics, a reformulation
of quantum mechanics using diffusion processes. An overview of the relationships among these
problems is illustrated in Fig. 2.

We first explain the dynamic formulation of the OT problem in Appendix A.1, the SB problem
in Appendix A.2 and then describe the SOT problem given two fixed marginal distributions as a
generalization of the SB problem in Appendix A.3. Next, we discuss the LSB problem, which is
the main focus of our paper among the SOT problems in Appendix B.1, and finally, we discuss the
relationship between NLSB and OT-Flow in Appendix B.2.

A.1 DYNAMIC FORMULATION OF OPTIMAL TRANSPORT PROBLEM

Benamou & Brenier (2000) redefined the OT problem with a quadratic cost in a continuum mechanics
framework. They introduced a time parameter t ∈ [0, 1] and considered the transport process from
µ to ν as the advection in the time interval [0, 1]. The OT problem was then reformulated as a
minimization problem with respect to the time-varying velocity vector field vt and the time evolution
of the distribution pt advected by vt.
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Theorem A.1 (Brenier-Benamou formulation (Eularian formalism); (Benamou & Brenier, 2000)).

W2(µ, ν)
2 = inf

(v,pt)

∫ 1

0

∫
Rd

∥v(x, t)∥2pt(x) dxdt, (12)

subject to ∂tpt = −div(ptv), p0 = p, p1 = q, (13)

where p and q are the densities of probability measures µ and ν, respectively.

The first condition in Eq. (13) is known as the continuity equation and represents the conservation
of mass in time evolution. We can consider an equivalent formulation of Eq. (12) by introducing
Lagrangian coordinates X(t,x). Lagrangian coordinates X(t,x) represent the position at time t of
the particle whose initial position is x, i.e. X(0,x) = x.

Theorem A.2 (Brenier-Benamou formulation (Lagrangian formalism); (Benamou & Brenier, 2000)).

W2(µ, ν)
2 = inf

v

∫ 1

0

∫
Rd

∥v(X(t,x), t)∥2p0(x) dxdt, (14)

subject to
dX(t, ·)

dt
= v(X(t, ·), t), p0 = p, p1 = q.

The right-hand side of Eq. (14) can be viewed as a problem of finding the shortest path (a.k.a.
geodesic) for each particle in the sense of Euclidean space between probability distributions specified
at times t = 0, 1. In continuum mechanics, Lagrangian formalism (Eq. (14)) describes the motion of
each individual particle, while Eulerian formalism (Eq. (12)) focuses on the global property of all
particles.

Benamou & Brenier (2000) also showed the optimality conditions of the dynamic formulation. They
introduced the Lagrangian multiplier of the constraint of Eq. (13) and obtained the saddle point
conditions using the variational method.

Theorem A.3 (Optimality conditions for the dynamic formulation; (Benamou & Brenier, 2000)).
There exists a space-time dependent potential function Φ: Rd × [0, 1] 7→ R which satisfies:

v∗(X(t, ·), t) = −∇xΦ(X(t, ·), t), (15)

∂tΦ(x, t)−
{
⟨−∇xΦ(x, t),v

∗(x, t)⟩ − 1

2
∥v∗(x, t)∥2

}
= 0, (16)

Φ0(x) = f∗(x), Φ1(y) = −g∗(y), (17)

where f∗ and g∗ are Kantorovich potentials. Equation 15 is Hamilton’s equation of motion with
the Hamiltonian defined by H(p,x) := supv

{
⟨p,v(x, t)⟩ − 1

2∥v(x, t)∥
2
}

and the momentum as
p := −∇xΦ and equation 16 is Hamilton-Jacob-Bellman (HJB) equation.

Equations 15 and 17 indicate that the particle, whose initial position is x0 ∈ X , moves straight ahead
at the constant velocity v0 = −∇xΦ0(x0) = −∇xf

∗(x0) during t ∈ [0, 1]. Even without using the
variational method, Hamilton’s equation of motion (Eq. (15)) and the HJB equation (Eq. (16)) can
be also derived from the Bellman’s principle of optimality. The existence of a potential function
satisfying the equation 15 is guaranteed from the Pontryagin Maximum Principle (Evans, 1983;
2010).

A.2 SCHRÖDINGER BRIDGE

Definition A.4 (SB problem; (Jamison, 1975)). Let Ω = C([0, 1],Rd) be the space of Rd-valued
continuous functions on time interval [0, 1]. Denote by P(Ω) the probability measures space on the
path pace Ω. The SB problem is defined by

min
Q∈P(Ω)

DKL(Q∥P), subject to Q0 ∼ µ0, Q1 ∼ µ1, (18)

where µ0, ν1 ∈ P(Rd) are the probability measures at the time 0 and 1, respectively, and the relative
entropy DKL =

∫
log

(
dQ
dP

)
dQ if Q≪ P, and DKL =∞ otherwise.
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The case of no prior dynamics is considered classically, i.e., the reference path measure P is the
Brownian diffusion SDE dXt =

√
2ϵ dWt, where Wt is the standard Wiener process. We refer to

this setting as the classical SB problem, following the reference (Caluya & Halder, 2021). Chen et al.
(2021b) derived the optimality condition for problem Eq. (18), which is characterized by the forward
and backward time-harmonic equations.

Theorem A.5. Let Ψ(x, t) and Ψ̂(x, t) be the solutions to the following PDEs:{ ∂Ψ
∂t = −ϵ∆Ψ
∂Ψ̂
∂t = ϵ∆Ψ̂

s.t. Ψ(·, 0)Ψ̂(·, 0) = p0, Ψ(·, 1)Ψ̂(·, 1) = p1 , (19)

where p0 and pT are the probability density of µ0 and µT , respectively. Then, the solution to the SB
problem (Eq. (18)) can be described by the following forward or backward SDE:

dXt = 2ϵ∇x logΨ (Xt, t) dt+
√
2ϵ dWt, X0 ∼ µ0,

dXt = −2ϵ∇x log Ψ̂ (Xt, t) dt+
√
2ϵ dWt, X1 ∼ µ1.

(20)

Dai Pra (1991) considered a dynamic formulation of the classic SB problem (Eq. (18)) by interpreting
it as a SOC problem with the additional terminal constraint.

Theorem A.6 (Dynamic formulation; (Dai Pra, 1991)). Let f∗ = 2ϵ∇x logΨ, where Ψ satisfies the
SB optimality (Eq. (19)). Then, f∗ is the minimizer of the following optimization problem:

VS,ϵ(µ0, µ1) := inf
f
E
[∫ 1

0

1

2
∥f (Xt, t)∥2 dt

]
, (21)

subject to dXt = f (Xt, t) dt+
√
2ϵ dWt, X0 ∼ µ0, X1 ∼ µ1.

Léonard (2013) formulated the SB problem in Eq. (18) into a variational SOC problem equivalent to
the above problem (Eq. (21)).

Theorem A.7 (Dynamic formulation (Eularian formalism); (Léonard, 2013)). Let f∗(x, t) =
∇x logE [Ψ(XT , T ) | Xt = x], where Ψ satisfies the SB optimality (Eq. (19)). Then, f∗ is the
minimizer of the following optimization problem:

vS,ϵ(µ0, µ1) := inf
(f ,ρt)

∫ 1

0

∫
Rd

1

2
∥f (x, t)∥2 dρt(x)dt, (22)

subject to ∂tpt = −div(ptf) + ϵ∆pt, ρ0 = µ0, ρ1 = µ1, (23)

where pt is the probability density of the probability measure ρt.

The first condition in Eq. (23) is Fokker-Planck (FP) equation. The two versions of the dynamic
formulation (Eq. (21) and Eq. (22)) are equivalent, i.e. VS,ϵ(µ0, µ1) = vS,ϵ(µ0, µ1). Furthermore,
the dynamic solution of the OT problem (Eq. (15)) is obtained as the zero-noise limit (Mikami, 2004;
Léonard, 2012) of the classical SB problem.

Theorem A.8 (Zero-noise limit of the classical SB problem; (Mikami, 2004)). Let Xϵ(t) be the
solution of the SB problem (Eq. (20)). Suppose that µ0, µ1 ∈ P(Rd) have finite second moments and
the density function p0(x) := µ0(dx)/dx exists. Then, the following holds

lim
ϵ→0

ϵVS,ϵ(µ0, µ1) =W2(µ0, µ1)
2,

and there exists a convex function φ satisfying

lim
ϵ→0

E
[
sup

0≤t≤1
|Xϵ(t)− (X0 + t(∇xφ(X0)−X0))|2

]
= 0.

The map ∇xφ is the optimal transport map of the OT problem with a quadratic cost.

The connection between the classical SB problem and the dynamic formulation of the OT problem
with Fisher information regularization (Chen et al., 2016) is also well-known. Finally, we introduce a
simpler variant of the SB problem for which closed-form solution exists.
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Theorem A.9 (Gaussian SB problem; (Bunne et al., 2022)). Let Q∗ be the solution of the Gaussian
SB problem defined by

min
Q∈P(Ω)

DKL(Q∥P), subject to Q(0) ∼ N0, Q(1) ∼ N1,

where N0 = N (µ0,Σ0) and N1 = N (µ1,Σ1) are Gaussian distributions. The reference path
measure P is described by the linear SDE as follows.

dXt = (c(t)Xt + f(t)) dt+ g(t) dWt, X0 ∼ N0,

where c : [0, 1] 7→ R, f : [0, 1] 7→ Rd, g : [0, 1] 7→ R+ are smooth functions. We define the following
notation from (Bunne et al., 2022):

τt := exp

(∫ t

0

c(s) ds

)
Dσ :=

(
4Σ

1
2
0 ΣTΣ

1
2
0 + σ4I

) 1
2

, Cσ :=
1

2

(
Σ

1
2
0 DσΣ

− 1
2

0 − σ2I
)

rt :=
κ(t, T )

κ(T, T )
, r̄t := τt − rtτT , σ⋆ :=

√
τ−1
T κ(T, T )

ζ(t) := τt

∫ t

0

τ−1
s α(s)ds, ρt :=

∫ t

0
τ−2
s g2(s)ds∫ T

0
τ−2
s g2(s)ds

Pt := ṙt (rtΣT + r̄tCσ⋆
) , Qt := − ˙̄rt (r̄tΣ0 + rtCσ⋆

)

St := Pt −Q⊤
t +

[
c(t)κ(t, t) (1− ρt)− g2(t)ρt

]
I

µ∗
t := r̄tµ0 + rtµT + ζ(t)− rtζ(T )

Σ∗
t := r̄2tΣ0 + r2tΣT + rtr̄t

(
Cσ⋆ + C⊤

σ⋆

)
+ κ(t, t) (1− ρt) I

Then, the solution Q∗ is a Markov Gaussian process where the marginal X∗
t ∼ N (µ⋆

t ,Σ
⋆
t ), and

follows the following SDE:
dX∗

t = S⊤
t Σ∗−1

t (X∗
t − µ∗

t ) dt+ g(t) dWt.

A.3 STOCHASTIC OPTIMAL TRANSPORT WITH TWO ENDPOINT MARGINALS

Mikami (2008) generalized the OT problem and defined the SOT problem as a random mechanics
problem determined by the principle of least action. The SOT problem with the endpoint marginals
fixed to µ0 and µ1 is given by the following.
Definition A.10 (SOT problem; (Mikami, 2021)). Let L be a continuous function, the Lagrangian
and let u 7→ L(t,x,u) be convex. The SOT problem with two endpoint marginals is defined by

V (µ0, µ1) := inf
X∈A

E
[∫ 1

0

L (t,Xt; fX(X, t)) dt

]
, subject to X0 ∼ µ0, X1 ∼ µ1, (24)

where A is the set of all Rd-valued, continuous semimartingales {Xt}0≤t≤1 on a complete filtered
probability space such that there exists a Borel measurable drift function fX(X, t) for which satisfies
the following conditions:

1. ω 7→ fX(t, ω) is Borel-measureable for all t.

2. Xt = X0 +
∫ t

0
fX(X, s) ds+

∫ t

0
g(Xs, s) dWs, 0 ≤ t ≤ 1

3. E
[∫ 1

0
(|fX(Xt, s)|+ |g(Xt, t)|2) dt

]
<∞

Definition A.11 (SOT problem for marginal flows; (Mikami, 2008)).

v(µ0, µ1) := inf
f∈A({ρt}0≤t≤1)

∫ 1

0

∫
Rd

L (t,x, f(x, t)) dρt(x) dt (25)

subject to ρ0 = µ0, ρ1 = µ1, (26)

A
(
{ρt}0≤t≤1

)
:=

 f(x, t)

∣∣∣∣∣∣ ∂tpt = −div(ptf) +

d∑
i,j=1

∂2

∂xi∂xj
[Di,j(x, t)pt(x)]

, (27)
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where p0 and p1 are the densities of probability measures ρ0 and ρ1, respectively.

The minimizer of the SOT problem for marginal flows (Eq. (25)) is obtained by f∗(x, t) =
E [fX(X, t)|(t,Xt = x)]. We introduce assumptions from (Mikami, 2021).

(A-1) L ∈ C1(Rd × Rd; [0,∞]). u 7→ L(t,x,u) is strictly convex. L(t,x,u)/(1 + L(t,y,u)
and |∇xL(t,x,u)|/(1 + L(t,x,u)) are bounded on t ∈ [0, 1] and x,y,u ∈ Rd.
supx∈Rd |∇xL(t,x,u)|1 is locally bounded. lim|u|→∞ inf L(t,x,u)/|u| =∞.

(A-2) ∇2
uL(t,x,u) is bounded uniformly nondegenerate on [0, 1]× Rd × Rd.

Theorem A.12 (Trevisan’s Superposition Principle; (Trevisan, 2016)). Assume that there exists
f : Rd × [0, 1] 7→ Rd and {ρt}0≤t≤1 ⊂ P(Rd) such that f satisfies the FP equation, i.e. f ∈
A

(
{ρt}0≤t≤1

)
. Then, there exists a semimartingale {Xt}0≤t≤1 for which the following holds:

Xt = X0 +

∫ t

0

f(Xs, s) ds+

∫ t

0

g(Xs, s) dWt,

Xt ∼ ρt (0 ≤ t ≤ 1)

From Theorem A.12, it can be easily shown that V (µ0, µ1) = v(µ0, µ1) and there exist minimizers
X∗ of the SOT problem (Eq. (24)) for which fX∗(X∗, t) = f∗(X∗

t , t).
Theorem A.13 (Duality theorem; (Mikami, 2021)). Suppose that (A-1) holds. Then, for any µ0, µ1 ∈
P(Rd),

V (µ0, µ1) = v(µ0, µ1) = sup
f∈C∞

b (Rd)

{∫
Rd

Φ(x, 0; f) dµ0(x)−
∫
Rd

f(x) dµ1(x)

}
, (28)

where C∞
b (Rd) is the set of all infinitely differentiable functions on Rd, which have bounded continu-

ous derivative and Φ(x, t; f) is the viscosity solution to the HJB equation:

∂tΦ(x, t; f) +

d∑
i,j=1

Di,j(x, t)
[
∇2

xΦ(x, t; f)
]
i,j
−H (t,x,−∇xΦ(x, t; f)) = 0,

Φ(x, 1; f) = f(x).

The Hamiltonian H is defined by H(t,x, z) := supu {⟨z,u⟩ − L(t,x,u)}.
Theorem A.14 ((Mikami & Thieullen, 2006)). Suppose that (A-1) and (A-2) hold and V (µ0, µ1) is
finite. Then, there exists a minimizer X∗ ∈ A of V (µ0, µ1) given by

X∗
t = X∗

0 +

∫ t

0

f∗(X∗
s, s) ds+

∫ t

0

g(X∗
s, s) dWs,

For any maximizing sequence {Φn}n≥1 of Eq. (28), there exists a subsequence {nk}k≥1 such that
f∗(Xs, s) = lim

k→∞
∇zH(s,Xs,−∇xΦnk

(Xs, s)).

B SCHRÖDINGER BRIDGE AND GENERATIVE MODELING

The theory of the SB problem is mostly mature as shown in Appendix A.2, but scalable numerical
methods for estimating SB are still actively studied. In particular, there have been many recent
studies (De Bortoli et al., 2021; Wang et al., 2021; Vargas et al., 2021; Chen et al., 2021a; Bunne
et al., 2022), which uses the SB as a process for generating data. These studies other than (Wang et al.,
2021) proposed methods to learn SDE solutions of the SB problem between the prior distribution and
the target data distribution. These methods combine the classical multi-stage optimization method
called Iterative proportional fitting (IPF) (Fortet, 1940; Kullback, 1968; Ruschendorf, 1995) for
solving the SB with machine learning methods for optimization of subproblems. In IPF, the following
subproblems are solved alternately and iteratively. The reference path measure P is set to the initial
measure Q(0)

∗ .

R(i)
∗ = argmin

P∈P(Ω)

DKL(R∥Q(i−1)
∗ ), subject to R(1) ∼ µ1, (29)

Q(i)
∗ = argmin

Q∈P(Ω)

DKL(Q∥R(i)
∗ ), subject to Q(0) ∼ µ0, (30)
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where R(t), Q(t) are the probability measures at the time t on the path measures R and Q. The
path measures Q(i)

∗ , R(i)
∗ at the i-th step are simulated by the following forward-backward SDEs

in Eqs. (31) and (32), respectively.

dXt = f (i)(Xt, t) dt+
√
2ϵ dWt, X0 ∼ µ0, (31)

dXt = b(i)(Xt, t) dt+
√
2ϵ dWt, X1 ∼ µ1. (32)

The convergence of IPF was proved in (Ruschendorf, 1995).

The sub-optimization problems (Eqs. (29) and (30)) are approached differently for each method.
First, Vargas et al. (2021) and De Bortoli et al. (2021) proposed to solve them by mean-matching
regression of the SDE drift function using Gaussian process (GP) and NN, respectively. They find the
drift function of the SDEs that minimizes the following losses for some sampled time t.

b
(i)
t = argmin

bt

E
X∼Q(i−1)

∗

∥∥∥bt(Xt)−
(
Xt + f

(i−1)
t−∆t (Xt−∆t)− f

(i−1)
t−∆t (Xt)

)∥∥∥ ,
f
(i)
t = argmin

ft

E
X∼R(i)

∗

∥∥∥ft(Xt)−
(
Xt + b

(i)
t+∆t(Xt+∆t)− b

(i)
t+∆t(Xt)

)∥∥∥ .
In contrast, Chen et al. (2021a) proposed to use the divergence-based losses as shown in Eq. (33). The
divergence-based losses are a modified version of the approximate likelihood-maximization training
of SGM for use in alternating optimization schemes.

v(i) = argmax
v

E
X∼Q(i−1)

∗

[∫ 1

0

1

2
∥v (Xt, t)∥2 + g divx(v) + u(i−1)⊤v dt

]
,

u(i) = argmax
u

E
X∼R(i)

∗

[∫ 1

0

1

2
∥u (Xt, t)∥2 + g divx(u) + v(i)⊤u dt

]
,

where u(i),v(i) are learnable drift terms of the forward-backward SDEs that redefines Eqs. (31)
and (32) with fixed prior drift fprior, simulating the path measures Q(i)

∗ ,R(i)
∗ .

dXt =
(
fprior(Xt, t) + g(t)u(i)(Xt, t)

)
dt+

√
2ϵ dWt, X0 ∼ µ0,

dXt =
(
fprior(Xt, t)− g(t)v(i)(Xt, t)

)
dt+

√
2ϵ dWt, X1 ∼ µ1.

(33)

To estimate more complex dynamics, Bunne et al. (2022) proposed to solve a general SB problem
(Eq. (18)) in which the solution of the Gaussian SB problem is used as a reference measure P. As
shown in Theorem A.9, the Gaussian SB problem has a closed-form solution, and the general SB
problem is solved using the alternating optimization with divergence-based losses proposed by Chen
et al. (2021a).

B.1 LAGRANGIAN SCHRÖDINGER BRIDGE PROBLEM

We consider the LSB problem constrained by the FP equation corresponding to Ito SDE (Eq. (3))
over the Euclidean space Rd.
Definition B.1 (LSB problem constrained by the FP equation).

V(µ0, µ1) := inf
(f ,ρt)∈S

∫ 1

0

∫
Rd

L(t,x, f(x, t)) dρt(x) dt, (34)

subject to ρ0 = µ0, ρ1 = µ1, (35)

S :=

 (f , ρt)

∣∣∣∣∣∣ ∂tpt = −div(ptf) +

d∑
i,j=1

∂2

∂xi∂xj
[Di,j(x, t; f , ρt)pt(x)]

,

The LSB problem in Eq. (34) is a more general problem that does not fix Di,j in the SOT problem
for marginal flows (Eq. (25)). Thus, a solution to the LSB problem in Eq. (34) clearly exists on the
basis of the existence of a solution to the SOT problem in Eq. (25).

We practically solve the following relaxed LSB problem, where the terminal constraint are replaced
by the soft constraint.
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Definition B.2 (Relaxed LSB problem constrained by the FP equation).

Ṽ(µ0, µ1) := inf
(f ,ρt)∈S

∫ 1

0

∫
Rd

L(t,x, f(x, t)) dρt(x) dt+

∫
Rd

G(x) dρ1(x), (36)

subject to ρ0 = µ0, (37)

G(x) :=
δ

δρ1
D(ρ1(x)|µ1(x)),

where G is the terminal cost introduced by relaxing the constraint ρ1 = µ1 and δ
δρ1

is the variational
derivative with respect to ρ1.

We derive the optimality conditions for the LSB problems in Eqs. (34) and (36) using variational
method in the following theorem. The derivation procedure is similar to that for the variational
formulation of the SB problem by (Chen et al., 2021b).

Theorem B.3 (Optimality conditions for the LSB problem). There exists a space-time dependent
potential function Φ: Rd × [0, 1] 7→ R, which satisfies:

f∗(x, t) = ∇zH(t,x,−∇xΦ(x, t)), (38)

∂tΦ(x, t) +

d∑
i,j=1

Di,j(x, t; f
∗, ρ∗t )

[
∇2

xΦ(x, t)
]
i,j
−H(t,x, f∗(x, t)) = 0, (39)

Φ(x, 1) = G(x),

where (f∗, ρ∗t ) is the minimizer of the relaxed LSB problem in Eq. (36).

The equation 38 and 39 are the optimality conditions for both the relaxed LSB problem in Eq. (36)
and the LSB problem where G(x) = 0 in Eq. (34).

Proof. We derive the optimality conditions for the relaxed LSB problem as shown in Eq. (36) by
reformulating it as a saddle point problem for (pt,mt) := (pt, ptft). Let L be the the Lagrangian
with the time-space-dependent Lagrange multiplier Φ(x, t).

L(p,m,Φ) :=

∫ 1

0

∫
Rd

L

(
t,x,

mt

pt

)
pt(x) dxdt+

∫
Rd

G(x)p1(x) dx

−
∫ 1

0

∫
Rd

Φ(x, t)

∂tpt︸︷︷︸
(a)

+div(mt)︸ ︷︷ ︸
(b)

−
d∑

i,j=1

∂2

∂xi∂xj
[Di,j(x, t)pt(x)]︸ ︷︷ ︸
(c)

 dx dt.

The term (a) is transformed by performing a partial integral over t:∫ 1

0

∫
Rd

Φ(x, t)∂tpt(x) dx dt =

∫
Rd

Φ(x, 1)p1(x) dx−
∫
Rd

Φ(x, 0)p0(x) dx

−
∫ 1

0

∫
Rd

∂tΦ(x, t)pt(x) dx dt.

The term (b) is simplified as follows.∫
Rd

Φ(x, t) div(mt) dx =

∫
Rd

div(Φmt)−mt(x)
⊤∇xΦ(x, t) dx

= −
∫
Rd

mt(x)
⊤∇xΦ(x, t) dx.
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The term (c) is transformed by performing a partial integral over x:∫
Rd

d∑
i,j=1

∂2Di,j(x, t)pt(x)

∂xi∂xj
Φ(x, t) dx = −

d∑
i,j=1

∫
Rd

∂ (Di,j(x, t)pt(x))

∂xj

∂Φ(x, t)

∂xi
dx

=

d∑
i,j=1

∫
Rd

Di,j(x, t)pt(x)
∂2Φ(x, t)

∂xi∂xj
dx

=

∫
Rd

 d∑
i,j=1

Di,j(x, t)
[
∇2

xΦ(x, t)
]
i,j

 pt(x) dx.

Then, we can rewrite the LSB problem as
inf
p,m

sup
Φ
L(p,m,Φ), (40)

L(p,m,Φ) =

∫ 1

0

∫
Rd

L

(
t,x,

mt

pt

)
+ ∂tΦ(x, t) +

d∑
i,j=1

Di,j

[
∇2

xΦ(x, t)
]
i,j

 pt(x) dx dt

+

∫
Rd

G(x)p1(x) dx+

∫ 1

0

∫
Rd

mt(x)
⊤∇xΦ(x, t) dx dt

−
∫
Rd

Φ(x, 1)p1(x) dx+

∫
Rd

Φ(x, 0)p0(x) dx.

The saddle point (p∗,m∗,Φ∗) of the problem in Eq. (40) satisfies the following conditions:

∂ΦL|(p∗,m∗,Φ∗) = 0 ⇔ ∂tp
∗
t +

d∑
i=1

∂

∂xi
m∗

i (x, t)−
d∑

i,j=1

∂2

∂xi∂xj
[Di,j(x, t)p

∗
t ] = 0,

∂pL|(p∗,m∗,Φ∗) = 0 ⇔ ∂tΦ
∗(x, t) +

d∑
i,j=1

Di,j(x, t)
[
∇2

xΦ(x, t)
]
i,j
−H(t,x, z∗) = 0,

∂mL|(p∗,m∗,Φ∗) = 0 ⇔ ∇fL(t,x, f∗) = −∇xΦ
∗,

∂p1L|(p∗,m∗,Φ∗) = 0 ⇔ Φ∗(x, 1) = G(x),

where z∗ := ∇uL(t,x,u)|u=f∗ and the Hamiltonian is defined by H(t,x, z) :=
supu {⟨z,u⟩ − L(t,x,u)}. The Lagrangian satisfies L(t,x,u) = supz {⟨u, z⟩ −H(t,x, z)}.
Therefore, the optimal drift function is given by

f∗(x, t) =
m∗

p∗
= ∇zH(t,x, z∗) = ∇zH(t,x,−∇xΦ

∗(x, t)). (41)

The potential function Φ is the solution of the HJB equation:

∂tΦ(x, t) +

d∑
i,j=1

Di,j(x, t)
[
∇2

xΦ(x, t)
]
i,j
−H(t,x, f∗(x, t)) = 0. (42)

Equation 41 and 42 are also optimal conditions even for the LSB problem in Eq. (34) where the
terminal constraint is strictly satisfied, i.e. G(x) = 0.

From Theorem A.12, we can show that there exists a semimartingale {Xt}0≤t≤1 for which the
following holds:

Xt = X0 +

∫ t

0

f∗(Xs, s) ds+

∫ t

0

g∗(Xs, s) dWt, Xt ∼ ρ∗t (0 ≤ t ≤ 1),

where (f∗, ρ∗t ) is the minimizer of the LSB problems in Eq. (34) or Eq. (36) and g∗ is the diffusion
function determined from the minimizer (f∗, ρ∗t ). Therefore, the LSB problems constrained by the
FP equation (Eqs. (34) and (36)) and the original LSB problem defined by Eq. (6) are equivalent.

Note that we named Eq. (6) the LSB problem, as the SB problem is well-known in the machine
learning field as the problem of finding the most likely stochastic process between sampled time
points.
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B.2 DERIVATION OF NLSB AND ITS CONNECTION TO OT-FLOW

The loss function of the NLSB shown in Eq. (7) is the objective function of the relaxed LSB prob-
lem (Eq. (36)) with additional PDE loss applied to satisfy the optimality condition, HJB equation.
Theorem B.3 justifies the minimization of HJB-PDE loss and a parameterization that strictly sat-
isfies Eq. (38) during training when the terminal constraint is not satisfied, i.e. G(x) ̸= 0. For
computational efficiency, we practically define the HJB-PDE loss Rh in a weak form as shown
in Eq. (9) and evaluateRh on the path of the simulated SDE.

NLSB and OT-Flow (Onken et al., 2021) have strong theoretical connections. NLSB is the practical
solution to the LSB problem (Eq. (6)) relaxed by the distribution discrepancy measure D using
neural SDE, while OT-Flow is the solution to the Brenier-Benamou formulation of the OT problem
(Eq. (12)) relaxed by the KL-divergence using neural ODE. The optimality conditions for the LSB
problem shown in Theorem B.3 are analogues of the optimality conditions for the Brenier-Benamou
problem shown in Theorem A.3. In NLSB and OT-Flow, the potential function is modeled using
NN and optimized by both action cost (Eqs. (1) and (8)) and HJB-PDE loss (Eqs. (1) and (9))
based on the respective optimality conditions. Theoretically, the LSB problem with the Lagrangian
L(t,x,u) = 1

2∥u∥
2 and the diffusion function g =

√
2ϵ is reduced to the classical SB problem

(Eq. (21)) and the solution to the Brenier-Benamou problem is recovered from the zero-noise limit of
the solution to the classical SB problem (Theorem A.8).

C MODEL ARCHITECTURE

The model structure of the potential function proposed in OT-Flow (Onken et al., 2021) is shown
below.

Φ(s) = w⊤N (s; {Ki,bi}0≤i≤M ) +
1

2
s⊤(A⊤A)s+ b⊤s+ c,

N (s; {Ki,bi}0≤i≤M ) = uM ,

ui = ui−1 + hσ(Kiui−1 + bi) (1 ≤ i ≤M), u0 = σ(K0s+ b0),

where s = (x, t) ∈ Rd+1 is a input vector, w,K0 ∈ Rm×(d+1),Ki (1 ≤ i ≤M) ∈ Rm×m, bi (0 ≤
i ≤ M) ∈ Rm×m, A, b, and c are learnable parameters, m is the number of dimensions of
the hidden representation vector, h is a fixed step size, and the activation function is defined by
σ(x) = log(exp(x) + exp(−x)).
The gradient of the potential function is described.

∇sΦ(s) = ∇sN (s; {Ki,bi}0≤i≤M )w + (A⊤A)s+ b,

∇sN (s; {Ki,bi}0≤i≤M ) = K⊤
0 diag(σ′(K0s+ b0))z1,

zi = zi+1 + hK⊤
i diag(σ′(Kiui−1 + bi))zi+1 (1 ≤ i ≤M), zM+1 = 1.

We can write σ′ down as tanh since σ is defined as above.

Finally, the diagonal components of the potential function’s Hessian is shown below.

∇2
sΦ(s) = ∇s(K

⊤
0 diag(σ′(K0s+ b0))z1)

+ h

M∑
i=1

∇sui−1∇s(K
⊤
i diag(σ′(Kiui−1 + bi))zi+1)∇su

⊤
i−1

= K⊤
0 diag(σ′′(K0s+ b0)⊙ z1)K0

+∇sui−1K
⊤
i diag(σ′′(Kiui−1 + bi)⊙ zi+1)Ki∇su

⊤
i−1,

[
∇2

sΦ(s)
]
i,i

=
[
(σ′′(K0s+K0)⊙ z1)

⊤(K0 ⊙K0)
]
i

+ h

M∑
i=1

[
(σ′′(Kiui−1 + bi)⊙ zi+1)

⊤(Ki∇su
⊤
i−1 ⊙Ki∇su

⊤
i−1)

]
i
,
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where ⊙ is the element-wise product,∇sui can be obtained by using the following update equation:

∇su
⊤
i ← ∇su

⊤
i−1 + diag(hσ′(Kiui−1 + bi))Ki∇su

⊤
i−1.

The diagonal component of the potential function Hessian can be computed at a computation cost of
O(m2d). The complexity O(m2d) indicates that there is a trade-off between the expressive power of
the DNN and the computational cost of the Hessian.

OT-Flow modeled the potential function Φθ that satisfies fθ = −∇xΦθ instead of directly modeling
the velocity function f of the neural ODE. The continuous transformation from x(0) to x(1) is
described by

x(1) = x(0) +

∫ 1

0

fθ(x(t), t) dt = x(0) +

∫ 1

0

−∇xΦθ(x(t), t) dt.

OT-Flow is trained by likelihood maximization in the well-known CNF framework. The likelihood
computation is performed as follows.

p1(x(1)) = p0(x(0))−
∫ 1

0

Tr (∇xfθ(x(t), t)) dt,

= p0(x(0))−
∫ 1

0

Tr
(
−∇2

xΦθ(x(t), t)
)
dt,

where p1 is the density of the target distribution and p0 is the density of the prior distribution, which is
usually a Gaussian or Laplace distribution. The fast and exact computation of the diagonal component
of the potential function’s Hessian is useful for the computation of Appendix C.

In contrast, we propose for the first time to use this technique to speed up the computation of the
HJB-PDE lossRh in the NLSB under the assumption that the diffusion model’s output is a diagonal
matrix. The computed lossRh is given by

Rh(θ, ϕ; t0, t1) =

∫ t1

t0

∫
Rd

∣∣∣∣∣∂tΦθ(x, t) +

d∑
i=1

Di,i(x, t;ϕ)
[
∇2

xΦθ

]
i,i
−H∗

θ (x, t)

∣∣∣∣∣ dρt(x)dt,

H∗
θ (x, t) = ⟨−∇xΦθ(x, t), fθ(x, t)⟩ − L(t,x, fθ(x, t)).

D BENEFITS OF GENERALIZATION TO LAGRANGIAN

We first present the advantages of generalization by the Lagrangian. Next, we define the general form
of the Lagrangian considered in this thesis and explain its generality theoretically. We also provide
several examples of Lagrangians to demonstrate their applicability as models for a wide range of
real-world systems.

The benefit of generalization by the Lagrangian is that the HJB equation and Hamilton’s equation
can be described in a unified manner using Lagrangian, independent of the coordinate system of the
space on SDE. In other words, the loss function can always be easily derived once the Lagrangian is
designed.

The general form of the Lagrangian considered in this paper is given by

L(t,x,u;R, c,v,m, U) =
1

2
(u− v)⊤R(u− v) + c⊤(u−m)− U(x, t), (43)

where R ∈ Rd×d is the positive definite since the Lagrangian is convex with respect to u, U is the
potential function defined from the prior knowledge on the target system. The optimal drift function
is obtained by fθ(x, t) = −2(R+R⊤)−1(∇xΦθ(x, t) + c) + v.

In Lagrangian mechanics, deterministic Newtonian dynamical systems can be described by the
principle of least action using the general Lagrangian (Eq. (43)), independent of the coordinate
system. In contrast, since we are dealing with random dynamical system using SDEs, we can
describe an even wider range of systems than Newtonian dynamical systems. The general Lagrangian
(Eq. (43)) also includes as the special case the Lagrangian cost used in the optimal control (OC)
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problems such as the linear-quadratic regulator (LQR). To show the generality of the Lagrangian
of Eq. (43), we demonstrate that the Lagrangian in linearly transformed coordinates can also be
written in the same form.

We define SDE on the coordinate-transformed state variable x ∈ Rd from the observed variable
y ∈ Rp.

minimize
f ,g

∫ t1

t0

∫
Rd

L(t,x, f(x, t)) dρt(x; f ,g) dt,

subject to
{

dXt = f(Xt, t) dt+ g(Xt, t) dWt,
y = Px,

Y0 = PX0 ∼ ρt0 = µ0, Y1 = PX1 ∼ ρt1 = µ1.

(44)

The linear coordinate transformation is given by y = Px represented by the projection matrix
P ∈ Rp×d. In particular, when we use the Wasserstein-2 distanceW2 as the distribution discrepancy
measure D in Eq. (11), the loss function of NLSB is almost invariant for the linear coordinate
transformations.

Regular matrix. When the projection matrix P ∈ Rd×d is regular, the general Lagrangian defined
on the observed variable space y ∈ Rd is computed on the state variable space x ∈ Rd as follows.

W2(µ1, ρt1) = inf
π

∫
Rd×Rd

∥y1 − y2∥2 dπ(y1,y2),

= inf
π̃

∫
Rd×Rd

∥Px1 −Px2∥2 dπ̃(x1,x2),

= inf
π̃

∫
Rd×Rd

(x1 − x2)
⊤R(x1 − x2) dπ̃(x1,x2),

L(t,y,uy;Ry, cy,vy,my, Uy)

=
1

2
(uy − vy)

⊤Ry(uy − vy) + c⊤y (uy −my)− Uy(y, t),

=
1

2
(ux − vx)

⊤P⊤RyP(ux − vx) + c⊤yP(ux −mx)− Uy(Px, t),

=
1

2
(ux − vx)

⊤Rx(ux − vx) + c⊤x (ux −mx)− Ux(x, t),

= L(t,x,ux;Rx, cx,vx,mx, Ux),

where R = P⊤P and Rx = P⊤RyP ∈ Rd×d are guaranteed to be positive definite, P−1
♯

is the push-forward operator of the linear map represented by P−1, cx = P⊤cy ∈ Rd, and
Ux(x, t) = Uy(Py, t) is the potential function. Especially when P is an orthogonal transformation,
i.e. P⊤P = I, then R = I and Rx = Ry hold.

The general Lagrangian has sufficient representational capacity to describe Lagrangians in coordinate
systems that can be linearly transformed into each other in a unified manner. Furthermore, similar
results are obtained for the PCA projection, which is an irregular matrix.

PCA projection matrix. We consider an inverse projection from the latent space x to the data space
y as the projection matrix P ∈ Rp×d (d ≪ p). The columns of the PCA projection matrix are
orthogonal, i.e. P⊤P = I. The cost functions defined on the observed variable space y ∈ Rp is
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efficiently computed on the low-dimensional space x ∈ Rd as follows.

W2(µ1, ρt1) = inf
π

∫
Rp×Rp

∥y1 − y2∥2 dπ(y1,y2),

= inf
π̃

∫
Rd×Rd

∥Px1 −Px2∥2 dπ̃(x1,x2),

= inf
π̃

∫
Rd×Rd

∥x1 − x2∥2 dπ̃(x1,x2),

=W2(P
⊤
♯ µ1,P

⊤
♯ ρt1)

L(t,y,uy;Ry, cy,vy,my, Uy)

=
1

2
(uy − vy)

⊤Ry(uy − vy) + c⊤y (uy −my)− Uy(y, t),

=
1

2
(ux − vx)

⊤P⊤RyP(ux − vx) + c⊤yP(ux −mx)− Uy(Px, t),

=
1

2
(ux − vx)

⊤Rx(ux − vx) + c⊤x (ux −mx)− Ux(x, t),

= L(t,x,ux;Rx, cx,vx,mx, Ux),

where Rx = P⊤RyP ∈ Rd×d is guaranteed to be positive definite, P⊤
♯ is the push-forward operator

of the PCA projection represented by P⊤, cx = P⊤cy ∈ Rd, and Ux(x, t) = Uy(Py, t) is the
potential function.

In Section 3.3 and Appendix E.5, we provided the four Lagrangian examples of the NLSB and their
use cases. The examples demonstrate that the Lagrangian design allows a variety of prior knowledge
to be reflected in the sample trajectories.

In this appendix, we have described the LSB problem on the linear coordinate transformed space. In
order to improve the modeling of dynamics, it is recommended to investigate the potential benefits of
incorporating nonlinearities in the projection from x to y or imposing specific geometric structures
on the space of x, as considered in (Huguet et al., 2022). These considerations are deemed promising
avenues for the advancement of NLSB.

D.1 POPULATION DYNAMICS SIMULATION BY REVERSE-TIME SDE

We describe a method for estimating the trajectories backwards through time and show experimental
results using artificial synthetic data. According to the result from (Anderson, 1982), the reverse-time
SDE of the original SDE (Eq. (3)) is given by

dXt = {fθ(Xt, t)− uθ,ϕ(Xt, t)} dt+ gϕ(Xt, t) dW̃t,

uθ,ϕ(Xt, t) = div
(
gϕ(Xt, t)gϕ(Xt, t)

⊤)− gϕ(Xt, t)gϕ(Xt, t)
⊤∇x log pt(Xt),

where W̃t is a Wiener process that flows backwards in time.

However, the computation of the modification term u of the drift function requires an estimation of
the score function and high computational cost. Therefore, we newly parameterize the modification
term uξ by NN with parameters ξ. Then, we train only the term uξ using Sinkhorn divergence loss
in Eq. (45) by numerically simulating the reverse-time SDE. For simplicity of implementation, we
used the same model architecture for modification term uξ as for the drift fθ.

ℓ̃(ξ) =
∑

tk∈T\tK−1

Wϵ(µk, ρ
ξ
tk
) (45)

The experimental results for the reverse-time SDE learning method are shown in Appendix E.2.2
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Table 3: Comparison of implementation

velocity/drift diffusion ODE/SDE solver

TrajectoryNet FFJORD (Grathwohl et al., 2018) - dopri5
OT-Flow −∇xΦθ(t,x) - Euler
Neural SDE −∇xΦθ(t,x) FCNN gϕ(x, t) Euler-Maruyama
NLSB (Ours) ∇zH(t,x,−∇xΦθ) FCNN gϕ(x, t) Euler-Maruyama
IPF (GP) sparse GP Hyperparameter g(t) Euler-Maruyama
IPF (NN) −∇xΦθ(t,x) Hyperparameter g(t) Euler-Maruyama
SB-FBSDE −∇xΦθ(t,x) Hyperparameter g(t) Euler-Maruyama

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

E.1 IMPLEMENTATION

We compared our methods against standard neural SDE, TrajectoryNet (Tong et al., 2020), OT-
Flow (Onken et al., 2021), IPF with GP (Vargas et al., 2021) and NN (De Bortoli et al., 2021),
SB-FBSDE (Chen et al., 2021a). TrajectoryNet and OT-Flow are examples of existing ODE-based
methods, neural SDE is an example of learning SDE using only data without prior information by
the Lagrangian, IPF and SB-FBSDE are methods to find SDE solutions to the classical SB problem.
While IPF and SB-FBSDE solve the SB problem, which is special case of the LSB problem, they are
a different algorithm from NLSB. The parameterization and numerical solvers for ODEs and SDEs
are summarized in Table 3. For a fair comparison, we used the same potential model Φθ described
in Section 4.2 for OT-Flow, neural SDE, NLSB, IPF (NN), and SB-FBSDE. We set the number of
ResNet layers M = 2, the step size h = 1.0, the rank of matrix rank(A) = 10, and the dimension of
the hidden vector z to 2. In training all models, we used Adam optimizer to optimize all learnable
parameters with a learning rate of 0.001 and the decay rate of β1 = 0.9, β2 = 0.999. We searched
all weight coefficients of regularization terms λe, λh in (0.0, 0.5] and selected those with the largest
possible coefficients among those with sufficiently small EMD-L2 values on the validation data.

In our implementation, we modified code in the TrajectoryNet1, OT-FLow2, IPF3, and SB-FBSDE4

repositories, which were released under the MIT license. Our experimental environment consists
of an Intel Xeon Plantinum 8360Y (36-core) CPU and a single NVIDIA A100 GPU. Our code is
available at https://github.com/take-koshizuka/nlsb. TrajectoryNet and OT-Flow
were trained using the torchdiffeq library5, and neural SDE and NLSB with the torchsde library6.
The settings common to all experiments for each method are described below.

NEURAL SDE AND NLSB

We trained the drift and diffusion models of the standard neural SDE using only the Sinkhorn
divergenceWϵ. We used the Euler-Maruyama method with the constant step size of 0.01 as an SDE
solver. Backpropagation was performed without using the adjoint method.

TRAJECTORYNET

The velocity model of TrajectoryNet includes three concatsquash layers with hyperbolic tangent
activations. A concatsquash layer cs was defined in the released code of FFJORD (Grathwohl et al.,
2018) by:

cs(x, t) = (Wxx+ bx)σ(Wtt+ bt) + (Wbt+ bbt),

where σ is the sigmoid function, and Wx, Wt, Wb, bx, bt, bb are all learnable parameters.

1 https://github.com/KrishnaswamyLab/TrajectoryNet
2https://github.com/EmoryMLIP/OT-Flow
3https://github.com/AforAnonyMeta/IPML-2548
4https://github.com/ghliu/SB-FBSDE
5https://github.com/rtqichen/torchdiffeq
6https://github.com/google-research/torchsde
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The base models of TrajectoryNet was trained using only the negative log-likelihood loss in standard
CNF scheme. +OT represents a model trained with the OT-based regularization R̃e defined by Eq. (1).
We set the interval-dependent coefficients λ̃e for the OT-based regularization as well as Eq. (11). For
the ODE solver, the dopri5 solver with both absolute and relative tolerances set to 10−5 was used.

OT-FLOW

The base models of OT-Flow was also trained with CNF scheme. We used both R̃e and R̃h with
the interval-dependent coefficients λ̃e, λ̃h in OT-Flow + OT. We used the Euler method as the ODE
solver with a constant step size of 0.01 and both absolute and relative tolerances set to 10−5.

IPF

The drift model of IPF (GP) was changed to sparse GP with the exponential kernel from vanilla
GP (Vargas et al., 2021) to save computation cost. We selected 100 inducing points using the K-means
algorithm in IPF (GP). The SB problem was solved by using IPF algorithm with 15 iterations. We
used the Euler-Maruyama method as the SDE solver. The diffusion coefficients of IPF were tuned as
hyperparameters.

SB-FBSDE

We employed alternating training and solved the classical SB problem specifying Brownian motion
as the prior stochastic process and did not use collectors.

E.2 SYNTHETIC POPULATION DYNAMICS: TIME-DEPENDENT ORNSTEIN–UHLENBECK
PROCESS

We validated NLSB on artificial synthetic data generated from one-dimensional SDEs, the time-
dependent Ornstein–Uhlenbeck process used in (Kidger et al., 2021). In this experiment, the predicted
trajectory and uncertainty can be compared with the ground-truth and easily evaluated by visualization.
The purpose of this experiment is to confirm that the NLSB works well on a simple linear SDE.

E.2.1 DETAILS OF EXPERIMENTAL SETUP

We trained all models with a batch size of 512 for each time point. The tuned weight coefficients are
shown in Table 4.

POTENTIAL MODEL IN OT-FLOW, NEURAL SDE, NLSB, AND IPF (NN)

For the potential model Φθ(x, t), we set the number of ResNet layers M = 2, the step size h = 1.0,
the rank of matrix rank(A) = 10, and the dimension of the hidden vector z to 2.

NEURAL SDE AND NLSB

We used a two-layer FCNN of a hidden dimension 16 for the diffusion function gϕ(x, t). The
activations functions were LipSwish. In NLSB, we used the Lagrangian for the potential-free system
L(t,x,u) = 1

2 ||u||
2.

TRAJECTORYNET

We used the concatsquash layers of a hidden dimension 16.

IPF

We set the diffusion coefficients as follows.

g(t) =


0.2 t ∈ [0.0, 1.0)
0.6 t ∈ [1.0, 2.0)
1.0 t ∈ [2.0, 3.0)
1.4 t ∈ [3.0, 4.0]

.

Other experimental settings have not been changed from (Vargas et al., 2021).
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Table 4: Weight coefficients for regularization terms in experiments on synthetic data

[t0, t1] [t1, t2] [t2, t3] [t3, t4]

λe, λh for NLSB 0.3, 0.2 0.1, 0.01 0.01, 0.0001 0.01, 0.0001
λ̃e for TrajectoryNet + OT 0.1 0.1 0.001 0.001

λ̃e, λ̃h for OT-Flow + OT 0.1, 0.01 0.1, 0.01 0.001, 0.001 0.001, 0.001

(a) ground-truth SDE (b) Neural SDE

(c) NLSB (Ours) (d) IPF (GP)

(e) IPF (NN) (f) TrajectoryNet + OT (g) OT-Flow + OT

Figure 6: 1D OU process data and predictions.

E.2.2 RESULTS

Figure 6 shows the visualization of both the original trajectory and the averaged trajectory by the
SDE-based methods (neural SDE, NLSB, and IPF) and the only original trajectory by the ODE-based
methods (TrajectoryNet and OT-Flow). All trajectories were generated by all-step prediction from the
initial samples at the time t = 0. The five colored point clouds in the background are the ground-truth
data given at each time point. The pink area and the light blue line are the one-sigma empirical
confidence intervals and their boundaries for each trajectory, respectively.

Figure 3 indicates that NLSB and IPF outperform neural SDE and is comparable to other ODE-
based methods in estimating populations with small variance. In contrast, the SDE-based methods
outperform ODE-based methods when estimating populations with a large variance. That indicates
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(a) ground-truth forward SDE (b) NLSB (Ours) (c) TrajectoryNet + OT

Figure 7: 1D OU process data and predictions backwards through time.

Figure 8: Numerical evaluation for the reverse-time simulation on synthetic OU process data. All
MDD values were computed between the ground-truth and the estimated samples within generated
trajectories all-step behind from initial samples x(t4).

that NLSB and IPF can estimate population-level dynamics even when the population variance is
large or small. Furthermore, NLSB and IPF have a smaller CDD value than neural SDE. Figure 6b
shows that the average behavior of samples E[X(t)|X(0)] estimated by neural SDE is different from
that of the ground-truth SDE (see Fig. 6a), especially in the interval [0, 1]. In contrast, the predictions
by NLSB and IPF in Figs. 6c to 6e are much closer to the ground-truth. These results show that the
prior knowledge of the potential-free system helps to estimate the sample-level dynamics.

Note that the LSB problem solved by NLSB with the Lagrangian L = 1
2∥u∥

2 and the SB problem
solved by IPF are almost mathematically equivalent (see Appendices A.3 and B.1). The result that
NLSB shows comparable performance to IPF, even though NLSB is trained differently from IPF,
indicates that NLSB is a unified framework and can deal with SB problems as a special case.

The quantitative evaluation results of the reverse-time ODE/SDE using MDD are shown in Fig. 8,
and the visualization of trajectories is shown in Fig. 7. All trajectories from NLSB and TrajectoryNet
were generated by all-step prediction from the initial samples at the time t = 4 to t = 0. Experimental
results show that the proposed method described in Appendix D.1 successfully recovers the population-
level dynamics of the reverse-time SDE. The development of appropriate evaluation methods for
sample-level dynamics of the reverse-time SDE is included in future work.
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Table 5: Weight coefficients for regularization terms in experiments on scRNA-seq data

[t0, t1] [t1, t2] [t2, t3] [t3, t4]

λe, λh for NLSB (E) 0.1, 0.01 0.01, 0.01 0.001, 0.0001 0.01, 0.001
λe, λh for NLSB (V) 0.01, 0.001 0.01, 0.001 0.01, 0.001 0.01, 0.001
λe, λh for NLSB (D) 0.01, 0.001 0.01, 0.001 0.01, 0.001 0.01, 0.001
λe, λh for NLSB (E+D+V) 0.01, 0.001 0.001, 0.001 0.001, 0.001 0.001, 0.001
λ̃e for TrajectoryNet + OT 0.01 0.01 0.1 0.1

λ̃e, λ̃h for OT-Flow + OT 0.01, 0.01 0.01, 0.01 0.001, 0.01 0.001, 0.01

E.3 SINGLE-CELL POPULATION DYNAMICS

We evaluated our method on the time-evolution of single-cell populations obtained from a developing
human embryo system. In this experiment, we presented a new quantitative evaluation metric in a
practical setting and validated the effectiveness of the NLSB on real data of single-cell population.

E.3.1 DETAILS OF DATASET

We evaluated our method on embryoid body scRNA-seq data (Moon et al., 2019), which is also used
in (Tong et al., 2020; Vargas et al., 2021; Bunne et al., 2021; 2022). This data shows the differentiation
of human embryonic stem cells from embryoid bodies into diverse cell lineages, including mesoderm,
endoderm, neuroectoderm, and neural crest, over 27 days. During this period, cells were collected at
five different snapshots (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15, t3: day 18 to 21, t4: day 24
to 27). The collected cells were then measured by scRNAseq, filtered at the quality control stage, and
mapped to a low-dimensional feature space using a principal component analysis (PCA). For details,
see Appendix E.2 in (Tong et al., 2020). We reused the pre-processed data available in the released
repository of TrajectoryNet 1 and split the data into 200 samples (∼ 8.5%) of validation data, 350
samples (∼ 15%) of test data, and the rest as train data for each time point. The scRNA-seq data are
licensed under Creative Commons Attribution 4.0 International license.

E.3.2 DETAILS OF EXPERIMENTAL SETUP

We trained all models with a batch size of 1000 for each time point and used the early stopping
method, which monitors the EMD-L2 value on the validation data. The tuned weight coefficients are
shown in Table 5. We used the same potential model Φθ in OT-Flow, neural SDE, NLSB and IPF
(NN) with the same hyperparameters described in Appendix E.2.1. In the following, we describe the
different settings from the experiment in Section 5.1.

NLSB

We used the Lagrangian for the cellular system and compared several combinations of the regulariza-
tion terms. In Tables 1 and 2, “E” is the energy term, “D” is the density term, and “V” is the velocity
term. The density term U(x, t) is the log-likelihood function of the data estimated by GMM. For
the calculation of the density regularization term, the time-dependent density function U(x, t) was
defined by

U(x, t) = c log p(x; Θt), Θt = {µ(t)
m ,Σ(t)

m }
Mt
m=1,

where c is a hyperparameter to change the scale, and µ
(t)
m ,Σ

(t)
m are mean and variance parameters

of the mixed Gaussian distribution, respectively. When t ∈ [tk, tk+1], the parameters Θt were
estimated with the data at tk and tk+1 by GMM and the number of mixture components Mt was
determined by the value of Bayesian information criterion (BIC). The hyperparameter c was searched
among {0.1, 1.0, 10.0} and we set c = 10.0 for NLSB (D) and c = 0.1 for NLSB (E+D+V). For the
calculation of the velocity regularization term, we used the same reference velocity as those used in
TrajectoryNet (Tong et al., 2020).
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Figure 9: Visualization of the time evolution for a single sample on scRNA-seq data. The upper and
lower images are predictions from the same initial sample at t0, with the upper row predicted by
NLSB and the lower row predicted by TrajectoryNet + OT. The color gradients depict the magnitude
of the probability density. The probability density function is estimated by GMM with five mixture
components.

Table 6: The MDD value (EMD-L1) for population-level dynamics on five-dimensional (5D) PCA
space at time of observation for scRNA-seq data.

MDD (EMD-L1) ↓ t1 t2 t3 t4

NLSB (E) 1.13± 0.025 1.36± 0.035 1.34± 0.023 1.30± 0.018
NLSB (D) 1.08± 0.021 1.40± 0.043 1.38± 0.030 1.29± 0.024
NLSB (V) 1.13± 0.030 1.39± 0.043 1.34± 0.029 1.35± 0.025
NLSB (E+D+V) 1.09± 0.023 1.34± 0.037 1.32± 0.024 1.30± 0.025

Neural SDE 1.11± 0.028 1.41± 0.041 1.38± 0.033 1.34± 0.025
OT-Flow 1.31 1.73 1.68 1.69
OT-Flow + OT 1.33 1.65 1.69 1.56
TrajectoryNet 1.15 1.60 1.42 1.58
TrajectoryNet + OT 1.20 1.60 1.41 1.72
IPF (GP) 1.14± 0.024 1.59± 0.052 1.49± 0.037 1.57± 0.042
IPF (NN) 1.16± 0.027 1.42± 0.037 1.37± 0.030 1.37± 0.027
SB-FBSDE 0.89± 0.016 1.32± 0.025 1.63± 0.030 1.57± 0.015

TRAJECTORYNET

We used the velocity model with 64 hidden dimensions.

IPF

We set the diffusion coefficients to g(t) = 0.5 (t ∈ [0.0, 1.0)) , 1.0 (t ∈ [1.0, 4.0]). Other experi-
mental settings have not been changed from (Vargas et al., 2021).

SB-FBSDE

We set the diffusion coefficients to g(t) = 0.5 (t ∈ [0.0, 3.0)) , 0.1 (t ∈ [3.0, 4.0]).
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(a) Ground-truth data

E.3.3 RESULTS

The time evolution of the distribution for a single sample is visualized as a heat map in Fig. 9.
The sample population in Fig. 10 and the trajectories are visualized in Fig. 11. All figures are
visualizations in the space of the first and second principal components. The x-axis represents the
first principal component and the y-axis the second principal component. The experimental results
using MDD using EMD with L1 cost is shown in Table 6.

Figure 9 shows that the SDE-based methods, including NLSB, can handle the uncertainty of the
trajectories in contrast to ODE-based methods. Figure 10 shows that NLSB outperforms ODE-based
methods in predicting the transitions with a high diffusion of samples from t1 to t2 and from t3 to t4,
indicating that the explicit modeling of diffusion is effective. Figure 11 shows that the drift estimated
by NLSB (E) is linear, the trajectories by NLSB (D) pass on the data manifold, and the trajectories by
NLSB (E+D+V) appear to reflect all other regularization effects.

A GIF animation of the NLSB simulation in PCA space is also included in the supplemental materials.

E.4 SYNTHETIC POPULATION DYNAMICS: TRAJECTORIES REFLECTING THE POTENTIAL
FUNCTION

This section presents the experimental results of applying the NLSB to numerical simulations of
synthetic population dynamics. Through this experiment, we show that the NLSB can model a
wide range of phenomena by designing the Lagrangian based on prior knowledge. In particular, we
emphasize the importance of designing potential functions and the flexibility of penalty design for
drift functions.

E.4.1 DATASET

We used two-dimensional uniform distributions U0 and U1 for the endpoints at time t = 0 and t = 1.

(X0, Y0) ∼ U0 : −1.25 ≤ X0 ≤ −1, −1 ≤ Y0 ≤ 1,

(X1, Y1) ∼ U1 : 1 ≤ X1 ≤ 1.25, −1 ≤ Y1 ≤ 1.

We generated 2048 and 512 samples from two endpoint distributions as training and validation data,
respectively.

31



Published as a conference paper at ICLR 2023

(b) NLSB (E+D+V)

(c) TrajectoryNet + OT

Figure 10: The ground-truth data and one-step ahead sample prediction on scRNA-seq data.

32



Published as a conference paper at ICLR 2023

E.4.2 DETAILS OF EXPERIMENTAL SETUP

We trained NLSB with a batch size of 512 and used the early stopping method, which monitors
the validation loss value. We adopt the Lagrangian for the random dynamical system. All weight
coefficients of regularization terms were searched in {0.01, 0.001}.
We first conducted experiments applying the NLSB with the Lagrangian of the form L(t,x,u) =
1
2 ||u||

2 − U(x) defined by four different potential functions shown below. We implemented the box
and slit-shaped obstacle potential functions as differentiable by using the sigmoid functions.

BOX-SHAPED OBSTACLE

U(x, y) =

{
−100 −0.5 ≤ x, y ≤ 0.5
0 otherwise .

SLIT-SHAPED OBSTACLE

U(x, y) =

{
−100 (−0.1 ≤ x ≤ 0.1) ∧ (y ≤ −0.25 ∨ 0.25 ≤ y)
0 otherwise .

HILL POTENTIAL

U(x, y) = −2.5(x2 + y2).

WELL POTENTIAL

U(x, y) = −10 exp(−(x2 + y2)).

Next, we conducted an experiment using the Lagrangian L(t,u,x) = 1
2u

⊤Ru. The matrix R
can be used to penalize the magnitude of the drift differently for each dimension. We set R to
diag([10.0, 0.1]) and diag([0.1, 10.0]).

E.4.3 RESULTS

The visualization results are shown in Figs. 12 and 13. Figure 12 shows that NLSB can estimate
various trajectories that reflect information about obstacles or regions where samples cannot or are
likely to exist represented by the potential function. Figure 13a and 13b show that the drift of the
trajectories generated by the NLSB with the Lagrangian L = 1

2u
⊤Ru is larger on the axis with

smaller penalties defined by R and vice versa.

E.5 OPINION DYNAMICS

We demonstrated the application of NLSB to optimal control on a party model of opinion dynam-
ics (Schweighofer et al., 2020; Gaitonde et al., 2021; Liu et al., 2022).

E.5.1 DATASET

Opinion dynamics (Schweighofer et al., 2020; Gaitonde et al., 2021) is the time evolution of each
agent’s opinions interacting with each other. MFGs theory provides a mathematical analytical
framework for the opinion dynamics of large agent populations, which are very difficult to handle
computationally. The dynamics is modeled using SDEs defined on the opinion representation
space of each agent embedded in Euclidean space. In recent years, the phenomenon of strong
polarization (Gaitonde et al., 2021), in which agents are divided into groups with opposite opinions,
has attracted particular attention. We use the drift fpolarize, which causes polarization defined in the
party model (Gaitonde et al., 2021), as prior information of the target system.

fpolarize := fpolarize/∥fpolarize∥
1
2 , y := y/∥y∥ 1

2 ,

fpolarize(x, ρ; ξ) := Ey∼ρ [a(x,y; ξ)y] ,

a(x,y; ξ) :=

{
1 if sign (⟨x, ξ⟩) = sign (⟨y, ξ⟩)
−1 otherwise

,
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where ρ is the probability measure of the population, ξ is random information from some distribution
independent of ρ, a(x,y; ξ) is the agreement function, which represents whether the two opinions x
and y agree on the information ξ.

We used two-dimensional Gaussian distributions N0 and N1 for the endpoints at time t = 0 and
t = 1.

(X0, Y0) ∼ N0 = N
(
0,

[
0.5 0.0
0.0 0.25

])
,

(X1, Y1) ∼ N1 = N
(
0,

[
3.0 0.0
0.0 3.0

])
.

We generated 2048 and 512 samples from two endpoint distributions as training and validation data,
respectively.

E.5.2 DETAILS OF EXPERIMENTAL SETUP

The Lagrangian for the opinion dynamics is defined by

L(t,x,u) =
1

2
∥fpolarize(x, t) + u(x, t)∥2 − U(x, t).

The potential function U(x, t) represents the averaged interaction that each agent receives from the
population. The entropy function U(x, t; c) = c log p(x, t) with a constant coefficient c is a candidate
for a useful potential function and helps control changes in population diversity. The optimal drift
function is given by fθ = −∇xΦθ(x, t) − fpolarize(x, t). By setting the ideal opinion distribution
as the terminal condition, NLSB can be used as a method to find the optimal drift converging to the
ideal opinion distribution.

We trained NLSB with a batch size of 512 and used the early stopping method, which monitors the
validation loss value. All weight coefficients of regularization terms were searched in {0.01, 0.001}.
We conducted experiments using the NLSB with the Lagrangian for the opinion dynamics.

E.5.3 RESULTS

Visualization of polarized opinion dynamics driven by the drift fpolarize and the time variation of
directional similarity are shown in Figs. 14a and 15a. The directional similarity (Schweighofer
et al., 2020) is the distribution of cosine angles between paired opinions, with the red and blue color
gradients representing the degree of disagreement and agreement, respectively. Figures 14b and 15b
show the results after applying NLSB. These results show that NLSB can learn a drift function that
prevents the polarization caused by fpolarize, which also converges to the ideal terminal distribution
N1.

34



Published as a conference paper at ICLR 2023

(a) NLSB (E+D+V)

(b) Neural SDE (c) NLSB (E)

(d) NLSB (D) (e) NLSB (V)

(f) TrajectoryNet (g) TrajectoryNet + OT (h) OT-Flow (i) OT-Flow + OT

Figure 11: scRNA-seq data and predictions. The x- and y-axes denote the first and second principal
components, respectively. The five colored point clouds in the background are the ground-truth data
given at each time point. All five trajectories are generated by all-step prediction from the initial
samples at t0.
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(a) Neural SDE (b) Potential-free (U = 0)

(c) Box-shaped obstacle (d) Slit-shaped obstacle

(e) Well potential (f) Hill potential

Figure 12: Visualization of trajectories reflecting the potential function. The color gradients depict
the magnitude of the potential function.

(a) R = diag([10.0, 0.1]) (b) R = diag([0.1, 10.0])

Figure 13: Visualization of trajectories by NLSB using the Lagrangian L = 1
2u

⊤Ru. The blue and
red point clouds are the source and target distributions, respectively.

36



Published as a conference paper at ICLR 2023

(a) Polarized dynamics

(b) Depolarized dynamics by NLSB

(a) Directional similarity of polarized dynamics

(b) Directional similarity of the depolarized dynamics by NLSB

37


	Introduction
	Background
	Flows Regularized by Optimal Transport
	Neural SDE and Applications to Diffusion Modeling
	Stochastic Optimal Transport

	Proposed Method
	Lagrangian Schrödinger Bridge
	Neural Lagrangian Schrödinger Bridge
	Examples of Lagrangian in Neural Lagrangian Schrödinger Bridge

	Implementation of Neural Lagrangian Schrödinger Bridge
	Training for Neural Lagrangian Schrödinger Bridge
	Model Architecture Selection for Speedup

	Experiments
	Synthetic Population Dynamics: Ornstein–Uhlenbeck Process
	Single-Cell Population Dynamics

	Discussion and Conclusion
	Theory of Stochastic Optimal Transport
	Dynamic Formulation of Optimal Transport Problem
	Schrödinger Bridge
	Stochastic Optimal Transport with Two Endpoint Marginals

	Schrödinger Bridge and Generative Modeling
	Lagrangian Schrödinger Bridge Problem
	Derivation of NLSB and its connection to OT-Flow

	Model Architecture
	Benefits of Generalization to Lagrangian
	Population Dynamics Simulation by Reverse-time SDE

	Experimental Details and Additional Results
	Implementation
	Synthetic Population Dynamics: Time-Dependent Ornstein–Uhlenbeck Process
	Details of Experimental Setup
	Results

	Single-Cell Population Dynamics
	Details of Dataset
	Details of Experimental Setup
	Results

	Synthetic Population Dynamics: Trajectories Reflecting the Potential Function
	Dataset
	Details of Experimental Setup
	Results

	Opinion Dynamics
	Dataset
	Details of Experimental Setup
	Results



