Under review as a conference paper at ICLR 2026

MITIGATING PRIVACY RISK VIA FORGET SET-FREE UN-
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training machine learning models requires the storage of large datasets, which often
contain sensitive or private data. Storing data is associated with a number of potential risks
which increase over time, such as database breaches and malicious adversaries. Machine
unlearning is the study of methods to efficiently remove the influence of training data subsets
from previously-trained models. Existing unlearning methods typically require direct access
to the "forget set"—the data to be forgotten-and organisations must retain this data for
unlearning rather than deleting it immediately upon request, increasing risks associated with
the forget set. We introduce partially-blind unlearning—utilizing auxiliary information
to unlearn without explicit access to the forget set. We introduce a practical framework
RELOAD , a partially-blind method based on gradient optimization and structured weight
sparsification to operationalize partially-blind unlearning. We show that RELOAD efficiently
unlearns, approximating models retrained from scratch, and outperforms several forget
set-dependent approaches. On language models, RELOAD unlearns entities using <0.025%
of the retain set and <7% of model weights in <8 minutes on Llama2-7B. In the corrective
case, RELOAD achieves unlearning even when only 10% of corrupted data is identified. '

1 MOTIVATION

In many facets of modern life, individuals consent for institutions to collect and use their personal data.
Patients allow their data to be stored in electronic health records, internet surfers allow their browsing
behaviour to be used to customize their searches, and citizens respond to public surveys, file their taxes, and
register to vote using online government services. Frequently, institutions leverage machine learning (ML)
models to derive insights, generate knowledge, or extract value from user data (Shinde & Shah, 2018; Pi,
2021; Sarker, 2021; Rahman et al., 2024). However, the act of collecting and storing a user’s data poses
inherent risk to the user. For example, cybercriminals may breach an institution’s data security to commit
identity theft (Anderson et al., 2008) or leak user data (Kenny, 2018; Zou et al., 2018), or patient records in
an electronic health record system may be improperly accessed by curious healthcare workers (Long, 2016).
These kind of breaches have the potential to cause users financial, clinical, and reputational harm.

Informally, modern machine learning systems expose the user to two types of risk: dataset risk represents the
user risk associated with an institution storing a user’s data, while model risk represents the additional risk to
the user when his or her data is used to train a machine learning model. Whereas an ordinary data breach is
an example of dataset risk, the reconstruction of user data from model weights by malicious actors (Shokri
et al., 2017; Haim et al., 2022; Oz et al., 2024) is an example of model risk. If we assume that instances of
dataset risk and model risk each occur with some nonnegative rate, Rp, R a4, respectively, we can represent
the instantaneous risk borne by an individual at time ¢ as R as R(t) = Rp(t) + Ra(t). Since both risk

'A software implementation of our work can be found in this code repository.

https://anonymous.4open.science/r/RELOAD-ICLR2026-E1A9

Under review as a conference paper at ICLR 2026

functions are nonnegative, the cumulative data risk and model risk, fOT Rp(t)dt and fOT R (t) dt, increase
with T'. This captures the simple intuition that risk compounds: the longer personal data remains stored by an
institution or embedded within a model, the greater a user’s cumulative risk exposure.

“Right to be forgotten” provisions such as the GDPR (Eu-
ropean Parliament & Council of the European Union),
allow users to demand that their data be deleted from both
data stores and machine learning models (via machine un-
learning, Bourtoule et al. (2019))—in theory, eliminating
both database and model risk. In practice, because un-
learning methods directly employ the “forget set” (Graves
et al., 2021; Thudi et al., 2022; Chundawat et al., 2022;
Fan et al., 2023)—the user data meant to be deleted—
institutions must retain the user data to perform unlearn-
ing after a request for deletion is made. This is typically
not a fast process: because instance-wise unlearning is
expensive on the ever-larger that are becoming common-
place, institutions often accumulate deletion requests and
process them in batches using conventional forget set-
dependent methods (Hu et al., 2023). However, as long as
this data is retained—often for a long time, on the order
of months—the user remains exposed to both Rp(t) and
R () for all ¢ between when the request for deletion is
made and when unlearning has been completed.

This work develops a procedure for machine unlearning
that does not require access to the forget set. Such a pro-
cedure would allow user data to be immediately removed
when a request for deletion is made, eliminating the con-
tinued accumulation of dataset risk Rp (t) after that time
(the red region of Figure 1). Our algorithm, RELOAD,

Model Risk
X0 X S
x$ ol &€
™ o Oe\ Q\
ROEL G
\Sﬁe@a“ S s

& o

Figure 1: Conventional unlearning algorithms admit
a cumulative user risk totalling the sum of the green,

blue, and red regions. By allowing user data to
be deleted immediately once a request for deletion
is made, RELOAD eliminates the user risk associated
with the red region.

combines insights from three families of unlearning algorithms—gradient-based, structured sparsity-based,
and finetuning-based algorithms—to implement a procedure that performs unlearning using only minimal aux-
iliary information about the forget set, rather than the forget set itself. An organisation using RELOAD would
be able to immediately delete user data once a request for deletion is made without inhibiting downstream
unlearning. Our work makes the following three contributions:

1. We establish and motivate the partially-blind unlearning (PBU) setting, capturing the intuition of unlearn-

ing without the forget set while leveraging auxiliary information. We characterise it in terms of input

requirements, privacy risks, and approximation quality.

2. We introduce the RELOAD algorithm as an efficient algorithm to enable partially-blind unlearning. Rather
than requiring the forget set, RELOAD only requires cached gradients from the final step of training.

3. We show that RELOAD consistently outperforms baselines across both standard and corrective unlearning

scenarios (Goel et al., 2024). Surprisingly, RELOAD achieves state-of-the-art results even when compared
to algorithms that make use of the forget set. We then extend the RELOAD algorithm to perform entity-level

unlearning in language models (LMs).

Technology privacy law must be constrained by technological limitations: lawmakers cannot demand the
implementation of technically-infeasible solutions. Although modern technology privacy law like GDPR
permits temporary retention of data to facilitate downstream unlearning, we do not believe this provides

Under review as a conference paper at ICLR 2026

the strongest privacy outcomes for users. Our work advances the frontier of machine unlearning to lay the
technological groundwork for stricter data-deletion timelines under right-to-be-forgotten legislation.

2 METHOD

2.1 SETTING AND NOTATION

Let D = {2}, with z; € Z represent (i.i.d.) training data from individuals on which an organisation seeks
to train a machine learning model. For a class of models M = {Mjy : § € ©} parametrised by a family O,
denote the parameters that minimise the empirical risk on D by

0" := argmin L£(0;D),
0co

where £ : © x Z — R is a differentiable, additive risk (loss) function, and denote the trained model
as Mp+ € M. For simplicity, we shorten £(6; D) to L(D). Let Dyopger C D represent the forget set, the
subset of training data corresponding to individuals who have requested deletion of their information from
the organisation’s system. Complementarily, define the retain set Dyetain = D\ Dorget- In an ideal world
where My- is currently in deployment, upon the deletion of D¢, the organisation should deploy a new
model, model My~ , trained on the retain set with

0~ = arg min £(93 DT'etain)a
0€O

Thus, machine unlearning (MU) aims to transform My~ into a model Mj close to My~ in some appropriate
model-distances (e.g. predictive divergence or weight distance) without costly retraining an entirely new
model. A classical unlearning algorithm is a function Ay mapping Anry (Mo« , Dretain, Prorget) t0
weights 0 € © such that M ~ My~ typically by directly using Dy,,4e; in the update rule (e.g., targeted
gradient steps, reweighting, or pointwise correction). As previously discussed, classical unlearning approaches
that require direct access to D,,q4¢; continually compound data subjects’ cumulative risk, yet completely
eliminating the influence of Dy, 4c¢ from My~ without any information about the forget set is impossible:
we cannot unlearn from nothing. While we must avoid retaining the raw forget set data, we can leverage
auxiliary information that was collected during the original training process serving as a privacy-preserving
proxy that enables effective unlearning while allowing immediate deletion of the sensitive data.

Thus, denote by Zp any auxiliary object derived from training on D that may be retained to help perform
unlearning without keeping raw examples from D ,.¢¢. Examples include (but are not limited to) aggregated
gradient statistics or feature summaries. We further impose the design desideratum that Zp be chosen so that
recovering individual examples in D o get from Lp is difficult in a practical sense (e.g. low instance-level
leakage or computational hardness). We do not require an impossibility claim; rather this is a constraint on
acceptable choices of Zp.

Definition 1 (Partially-blind unlearning). An unlearning algorithm Appy operates in the partially-blind
unlearning (PBU) setting if it has access to (i) the trained model My~, (ii) the retain set Dyctqin, and
(iii) auxiliary training information Ip. The algorithm outputs Mz = Appu(Mo+, Dyetain, Ip) such that
Mg = Mg~, where 0~ is the retraining solution on Dy.ctqin.

2.2 THE RELOAD ALGORITHM

The RELOAD algorithm is a PBU algorithm leveraging auxiliary object Zp := VL(D), the gradient of the
loss function evaluated on (6*, D) at the final epoch of training, in order to eliminate the influence of the
forget set from the trained model. RELOAD comprises three stages combining the approaches of Thudi et al.
(2022), Fan et al. (2023), and Warnecke et al. (2023). Figure 2 provides a summary of the method.

Under review as a conference paper at ICLR 2026

Loss Landscape of £(D) Loss Landscape of £(D;etain) Loss Landscape of £(D) — L(D;etain)
Vo(L(D) .

&
retgin) <
(1) Cache gradients of the loss on (2) Compute gradients of the loss (3) The difference of these represents
the training set, Vo£(D) at the on the retain set, VoL(Dretain). the loss landscape fitting the model to
end of training. L(D) but not L(Dyetain). As our goal is
to fit to £(Dyetain) , we perform one
step of ascent on this landscape.

Re-Initialize if: Loss Landscape of £(Dietain)
|v0k (L(D) _ E(Dretain))| 1€ (Potentially far from 0; due to re-initialization)
<a
|v9k£(ID)‘ +e B) \\ \ ;
0y -

&
207
[V, (L(D) = L(Dretain)| to |V, L£(D)| indicates r % /
that it is well-optimized for points in £(D) g
that are not in £(Dyetein). Re-initialize (5) Starting from these new parameters, optimize until
parameters for which this value is small. convergence on the loss landscape of £(D;ezain)-

(4) For each parameter 0y, a small ratio of

Figure 2: Overview of the RELOAD algorithm for partially-blind approximate unlearning. RELOAD marries a gradient-
based unlearning step modified for the PBU setting (Steps (1) through (3)) with a weight saliency-based selective
reinitialisation (Step (4)) and subsequent fine-tuning (Step (5)). Because the partially-blind unlearning setting prohibits
taking gradients with respect to Dforget, RELOAD exploits the linearity of differentiation to treat Vo (L£(D) — L(Dretain))
as a proxy for Vo L(Dyorget) at the location in weight space corresponding to 6. This allows us to apply one gradient
ascent step in this direction. Intuitively, this update in Step (3) removes some information about D,y ge: from all network
weights, while the reinitialisation in Step (4) reinitialises those weights with a uniquely strong correspondence t0 D forget
(for which a single ascent step will not fully remove this information). RELOAD achieves state-of-the-art performance on
a collection of unlearning tasks, often outperforming baselines with direct access to D orget-

1. Ascent (Step (3) in Figure 2). With the trained model Mp-, cached gradients Vo £L(D), and the retain set
D, etain, RELOAD performs a single gradient ascent step (Thudi et al. (2022)) in the direction of Vy£L(D) —
V¢ L(Dretain) With learning rate 7,

0 — 0% + np(VGE(D) — VoL (Dretain))

2. Re-initialisation (Step (4) in Figure 2). RELOAD identifies weights responsible for characterizing
information about Dy ,.4c¢ (Fan et al. (2023)) and re-initialises them. Concretely, knowledge values of each
weight 0}, are computed for the updated weights 6’. For a small ¢, the knowledge value of 6}, is:

. |v0k£(D) — Vek'c(D’l“etain” +e€
* Vo, L(D)| + €
where a low knowledge value indicates that 0, carries stronger knowledge of Dyfopger. Let KV =

{KVp, : 0 € 0'} denote the set of all knowledge values of §’. For a quantile hyperparameter c, all weights
0 with K'Vp, < Quantile, (KV) are re-initialized. Denote by 67 the weights post selective reinitialization.

KVy

3. Finetuning (Step (5) in Figure 2). RELOAD finetunes My+ (Warnecke et al. (2023)) until convergence by
minimising £(D;.ctqin) Via iterative gradient-based optimization starting from 6t and obtain 6.

Under review as a conference paper at ICLR 2026

2.3 ALGORITHMIC INSIGHTS

Partial blindness of Vo £(D). RELOAD uses gradients VoL (D) cached upon the completion of the last
training epoch as auxiliary training information. While prior work has demonstrated that inputs can be
reconstructed from gradient information (Geiping et al., 2020; Zhao et al., 2020; Vero et al., 2023; Wu et al.,
2023a; Gao et al., 2021), these reconstruction methods either require knowing batch sizes (unavailable in our
setting) or make restrictive assumptions like no duplicate labels (Xue et al., 2023). Moreover, reconstructed
images are typically unrecognizable with only a small portion showing limited fidelity (Geiping et al., 2020).
Thus, cached summed gradients represent a valid choice for Zp in the partially-blind setting.

Direction of Movement. The central challenge of partially-blind unlearning is that taking repeated gradients
of L(Dorget) is impossible without access to Do, ger. However, from cached gradients of D at the conclusion
of model training, Vo L£(D), we can infer Vg L(Djorger) (Appendix A.1).

VG‘C(IDfOTget) = VQE(D) - VQE(DTetain)~

Therefore, a gradient-based descent update in the direction of VoL (D forge:) moves the model weights such
that they better fit to D,y gc¢; because our goal is unlearning Dyorget, RELOAD instead begins with a single
gradient ascent update step (in the opposite direction). This informs Step (2 - 3) in Figure 2.

Targeted Weight Adjustments. Taking a gradient step in this direction is insufficient for unlearning for two
reasons: we are limited to a single step without access t0 D .4e¢, and network modularity theory (Rodriguez
et al., 2019) suggests that a small subset of weights contains disproportionate information about D ;.ge;.
While one ascent step removes some information about Dy,4e; across all weights, it cannot fully remove
information from the subset most responsible for characterizing the forget set.

We therefore perform selective reinitialisation based on weight importance to ensure full removal of in-
formation from the subset most responsible for characterizing the forget set. The relative magnitude of
Vo, L(Dforger) compared to Vg, L(D) represents how much weight 6 is responsible for characterizing
Dorget- A small relative magnitude indicates that), is well-optimized to characterise instances in D fopget
while a large relative magnitude indicates that 6, poorly characterises these instances. We call this the
knowledge value of weight 0y, formally defined as,

KV — ‘v9k£(Dforget)‘ +e _ |v9k (L(D) = L(Dyetain))| + € _ ‘VQVC(D) - vaﬁ(Dretain” +e
T Ve L(D) + e Vo, L(D)[+ € Vo, L(D)| + ¢ ’
(D

where ¢ is a small Laplace smoothing constant. By selectively reinitialising all weights 0 if KVj, <
Quantile, (K'V'), where « controls the aggressiveness of re-initialisation selection, we can remove the
influence of the weights uniquely responsible for encoding information about Dy,yge¢. This informs Step (4)
in Figure 2. This thinking extends on lines of work in gradient-based input saliency maps (Smilkov et al.,
2017) and saliency unlearning by Fan et al. (2023). We ablate knowledge value formulas in Appendix C.1.

Due to this tight coupling of components, the produced effect is a large modification to weights which strongly
characterise instances in D,.q01 combined with a smaller modification to the remainder of the weights,
enabling model-wide removal of characterisation of the instances in Dyorget. We ablate components of the
RELOAD in Appendix C.2 and C.3 and confirm that these components are non-redundant and essential.

3 EMPIRICAL RESULTS AND ANALYSIS

Our empirical evaluation has five complementary objectives to assess RELOAD’s capabilities. (1) Method-
ological Inspection empirically verifies each component of RELOAD’s unlearning procedure to ensure
well-founded design choices. (2) Classical Unlearning evaluates RELOAD’s performance on forgetting

Under review as a conference paper at ICLR 2026

individuals’ private data points, assessing effectiveness at approximating models trained only on the retain
set. (3) Entity Unlearning examines forgetting specific entities or concepts in LMs, testing RELOAD’s
ability to remove knowledge about individuals from the TOFU dataset (Maini et al., 2024). (4) Corrective
Unlearning (Goel et al., 2024) investigates mitigating training data aberrations when only a subset of affected
samples can be identified, focusing on challenging scenarios where fewer than 80% of corrupted samples are
identified—representing realistic conditions with incompletely diagnosed data quality issues. (5) Ablations of
RELOAD Components provides a complete picture of the algorithm’s stability across model types, gradient
caching techniques, and more.

3.1 METHODOLOGICAL INTROSPECTION

To introspect on RELOAD, we focus on the simplest unlearning task: unlearning a class of data from a trained
model. In this case, we unlearn the class “8” from a ResNet-18 model trained on the SVHN dataset. We
further ablate on the number of ascent steps, knowledge value formulas, and hyperparameters in Appendix C.

Figure 3 visualises selected feature maps of the ResNet-18 model at different stages of RELOAD and their
t-SNE representations (van der Maaten & Hinton, 2008), colored by their predicted label?. The experiment
demonstrates the importance of the reinitialisation step (Step (4) in Figure 2), as even after a single ascent
step, the model still finds “8” to be the most probable class. Only after the important weights are identified
and reinitialised does the model emits a lower-entropy distribution classifying the digit as a “2”. This suggests
that the primary utility of the ascent step in our algorithm is in amending the representations of D¢ in
the later layers of the network, while the selective weight reinitialisation step modifies the representations
produced by earlier layers. The findings of this experiment provide a degree of empirical confirmation of the
intuition presented in Section 2.3.

3.2 CLASSICAL UNLEARNING EXPERIMENTS

Baselines. We compare RELOAD against baseline approaches of GA (Thudi et al., 2022), FT (Warnecke
et al., 2023), SSD (Foster et al., 2023), SCRUB (Kurmanji et al., 2023), CF-k (Goel et al., 2022), EU-k (Goel
et al., 2022), SalUn (Fan et al., 2023), and Fisher (Golatkar et al., 2020). FT, CF-k, EU-k, and Fisher are
partially-blind algorithms, whereas the others require direct access to Dyorgc¢. We also present results from
ground-truth retraining from scratch, My~, to evidence the performance of unlearning algorithms. More
details on baselines are provided in Appendix B.1.

Evaluation. We assess the performance similarity between our learned model and a baseline version of My~
trained naively from scratch using two key metrics. First, we calculate the forget accuracy difference (AFA,
1), representing the performance gap between our method and the baseline Mg~ on Dyorge. Second, we
compute the difference in forget membership inference attack success rates (AFMIA, |), which quantifies how
well the membership inference attack from (Shokri et al., 2017) can identify Dy,,4c; samples in each model’s
training data relative to the baseline identification rate on My~ . Additional evaluation metrics, experimental
details, and hyperparameter configurations are detailed in Appendices B.3, B.7, and B.8 respectively.

RELOAD effectively unlearns both random and correlated samples We evaluate RELOAD under two
regimes: randomly selecting 10% of CIFAR-100 training samples for D ¢ gct, and selecting 100 samples from
a single class to assess unlearning of correlated data. Partial results are reported in Table 1 while complete
results are deferred to tables in Appendix B.4. In both settings, RELOAD achieves strong performance across
key metrics. For random sample unlearning, RELOAD attains the highest RA while maintaining the lowest
AFA, AFE, AFMIA, and FSKL, suggesting superior approximation of My~ compared to baselines. For
correlated sample unlearning, RELOAD achieves the lowest AFMIA and FSKL and performs competitively

2t-SNE visualizations in Figure 3 are of a separate, independent run from the left-hand side figure.

Under review as a conference paper at ICLR 2026

1** Conv. Layer ~ 3'¢ Conv. Layer 5% Conv. Layer Prediction t-SNE Representations
(Trained on £(D) & -
— ;é 107! —~
Ll .-5 —
=N I I 4
Sg) z o %) R Legend
< il | |2 W
SVEN Digit 0123456789 g 0 5
18! SVHN Digit)
s 3 1 <6
Ascent Step on L(D) — L(Dnew) 2 10
) — % o N [~ 2 7
=% & o .
2 SIE Lo
§ o #
S 3456786 = é °4 9

L SVHN Digit SVHN Digit)

100 =

log Pred. Probability

(Step 4)

(Step 4)
(Step 5)

3 AL
0123456789) B

SVHN Digit
SVHN Digit

Figure 3: Introspecting on selected feature maps of a ResNet-18 model when using RELOAD to unlearn the class
“8”. (Left) The feature maps (activations) of the first channel fo the first, third, and fifth convolutional layers after the
application of each algorithm step in Figure 2. After Step (3), the activations of the model remain largely unchanged,
although the logits represent a considerably more uniform distribution over the digits. After Step (4), the activation of
the first convolutional layer is largely unchanged—which is expected, as the earlier layers of CNNs tend to correspond
to broad feature detectors (Zeiler & Fergus, 2014))—although the feature maps change and the predictive distribution
contentrates around “2”. (Right) t-SNE visualisations of the 5™ Conv. Layer of a ResNet-18 trained on the same task in a
different training run. At Step (1), classes largely cluster into nice separated regions with some overlap. The Ascent Step
(3) disrupts the cluster separation, preserving some clustering structure while breaking apart much of the original class
boundaries. Reinitialisation (Step (4)) reveals that the model collapses onto one label at this stage (on the left ’2°, on
the right, “8”—though in our experience it is coincidental that this run happens to concentrate on the class we desire to
unlearn). Finally, Finetuning (Step (5)) recovers much of the original separability, restoring the distinct class clusters seen
in the initial t-SNE. Importantly, we observe that no samples are predicted to be “8”.

| 10% Random | 100 In-Class | | Entity Unlearning 1%
Algorithm ‘ AFA (}) AFMIA ({) ‘ AFA (}) AFMIA (]) | Algorithm ‘ FQ (1) MU (1)
GA 18.77 + 2.43 0.21 £ 0.06 23.33 £ 1.06 0.07 £+ 0.06 GA 0.0068 —0.0233
SSD 74.17 £ 2.04 0.15+0.21 68.67 £ 1.97 0.38 +0.14 Grad Diff 0.0143 —0.0198
SCRUB 18.85 + 2.39 0.20 £ 0.06 27.55 +£1.43 0.07 £+ 0.06 NPO-RT 0.5786 —0.1361
CF-k 18.01 £ 2.60 0.20 + 0.06 21.84 £0.88 0.07 + 0.06 Pref Opt 0.0971 —0.0021
SalUn 13.14 + 2.53 7.39 + 2.60 12.08 + 3.13 0.02 £ 0.02 ECO (Zero-Out) 0.9900 +0.0000
Fisher 22.99 £ 2.30 7.27 +£2.48 10.72 £ 1.98 0.03 + 0.04 Original 0.0030 +0.0000
RELOAD 0.30 £+ 0.50 0.01 £ 0.01 3.44 + 1.46 0.02 £ 0.02 RELOAD 0.4046 +0.0748

Table 1: Benchmarking RELOAD against baselines in the uncorrelated 10% setting, 100 in-class samples setting, and 1%
forgetting entity unlearning setting. Best performances are bolded.

on other metrics, closely approximating My~ . While Fisher marginally outperforms RELOAD in the corre-
lated setting, it requires over twice the computational time as retraining, making RELOAD more practical.
Methods like CF-k and EU-£ achieve higher RA in the correlated setting due to minimal weight updates, but
perform poorly on critical unlearning metrics like AFA and AFE. Surprisingly, these results demonstrate that
RELOAD’s superior approximation of My~ enables more effective unlearning than methods that explicitly
leverage D ¢orget during the unlearning process.

Under review as a conference paper at ICLR 2026

3.3 ENTITY UNLEARNING WITH LMS

Baselines and Evaluation. We compare RELOAD against baselines from Maini et al. (2024) on entity
unlearning using TOFU’s synthetic author biography dataset (Maini et al., 2024). We evaluate using forget
quality (KS test p-value between unlearned and retrained model distributions) and model utility (performance
on retained data and real-world knowledge). Experiments use Phi 1.5 (Li et al., 2023) and Llama-2-7B-Chat
(Touvron et al., 2023) with open-source fine-tuned models (locuslab, 2025; Unlearning, 2025a;b;c).

RELOAD unlearns select entities. In this experiment, we task each algorithm with unlearning a subset
of the fictitious authors in TOFU from a TOFU fine-tuned model. We observe that RELOAD effectively
unlearns when the number of entities to forget is small. As evidenced in Table 1, RELOAD outperforms
many existing unlearning methods in the 1% forgetting case, effectively forgetting entities (p-value > 0.05)
and improving model utility over the Original and Retrained (Retain) models. However, in the 5% and 10%
forgetting cases, RELOAD fails to repair model utility despite succesful forgetting. We hypothesise that this
is due to limits on the size of D,.¢;qs. Due to computational restrictions, the size of D,.¢pqir Was restricted
(maximum 195 samples) which greatly limited the applicability of RELOAD when \mempts| > |Dmpair\.
As the 1% forgetting case is the only case in which |Dprompts| < [Drepair|, this suggests that this bound is a
requirement for the effective application of RELOAD for entity unlearning. Similarly due to computational
constraints, we reuse results and the reference implementation for experiments from prior work (Liu et al.,
2024a). Further experiments are provided in Appendix B.5.

The experiment on Llama-2-7B-Chat completes in 8 minutes on a single RTX6000 GPU, using 7% of weights
and <0.025% of retained data, demonstrating RELOAD ’s efficiency for small-scale entity unlearning.

3.4 CORRECTIVE UNLEARNING

Baselines and Evaluation. Corrective unlearning (CU) (Goel

et al., 2024) considers the case where a portion D,,, of D has o ii’ib
been adversely affected (e.g. mislabeled or poisoned). CU aims o CF

to update 6 so as to approximate training on D \ D,,, where 50 —— RewoD
only a subset Dyorget © Dy, has been identified. Existing = —— BadT
methods degrade rapidly when v = |Dyorget| / |Dim| < 0.8 5 60 —®= Reload

and fail under adversarial corruptions or large-scale poisoning
Pawelczyk et al. (2025). To gauge performance on CU, we use 10
the corrected accuracy Accqor (1), measuring the performance

of the unlearned model on the adversely affected data D,,,. Full

details on prior work, baselines, and evaluation metrics for CU 02 (f;jimﬁod Fﬂfﬁon 5 0 Lo

are detailed in Appendices A.5, B.2, and B.3.

. . Figure 4: CU results on CIFAR-10 for dataset
RELOAD efficiently corrects trained models. Under adverse ,oisoning with |Dyn| = 100. RELOAD achieves

effects of manipulations following the baselines outlined in high Acceer across all y € (0, 1.0] whereas base-
prior work, RELOAD outperforms on Accco at low percentages line methods often struggle with low .

of data identification (Figure 4) while observing competitive

computational efficiency (Table 25) even at only v = 0.1. Although BadT (Chundawat et al., 2022)
outperforms RELOAD in CIFAR-100 poisoning experiments, it bears much greater computational cost (Table
25). We report further experiments and results in Appendix B.6.

3.5 Ablation of RELOAD Components

Quantized gradients do not effect RELOAD . RELOAD incurs a storage overhead when caching gradients.
We explore the feasibility of quantizing the cached gradients, to reduce the footprint of the algorithm. In this
experiment, we unlearn 6000 samples (10%) of CIFAR-10 from a trained ResNet-18 model and quantize

Under review as a conference paper at ICLR 2026

the cached gradients from torch.float32 to torch.floatl6. Before proceeding with unlearning,
these gradients are expanded back to torch.float32. The ResNetl8 model is trained for 400 epochs
with a learning rate of 1e-3 using the SGD optimizer and has a trained accuracy of 99.76%. We observe
that quantizing the stored gradients has no impact on the performance of RELOAD , due to the relative
magnitudes used for weight reinitialisation (Table 33).

Method RA (1) AFA (1) AFE (1) AFMIA (J) RSKL () FSKL ()
RELOAD (UN-QUANTIZED) 99.9940.01 0.46+0.57 0.7640.08 0.014+0.01 0.4410.03 4.0440.1
RELOAD (QUANTIZED) 99.9940.01 0.4640.57 0.76+0.08 0.0140.01 0.4440.03 4.0440 1
Retrained (Baseline) 99.5240.16 36.2240.49 2.2540.03 0.5140.01

Table 2: 10% Random Forgetting on CIFAR-10 (ResNet-18) with Quantized Cached Gradients

As observed, performance deterioration across key unlearning and utility metrics is minimal. Gradient
quantization is thus a highly effective and low-cost solution for mitigating storage overhead of RELOAD in
models where full gradients are required.

RELOAD effectively unlearns from Vision Transformers. Further, we study the impact of layer normalization
on the performance of RELOAD to understand the algorithm’s stability across model types. We train a Vision
Transformer (Dosovitskiy et al., 2020) on the CIFAR-10 dataset (Krizhevsky, 2012) and randomly unlearn
6000 data samples (10% of CIFAR-10).

We reuse a PyTorch implementation of a ViT (Wang et al., 2025) and train the model for 1000 epochs with
learning rate le-4 using the Adam (Kingma & Ba, 2014) optimizer. The baseline model is trained to an
accuracy of 99.94%. We observe that RELOAD produces a model highly similar to the retrained baseline
when applied to a ViT, showing its stability across model types (Table 32). Further ablations are presented in
Appendix C.

Method RA (1) AFA (1) AFE (1) AFMIA (]) RSKL (]) FSKL (})
RELOAD (RESNET-Ig) f)f).4f)i(]_1() 1,83:&033 ()-()5i0.(J4 ()-(]()i0,00 ().12:&()‘01 ().53i0_g7
RELOAD (VIT) 99.4510.12 0.53+0.50 0.79+40.1 0.01+0.01 0.1940.03 8.710.11

RETRAINED (BASELINE, RESNET-IS) 99.99:&0'01 94.40;&0,72 0~23i0,08 0.50:&0,01

Retrained (Baseline, ViT) 99.9140.02 54.114+0.50 4.3140.09 0.5140.01

Table 3: 10% Random Forgetting on CIFAR-10, ViT compared to ResNet-18

4 RELATED WORK

Exact and Approximate Unlearning. Exact unlearning provides formal guarantees for information removal
from model weights. Methods include naive retraining (the gold standard (Cao & Yang, 2015; Thudi et al.,
2022; Shaik et al., 2024)), SISA (Bourtoule et al., 2019) for accelerated retraining via data partitioning,
Certified Data Removal (Guo et al., 2019) using reverse Newton updates, and Certified Graph Unlearning
(Chien et al., 2022) leveraging graph topology. Approximate unlearning methods like RELOAD recover
retain-set behavior without theoretical guarantees. Approximate unlearning algorithms can be classified
into gradient-based and weight-saliency approaches. (i) Gradient-based approximate unlearning methods
perform optimization using both forget and retain sets. Simple approaches apply gradient ascent on forget
loss to undo weight updates (Graves et al., 2021; Thudi et al., 2022). Teacher-student methods include Bad
Teacher (Chundawat et al., 2022), which distills from models trained on retain data ("good teacher") and
randomly initialized on forget data ("bad teacher"), and SCRUB (Kurmanji et al., 2023), where students learn

Under review as a conference paper at ICLR 2026

to disobey teachers by maximizing forget loss. Representation-based methods include DUCK (Cotogni et al.,
2023), driving forget representations toward incorrect centroids, and Boundary Unlearning (Chen et al., 2023)
for class-level decision boundary shifts. (ii) Weight saliency-based approximate unlearning methods target
specific weights based on neural modularity (Pfeiffer et al., 2023) and sparsity (Frankle & Carbin, 2018; Chen
et al., 2024). SalUn (Fan et al., 2023) uses gradient thresholds to identify forget-sensitive weights, while SSD
(Foster et al., 2023) scales weights using Fisher Information Matrix importance scores without gradient steps.

Partially-Blind Unlearning. Related to Zero-Shot Unlearning Chundawat et al. (2023) (restricted to class
unlearning), this setting is more realistic and applicable. Methods include Finetuning (FT) (Warnecke et al.,
2023) on retain sets, Catastrophically forgetting last k layers (CF-k), Exact-unlearning last k (EU-k) (Goel
et al., 2022), and Fisher Forgetting (Golatkar et al., 2020). Both FT and CF-k provide no strong theoretical
indication of unlearning while RELOAD provides stronger theoretical indication by selectively reinitialising
weights bearing the most knowledge on Do get-

Unlearning for LMs. Most methods use optimization to balance forgetting undesirable sequences while
retaining useful ones (Yao et al., 2024; Liu et al., 2024b; He et al., 2025). Some identify and edit sparse
weight subsets (Wu et al., 2023b; Ilharco et al., 2023; Belrose et al., 2025) but require large retention datasets
or full-model updates (Eldan & Russinovich, 2023). Optimization-free methods have been explored (Liu et al.,
2024a). RELOAD offers a lightweight alternative requiring minimal data, few updates, and fast convergence.

5 DISCUSSION, LIMITATIONS, AND CONCLUSION

RELOAD effectively unlearns arbitrary samples. Despite operating in the partially-blind setting, RELOAD
outperforms MU algorithms that enjoy direct access to Dyorget. However, RELOAD trades off runtime and
performance in unlearning arbitrary samples of data, requiring the caching of summed gradients over D from
the final step of training, a non-trivial spatial cost. When D¢t is available, RELOAD does not require this
caching as the gradients can be computed at runtime. In both settings, RELOAD ’s method proves to be an
empirically effective approximate unlearning method.

RELOAD causes LMs to forget entities. In applications to LMs, RELOAD is able to quickly and cheaply
remove knowledge of entities when the number of target entities is < the size of the subset of the retained data
used for computing knowledge values. Applications of our algorithm also leads to an overall increase in model
performance. When this condition isn’t met, RELOAD fails to achieve both model utility and forget quality. In
addition, RELOAD achieves this without needing to modify the inference pipeline of these models (as opposed
to baselines such as (Liu et al., 2024a)). RELOAD corrects data aberrations. In corrective unlearning,
RELOAD remains an efficient, performant method in this regime, outperforming existing baselines and serving
as a viable approach for all currently explored forms of corrective unlearning. RELOAD demonstrates its
ability to unlearn manipulations when < 80% of the manipulated data is identified in all corrective cases,
presenting a step up from prior results (Goel et al., 2024). This holds practical value when + is not known
in deployment. This suggests that our work may contain generalizable insights about about learning to fit
arbitrary downstream transformations of data.

By enabling unlearning without direct access to the forget set, RELOAD addresses the fundamental privacy
paradox in machine unlearning: that the very data subjects wish to remove must be retained during the
unlearning process. This capability allows organisations to immediately delete requested data upon receipt of
deletion requests, effectively stopping the cumulation of database-related privacy risks rather than perpetuating
them through batched processing delays. In doing so, RELOAD represents a meaningful step toward aligning
technological capabilities with regulatory mandates for deletion “without undue delay” and the privacy
protection goals underlying right-to-be-forgotten legislation. While our work demonstrates substantial
empirical improvements across multiple unlearning scenarios, future research may explore extending partially-
blind unlearning to broader model classes and further reducing auxiliary data requirements.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Keith B Anderson, Erik Durbin, and Michael A Salinger. Identity theft. Journal of Economic Perspectives,
22(2):171-192, 2008.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella Biderman.
Leace: Perfect linear concept erasure in closed form, 2025. URL https://arxiv.org/abs/2306.
038109.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. 12 2019. URL http://arxiv.
org/abs/1912.03817.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pp. 463-480, 2015. doi: 10.1109/SP.2015.35.

Asic Chen, Ruian Ian Shi, Xiang Gao, Ricardo Baptista, and Rahul G Krishnan. Structured neural networks
for density estimation and causal inference. Advances in Neural Information Processing Systems, 36, 2024.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid forgetting
of deep networks via shifting the decision boundary. 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 77667775, 2023. URL https://api.semanticscholar.org/
CorpusID:257636742.

Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. ArXiv, abs/2206.09140, 2022. URL
https://api.semanticscholar.org/CorpusID:249890116.

Younwoo Choi, Muhammad Adil Asif, Ziwen Han, John Willes, and Rahul G. Krishnan. Teaching llms how
to learn with contextual fine-tuning, 2025. URL https://arxiv.org/abs/2503.09032.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan S. Kankanhalli. Can bad teaching induce
forgetting? unlearning in deep networks using an incompetent teacher. ArXiv, abs/2205.08096, 2022. URL
https://api.semanticscholar.org/CorpusID:248834527.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. [EEE Transactions on Information Forensics and Security, 18:2345-2354, 2023. ISSN
1556-6021. doi: 10.1109/tifs.2023.3265506. URL http://dx.doi.org/10.1109/TIFS.2023.
3265506.

Marco Cotogni, Jacopo Bonato, Luigi Sabetta, Francesco Pelosin, and Alessandro Nicolosi. Duck:
Distance-based unlearning via centroid kinematics. ArXiv, abs/2312.02052, 2023. URL https:
//api.semanticscholar.org/CorpusID:265609937.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv,
abs/2010.11929, 2020. URL https://api.semanticscholar.org/CorpusID:225039882.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms, 2023. URL
https://arxiv.org/abs/2310.02238.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the European
Parliament and of the Council. URL https://data.europa.eu/eli/reqg/2016/679/07.

11

https://arxiv.org/abs/2306.03819
https://arxiv.org/abs/2306.03819
http://arxiv.org/abs/1912.03817
http://arxiv.org/abs/1912.03817
https://api.semanticscholar.org/CorpusID:257636742
https://api.semanticscholar.org/CorpusID:257636742
https://api.semanticscholar.org/CorpusID:249890116
https://arxiv.org/abs/2503.09032
https://api.semanticscholar.org/CorpusID:248834527
http://dx.doi.org/10.1109/TIFS.2023.3265506
http://dx.doi.org/10.1109/TIFS.2023.3265506
https://api.semanticscholar.org/CorpusID:265609937
https://api.semanticscholar.org/CorpusID:265609937
https://api.semanticscholar.org/CorpusID:225039882
https://arxiv.org/abs/2310.02238
https://data.europa.eu/eli/reg/2016/679/oj

Under review as a conference paper at ICLR 2026

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Empowering
machine unlearning via gradient-based weight saliency in both image classification and generation, 2023.
URL https://arxiv.org/abs/2310.12508.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining through se-
lective synaptic dampening. ArXiv, abs/2308.07707, 2023. URL https://api.semanticscholar.
org/CorpusID:260900355.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Tianxiao Gao, Wu Wei, Zhongbin Cai, Zhun Fan, Shane Xie, Xinmei Wang, and Qiuda Yu. Ci-net:
Contextual information for joint semantic segmentation and depth estimation, 2021. URL https:
//arxiv.org/abs/2107.13800.

Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients — how easy
is it to break privacy in federated learning?, 2020. URL https://arxiv.org/abs/2003.14053.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,
and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665-673, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 249-256,
Chia Laguna Resort, Sardinia, Italy, 13—15 May 2010. PMLR. URL https://proceedings.mlr.
press/v9/glorotl0a.html.

Shashwat Goel, Ameya Prabhu, and Ponnurangam Kumaraguru. Evaluating inexact unlearning requires
revisiting forgetting. ArXiv, abs/2201.06640, 2022. URL https://api.semanticscholar.org/
CorpusID:246015741.

Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal. Corrective
machine unlearning. Transactions on Machine Learning Research, 2024. URL https://openreview.
net/forum?id=v8enu4 jPIB.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.00932. URL http://dx.doi.org/10.
1109/CVPR42600.2020.00932.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 11516-11524, 2021.

Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten. Certified data removal from
machine learning models. ArXiv, abs/1911.03030, 2019. URL https://api.semanticscholar.
org/CorpusID:207847600.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data from
trained neural networks. arXiv [c¢s.LG], June 2022.

Estrid He, Tabinda Sarwar, Ibrahim Khalil, Xun Yi, and Ke Wang. Deep contrastive unlearning for language
models, 2025. URL https://arxiv.org/abs/2503.14900.

12

https://arxiv.org/abs/2310.12508
https://api.semanticscholar.org/CorpusID:260900355
https://api.semanticscholar.org/CorpusID:260900355
https://arxiv.org/abs/2107.13800
https://arxiv.org/abs/2107.13800
https://arxiv.org/abs/2003.14053
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://api.semanticscholar.org/CorpusID:246015741
https://api.semanticscholar.org/CorpusID:246015741
https://openreview.net/forum?id=v8enu4jP9B
https://openreview.net/forum?id=v8enu4jP9B
http://dx.doi.org/10.1109/CVPR42600.2020.00932
http://dx.doi.org/10.1109/CVPR42600.2020.00932
https://api.semanticscholar.org/CorpusID:207847600
https://api.semanticscholar.org/CorpusID:207847600
https://arxiv.org/abs/2503.14900

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 1026-1034, 2015. doi: 10.1109/ICCV.2015.123.

Yuke Hu, Jian Lou, Jiaqi Liu, Wangze Ni, Feng Lin, Zhan Qin, and Kui Ren. ERASER: Machine unleaRning
in MLaaS via an inferencE seRving-aware approach. arXiv [cs.CR], November 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh
Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https://arxiv.org/
abs/2212.040809.

Caitlin Kenny. The equifax data breach and the resulting legal recourse. Brook. J. Corp. Fin. & Com. L., 13:
215, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014. URL https://api.semanticscholar.org/CorpusID:6628106.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine
unlearning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=0veBaTtUAT.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Textbooks
are all you need ii: phi-1.5 technical report, 2023. URL https://arxiv.org/abs/2309.05463.

Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
embedding-corrupted prompts, 2024a. URL https://arxiv.org/abs/2406.07933.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang Liu.
Rethinking machine unlearning for large language models, 2024b. URL https://arxiv.org/abs/
2402.08787.

locuslab. tofu_ft_retain90_phi-1.5. https://huggingface.co/locuslab/tofu_ft_
retain90_phi-1.5,2025.

Kurt J Long. Do no harm: the insider threat to patient data. Engineering & Technology Reference, (2016),
2016.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of
fictitious unlearning for llms, 2024. URL https://arxiv.org/abs/2401.06121.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of Learning and Motivation, 24:109-165, 1989. URL https://api.
semanticscholar.org/CorpusID:61019113.

Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in natural images with
unsupervised feature learning. 2011. URL https://api.semanticscholar.org/CorpusID:
16852518.

Yakir Oz, Gilad Yehudai, Gal Vardi, Itai Antebi, Michal Irani, and Niv Haim. Reconstructing training data
from real world models trained with transfer learning. arXiv [cs.LG], July 2024.

13

https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089
https://api.semanticscholar.org/CorpusID:6628106
http://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=OveBaTtUAT
https://openreview.net/forum?id=OveBaTtUAT
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2406.07933
https://arxiv.org/abs/2402.08787
https://arxiv.org/abs/2402.08787
https://huggingface.co/locuslab/tofu_ft_retain90_phi-1.5
https://huggingface.co/locuslab/tofu_ft_retain90_phi-1.5
https://arxiv.org/abs/2401.06121
https://api.semanticscholar.org/CorpusID:61019113
https://api.semanticscholar.org/CorpusID:61019113
https://api.semanticscholar.org/CorpusID:16852518
https://api.semanticscholar.org/CorpusID:16852518

Under review as a conference paper at ICLR 2026

Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Ayush Sekhari, Gautam Kamath, and Seth Neel. Machine
unlearning fails to remove data poisoning attacks, 2025. URL https://arxiv.org/abs/2406.
17216.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vuli¢, and Edoardo Ponti. Modular deep learning. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=z9EkXfvxta. Survey Certification.

Yulu Pi. Machine learning in governments: Benefits, challenges and future directions. JeDEM-eJournal of
eDemocracy and Open Government, 13(1):203-219, 2021.

Anichur Rahman, Tanoy Debnath, Dipanjali Kundu, Md Saikat Islam Khan, Airin Afroj Aishi, Sadia Sazzad,
Mohammad Sayduzzaman, and Shahab S Band. Machine learning and deep learning-based approach in
smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health, 11(1):
58, 2024.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers generalize
to cifar-10? 2018. https://arxiv.org/abs/1806.00451.

Nathaniel Rodriguez, E. Izquierdo, and Yong-Yeol Ahn. Optimal modularity and memory capacity of neural
reservoirs 1, 2019.

Igbal H Sarker. Machine learning: Algorithms, real-world applications and research directions. SN computer
science, 2(3):160, 2021.

Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Xiaofeng Zhu, and Qing Li. Exploring the landscape of
machine unlearning: A comprehensive survey and taxonomy, 2024.

Pramila P Shinde and Seema Shah. A review of machine learning and deep learning applications. In 2018

Fourth international conference on computing communication control and automation (ICCUBEA), pp.
1-6. IEEE, 2018.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3—18, Los Alamitos,
CA, USA, may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.41. URL https://doi.
ieeecomputersociety.org/10.1109/SP.2017.41.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smoothgrad: remov-
ing noise by adding noise. ArXiv, abs/1706.03825,2017. URL https://api.semanticscholar.
org/CorpusID:11695878.

A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot. Unrolling sgd: Understanding factors influencing
machine unlearning. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pp.
303-319, Los Alamitos, CA, USA, jun 2022. IEEE Computer Society. doi: 10.1109/EuroSP53844.2022.
00027. URL https://doi.ieeecomputersociety.org/10.1109/EuroSP53844.2022.
00027.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data set for nonpara-
metric object and scene recognition. I[EEE Transactions on Pattern Analysis and Machine Intelligence, 30
(11):1958-1970, 2008.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

14

https://arxiv.org/abs/2406.17216
https://arxiv.org/abs/2406.17216
https://openreview.net/forum?id=z9EkXfvxta
https://openreview.net/forum?id=z9EkXfvxta
https://arxiv.org/abs/1806.00451
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://api.semanticscholar.org/CorpusID:11695878
https://api.semanticscholar.org/CorpusID:11695878
https://doi.ieeecomputersociety.org/10.1109/EuroSP53844.2022.00027
https://doi.ieeecomputersociety.org/10.1109/EuroSP53844.2022.00027

Under review as a conference paper at ICLR 2026

Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan
Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Open Unlearning. tofu_llama-2-7b-chat-hf_retain90. https://huggingface.co/
open—-unlearning/tofu_Llama-2-7b—-chat-hf_retain90, 2025a.

Open Unlearning. tofu_llama-2-7b-chat-hf_retain95. https://huggingface.co/
open—unlearning/tofu_Llama-2-7b—-chat-hf_retain95, 2025b.

Open Unlearning. tofu_llama-2-7b-chat-hf_retain99. https://huggingface.co/
open-unlearning/tofu_Llama-2-7b—-chat-hf_retain99, 2025c.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86):2579-2605, 2008. URL http://jmlr.org/papers/v9/vandermaatenl8a.
html.

Mark Vero, Mislav Balunovié, Dimitar I. Dimitrov, and Martin Vechev. Tableak: Tabular data leakage in
federated learning, 2023. URL https://arxiv.org/abs/2210.01785.

Phil Wang, Zack Ankner, Yonghye Kwon, murufeng, Minh-Long Luu (), Srikumar Sastry, Steven Walton,
roydenwa, Ali Hassani, Artem Lukin, Baraa sameeh, JacobLinCool, Jason Chou, Jonathan Tow, Kale
Kundert, Loc Truong, Ryan Russell, SOUMYADIP MAL, umbertov, Zhengzhong Tu, Aditya Mishra,
Andrés, and shabie. lucidrains/vit-pytorch. https://github.com/lucidrains/vit-pytorch, nov 22 2025. URL
https://github.com/lucidrains/vit-pytorch.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger), and Konrad Rieck. Machine unlearning of
features and labels. In Proceedings 2023 Network and Distributed System Security Symposium, NDSS 2023.
Internet Society, 2023. doi: 10.14722/ndss.2023.23087. URL http://dx.doi.org/10.14722/
ndss.2023.23087.

Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q. Weinberger. Learning to invert: Simple adaptive attacks
for gradient inversion in federated learning, 2023a. URL https://arxiv.org/abs/2210.10880.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong. Depn:
Detecting and editing privacy neurons in pretrained language models, 2023b. URL https://arxiv.
org/abs/2310.20138.

Dongyun Xue, Haomiao Yang, Mengyu Ge, Jingwei Li, Guowen Xu, and Hongwei Li. Fast generation-based
gradient leakage attacks against highly compressed gradients. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications, pp. 1-10, 2023. doi: 10.1109/INFOCOMS53939.2023.10229091.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning, 2024. URL https://
arxiv.org/abs/2310.10683.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In Computer
Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part 113, pp. 818-833. Springer, 2014.

15

https://arxiv.org/abs/2307.09288
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain90
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain90
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain95
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain95
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain99
https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain99
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2210.01785
https://github.com/lucidrains/vit-pytorch
http://dx.doi.org/10.14722/ndss.2023.23087
http://dx.doi.org/10.14722/ndss.2023.23087
https://arxiv.org/abs/2210.10880
https://arxiv.org/abs/2310.20138
https://arxiv.org/abs/2310.20138
https://arxiv.org/abs/2310.10683
https://arxiv.org/abs/2310.10683

Under review as a conference paper at ICLR 2026

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020. URL
https://arxiv.org/abs/2001.02610.

Yixin Zou, Abraham H Mhaidli, Austin McCall, and Florian Schaub. " i’ve got nothing to lose": Consumers’
risk perceptions and protective actions after the equifax data breach. In Fourteenth Symposium on Usable
Privacy and security (soups 2018), pp. 197-216, 2018.

16

https://arxiv.org/abs/2001.02610

Under review as a conference paper at ICLR 2026

A FORMAL TREATMENT AND GRADIENT DERIVATIONS

A.1 THE RELOAD ALGORITHM

Algorithm 1 The RELOAD Algorithm for Partially-Blind Unlearning

1: Input: M+, cached V¢ L(D), Dretain
2: weights: 7,: priming step learning rate, e: noise weight, a: reset proportion
3: Output: Trained model approximating Mg~

4:

5: procedure RELOAD(Mpy+, Vo L(D; M(g+)), Dretain)

6: 0 «— 6* +v17p£:VD0£(VD) L—DVQL’(DT@MM)) > Step (2 - 3) (Fig. 2)
7. KV {‘ 0y, £(‘)Vek;%ﬁ‘;:mm)'+ }era > Step (3) (Fig. 2)
8 for 0, € 6’ do

9: if QUANTILE i, (K'Vp,) < o then
10: 0}, < INITIALIZE(:) > Step (4) (Fig. 2)
11: end if
12: end for
13: Train M e/ to convergence on Dretain > Step (5) (Fig. 2)

14: end procedure

Our RELOAD algorithm (Fig. 2) contains the following steps based on the intuition presented in Section 2.3.
(1) Cache the gradients V¢ £(D) at the end of training.

(2) Compute Vo L(Dyetain)-

(3) Perform one step of gradient ascent in the direction of Vo L(D) — Vo L(Dyetain)-

(4) Reinitialize all weights 8, that are smaller than the a-QUANTILE of knowledge values.

(5) fine-tune until convergence on L£(D;.ctain)-

A formal description of this algorithm is shown in Algorithm 1.

For entity unlearning in language models, the RELOAD algorithm requires modifications. The design of
RELOAD for LMs is outlined in Appendix 2?.

17

Under review as a conference paper at ICLR 2026

A.2 GRADIENT INFORMATION AND DERIVATION

Information contained in gradients. RELOAD relies on information about D contained within the cached
gradients, raising the question of how it behaves in the modern setting where networks are trained to
convergence. We first observe that |[VL(D)l|lg, — 0 does not imply |VL(S)|le, — 0 for S C D. This
means that even if the summed-cached gradients are all approximately zero, Step (3) may still induce
non-trivial weight updates. For the same reason, the numerator (from Equation 1) in Step (4) is non-zero.

However, as ||VL(D)|lg, — 0, the denominator in Equation 2?? ap-
proaches €. This does not influence the behaviour of RELOAD , because
this scaling by % applies uniformly to all knowledge values, and « is a
os quantile of the empirical distribution of the knowledge values. As such,
a constant scaling factor applied to the knowledge values will not affect
which weights are re-initialized. Figure 5 shows a smoothed empirical
0 distribution of knowledge values demonstrating the spread of values com-
puted for different weights across a ResNet-18 network.

RELOAD relies on equating Vg L(Dorget) to VoL(D) — VoL(Dretain)-
om0t We provide a full derivation below following from the lin-
earity of differentiation and is used to justify the RELOAD
algorithm in the partially-blind setting of classical machine

Figure 5: (Smoothed) empirical dis-
tribution of knowledge values com-

puted over the weights of ResNet-18 unlearning and corrective ~machine unlearning. For the

trained on SVHN. purpose of corrective unlearning (with replacement), addi-
tional arguments are required and presented in Appendix
AS.

Gradient Derivation. Recall that D = {z;}}¥| with z; € Z. Let z; = (z;,y;) represent an input-output
pair in the dataset. Then, let §; = Mpy(x;) represent the model’s prediction on z;. Subsequently,

VoL (Djorget) = > VoL((wiyi), i) = > VoL((xi,yi), Ui) 2
(zi,Y:)€EDforget (21,Yi)ED\Dretain

where the second equality follows from D, .ci4in = D\Dorget- Equivalently,

= Z VoL(%i,4i),Ui) — Lizs,yi)eDrerain [VOL((TiyYi), Ui)] 3)
(11;yi)eD

= > VeL((zi,vi) i) — > VoL((@i, yi), Ui) “4)
(z4,y:)€D (4,Yi)EDretain

= VO»C(D) - vaﬁ(Dretain)- (5)

A.3 THE RELOAD ALGORITHM FOR LANGUAGE MODELS

RELOAD on LMs leverages insights from investigations into language models (Choi et al., 2025) to produce
richer gradients. This is necessary as LMs are prohibitively-large for the standard RELOAD procedure which
requires Dy.iqin and cached gradients. By reducing the requirements of RELOAD for LMs t0 Dp,ompts, We
enable practical partially-blind unlearning on LMs without modifying the inference pipeline.

In this setting, we assume access to a model trained on a dataset D. Additionally, we assume access to a
dataset of prompts inquiring about D ¢orget, Dprompts (€g. *Who is Harry Potter?” if Dp.gc¢ contained texts
on Harry Potter). Finally, we assume access to a small sample of the retain set D;.¢pair C Dretain. We also
select a subset of model layers to unlearn from, Djqycrs, With total parameters 0,cjecteq. All gradients and

18

Under review as a conference paper at ICLR 2026

computations are performed solely on these layers, enabling parameter-efficient optimization and unlearning.
Given that modern language models are trained on very large datasets and contain billions of parameters, it is
crucial to be able to perform unlearning with small datasets in a parameter-efficient manner (operating on a
small subset of model weights).

This procedure contains the following steps.
(1) Collect the outputs of the model on Dprompts i Doutputs-

(2) Embed each element of D4yt in contextual fine tuning (Choi et al., 2025) to create Deyypedded (S€€
Appendix A.4).

(3) Collect the outputs of the model on Dempedded In Dembedded_outputs-
(4) Collect language-modelling gradients Vg L(D;epqir). but do not update parameters.

(5) Collect language-modelling gradients —V o L(Dembedded_outputs)» and update parameters (one step of
gradient ascent).

(6) Reinitialize all parameters 0 C Ogcjecteq that are smaller than the a-QUANTILE of knowledge values.
(7) fine-tune until convergence on L(D,.¢pqir)-
A formal description is also shown (Algorithm 2).

It is important to note that in this setting, RELOAD does not require storing gradients, reducing space
utilization and overhead. However, due to the requirement of prompts in D)yopmpes, it offers weaker privacy
guarantees (ie. knowing which concept is being unlearned).

Algorithm 2 The RELOAD Algorithm for LMs

1: InplIt: MO* 5 DpromptSs Drepair

2: Parameters: 7),,: priming step learning rate, e: noise parameter, o:: reset proportion
3: Output: Trained model approximating My~

4:

5: procedure RELOAD-LM (Mo, Dpromptss Drepair)

6: Dautputs <~ M(G*)(Dprompts)

7 Dembedded — CFT(Doutputs)

8: Dembedded_outputs <~ M(O*)(Dembedded)

9: KV «— ‘vékL(Dembedded,outputs)H’E
: ‘vekﬂ(prepai7‘)|+€

} > Step (3) (Fig. 2)
01 E€bOsclected

10: egelected <~ ezelected + Upvﬁ (‘C(De"bbedd@d_OuﬁTU«té‘))) > Step (2 - 3) (Flg 2)
11: for 0, € 0. 1ccteq dO

12: if QUANTILE i, (K'Vp,) < a then

13: 0}, < INITIALIZE(:) > Step (4) (Fig. 2)
14: end if

15: end for

16: Train Mg/ to convergence on Dycpair > Step (5) (Fig. 2)

17: end procedure

A.4 CONTEXTUAL FINE-TUNING FOR UNLEARNING FROM LANGUAGE MODELS

Choi et al. (2025) outline that embedding a prompt with their method improves the model’s ability to capture
underlying functional relationships. In addition, this method of fine-tuning LM’s has been shown to lead
to improved learning. Therefore, parameter updates informed through this method are more informed -
suggesting that the gradients produced may be more informed about parameter knowledge themselves.

19

Under review as a conference paper at ICLR 2026

We find that using this method of contextual embedding to produce gradients for RELOAD leads to better
identification of knowledgeable parameters about D,,.op,pts. This wholly informs the functionality of our
unlearning algorithm, leading to quick and effective forgetting from LMs.

Given a prompt and a model M, we extract the knowledge contained within the LM by performing
a forward pass on the prompt x to obtain M(x). M (z) is a textual representation of what the LM
knows about the concept prompted in z. We then insert M (x) into the {content} field of the prompt
presented below which we pass to a black-box LM (in our experiments we use the Anthropic API to access
claude-3-5-haiku-20241022). This yields a contextual fine-tuning prompt, ¥, aimed at extracting
the most knowledge about a topic from an LM. We then perform a forward pass on y to yield M (y) on which
we collect language modeling gradients.

The following is the fine-tuning prompt used for black-box LMs for unlearning:

nnn

Based on the TARGET CONCEPT:
Generate a concise "contextual prompt" that will enhance learning effectiveness and draw out all
relevant knowledge.
The prompt should:
1. Follow the style of [select one learning theory approach: In-Depth Exploration/Reflective
Thinking/Summarization and Synthesis/Focus on Key Concepts/Contextual Understanding/Critical
Analysis/Question-Based Learning]
2. Explicitly identify:

« The fundamental concepts that must be understood

« Key relationships between important elements

« Critical facts that require focus for mastery

+ How these elements connect to and are relevant for reasoning or application
3. Be formatted as a directive that encourages active engagement with the material (approximately
3-5 sentences)
4. Frame the learning in a way that facilitates long-term retention, practical application, and
maximizes extracting knowledge from the learner.
TARGET CONCEPT: {content}
Your contextual prompt should help the learner not just memorize information but develop a deeper,

more applicable understanding of the concept.
nmnnn

A.5 CORRECTIVE UNLEARNING AND GRADIENT DERIVATION

A.5.1 CORRECTIVE UNLEARNING

Goel et al. (2024) introduce the setting of corrective unlearning in which a subset of the training data D,,, C D
is adversely manipulated. This could include mislabeling, backdoors, and data poisoning. The corrective
unlearning case studies the ability of unlearning algorithms to unlearn the adverse effects produced by the
presence of these abberations in the training dataset when a sample of them are identified (Dsorget C D).
This extends machine unlearning beyond privacy-related deletions. Interestingly, in this setting, a naively-

retrained model is not the gold-standard, as manipulated data may remain in D,.ctqi, Unknown to the

practitioner. Existing methods degrade rapidly when v = % < 0.8, and fail under adversarial

corruptions or large-scale poisoning (Pawelczyk et al., 2025).
Following prior work, let D,,, C D denote the subset of training points that are adversely affected (mislabeled,

corrupted, or poisoned). Only a portion of these may be identified as the forget set. Corrective unlearning
aims to obtain My ~ My~ . Therefore, we write

D orge ~ .
L [Dsorget| € [0,1], 6~ £ argmin L(6; D\ D,y,),

D C Dy, Y
forget m |D7n| oo

so + is the fraction of adverse instances that are identified. The difficulty of corrective unlearning increases as
v decreases because Dyetgin = D \ Dyorget N0t D\ Dy,

20

Under review as a conference paper at ICLR 2026

A.5.2 CORRECTIVE UNLEARNING (WITH REPLACEMENT)

In addition to studying the corrective unlearning case, we provide a weaker extension of the corrective setting.
Our expansion to the corrective unlearning setting is applicable when the identified samples in D ;.4¢; are
additionally transformed, corrected, or amended and included in D,ciqip. In this setting, let f : Z — Z
denote a transformation, and write z; = f(z;). Then, Dy ¢sqin represents the result of applying f item-wise to
K elements of D, and applying the identity transform to the remaining NV — K elements, as

Dyetain = {7 }iet,.. .k U{zitick+1,..N- (6)

This is an extension of the corrective unlearning problem, as we wish to “unlearn” the influence of {z;};=1, . x
on our original model, and “relearn" the influence of {2} };=1, . x. This additional setting encompasses the
following data transformations, among others:

1. Covariate Correction: Diyegin = {2} = (2, v:) bi=1,.. .k U {2i}i=k+1,....N, where z} represents a
corrected version of the features x;, and indices K 41, ..., N correspond to those with erroneous covariates
(e.g., data was corrupted during collection/pre-processing).

2. Label Correction: Dyetain = {7 = (x4, Y}) }i=1.... k U{zi }i=k+1,....N, Where y; represents a corrected
version of the label y;, and indices K + 1, ..., N correspond to those that were originally mis-labelled
during annotation.

3. Backdoor Removal: Dyeiqin = {7} = (x},yi) }i=1,...,k U {(®i,yi) }i=k+1,... N, Where z} represents a
version of the features x; lacking the injected backdoor pattern, and indices K + 1, ..., IV correspond to
those that were originally transformed with a backdoor during processing. Models trained with backdoors
in the training set learn shortcuts (Geirhos et al., 2020), which can be exploited to induce misclassification.

For simplicity, we use S€ to denote the complement of the set or dataset S.

In classical and regular corrective unlearning, our goal is to obtain a gradient in the direction of Dy get
for RELOAD. The corrective unlearning (with replacement) case is more general: the goal is to obtain
VoL(D N DE,,.in) & gradient pointing towards the empirical minimum of the loss on elements that are
uniquely contained in D and not in D,.ct4in, and —VoL(D N Dyetain), a gradient pointing away from the
empirical minimum of the loss on elements uniquely contained in D,.c;4;, but not in D. This is a general
abstraction of the difference in gradients between a dataset and a subset of that dataset, to the difference
in gradients between two datasets. Unlearning represents the special case of this framework in which
D N D;igin = Dyorget and D¢ N Diyepgin = (). In the corrective unlearning (with replacement) setting, the
desired gradient is also Vg L£(D) — Vo L(Dyetain); for which we provide justification and a derivation below.
This validates Step (2 - 3) in RELOAD for this problem.

We now outline the derivation of the gradients informing the RELOAD algorithm in the context of corrective
unlearning (with replacement). Recall that in this case, Dyetain 7 P — Dforget, Which invalidates the
justification outlined in Section 2.3. Below, we provide a derivation which justifies the same choice of
gradient for the corrective unlearning (with replacement) setting.

In the setting of corrective unlearning (with replacement), we construct these sets.

DN Dyetain = {2 = (T4, i) bimk+1.. N> D° N Dyetain = {2 = (#'s,y";) ik +1...N, and @)
D N Dretain = {zi = (Ti, ¥i) bi=1..K ®)

21

Under review as a conference paper at ICLR 2026

The gradient then formulates as

> OVoL((@iys),5) — Y VeL((&'s,y'),56) = > VoLl((wi, i), §:) ©
(z4,9:)€ (z4,y;)€ (xi,y;)ED
{(ziyi)i=x 1.8 {@" iy) }i=k 1. N
-1 (z4,y;)€ [VG‘C'(xuyz 7yl ZV«‘)E(xu L) -1 (z;,9i)€ [V9[/((-Ti>yi)7'gi)}) (10)
mDretazn (NDyretain
2i,Yi)€EDretain

*Zvﬂﬁ -Tuyz yz Zveﬁ :rzyyz yz ZV6£ $17y1 y'L +Zv0£ xuyz) yz) (11)
(zi,yi)ED (24,4i)€EDNDretain (2i,9i)€EDretain (zi,4i) EDNDretain
= ZVG[: xz’yz yz ZVGE xlayl) y’b) (12)
(zi,y;)€D (2:,Yi)E€EDretain
= VQ,C(D) - VGE(Dretain) (13)

In this work, we consider the Corrective Unlearning (with replacement) cases that correspond to the classical
corrective unlearning scenarios outlined by Goel et al. (2024). We recreate the experimental settings exactly,
except the samples in Dy, ge¢ are corrected, and included in Dy.eyqin-

B EXPERIMENTAL DETAILS AND RESULTS

B.1 BASELINES FOR CLASSICAL UNLEARNING

Gradient ascent (GA) (Thudi et al., 2022). GA operates by taking several steps of gradient ascent on Do get
thereby removing the trained model from a loss minimum on Dy,yge¢. This approach is not partially-blind.

Fine-Tuning (FT) (Warnecke et al., 2023). FT leverages the concept of catastrophically-forgetting (Mc-
Closkey & Cohen, 1989) to unlearn D4;ge¢ by fine-tuning on Dy.etq4r,. This approach is partially-blind.

Selective Synaptic Dampening (SSD) (Foster et al., 2023). SSD studies the amount of information about
Diorger contained within weights using an approximation of the Fisher Information Matrix. Proportional
to each weight’s ‘importance, SSD scales the weight value to induce forgetting. This approach is not
partially-blind.

Scalable Remembering and Unlearning Bound (SCRUB) (Kurmanyji et al., 2023). SCRUB alternates
optimising between distilling away from the original model on Dy,,.4¢¢ and towards the original model on
Dietain- Notably, the second distillation loss is combined with a task-specific loss (eg. cross-entropy for
classification).

Catastrophically Forgetting the last k-layers (CF-k) (Goel et al., 2022). CF-k leverages the concept of
catastrophically-forgetting (McCloskey & Cohen, 1989) by freezing all but the last & layers of the model and
performing fine-tuning on D,.¢14iy. This approach is partially-blind.

Exact Unlearning the last k-layers (EU-k) (Goel et al., 2022). EU-£ reinitialises the weights of the last &k
layers, freezes the rest, and fine-tunes on D,.c44;5,. This approach is partially-blind.

Salience Unlearning (SalUn) (Fan et al., 2023). SalUn is a framework in which important weights to
Dorger are identified and all but those are frozen for optimisation updates. Authors report the greatest
improvement when combined with Random Labelling (RL) (Golatkar et al., 2020). RL assigns random labels
to instances in Dy, gc¢ and then fine-tunes on this data. This approach is not partially-blind.

Fisher Forgetting (Fisher) (Golatkar et al., 2020). Fisher leverages the Fisher Information Matrix over
Diorget to perform a Fisher-regularised weight update to the model. This approach is not partially-blind.

22

Under review as a conference paper at ICLR 2026

B.2 BASELINES FOR CORRECTIVE UNLEARNING

Baselines are taken directly from Goel et al. (2024). We repeat their details below.

Retrain without Deletion Set (RewoD). RewoD represents a naively retrained model on D,.ctqin = D\
Dorget- Notably in this setting, some affected samples of D,;, may still be in D,.¢sqin.-

Catastrophically Forgetting all layers/Finetuning (CF) (Goel et al., 2022; Warnecke et al., 2023). CF
leverages the concept of catastrophically-forgetting (McCloskey & Cohen, 1989) by performing fine-tuning
on Dretain‘

Selective Synaptic Dampening (SSD) (Foster et al., 2023). SSD studies the amount of information about
Diorger contained within weights using an approximation of the Fisher Information Matrix. Proportional to
each weight’s ‘importance‘, SSD scales the weight value to induce forgetting.

Knowledge Distillation from a Bad Teacher (BadT) (Chundawat et al., 2022). BadT uses a combined
distillation approach by learning from a randomly initialised network on D,,.q¢; and the original model on
Dretai,n~

Scalable Remembering and Unlearning Bound (SCRUB) (Kurmanji et al., 2023). SCRUB alternates
optimising between distilling away from the original model on Dy,.4¢; and towards the original model on
Dy etain- Notably, the second distillation loss is combined with a task-specific loss (eg. cross-entropy for
classification).

B.3 EVALUATION METRICS FOR MACHINE UNLEARNING

We present the evaluation metrics used in our experiments comparing the RELOAD algorithm with baselines.
An up arrow 7 indicates that the higher the better, while a down arrow | indicates that the lower the better.

One of the goals of unlearning is to produce a model that is a close approximation of the naively retrained one.
FSKL and RSKL are evaluation metrics which quantify the dissimilarity between the outputs of the unlearned
model and the retrained model on the same data. AFA, AFE, AFMIA are comparison metrics to benchmark
the difference in performance between the unlearned model and the retrained model on the same data. Similar
behaviour on Dy, 4c¢ implies that the unlearned model is indistinguishable from a retrained one. Unlearning
is only a useful procedure if it is cheap and yields a useful model. RA measures the utility of the unlearned
model, and Cost measures how expensive the unlearning procedure is, relative to retraining from scratch.

23

Under review as a conference paper at ICLR 2026

Statistic Abbr. Description

Accuracy on RA Model accuracy on the Dyetqin. In unlearning, a higher accuracy indicates that the

Dretain (1) unlearning process has not negatively impacted the model’s performance on the retained
data.

Diff. in AFA The change in accuracy on the forget set between the current model and MO A

Accuracy on smaller difference, approaching the accuracy of the retrained model, indicates that the

Diorget () unlearning method has been more effective in "forgetting" the forget set.

Diff. in Error AFE The reduction in error on the forget set between the current model and MO A smaller

on Dyorger () difference, approaching the error of the retrained model, signifies that the unlearning
method has been more effective at "forgetting" the forget set.

Diff. in MIA AFMIA Difference in success rate of a membership inference attack (MIA) on the forget set

Success Rate between the current model and M?” . In this work, we use the attack from (Shokri

on Dyorget (1) etal., 2017) implemented in the repository for (Kurmanji et al., 2023). A success rate
approaching that of the retrained model implies the forgotten data is indistinguishable
to an MIA on in-distribution data that the model was not trained on.

Symmetric RSKL Symmetric KL-Divergence between the logits of the current model and those of MO

KL-Divergence This metric is averaged over all instances in the Dyetqin. A lower symmetric KL

on Dyetain () divergence indicates an unlearning method that behaves similarly on the Dyetqin to a
model retrained from scratch without the forget set.

Symmetric FSKL The Symmetric KL-Divergence between the logits of the current model and those of

KL-Divergence M. This metric is averaged over all instances in the Doy ge:. A lower symmetric

on Dyorget (1) KL divergence indicates that the unlearning method that behaves similarly on the
Diorget to a model retrained from scratch without the forget set.

Cost () Cost Ratio of the runtime of the unlearning method to the runtime of retraining a baseline

model from scratch without the forget set. A lower cost indicates a more computation-
ally efficient method.

Table 4: Evaluation Statistics for Unlearning.

Corrective Unlearning (with and without replacement) Evaluation Metrics

Statistic Abbr. Description

Retain AcCresin Model accuracy on a held out test set (Dit:tfl%) of the same distribution as Dyetqin. In

Accuracy (1) corrective unlearning, a higher accuracy indicates that the corrective unlearning process
has correctly adapted the model to its new training set.

Corrected AccCeonr Model accuracy on the adversely affected data D,,,. In the case of backdoor attacks or

Accuracy (1) noisy corrective unlearning, a higher value indicates the relearned model correctly has
lost its reliance on the backdoor pattern. In label correction setting, the desirable value
is the percentage of samples that did not have their labels flipped (in our experiments,
90%).

Cost ({) Cost Ratio of the runtime of the corrective unlearning method to the runtime of retraining

a baseline model from scratch without the forget set. A lower cost indicates a more
computationally efficient method.

Table 5: Evaluation Statistics for Corrective Unlearning.

24

Under review as a conference paper at ICLR 2026

AcCrein and Acceorr are metrics introduced in Goel et al. (2024) to measure the effectiveness of a corrective
unlearning algorithm. Cost is the same as above, to compare the unlearning algorithm to the expense of full
training.

B.4 CLASSICAL UNLEARNING RESULTS

We present a full set of experiments exploring the effectiveness of the RELOAD algorithm on the classical
unlearning task of item unlearning. This suite of experiments include unlearning randomly-selected samples
and correlated samples. Across these categories we select 10% and 30% of training data samples for random-
sample unlearning, and 100 data points from a single class for correlated-sample unlearning. These cases are
explored across 3 datasets (CIFAR10, CIFAR100, and SVHN) and 2 models (ResNet-18 and VGG16-BN).

As previously discussed, RELOAD operates in a partially-blind setting. This means that within the results
presented below, RELOAD performs this unlearning without access t0 Do get-

RELOAD unlearns randomly-selected samples. We randomly assign 10% of CIFAR-100 training samples
t0 Dyorget, to showcase how well each method can unlearn arbitrary training samples from a ResNet-18 and
report our results in Table 10. RELOAD achieves the highest RA, while maintaining the lowest AFA, AFE,
AFMIA, and FSKL of all approaches. This suggests that RELOAD successfully approximates My~ better
than the baselines. That FT achieves a lower RSKL than RELOAD is hardly surprising, as RSKL measures
dissimilarity in logits on D;.¢tqin, and FT adjusts a converged model My~ to fit a subset of its original task.
Similarly, the computational cost of RELOAD , though similar to many baselines, is considerably greater than
either SSD or GA.

RELOAD efficiently unlearns correlated samples. We randomly assign 100 samples from a single class
of the training data to D, get, to evaluate how well each method can unlearn arbitrary but related training
samples and report our results in Table 17. RELOAD achieves the lowest AFMIA and FSKL of all approaches
and very close to the lowest AFA, AFE, and RSKL of all approaches, suggesting that RELOAD closely
approximates My~ in this setting. RELOAD is marginally outperformed by Fisher in these settings, but is far
more feasible, as Fisher requires over twice as much time as retraining. Although RELOAD achieves an RA
competitive with that of most baselines, naive gradient ascent, CF-k, and EU-k yield a marginally higher RA.
This can be attributed to the small number of unlearning samples; optimizing to maximize the loss on these
samples does not provide a strong enough gradient update. CF-k and EU-£ both make few weight updates to
M-+, which leads to a high RA but poor performance on unlearning metrics like AFA and AFE.

Further experimental results on random 10% and random 30% forgetting are provided in the tables below
(Appendix B.4.1, B.4.2). Results on 100 correlated-sample unlearning are provided in Appendix B.4.3.

25

Under review as a conference paper at ICLR 2026

B.4.1 RANDOM 10% FORGETTING

Method RA (D) AFA (1) AFE (1) AFMIA (]) Cost (1) RSKL (1) FSKL (1)

GA 98.3810.21 3.86+0.66 0.2140.07 0.04+0.02 0.0040.00 0.06+0.02 0.66+0.06
FT 98.24;&0,21 1.45:|:0.53 0.16:&0,03 0.03i0‘01 0.27;&0,00 0.05:|:0.01 0.48i0.04
SSD 20.02429.99 75.65426.45 1.8810.62 0.01+0.02 0.01+0.00 8.30+3.11 7.83+2.70
SCRUB 98.4140.20 3.89+0.70 0.2140.07 0.04+0.02 0.02+0.00 0.06+0.02 0.6540.04
CF-k 98.2810.23 3.81+0.71 0.2140.07 0.05+0.02 0.214+0.00 0.06+0.02 0.55+0.04
EU-k 98.3140.21 3.83+0.71 0.2140.07 0.05+0.01 0.214+0.00 0.07+0.02 0.56+0.04
SalUn 99.78+0.05 3.6810.48 0.2610.02 0.01+0.01 0.16+0.01 0.0640.02 0.5540.04
Fisher 99.5140.17 3.8340.44 0.0740.01 0.0240.00 1.83+0.06 0.07+0.02 0.5610.04
RELOAD (OURS) 99.4949.10 1.83+0.83 0.0540.04 0.00+0.00 0.2640.09 0.1249.01 0.534+0.07

Retrained (Baseline) 99.9940.01 94.4040.72 0.2340.08 0.5040.01 - - -

Table 6: 10% Random Forgetting on CIFAR-10 (ResNet-18)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of Mg~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE (), and AFMIA (/) present the absolute difference
in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results show that
RELOAD outperforms all the baselines on RA, AFE, AFMIA by large margins. RELOAD performs competitively on
the AFA, FSKL, and RSKL metrics, but is outperformed by FT. RELOAD incurs a higher computational cost than other
baselines other than FT.

Method RA (D AFA (1) AFE (1) AFMIA (1) Cost (1) RSKL (J) FSKL (1)
GA 98.38+0.21 4.4040.41 0.18+0.02 0.05+0.01 0.0040.00 0.06+0.02 0.66+0.06
FT 98.241¢.21 4.3340.37 0.1840.02 0.04+0.01 0.26+0.02 0.05:{:0.01 0.4810.04
SSD 20.02429.99 75.41426.74 1.8910.62 0.02+0.03 0.01+0.00 8.30+3.11 7.83+2.70
SCRUB 98.4140.20 4.4710.40 0.1940.02 0.05+0.01 0.0240.00 0.06+0.02 0.6540.04
CF-k 98.28.10.23 4.4710.39 0.1940.02 0.05+0.01 0.17+0.01 0.0640.02 0.5540.04
EU-k 98.31+0.21 4.4810.40 0.1940.02 0.06+0.01 0.1710.01 0.07+0.02 0.56+0.04
SalUn 99.864.0.04 1.9810.48 0.0940.02 0.04+0.01 0.17+0.00 0.06+0.02 0.554+0.04
Fisher 99.6140.14 0.1540.06 0.00+0.00 0.0140.01 2.1740.04 0.0740.02 0.5640.04
RELOAD (OURS) 99.7640.16 0.084¢.08 0.0140.00 0.0049.00 0.1240.01 0.0540.03 0.194¢.02
Retrained (Baseline) 99.99;&0,00 95.16:&0,30 0.20:&0,02 0.50i0‘00 - - -

Table 7: 10% Random Forgetting on SVHN (ResNet-18)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of Mg~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE ({), and AFMIA ({) present the absolute difference
in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results show that
RELOAD outperforms all the baselines on RA, AFA, AFE, AFMIA, FSKL, and RSKL by large margins. RELOAD
performs competitively on the Cost, but incurs a higher computational cost than other baselines other than FT, CF-k,
EU-k.

26

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE (1) AFMIA (1) Cost (1) RSKL (1) FSKL (})
GA 98.40+0.23 4.4310.44 0.2140.02 0.03+0.01 0.0040.00 0.06+0.02 0.65+0.06
FT 98.304+0.18 4.4940.43 0.2240.02 0.0340.01 0.2410.03 0.0540.01 0.4940.0a
SSD 22.88+34.01 70.45429.04 1.8010.69 0.01+0.01 0.00t0.00 7-99+3.52 7.56+3.06
SCRUB 98.43+0.22 4.50+0.41 0.2240.02 0.03+0.01 0.0240.00 0.06+0.02 0.66+0.04
CF-k 98.3410.24 4.5140.42 0.2240.02 0.0410.01 0.2140.03 0.0610.02 0.55+0.05
EU-k 98.3440.23 4.5140.42 0.2240.02 0.04+0.01 0.214+0.03 0.06+0.02 0.561+0.05
SalUn 99.944 .02 3.88+0.62 0.1340.01 0.0440.01 0.15+0.00 0.06+0.02 0.5540.05
Fisher 99.5540.18 0.0440.0a 0.0040.00 0.0040.00 1.46+0.03 0.06+0.02 0.5640.05
RELOAD (OURS) 99.5040.11 0.6540.72 0.0440.04 O‘OO:EO.OO 0.2640.10 0.1219.01 0.5340.08
Retrained (Baseline) 99.99i0_00 95‘08:&0,31 0.24:&0,02 OASOiO‘Uo - - -

Table 8: 10% Random Forgetting on SVHN (VGG16-BN)

1: the goal is to have as high of a value as possible, A*: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA ({) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins aside from Fisher.
However, Fisher incurs a substantially higher Cost, making it far less efficient than retraining from scratch. Therefore,
Fisher is impractical, and RELOAD demonstrates the best practicality as an unlearning mechanism. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the
other baselines.

Method RA (1) AFA (1) AFE (1) AFMIA (1) Cost ({) RSKL (1) FSKL({)
GA 98.4140.25 26.40+1.18 1.6440.07 0.1440.03 0.0040.00 0.064¢.03 0.6640.06
FT 98.2740.20 12.6541.81 1.164+0.07 0.0810.02 0.2510.03 0.0640.01 0.5040.03
SSD 22.86+34.01 61.38+15.72 2.57+0.55 0.0249.05 0.0040.00 8.01t3.53 7.5713.07
SCRUB 98.4340.23 26.62+1.10 1.6640.06 0.1440.03 0.0240.00 0.064¢.02 0.6640.04
CF-k 98.304+0.27 26.26+1 .25 1.6840.06 0.1540.02 0.2740.04 0.0640.02 0.5640.04
EU-k 98.3510.25 26.1611.26 1.67+0.06 0.1540.02 0.271+0.04 0.0640.02 0.57+0.04
RELOAD (OURS) 99.5110.00 3.371155 0.4040.07 0.0240.01 0.24:011 0.1lig.01 0.51%0.03

Retrained (Baseline) 97.8040.33 68.2510.49 1.8240.06 0.5040.01 - - -

Table 9: 10% Random Forgetting on CIFAR-100(VGG16-BN)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA ({), AFE ({), and AFMIA () present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

27

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE (1) AFMIA (1) Cost (1) RSKL (1) FSKL(})
GA 93.8140.75 18.7742.43 0.9540.14 0.2140.06 0.0040.00 0.29%0.09 2.6210.05
FT 96.00+0.12 16.4642.47 0.8940.14 0.19+0.08 0.2710.00 0.03t0.01 2.1140.06
SSD 1.0140.02 T4.17+2.04 4.1940.59 0.1540.21 0.0140.00 14.9041 .24 11.8141.24
SCRUB 93.76+0.74 18.8542.39 0.9540.14 0.2040.06 0.0240.00 0.2940.09 2.6340.06
CF-k 94.7540.41 18.0112.60 0.9410.14 0.2040.06 0.2140.00 0.1410.03 2.4710.07
EU-k 94.3240.49 17934255 0.9410.14 0.2010.06 0.2110.00 0.1940.05 2.33+0.05
SalUn 99.0640.22 13.14 425 53 0.1140.09 7.394+2.60 0.164-0.00 0.06+0.02 0.5540.0a
Fisher 97.7610.78 22994230 0.9540.14 7.2712.48 1.7840.04 0.0740.02 0.561+0.04
RELOAD (OURS) 99.5610.11 0.301050 0.0410.02 0.0110.01 0.121001 0.151003 1.234011

Retrained (Baseline) 99‘98:&0,01 74.89:&2.03 1.06:&0.13 0.63:&0420 - - -

Table 10: 10% Random Forgetting on CIFAR-100 (ResNet-18). The bottom row presents the absolute value of Mg~
on each metric. For any metric with A, the raw value is instead reported. Rows for AFA (), AFE (J.), and AFMIA
(1) present the absolute difference in the value of the corresponding method on this metric to the value of My~ on the
metric. These results show that RELOAD outperforms all the baselines on RA, AFA, AFE, AFMIA, and FSKL by large
margins. RELOAD performs competitively on the RSKL metric, outperformed by FT and CF-k. RELOAD incurs a higher
computational cost than most baselines, but is cheaper than FT, CF-k, and EU-k.

B.4.2 RANDOM 30% FORGETTING

Method RA (1) AFA (1) AFE (1) AFMIA (}) AAUC (1) Cost (}) RSKL (1) FSKL (})
GA 17.20430.17 77.46126.25 8.8616.48 0.0240.02 0.01+0.02 0.0140.00 0.06+0.02 0.66+0.06
FT 99.6940.24 3.9240.53 0.1940.02 0.0240.01 0.02+0.00 0.2840.01 0.0540.01 0.4840.04
SSD 19.85429.65 74.50+25.90 1.8210.58 0.01+0.02 0.01+0.02 0.0140.00 8.30+3.11 7.83+2.70
SCRUB 82.5941 39 12.7241 51 0.3140.04 0.00+40.00 0.0040.00 0.07+0.00 0.0640.02 0.6540.04
CF-k 99.58+0.11 6.2840.19 0.2740.01 0.054+0.00 0.05+0.00 0.1140.00 0.06+0.02 0.5540.04
EU-k 99.59+0.15 6.2840.22 0.27+0.01 0.05+0.01 0.05+0.01 0.2240.01 0.07+0.02 0.56+0.04
SalUn 99.63+0.08 2.97+0.50 0.37+0.02 0.0240.02 0.0240.02 0.20+0.00 0.06+0.02 0.55+0.04
Fisher 99.50+0.18 2.3740.47 0.0810.01 0.0240.00 0.0240.01 1.7940.03 0.0710.02 0.5610.04
RELOAD (OURS) 99.5140.15 1.3540.83 0.0540.02 0.0040.00 0.0040.00 0.3040.10 0.1240.01 0.5340.07
Retrained (Baseline) 99~99i0,01 94.40;&0,72 0.23i0_03 0‘5():&(]‘01 O‘SOi(),oo - - -

Table 11: 30% Random Forgetting on CIFAR-10(ResNet-18)

1: the goal is to have as high of a value as possible, A*: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA ({) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-£.

28

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE(]) AEMIA()) AAUC(4) Cost(}) RSKL (!) FSKL ({)
GA 18.97428.44 73.93423.07 0.4310.00 0.0510.03 0.0140.01 0.0140.00 0.0610.02 0.66+0.06
FT 99.37+0.21 4.4140.53 0.274+0.02 0.0240.01 0.0240.00 0.2740.01 0.0510.01 0.4810.04
SSD 22.73429.27 70.55123.73 1.6710.60 0.01to.02 0.01+0.02 0.0140.00 8.30+3.11 7.83+2.70
SCRUB 14.2945. 02 77.1045.08 2.0240.57 0.01t0.01 0.0140.00 0.08+0.00 0.0610.02 0.6510.04
CF-k 99.46+0.19 8.16+0.27 0.4040.02 0.0540.01 0.05+0.00 0.15+0.00 0.06+0.02 0.55+0.04
EU-k 99.47+0.19 8.1710.27 0.4040.02 0.05+0.01 0.0540.00 0.30t0.01 0.0710.02 0.5610.04
SalUn 99.7340.06 0.9040.25 0.251001 0.0l40.01 0.0l10.00 0.1840.00 0.061002 0.55+0.04
Fisher 99.37+0.21 3.66+0.30 0.1340.01 0.0210.01 0.0240.01 1.07+0.02 0.0740.02 0.56+0.04
RELOAD (OURS) 98.4341.49 2.4641 63 0.0740.05 0.0040.00 0.0040.00 0.57+0.13 0.1240.01 0.534+0.07
Retrained (Baseline) 99.9310.02 94.4049.72 0.2340.08 0.50+0.01 0.5040.00 - - -

Table 12: 30% Random Forgetting on CIFAR-10(VGG16-BN)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA (]) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

Method RA (1) AFA (1) AFE(]) AFMIA (L) AAUC()) Cost(}) RSKL (!) FSKL ({)
GA 36.614+42.78 45.98428.62 4.7113.85 0.06+0.08 0.06+0.07 0.0140.00 0.06+0.02 0.66+0.06
FT 99.96+0.02 24.9410.90 1.0240.04 0.13+0.01 0.1310.01 0.2740.02 0.0510.01 0.48+0.04
SSD 11.89432.69 65.53+14.26 3.154+0.75 0.03+0.07 0.0240.06 0.01tp.00 8.30x3.11 7.83%2.70
SCRUB 23.96+2.23 48.86+2.24 1.9740.13 0.01+0.01 0.01+0.00 0.0740.00 0.06+0.02 0.65+0.04
CF-k 98.8540.40 21.3841.27 0.9240.04 0.1240.01 0.1140.01 0.10+0.01 0.0640.02 0.5540.04
EU-k 98.30+0.55 20.18+0.68 0.8940.04 0.1110.01 0.1140.010 0.2140.02 0.07+0.02 0.56+0.04
SalUn 97.33+0.30 40.3113.78 1.2040.04 0.10+0.01 0.1040.01 0.2040.00 0.0610.02 0.55+0.04
Fisher 97.761+0.78 1.5440.27 0.084+0.01 0.0310.01 0.03+0.01 1.77+0.03 0.07+0.02 0.56+0.04
RELOAD (OURS) 99.561+0.06 1.47 11 .05 0.08+0.05 0.0140.01 0.00+0.00 0.3240.04 0.1240.01 0.53+0.07

Retrained (Baseline) 99.98 10 .01 94.404.9.72 0.2340.08 0.504+0.01 0.50+0.00 - - -

Table 13: 30% Random Forgetting on CIFAR-100(ResNet-18)

1: the goal is to have as high of a value as possible, A*: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (|), AFE ({), and AFMIA () present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

29

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE(]) AEMIA()) AAUC(4) Cost(}) RSKL (!) FSKL ({)
GA 10.75430.87 62.76411.35 2.1040.05 0.1510.09 0.0240.05 0.0140.00 0.0610.02 0.66+0.06
FT 98.30+£0.53 15.8641.34 1.4010.06 0.06+0.01 0.06+0.00 0.2840.01 0.0510.01 0.48+0.04
SSD 11.72432.14 62.23112.36 2.43+0.19 0.0210.04 0.02+0.05 0.01t0.00 8.30x3.11 7.83+2.70
SCRUB 1.60+0.66 65.78+0.92 2.394+0.10 0.01%0.00 0.01+0.00 0.08+0.00 0.0610.02 0.65+0.04
CF-k 97.61+0.61 29.83+0.65 1.9540.04 0.1410.01 0.144+0.010 0.1540.00 0.06+0.02 0.55+0.04
EU-k 97.7110.78 29.8410.84 1.9510.04 0.1410.01 0.1440.010 0.30x0.010 0.0710.02 0.56+0.04
SalUn 08.8640.27 3.2841 23 0.421001 0.0040.00 0.0010.00 0.1840.00 0.061002 0.55+0.04
Fisher 97.39+0.91 14.1940.81 0.56+40.02 0.07+0.02 0.07+0.00 1.06+0.02 0.07+0.02 0.56+0.04
RELOAD (OURS) 88.9549.23 8.9445.71 0.1840.09 0.0040.00 0.00+0.00 0.60+0.02 0.1240.01 0.53+0.07
Retrained (Baseline) 99.85.10.02 94.4040.72 0.2340.08 0.5040.01 0.5040.00 - - -

Table 14: 30% Random Forgetting on CIFAR-100(VGG16-BN)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA (]) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

Method RA (1) AFA (1) AFE (1) AFMIA()) AAUC(l) Cost (1) RSKL (1) FSKL ({)
GA 36.70+41.55 59.35439.81 6.221555 0.0210.03 0.0240.03 0.0140.00 0.06+0.02 0.66+0.06
FT 100.0040.00 4.73%0.20 0.1940.01 0.0410.01 0.0440.00 0.2840.01 0.0510.01 0.4810.04
SSD 20.64129.80 75.32426.33 1.89+0.63 0.0l1i0.03 0.0140.03 0.0ltp.00 8.30x3.11 7.83%2.70
SCRUB 97.23+0.29 0.4940.21 0.0240.01 0.00+0.00 0.004+0.00 0.0840.00 0.06+0.02 0.65+0.04
CF-k 100.00+0.01 4.7940.22 0.1940.01 0.05%0.01 0.0540.01 0.10t0.00 0.061+0.02 0.55%0.04
EU-k 99.981+0.05 4.7640.25 0.18+0.01 0.05%0.01 0.0540.01 0.1940.00 0.0710.02 0.56+0.04
SalUn 99.6510.09 1.8410.31 0.0940.01 0.0210.01 0.0240.01 0.2249.00 0.0610.02 0.55%0.04
Fisher 99.62+0.14 0.09+0.02 0.00+0.00 0.01t0.01 0.01+0.01 2.1240.03 0.07+0.02 0.56+0.04
RELOAD (OURS) 99.5810.30 0.08+0.06 0.01+0.01 0.0040.01 0.00+0.01 0.1140.05 0.1240.01 0.53+0.07

Retrained (Baseline) 100.0040.00 94.7240.12 0.2540.01 0.50+0.00 0.50+0.00 - - -

Table 15: 30% Random Forgetting on SVHN(ResNet-18)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (|), AFE ({), and AFMIA () present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

30

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE(}) AFMIA()) AAUC(l) Cost (1) RSKL (1) FSKL ({)
GA 16.05429.50 79.62126.16 0.2510.01 0.05%0.03 0.0140.02 0.01t0.00 0.0610.02 0.66+0.06
FT 100.0040.00 4.8410.16 0.23+0.010 0.03%0.01 0.0340.00 0.2840.00 0.0510.01 0.4810.04
SSD 2417402849 71.83425.07 1.85£0.60 0.0110.02 0.0140.02 0.0140.00 8.30+3.11 7.83+2.70
SCRUB 24.26 41407 70.7241355 1.8540.38 0.01to0.00 0.0140.00 0.08+0.00 0.061+0.02 0.6510.04
CF-k 99.60+0.14 4.8410.16 0.23+0.01 0.04%0.01 0.0440.00 0.1249.00 0.061+0.02 0.55+0.04
EU-k 99.60+0.14 4.8540.16 0.2310.01 0.0410.01 0.0440.01 0.2540.00 0.07+0.02 0.56+0.04
SalUn 99.9110.04 0.8140.12 0.0420.01 0.0010.00 0.001000 0.1910.00 0.0640.02 0.5510.04
Fisher 99.53+0.16 0.0440.03 0.00+0.00 0.00+0.00 0.0040.00 1.43+0.01 0.07+0.02 0.5640.04
RELOAD (OURS) 99.37+0.15 0.1040.09 0.0240.01 0.0040.00 0.0040.00 0.154+0.01 0.1240.01 0.5340.07

Retrained (Baseline) 100.004¢.00 94.4040.72 0.2340.08 0.50+0.01 0.50+0.00 - - -

Table 16: 30% Random Forgetting on SVHN(VGG16-BN)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA (]) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
other baselines other than FT, CF-k, and EU-k.

B.4.3 RANDOM 100 IN CLASS FORGETTING - ADDITIONAL EXPERIMENTS

Method RA (1) FA (AY) FE (AY) EMIA (AY) Cost ({) RSKL ({) FSKL ()
GA 99.57 +0.02 4.3710.25 0.17+0.01 0.05+0.01 0.004+0.00 0.05+0.00 0.5240.02
FT 99.9940.00 4.33%0.22 0.17+0.01 0.0410.01 0.2710.00 0.0040.00 0.43+0.02
SSD 12.75+4.69 82.5244.73 2.1240.06 0.0110.01 0.0110.00 8.5540.13 7.8840.12
SCRUB 99.7940.01 4.4440.26 0.18+0.01 0.05+0.01 0.03+0.00 0.03+0.00 0.5040.02
CF-k 99.76 +0.01 4.47+0.24 0.18+0.01 0.05+0.01 0.23+0.02 0.03+0.00 0.50+0.02
EU-k 99.63+0.01 4.4610.25 0.18+0.01 0.05+0.01 0.2310.02 0.05+0.00 0.47+0.02
SalUn 99.90+0.04 3.1411.00 0.1340.03 0.0410.02 0.1710.00 0.03+0.00 0.5040.02
Fisher 99.57+0.02 0.0940.05 0.0040.00 0.0140.00 2.17+0.04 0.0540.00 0.4740.02
RELOAD (OURS) 99.681017 0.2510.21 0.0lig.01 0.0040.00 0.1240.01 0.061002 0.21t0.02

Retrained (Baseline) 99.9940.00 95.121¢.23 0.2040.01 0.5040.00 - - -

Table 17: 100 In Class Random Forgetting on SVHN (ResNet-18)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to have
as low of a value as possible. The bottom row presents the absolute value of Mg~y on each metric. For any metric with
A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA (/) present the absolute difference in the
value of the corresponding method on this metric to the value of My~ on the metric. These results show that RELOAD
outperforms all the baselines on AFA, AFE, AFMIA, and RSKL by large margins. RELOAD performs competitively on
RA and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

31

Under review as a conference paper at ICLR 2026

Method RA (1) AFA (1) AFE (1) AFMIA (1) Cost (1) RSKL (1) FSKL (})
GA 98.30+0.04 5.4310.55 0.2140.01 0.04+0.00 0.0040.00 0.07+0.00 0.63+0.04
FT 98.3840.15 3.1940.41 0.1540.02 0.0240.00 0.2710.00 0.0540.01 0.4640.03
SSD 10.04+0.06 83.15+0.87 2.07+0.02 0.0040.00 0.01+0.00 9.39+0.08 8.80+0.05
SCRUB 98.33+0.04 6.70+0.55 0.2240.01 0.0510.00 0.0210.00 0.07+0.00 0.6310.03
CF-k 98.27+0.06 5.2340.55 0.2140.01 0.0510.01 0.2310.03 0.07+0.00 0.5410.02
EU-k 98.28 £0.07 5.2540.54 0.2249.01 0.05+0.01 0.23+0.03 0.07+0.00 0.5240.03
SalUn 99.74+0.04 4.1140.45 0.27+0.02 0.01+0.01 0.16+0.00 0.07+0.00 0.54+0.02
Fisher 99.4510.02 3.6040.21 0.0640.01 0.0240.00 1.78+0.03 0.07+0.00 0.5240.03
RELOAD (OURS) 97.00+1 .09 3.4640.86 0.08:|:0.02 0.01+0.01 0.3140.09 0.1140.03 0.5240.09

Retrained (Baseline) 98.99:“).25 92.81:&0,52 0.24i0,01 0.50i0.00 - - -

Table 18: 100 In Class Random Forgetting on CIFAR-10(ResNet-18)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of Mg~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE ({), and AFMIA () present the absolute difference
in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results show that
RELOAD outperforms all the baselines on AFE. RELOAD performs competitively on RA, AFA, AFMIA, RSKL, and
FSKL but is outperformed. FT which performs well, empirically makes little adjustment to the actual FA value. RELOAD
also incurs a higher computational cost than the other baselines.

Method RA (1) AFA (1) AFE (]) AFMIA (1) Cost () RSKL (1) FSKL(})
GA 99.0240.05 6.9410.32 0.33+0.01 0.04+0.01 0.0040.00 0.10%0.00 0.9140.03
FT 98.72+0.30 3.5040.37 0.2310.01 0.02+0.01 0.2710.01 0.08+0.01 0.6540.03
SSD 9.9940.04 81.8840.50 2.1249.30 0.0140.01 0.0140.00 10.884+0.79 10.2540.83
SCRUB 97.3143.57 5.7942.28 0.14+0.08 0.04+0.01 0.03+0.00 1.3740.45 1.7540.45
CF-k 99.0340.05 6.9510.33 0.33+0.01 0.05+0.01 0.37+0.08 0.10+0.01 0.79+0.02
EU-k 99.0240.05 6.9640.35 0.33+0.01 0.0540.01 0.37+0.08 0.1040.00 0.78+0.04
SalUn 99.8040.02 0.3340.36 0.1240.01 0.0140.00 0.1440.00 0.1040.01 0.7940.02
Fisher 99.3240.03 3.8140.46 0.1040.01 0.0210.00 1.07+0.03 0.1040.00 0.781+0.04
RELOAD (OURS) 98.5710.24 1.8841.62 0.1440.09 0.01i0.01 0.154.0.07 0.1040.01 0.57i0.09

Retrained (Baseline) 99‘56:&0,08 92.02;&0,32 0.37i0_01 0‘5():&(]‘01 - - -

Table 19: 100 In Class Random Forgetting on CIFAR-10 (VGG16-BN). The bottom row presents the absolute value
of Mg~y on each metric. For any metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and
AFMIA (]) present the absolute difference in the value of the corresponding method on this metric to the value of Mg~
on the metric. These results show that RELOAD outperforms all baselines on AFA, AFE, AFMIA, FSKL indicating
it behaves the closes to Mg~y on Dyorget. RELOAD performs competitively on RA and RSKL, falling behind of the
leading method by 0.46 for RA and 0.02 for RSKL. RELOAD incurs a higher computational cost than most baselines, but
is cheaper than FT, CF-k, and EU-k. Other experimental settings are presented in Appendix B.4.3

32

Under review as a conference paper at ICLR 2026

Method RA (1) FA (AY) FE (AY) EMIA (AY) Cost ({) RSKL () FSKL ({)
GA 98.3240.03 23.33+1.06 1.00+o0.06 0.07+0.06 0.0040.00 0.07+0.00 0.65+0.06
FT 98.2240.23 16.8411.08 0.8210.06 0.0510.03 0.2710.00 0.0540.01 0.4840.0a
SSD 10.0140.05 68.67£1.97 5.7510.99 0.38+0.14 0.0040.00 9.33+0.06 8.7240.04
SCRUB 98.35+0.03 27.554+1.43 1.0240.06 0.07+0.06 0.0240.00 0.07+0.00 0.6540.04
CF-k 98.2240.11 21.8440.88 0.99+0.05 0.07+0.06 0.2140.01 0.07+0.00 0.5440.04
EU-k 98.2410.03 21.9540.78 0.99+0.05 0.07+0.06 0.2110.01 0.07+0.00 0.5540.04
SalUn 99.57+0.02 12.0843.13 0.4810.07 0.0240.02 0.1410.00 0.07+0.00 0.5440.04
Fisher 97.5040.06 10.7241.08 0.1940.04 0.03+0.04 1.814+0.04 0.07+0.00 0.5510.04
RELOAD (OURS) 99.4740.00 3.4441 46 0.2040.16 0.0249.02 0.2640.11 0.1240.01 0.53+0.08

Retrained (Baseline) 95.5040.24 70.05+1.99 1.1340.07 0.8340.20 - - -

Table 20: 100 In Class Random Forgetting on CIFAR-100(ResNet-18)

1: the goal is to have as high of a value as possible, A: the value in the table is the difference between the result of
the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal
is to have as low of a value as possible. The bottom row presents the absolute value of My~ on each metric. For any
metric with A, the raw value is instead reported. Rows for AFA (), AFE ({), and AFMIA (]) present the absolute
difference in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results
show that RELOAD outperforms all the baselines on RA, AFA, AFE, and AFMIA, by large margins. RELOAD performs
competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the
other baselines.

Method RA (1) FA (AY) FE (A}) EMIA (A%) Cost ({) RSKL ({) FSKL ()
GA 98.3140.03 28.5542.02 1.7040.04 0.03+0.02 0.0040.00 0.0740.00 0.6510.04
FT 98.1440.25 11.4444 77 1.07+0.09 0.014¢.01 0.28+0.01 0.0640.01 0.474+0.03
SSD 10.0040.03 63.864£2.12 2.7010.13 0.4540.04 0.0040.00 9.36+0.05 8.7540.04
SCRUB 98.33+0.02 30.5941.25 1.7640.05 0.04+0.01 0.02+0.00 0.07+0.00 0.6310.03
CF-k 98.1540.12 26.86+2.16 1.7540.07 0.04+0.01 0.34+0.07 0.07+0.00 0.5440.03
EU-k 98.2210.04 25.37+1.35 1.6810.06 0.03+0.02 0.33+0.07 0.07+0.00 0.55+0.03
SalUn 99.40+0.04 7.5610.47 0.31+0.16 0.00+0.00 0.13+0.00 0.07+0.00 0.5410.03
Fisher 97.1640.03 19.5540.59 0.6740.05 0.03+0.00 1.0540.04 0.07+0.00 0.5540.03
RELOAD (OURS) 99.4740.0a 1.8441.26 0.1440.02 0.03+0.02 0.2940.01 0.1240.01 0.5140.02

Retrained (Baseline) 93.8541.04 65.2612. 16 1.9540.10 0.9340.02 - - -

Table 21: 100 In Class Random Forgetting on CIFAR-100(VGG16-BN)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of M~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE (), and AFMIA () present the absolute difference
in the value of the corresponding method on this metric to the value of M~ on the metric. These results show that
RELOAD outperforms all the baselines on RA, AFA, and AFE by large margins. RELOAD performs competitively on
AFMIA, RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other
baselines.

33

Under review as a conference paper at ICLR 2026

Method RA (1) FA (AY) FE (A}) FMIA (A%) Cost ({) RSKL ({) FSKL ()

GA 99.57+0.02 4.4640.24 0.2240.01 0.03+0.01 0.0040.00 0.0540.00 0.5140.02
FT 99.99:|:0.001 4.47;&0,23 0.22i0.01 0.03;&0,01 0.27;&0,00 0.00:‘:0.00 0.43:&0,02
SSD 14.5513.93 84.1941.55 2.05%0.01 0.0040.00 0.01+t0.00 8.51+0.03 7.8410.02
SCRUB 99.79+0.01 9.5549.76 0.3640.34 0.03+0.01 0.0240.00 0.03+0.00 0.5040.03
CF-k 99.76+0.01 4.5340.25 0.2340.01 0.0410.01 0.2410.02 0.03+0.00 0.5040.02
EU-k 99.63+0.02 4.5440.23 0.2310.01 0.0410.01 0.2410.02 0.0540.00 0.4710.02
SalUn 99.9410.01 5.0411 37 0.1640.04 0.03+0.01 0.1410.01 0.03+0.00 0.50+0.02
Fisher 99.4840.02 0.09+0.06 0.00+0.00 0.00+0.00 1.4240.14 0.0540.00 0.4710.02
RELOAD (OURS) 99.6740.14 0.9341.21 0.0540.06 0.01+0.01 0.1440.08 0.06+0.02 0.2140.02

Retrained (Baseline) 99.99940.001 95.09+40.19 0.2040.01 0.5040.00 - - -

Table 22: 100 In Class Random Forgetting on SVHN (VGG16-BN)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of Mg~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE (), and AFMIA (/) present the absolute difference
in the value of the corresponding method on this metric to the value of Mg~y on the metric. These results show that
RELOAD outperforms all the baselines on AFA, AFE, and FSKL, by large margins. RELOAD performs competitively
on RA, AFMIA, and RSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other
baselines.

B.5 LANGUAGE MODEL ENTITY UNLEARNING RESULTS

Unlearning for language models (LMs). When D is a corpus of texts, we express forgetting via a set
of prompts D,-ompts that target concepts or entities in D fopget, and possibly a small repair set Dyepair C
Dretain'

The results presented below are taken from prior work (Liu et al., 2024a) with results for RELOAD appended
to the bottom due to computational constraints. In these result tables, the gold-standard retrained model is
denoted ‘Retain’.

Due to computational constraints and the lack of open-source retrained models for Phi-1.5 in the 1% and 5%
forgetting case, our results for Phi-1.5 are limited to the 10% forgetting case.

34

Under review as a conference paper at ICLR 2026

Split Method Change in Model Utility from Original Forget Quality
Original +0.0000 0.0030
Retain -0.0131 1.0000
Grad Ascent -0.0233 0.0068
Grad Diff -0.0198 0.0143

1% KL Min -0.0221 0.0068
Pref Opt -0.0021 0.0971
Prompt -0.0628 0.0068
NPO -0.1725 0.7659
NPO-KL -0.1703 0.4046
NPO-RT -0.1361 0.5786
ECO (Rand Noise) +0.0000 0.9188
ECO (Zero-Out) +0.0000 0.9900
ECO (Sign-Flip) +0.0000 0.0002
RELOAD (OURS) +0.0748 0.4046
Original +0.0000 0.0000
Retain -0.0229 1.0000
Grad Ascent -0.6257 0.0118
Grad Diff -0.3013 0.0000

5% KL Min -0.6257 0.0163
Pref Opt -0.1472 0.0000
Prompt -0.1063 0.0000
NPO -0.4512 0.7934
NPO-KL -0.2203 0.7934
NPO-RT -0.0838 0.6284
ECO (Rand Noise) +0.0000 0.9647
ECO (Zero-Out) -0.0009 0.9647
ECO (Sign-Flip) +0.0000 0.0000
RELOAD (OURS) -0.2870 0.5453
Original 0.0000 0.0000
Retain -0.0160 1.0000
Grad Ascent -0.6257 0.0000
Grad Diff -0.0434 0.0000

10% KL Min -0.6257 0.1810
Pref Opt -0.0862 0.0000
Prompt -0.1380 0.0000
NPO -0.4556 0.0126
NPO-KL -0.2634 0.0158
NPO-RT -0.1260 0.0783
ECO (Rand Noise) -0.0028 0.5812
ECO (Zero-Out) -0.0014 0.9674
ECO (Sign-Flip) -0.0022 0.0000
RELOAD (OURS) -0.3384 0.7000

Table 23: Change in Model Utility and Forget Quality of different unlearning methods on unlearning entities from the
TOFU dataset on

35

Under review as a conference paper at ICLR 2026

Split Method Change in Model Utility from Original Forget Quality
Original 0.0000 0.0000
Retain +0.0053 1.0000
Grad Ascent -0.5518 0.2107
Grad Diff -0.1999 0.0000

10% KL Min -0.5518 0.4158
Pref Opt -0.0379 0.0000
Prompt -0.0363 0.0000
NPO -0.3669 0.0013
NPO-KL -0.2520 0.0049
NPO-RT -0.1144 0.7000
ECO (Rand Noise) -0.0003 0.8635
ECO (Zero-Out) -0.0031 0.9844
ECO (Sign-Flip) -0.0001 0.0446
RELOAD (OURS) -0.3384 0.4680

Table 24: Change in Model Utility and Forget Quality of different unlearning methods on unlearning entities from the
TOFU dataset on Phi-1.5

B.6 CORRECTIVE UNLEARNING RESULTS

Baselines. The corrective unlearning setting admits different baselines than the unlearning setting based on
prior work (Goel et al., 2024). RewoD represents a baseline model trained directly on D,.ctqin-

Evaluation. We evaluate corrective unlearning following Goel et al. (2024). The corrected accuracy AccCeor
measures the performance of the unlearned model on the adversely affected data, D,,,. The retain accuracy

ACCieain measures unlearned model performance on a held-out validation sample of D,.¢tqin, Dgt:titz)n Cost
measures the runtime of the algorithm in comparison to retraining (Table 4).

Reload efficiently corrects trained models. We evaluate RELOAD ’s ability

to unlearn adverse effects of manipulations following the baselines outlined in Original Image Image with Backdoor
prior work (Goel et al., 2024). We present results for RELOAD and unlearn-
ing baselines on the two conventional corrective unlearning tasks, Poisoning
and Interclass Confusion (IC), as well as the corrective unlearning (with re-
placement) settings introduced in Appendix ??. The results of this experiment
over different settings are presented in Table 26 and Figures 9, 10, 11, and
12 in Appendix ?? for consistency with prior work. RELOAD outperforms
baselines on Acceorr at low percentages of data identification (Figures 8a, 8b) Figure 6: Data poisoning in-
while observing competitive computational efficiency (Table 25), even at only ~Serts the patterns (right) in all
10% data identification (y = 0.1). Across 10 values of ~ from the corrective selected images in D.

setting (Goel et al., 2024), RELOAD consistently outperforms all other baselines

in most experiments. Although BadT (Chundawat et al., 2022) outperforms RELOAD in CIFAR100 Poisoning
experiments, it bears much greater computational cost (Table 25).

36

Under review as a conference paper at ICLR 2026

100
SSD —&— Reload
—k—_Scrub SSD
gyl —&— CF 60| —— Scrub
—4— RewoD —&— CF
£ —— BadT £ —4— RewoD
jr. 60 —@— Reload %’40 —\?IT
40 20

0.4

(@) [D | = 100

Identified Fraction ~y

1.0 0.2

0.8

0.4
Identified Fraction ~

0.6

0.8

(b) [Dy | = 2500

Figure 7: Corrective Accuracy (Acccor) after applying different unlearning methods. This measures the performance
of the unlearned model on the domain representing the adversely affected data, D,,. ~ measures the proportion of
the adversely affected data which was identified and collected within D,,,. We note that at small v, RELOAD achieves
consistently higher Acccor than existing baselines and performs across values.

100
SSD —&— Reload
——_Scrub SSD
g0 —&— CF 60/ —*— Scrub
—4— RewoD —&— CF
£ —— BadT £ —4— RewoD
S 60 —@— Reload §40 —— BadT
<) < \/
40 20
1.0 0.2 0.4 0.6 0.8 1.0

0.4 .
Identified Fraction ~y

0.8

Identified Fraction y

(@) [D | = 100

(b) [D] = 2500

Figure 8: Corrective Accuracy (Acccor) after applying different unlearning methods. This measures the performance
of the unlearned model on the domain representing the adversely affected data, D,,,. v measures the proportion of the
adversely affected data which was identified and collected within Dy,.4c:. We note that at small v, RELOAD achieves
consistently higher Acccor than existing baselines and performs across -y values.

80 —@— Reload —&— Reload —&— Reload
SSD SSD SSD

60 —k— Scrub 60/ —*— Scrub 60 —*— Scrub
—— CF —— CF —&— CF

£ —4— RewoD £ —4— RewoD £ —4— RewoD

g40 —— BadT $40 —— BadT ;‘w —— BadT

0.8 1.0

0.6
Identified Fraction v

0.2 0.4

(@) [Dy| = 500

\

20

0.8 1.0

0.6
Identified Fraction 4

(b) |Dom| = 2500

0.4

Figure 9: CIFAR10 Interclass Confusion

37

20

4 0.6

0. i
Identified Fraction ~

(©) [D] = 5000

0.8

1.0

Under review as a conference paper at ICLR 2026

100
SSD
——_Scrub
go| —*— CF
—4— RewoD
—— BadT
—8— Reload

10

0.2 0.4 0.6 0.8 1.0
Identified Fraction
(@) |Dom| = 100
SSD
80 —4— RewoD
—— Scrub
60 A CF
—— BadT

—&— Reload

SSD
Scrub
CF
RewoD
BadT
Reload

6O/

10

20

0. 0.6 0.8 1.0
Identified Fraction 7

(b) [D] = 500

Figure 10: CIFAR10 Poisoning

SsD
80 —4— RewoD
—*— Scrub

60 —&— CF
—— BadT

—&— Reload

SSD
—*— Scrub

80 —&— CF
—4— RewoD
—— BadT
—— Reload

0.2 0.4 0.6 0.8 1.0

5
Identified Fraction 5

(©) [Dym| = 1000

100

SSD
—4— RewoD
—#— Scrub
—&— CF
—— BadT
—8— Reload

80

20 20 20
0 0 0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Identified Fraction Identified Fraction Identified Fraction ~
(@) |Dm| = 100 (b) [D] = 250 (©) |Dm| = 500
Figure 11: CIFAR100 Interclass Confusion
100 SSD 100 sSD 100 $sD
—4— RewoD —4— RewoD —4— RewoD
s —®— Reload 80/ —@— Reload 80 —e— Reload
—*— Scrub —— Scrub —*— Scrub
£ —k CF £60 —k— CF £ 60 —a— cF
£ 60 —— BadT £ == BadTl g | — Bar
< <
10 10/
40 20
20
0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Identified Fraction -y Identified Fraction Identified Fraction
(@) [Dy| = 100 (b) |Drm| = 500 (©) [D] = 1000
Figure 12: CIFAR100 Poisoning
100 > Badr 100 > Baar 100 s~ Baar
—4— RewoD SSD SSD
S = cr 80 —4— RewoD 80 —k— Scrub
SSD —&— CF —&— Reload
—*— Scrub —k— Scrub —4— RewoD
—8— Reload —8— Reload —— CF

Ak 20 :
0 —k Y S S S G H—
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Identified Fraction v Identified Fraction v Identified Fraction ~
(@) |Dim| = 500 (b) | Do | = 2500 (©) [Dim| = 5000

Figure 13: CIFAR10 Interclass Confusion (with replacement)

38

Under review as a conference paper at ICLR 2026

—< BadT —< BadT 10 e Baar
—— RewoD A 80 —4— RewoD —— RewoD
—&— CF —— CF 801" —&— CF
—— Scrub —k— Serub —— Serub
$SD —8— Reload —e— Reload
—8— Reload $SD
A~ A4—Q—7 N —o—90
(= » 20) 201
= i S ——
02 01 06 s 10 02 01 06 08 10 02 01 06 0s 10
Identified Fraction Identified Fraction Identified Fraction
(a) |Dm| = 100 (b) | D] = 500 ©) | D | = 1000
Figure 14: CIFAR10 Poisoning (with replacement)
RewoD 100 —4— RewoD 1 = RewD
CF | =& o —— CF
BadT 80" —8— Reload 80 = BadT
Serub —< BadT —— Serub
Reload £ 008 —— scrub —— Reload
$SD g SSD SsD
40 =0 -
201 20
v O 3o 0

02 01 06 03 10
Identified Fraction
(a) |Dm| = 100

0.2

01 0.6 03 10
Identified Fraction
(b) | D | = 250

02 01 0.6 03 70
Identified Fraction
(©) |Dm| = 500

Figure 15: CIFAR100 Interclass Confusion (with replacement)

RewoD
SSD
CF
Serub

Reload
BadT

100y

80

201

RewoD
CF
Reload
BadT
Scrub
SSD

Phett

1

100y

80

60

T a0

20

RewoD
CF
BadT
Scrub
SSD
Reload

bt

TL

— o b o | o
0.2 0.4 0.6 0.8 1.0
Identified Fraction
(@) |Drm| = 100

2 0.6

01
Identified Fraction

(b) |Dyn| = 500

0.8 1.0

0.2 0.4 0.6 0.8 1.0
Identified Fraction
(©) [D] = 1000

Figure 16: CIFAR100 Poisoning (with replacement)

39

Under review as a conference paper at ICLR 2026

Cost (1) CIFAR10 ‘ CIFAR100 Cost () ‘ CIFAR10 ‘ CIFAR100 Cost (1) ‘ CIFAR10 ‘ CIFAR100
Poisoning Poisoning Poisoning
BadT 0.44 0,00 0.68-+0.00 BadT 0.46+0.01 0.68-0.00 BadT 0.46-+0.01 0.68+0.00
CF 0.26+0.00 0.25+0.00 CF 0.27 +0.00 0.25+0.00 CF 0.27 +0.00 0.25+0.00
SSD 0.0440.00 0.064-0.00 SSD 0.044-0.00 0.064-0.00 SSD 0.0440.00 0.06-0.00
Scrub 0.2640.00 0.314+0.00 Scrub 0.27+0.00 0.3140.00 Scrub 0.27 +0.00 0.31+0.00
RewoD 1.00-£0.00 1.00-+0.00 RewoD 1.00+0.00 1.00+0.00 RewoD 1.00-+0.00 1.00+0.00
RELOAD 0.37 40.02 0.24+9.00 RELOAD 0.2940.01 0.2540.00 RELOAD 0.33 4002 0.254+0.00
Interclass Confusion (IC) Interclass Confusion (IC) Interclass Confusion (IC)
BadT 042001 0.68-+0.02 BadT 0.4640.00 0.68-+0.01 BadT 0.43£0.02 0.68-0.00
CF 0.23 0,00 0.26£0.01 CF 0.27 £0.00 0.25+0.00 CF 0.27 to01 0.25+0.00
SSD 0.04+0.00 0.06-+0.00 SSD 0.0440.00 0.06-+0.00 SSD 0.04+0.00 0.06-0.00
Scrub 0.24+0.00 0311001 Scrub 0.27+0.01 0.31+0.00 Scrub 0.27 1001 0.3140.00
RewoD 1.0040.00 1.00+0.00 RewoD 1.00+0.00 1.00+0.00 RewoD 1.00+0.00 1.00+0.00
RELOAD 0.28-+0.01 0.14+9.00 RELOAD 0.40+0.00 0.15+0.00 RELOAD 0.14+9.00 0.14 10,00
Num. Corrupted Samples Num. Corrupted Samples Num. Corrupted Samples

CIFARI10 Poison 100 CIFAR10 Poison 500 CIFARI10 Poison 1000
CIFAR100 Poison 100 CIFAR100 Poison 500 CIFAR100 Poison 1000
CIFARI10 1C 500 CIFAR10 1C 2500 CIFARI10 IC 5000
CIFAR100 1C 100 CIFAR100 1C 250 CIFAR100 1C 500

Table 25: Cost ({) values across different sizes of Dyorge: (Corrective Unlearning). Results are reported as meangddev
over 10 values of .

AcCretain (T) ‘ CIFAR10 ‘ CIFAR100 AcCretain (T) ‘ CIFAR10 ‘ CIFAR100 AcCretain (1) ‘ CIFAR10 ‘ CIFAR100
Poisoning Poisoning Poisoning
None | 9135 | 74.05 None ‘ 90.97 ‘ 74.20 None | 9084 | 74.34
BadT 0.1340.04 0.1340.05 BadT -0.0540.17 -0.3240.11 BadT 0.01 40,07 -0.24 102
CF 0.09+0.12 0.54 1017 CF 0.3540.14 0.324024 CF 0.27+0.10 0.39+0.19
SSD -3.05+456 -2.08£0.00 SSD -14.03 £2286 0.00+0.00 SSD -0.6641.47 -0.61£0.60
Scrub 0.0140.11 0254023 Scrub 0.43+0.04 0.20+0.19 Scrub 0.27+0.05 0.0040.11
RewoD 0.86-+0.00 1.14£0.00 RewoD 1.25+0.00 0.71+0.00 RewoD 0.920.00 1.1810.00
RELOAD -7.834020 -13.2040.69 RELOAD -8.14 402 -13.22 4054 RELOAD -7.5540.24 -13.63 1061
Interclass Confusion (IC) Interclass Confusion (IC) Interclass Confusion (IC)
None | 9301 | 7382 None | 9222 | 7406 None | 9281 | 7381
BadT 0.39-+0.09 0.2240.04 BadT 0.81+0.12 0.05+0.07 BadT 0.5240.11 -0.0240.13
CF 0.16-40.16 0.63+0.14 CF 0.59-+0.30 0.4610.18 CF 0.49.+031 0.53+0.17
SSD -1.454444 0.14+9.00 SSD 0.73+0.17 0.00-+0.00 SSD 0.724031 0.00+0.00
Scrub 0.1940.19 0.17 +0.06 Scrub 0.63+0.56 -0.060.14 Scrub -1.104 185 -0.0540.18
RewoD 0.82-+0.00 1.2940.00 RewoD 1.14£0.00 0.99-+0.00 RewoD 0.954-0.00 1.13 4000
RELOAD -0.2040.22 -4.45 4087 RELOAD 2184143 -5.21+076 RELOAD -1.144054 -4.93 1081
Num. Corrupted Samples Num. Corrupted Samples Num. Corrupted Samples

CIFARI10 Poison 100 CIFAR10 Poison 500 CIFARI10 Poison 1000
CIFAR100 Poison 100 CIFAR100 Poison 500 CIFAR100 Poison 1000
CIFAR10 1C 500 CIFAR10 IC 2500 CIFARI10 IC 5000
CIFAR100 IC 100 CIFAR100 IC 250 CIFAR100 IC 500

Table 26: AcCrewin (1) values across different sizes of Dyor.get (Corrective Unlearning). Results are reported as mean 4 gddev
over 10 values of ~.

40

Under review as a conference paper at ICLR 2026

Cost (1) ‘ CIFAR10 ‘ CIFAR100 Cost () ‘ CIFAR10 ‘ CIFAR100 Cost (1) ‘ CIFAR10 ‘ CIFAR100
Poisoning Poisoning Poisoning
BadT 0.63 +0.01 0.69 +0.00 BadT 0.64 +0.01 0.70 +0.00 BadT 0.64 10.01 0.68 +0.01
CF 0.26 +0.01 | 0.25 +0.00 CF 0.26 +0.01 | 025 +0.00 CF 0.25 +0.01 | 0.25 +0.00
SSD 0.06 1001 | 0.06 1000 SSD 0.06 10.01 | 0.06 1000 SSD 0.06 10.00 | 0.06 1000
Scrub 0.27 +0.01 0.30 +0.00 Scrub 0.28 +0.01 0.31 +0.00 Scrub 0.28 +0.01 0.30 +0.00
RewoD 1.00 4+0.04 1.00 +0.01 RewoD 1.00 4+0.04 1.00 +0.01 RewoD 1.00 +0.03 1.00 +0.04
RELOAD 0.44 +0.03 0.31 +0.00 RELOAD 0.42 1+0.02 0.31 +0.00 RELOAD 0.40 +0.02 0.30 +0.00

Interclass Confusion (IC)

Interclass Confusion (IC)

Interclass Confusion (IC)

BadT 0.62 +0.01 0.68 +0.01 BadT 0.63 +0.01 0.67 +0.00 BadT 0.64 £0.02 0.68 £0.00
CF 0.25 +0.01 | 025 +0.00 CF 0.27 +0.01 | 0.24 +0.00 CF 0.27 +0.01 | 0.25 +0.00
SSD 0.06 +0.01 0.06 +0.00 SSD 0.06 +0.00 0.06 +0.00 SSD 0.06 +0.01 0.06 +0.00
Scrub 0.27 40.01 0.30 +0.00 Scrub 0.27 +0.01 0.30 +0.00 Scrub 0.27 +0.01 0.31 +0.00
RewoD 1.00 +0.04 1.00 +0.04 RewoD 1.00 +0.05 1.00 4+0.05 RewoD 1.00 +0.04 1.00 +0.06
RELOAD 0.35 +0.01 0.20 +£0.00 RELOAD 0.46 +0.03 0.20 +0.00 RELOAD 0.24 10.01 0.20 +0.00
Num. Corrupted Samples Num. Corrupted Samples Num. Corrupted Samples
CIFARI10 Poison 100 CIFAR10 Poison 500 CIFARI10 Poison 1000
CIFAR100 Poison 100 CIFAR100 Poison 500 CIFAR100 Poison 1000
CIFARI10 1C 500 CIFAR10 1C 2500 CIFARI10 IC 5000
CIFAR100 1C 100 CIFAR100 IC 250 CIFAR100 IC 500

Table 27: Cost ({) values across different sizes of Dforger (Corrective Unlearning with replacement). Results are reported
as mean4gadev over 10 values of 7.

AccCreain (1) | CIFAR10 | CIFAR100 AcCrein (1) | CIFAR10 | CIFAR100 Accreain (1) | CIFAR10 | CIFAR100
Poisoning Poisoning Poisoning
None ‘ 91.35 ‘ 74.05 None ‘ 90.97 ‘ 74.20 None ‘ 90.84 ‘ 74.34
BadT -0.02 +0.06 -0.13 +0.15 BadT -0.35 £0.14 -0.72 10.42 BadT -0.19 +0.30 -1.37 +0.65
CF 0.07 +0.09 0.37 +0.07 CF 034 10.11 022 40.11 CF 0.36 +0.13 0.38 +0.11
SSD -16.01 123 22 0.00 +£0.00 SSD -40.73 t30.47 0.00 +0.00 SSD -0.00 +0.00 -73.34 +0.00
Scrub -0.01 +0.01 -0.01 10.06 Scrub 0.50 +0.13 0.36 +0.17 Scrub 0.41 40.12 0.61 £0.16
RewoD 0.72 +0.10 1.31 +0.19 RewoD 1.31 +0.09 0.94 +0.20 RewoD 1.11 +0.11 0.96 40.11
RELOAD -10.03 +0.42 -73.04 +0.01 RELOAD -7.92 1+0.38 -73.20 +0.01 RELOAD -8.49 +0.29 -73.33 10.15
Interclass Confusion (IC) Interclass Confusion (IC) Interclass Confusion (IC)
None \ 93.01 \ 73.82 None \ 92.22 \ 74.06 None \ 92.81 \ 73.81
BadT 0.39 +0.16 0.03 +0.11 BadT 0.83 +0.12 -0.23 +0.04 BadT 0.56 +0.13 -0.15 +0.12
CF -0.27 +0.22 0.48 £0.21 CF -0.18 10.18 0.14 10.26 CF -0.07 +o0.08 0.15 +o.27
SSD -44.46 +24.45 -72.80 +0.00 SSD -21.52 +22.80 0.00 +0.00 SSD -1.23 +1.63 -72.79 +0.00
Scrub 0.38 +0.01 0.12 +0.28 Scrub 0.99 10.25 -0.05 +0.25 Scrub -17.88 120.93 -0.07 +0.18
RewoD 0.66 +0.10 1.30 +0.10 RewoD 0.99 +0.24 1.03 +0.11 RewoD 0.31 +0.50 1.03 +0.16
RELOAD -5.84 +3.03 -30.63 +16.14 RELOAD -0.01 +1.12 -22.25 +1.63 RELOAD -3.02 +4.14 -26.35 +6.45
Num. Corrupted Samples Num. Corrupted Samples Num. Corrupted Samples

CIFAR10 Poison 100 CIFAR10 Poison 500 CIFARI10 Poison 1000
CIFAR100 Poison 100 CIFAR100 Poison 500 CIFAR100 Poison 1000
CIFAR10 1C 500 CIFAR10 IC 2500 CIFARI10 1C 5000
CIFAR100 IC 100 CIFAR100 IC 250 CIFAR100 IC 500

Table 28: Accrewin (1) values across different sizes of Dyorger (Corrective Unlearning with replacement). Results are

reported as mean.tgddev OVer 10 values of ~.

41

Under review as a conference paper at ICLR 2026

B.7 HYPERPARAMETER SELECTION

RELOAD admits 4 hyperparameters. Additional hyperparameters may be introduced depending on the
optimisation procedure used by the practitioner for RELOAD (eg. weight decay).

1. Alpha («): The quantile of weights to reinitialise

2. Ascent Learning Rate: The step size for the ascent stage of RELOAD

3. Finetuning Learning Rate: The step size for the finetuning stage of RELOAD

4. Weight Reset Method: The scheme to use for reinitialising weights

B.7.1 WEIGHT RESET/REINITIALISATION METHODS

First, we detail the different weight reinitialisation methods we explore as options for the resetting step of
RELOAD. This setting is a hyperparameter of RELOAD .

Mean. The selected parameters are replaced with the mean value of the tensor they are part of.
Zero. The selected parameters are replaced with the value 0.

Normal. The selected parameters are replaced with a random number drawn from N0, 1).
Uniform. The selected parameters are replaced with a random number drawn from /(—1, 1).

Xavier Uniform. The selected parameters are replaced with values obtained through Xavier Uniform
initialisation (Glorot & Bengio, 2010).

Xavier Normal. The selected parameters are replaced with values obtained through Xavier Normal initialisa-
tion (Glorot & Bengio, 2010).

Kaiming Uniform. The selected parameters are replaced with values obtained through Kaiming Uniform
initialisation (He et al., 2015).

Kaiming Normal. The selected parameters are replaced with values obtained through Kaiming Normal
initialisation (He et al., 2015).

B.7.2 HYPERPARAMETERS FOR CLASSICAL UNLEARNING

We train ResNet-18 and VGG16-BN models on CIFAR-10 (Krizhevsky, 2012), CIFAR-100 (Krizhevsky
et al.), and SVHN (Netzer et al., 2011) for image classification for 182 epochs. We apply the cross-entropy
loss function and a learning rate of 0.1 with a batch size of 256. We conducted these experiments over 10
random seeds to obtain average results and standard deviation measurements. The results in our tables are
reported in the format 14, where 4 is the average value and o is the standard deviation, across the 10 seeds.

The 10 seeds we selected for unlearning experiments were seeds {1,2,3,4,5,6,7,8,9,10}.

Hyperparameters for RELOAD were chosen through a bayesian hyperparameter sweep. The chosen hyperpa-
rameters for the unlearning tasks are presented in Table 29.

We empirically find that the cumulative distribution function of the knowledge-values for forgetting 10%
of data from a ResNet-18 model trained on SVHN forms a sigmoid-like curve around 10~!. This further
evidences the existence of clear differences in the knowledge-values for different parameters. Experimentally,
we select the thresholding hyperparameter « using a hyperparameter sweep. We have included in ablation
(Appendix ??), a study with varying learning rates (1) and thresholds («).

42

Under review as a conference paper at ICLR 2026

Experiment Alpha (ov) Ascent Learning Rate Finetuning Learning Rate ~ Weight Reset Method
SVHN + ResNet-18 0.1 0.243 0.098 Uniform

SVHN + VGG16-BN 0.1 0.496 0.496 Xavier Uniform
CIFAR-10 + ResNet-18 0.1 0.44 0.33 Xavier Uniform
CIFAR-10 + VGG16-BN 0.1 0.167 0.39 Kaiming Uniform
CIFAR-100 + ResNet-18 0.1 0.18 0.33 Xavier Normal
CIFAR-100 + VGG16-BN 0.1 0.325 0.164 Kaiming Normal

Table 29: RELOAD Hyperparameter Settings for Unlearning

Baseline Implementations. Implementations for baselines were taken from the reference implementations
for SCRUB, SSD, EU-k, and CF-k. Implementations for FT and GA were taken from the repository for
SalUn.

Codebase Structure. Our codebase is built on the publicly-released repository for SalUn (Fan et al., 2023).

B.7.3 HYPERPARAMETERS FOR LANGUAGE MODEL ENTITY UNLEARNING

For our base models we employ open-source model weights fine-tuned on the TOFU dataset publicly available
on HuggingFace for Llama-2-7b-Chat (Touvron et al., 2023) and Phi-1.5 (Li et al., 2023). We use open-source
fine-tuned models available on Hugging Face (locuslab, 2025; Unlearning, 2025a;b;c) as our gold-standard
retrained models.

Hyperparameters for RELOAD were chosen through a bayesian hyperparameter sweep. The chosen hyper-
parameters for the unlearning tasks are presented in Table 30. All experiments were conducted using the
AdamW optimizer from PyTorch.

As discussed, RELOAD for LMs is parameter-efficient, and operates on a subset of the model parameters in a
language model. As such, the entire RELOAD process is performed over a subset of the layers in the language
model. We selected this layer as a hyperparameter through a sweep, and report it as Target Layers inthe
below table. This structure enabled effective unlearning, and also increased the efficiency of the algorithm as
gradients were only computed for certain layers. This allowed RELOAD to operate on large language models
on less powerful hardware setups and in less time.

Experiment Alpha (o) Ascent Learning Rate Finetuning Learning Rate Weight Reset Method ~ Retain Sample Size ~ Target Layers Repair Epochs
Llama-2-7b-Chat + ForgetO1 ~ 0.008 0.039 0.0002 Zero 152 mlp.gate_proj.weight 5
Llama-2-7b-Chat + Forget05 0.017 0.049 0.0002 Uniform 193 self_attn.k_proj.weight 35
Llama-2-7b-Chat + Forget10 0.303 0.022 0.0488 Xavier Uniform 60 self_attn.g proj.weight 28

Phi-1.5 + Forget10 0.396 0.094 0.0445 Uniform 90 self_attn.v_proj.weight 40

Table 30: Hyperparameter Settings for LM Entity Unlearning
Baseline Implementation and Results. Baseline implementations and results were obtained and reused
from the repository and paper of Liu et al. (2024a).

Codebase Structure. For LM Entity Unlearning we reuse the publicly-released repository for Large
Language Model Unlearning via Embedding-Corrupted Prompts (Liu et al., 2024a) to which we add our
implementation of RELOAD for LMs.

B.7.4 HYPERPARAMETERS FOR CORRECTIVE UNLEARNING

We train ResNet-9 models on CIFAR-10 (Krizhevsky, 2012) for 4000 pretraining iterations. We train ResNet-
28x10 models on CIFAR-100 (Krizhevsky et al.) for 6000 pretraining iterations. We apply the cross-entropy
loss function, a batch-size of 512, and a learning rate of 0.025. The results in our tables are reported in a

43

Under review as a conference paper at ICLR 2026

manner consistent with prior work (Goel et al., 2024) across 10 selections of v where +y is the proportion of
the forget set identified.

Hyperparameters for RELOAD are chosen through a Bayesian Hyperparameter sweep. The chosen hyperpa-
rameters are presented in Table 31. Hyperparameters for baselines are chosen through a grid search defined
in the reference implementation. For all experiments we employ the SGD (Stochastic Gradient Descent)
optimizer with momentum 0.9 and weight decay 0.0005.

Experiment Alpha (ov) Ascent Learning Rate Finetuning Learning Rate ~ Weight Reset Method
CIFAR10 + ResNet-9 + Poisoning 0.3984 0.01 0.00381 Xavier Normal
CIFAR10 + ResNet-9 + Interclass Confusion 0.1978 0.01 0.00957 Mean

CIFAR100 + ResNet-28x10 + Poisoning 0.2401 0.01 0.00483 Xavier Normal
CIFAR100 + ResNet-28x10 + Interclass Confusion 0.0924 0.01 0.00237 Zero

Table 31: RELOAD Hyperparameter Settings for corrective unlearning (with and without replacement)

Baseline Implementation. Baseline implementations are taken from the reference implementations provided
in the repository for Corrective Machine Unlearning.

Codebase Structure. For corrective unlearning we reuse the publicly-released repository for Corrective
Machine Unlearning (Goel et al., 2024) to which we add our implementation of RELOAD. To this repository,
we also add our implementation of corrective unlearning (with replacement) experiments.

B.8 HARDWARE USAGE

Hardware for Classical Unlearning All experiments were run on 4 CPU cores, 20 GB of RAM, and 1
NVIDIA T4 GPU.

Hardware for Language Model Entity Unlearning All experiments were run on 30 CPU cores, 60GB of
RAM, and 1 NVIDIA A40 GPU. Some experiments were also conducted using 1 NVIDIA RTX6000 GPU to
highlight the lightweight nature of RELOAD for LMs.

Hardware for Corrective Unlearning All experiments were run on 4 CPU cores, 60 GB of RAM, and 1
NVIDIA RTX6000 GPU.

C FURTHER ABLATIONS

C.1 ABLATION: CRITICAL COMPONENTS OF RELOAD

In designing the knowledge values for identifying knowledgeable parameters, we considered several other
approaches in addition to the final formula (Eq. 1). This includes normalising gradients and utilising cosine
similarity for the computation of knowledge values.

Ascent Steps. In designing the ascent step, we considered the possibility of needing multiple steps to
appropriately scrub the global information from the model parameters. Theoretically, this notion violates the
partially-blind nature of the unlearning setup, and was thus undesirable. Empirically, we noted that using
multiple ascent steps does not improve forgetting and can lead to further performance degradation on D,.ctqin
requiring more retraining to get to a final unlearned model. As it is the only partially-blind variant, we include
a study of RELOAD when the ascent step is not applied below.

44

Under review as a conference paper at ICLR 2026

C.2 ABLATION: EMPIRICAL EVIDENCE

Below we present a short ablation study on 3 different variations of components of the RELOAD algorithm.

ReloadWithoutAscent: This is the same as the standard RELOAD algorithm without the ascent step

values instead of gradient magnitudes

. ReloadWithNormalisation: This variant employs gradient normalisation before the calculation of
knowledge values to increase directional information and reduce scaling issues

ReloadWithCosineKV: This variant uses cosine similarity between gradients to compute knowledge

We demonstrate these variants against the baselines RELOAD algorithm on corrective unlearning tasks. Select

results for corrective unlearning are shown in Figure 17.

24 ReloadWithout Ascent
ReloadWithNormalisation
22 —@— Reload
—4&— ReloadWithCosineKV

£20 \/
£
18
16 V\\i
14
0.2 0.4 0.6 0.8 1.0
Identified Fraction -y
(a) CIFAR10 Example 1
80 ReloadWithoutAscent

—8— Reload
70 ReloadWithNormalisation

—&— ReloadWithCosineKV

60
° \
£50]
<

10

30
20
0.2 0.4 0.6 08

Identified Fraction -y

(c) CIFAR100 Example 1

ACC(‘(}!'I’

1.0

0 ReloadWithout Ascent .
—8— Reload ™

ReloadWithNormalisation
60 —4— ReloadWithCosineKV

PN

40
20
0 e A—A—a—aA
0.2 0.4 0.6 0.8 1.0
Identified Fraction -y
(b) CIFAR10 Example 2
16 e ReloadWithoutAscent
—8— Reload
14 ReloadWithNormalisation
—&— ReloadWithCosineKV
§12 X—.—.—
<
10
8
0.2 0.4 0.6 0.8 1.0

Identified Fraction

(d) CIFAR100 Example 2

Figure 17: Corrective Accuracy (Acccorr) across variants of RELOAD.

In the case of corrective unlearning, we note that the variants of RELOAD perform comparatively to the base
algorithm but all note significant weaknesses in comparison. ReloadWithCosineKV produces unlearned
models with higher utility (higher Acc,¢tqin, Table 18) but significantly lower corrective accuracy (AccCcorr,

Fig.

17. On the other hand, ReloadWithoutAscent and ReloadWithNormalisation both exhibit better

Under review as a conference paper at ICLR 2026

corrective accuracy performance than ReloadWithCosineKV but are still weaker than RELOAD and have
lower AcCretain-

AcCretain (T) ‘ CIFAR10 ‘ CIFAR100
Poisoning

RELOAD -2.84 £2.56 -5.08 +1.39

ReloadWithoutAscent -3.28 +2.49 -5.24 +1.65

ReloadWithNormalisation 423 1211 534 4172

ReloadWithCosineKV 024 40.12 0.49 +0.15

Interclass Confusion (IC)

RELOAD -2.70 £1.99 | -26.18 £29.97
ReloadWithoutAscent -3.66 +2.13 -16.83 +23.29
ReloadWithNormalisation -4.27 +1.56 -16.67 +21.67
ReloadWithCosineKV 0.01 +0.12 0.24 10.15

Num. Corrupted Samples

CIFAR10 Poison 100
CIFAR100 Poison 100
CIFAR10 IC 500
CIFAR100 IC 100

Figure 18: Model Utility across variants of RELOAD

C.3 ABLATION: LEARNING RATE 7, AND THRESHOLD «

We study the effect of different learning rates on the unlearning performance exhibited by the RELOAD
algorithm. For this study, we select the case of randomly forgetting 10% of the training data from a ResNet-18
model trained on CIFAR-100.

As shown in Figure 19, we observe that the choice of learning rate has a significant impact on performance.
This is particularly true in the case of AFA, AFE, AFMIA, and AAUC measurements - which are the primary
metrics evaluating how well the model has forgotten Dy,,4.;. Based on these plots, we choose 1 = 0.33.

Figure 20 shows the effect of varying the proportion of the parameters that are selected for reinitialization ().
We observe that the choice of threshold has an impact on the performance of the RELOAD algorithm and that
its selection involves a tradeoff between the different metrics we consider. Thus, the best choice of a should
ideally be selected through a hyperparameter search.

46

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181

2182
2183
2184
2185
2186
2187
2188
2189
2190
2191

2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Under review as a conference paper at ICLR 2026

NA

AFA

AFMIA

e
- : oz
g 5 3 g
H g & 4 008
i § s ¢
2o i
§ ; i :
& %s é & 004
5 £ o
s
. ot
T wm @ En B o wm @ o @ T S a—
oo tte weamig ke oo hte ariog e
oo i,
o
o1z 03 17
012) |
o010 g fie
5 030 g
goe g‘“" ¢ 2 1s
£ T
oos fox fu
004 006 § o020 §1a
: g
i fu
o
T ? < 5w w % W F N C T O r a—
Lt ate g e oo e v e
Figure 19: Impact of Learning Rate (7) on RELOAD performance
104 0100 0016
2 Foso
Yo !
g B4 ‘; 2
3 ¥ g 2
F 0 §-un & 000 $ o012
H H F] i
P § oo £ oo
§ E H
£ - aoto
* 084 0,008
2 ouse gin
01422 - 2
: :
0.0095. 2 o157 K
" % 3 E 130
2 8 % o156
ow0 atas H £
& 0155 ‘g
00085 o146 ¥ Fan
:
E
oo g

01 o0z o3 o4 o5 06 07 08

01 o0z 03 o4 05 06 07 08

o1 o2z 03 os os 06 07 08

Figure 20: Impact of Threshold («) on RELOAD performance

47

01 o2 o3 os 05 o6 07 o8

Under review as a conference paper at ICLR 2026

C.4 ABLATION: RELOAD ON VISION TRANSFORMERS

We study the impact of layer normalization on the performance of RELOAD . We train a Vision Trans-
former (Dosovitskiy et al., 2020) on the CIFAR-10 dataset (Krizhevsky, 2012) and randomly unlearn 6000
data samples (10% of CIFAR-10).

We reuse a PyTorch implementation of a ViT (Wang et al., 2025) and train the model for 1000 epochs with
learning rate le-4 using the Adam (Kingma & Ba, 2014) optimizer. The baseline model is trained to an
accuracy of 99.94%. Results are presented in Table 32.

Method RA (1) AFA (1) AFE (1) AFMIA () RSKL (J) FSKL (1)

RELOAD (OURS) 99.4540.12 0.5340.50 0.7940.1 0.0140.01 0.1940.03 8.7+0.11

Retrained (Baseline) 99.9140.02 54.1140.50 4.3140.09 0.5140.01 -

Table 32: 10% Random Forgetting on CIFAR-10 (ViT)

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of M~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE (), and AFMIA (/) present the absolute difference
in the value of the corresponding method on this metric to the value of M~ on the metric. These results show that
RELOAD performs similarly to the ground truth Retrained model on RA, AFA, AFMIA, and RSKL. RELOAD strays
from the Retrained model in AFE and FSKL.

C.5 ABLATION: RELOAD WITH QUANTIZED GRADIENTS

RELOAD incurs a storage overhead when caching gradients. We explore the feasibility of quantizing the
cached gradients, to reduce the footprint of the algorithm. In this experiment, we unlearn 6000 sam-
ples (10%) of CIFAR-10 from a trained ResNet-18 model and we quantize the cached gradients from
torch.float32to torch.floatl6. Before proceeding with unlearning, we expand these gradients
back to torch.float32. The ResNetl8 model is trained for 400 epochs with a learning rate of 1e-3 using
the SGD optimizer. The model has a trained accuracy of 99.76%. Results are presented in Table 33.

Method RA (1) AFA (1) AFE (1) AFMIA (]) RSKL () FSKL (})
RELOAD (UN-QUANTIZED) 99.99.1¢.01 0.4610.57 0.76+0.08 0.0140.01 0.4440.03 4.04101
RELOAD (QUANTIZED) 99.9940.01 0.4610.57 0.764+0.08 0.01+0.01 0.4440.03 4.04401
Retrained (Baseline) 99.5240.16 36.2210.49 2.2540.03 0.5140.01

Table 33: 10% Random Forgetting on CIFAR-10 (ResNet-18) with Quantized Cached Gradients

1: the goal is to have as high of a value as possible, At: the value in the table is the difference between the result of the
unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference, |: the goal is to
have as low of a value as possible. The bottom row presents the absolute value of M~y on each metric. For any metric
with A, the raw value is instead reported. Rows for AFA ({), AFE (), and AFMIA (/) present the absolute difference
in the value of the corresponding method on this metric to the value of M~ on the metric. These results show that
RELOAD performs similarly to the ground truth Retrained model on RA, AFA, AFE AFMIA, RSKL. RELOAD strays
from the Retrained model in FSKL.

C.6 ABLATION: RELOAD WITH FINETUNING
In this section we explore the practicality of applying RELOAD after some finetuning has been performed on

the model. To explore this, we first train a ResNet18 model on CIFAR-10 for 400 epochs with a learning
rate of 1e-3 to a training accuracy of 99.76%. Afterwards, we finetune the model on the out-of-distribution

48

Under review as a conference paper at ICLR 2026

CIFAR-10.1 (Torralba et al., 2008; Recht et al., 2018) dataset for 100 epochs with a learning rate of 1le-3.
Prior to finetuning, the model had an accuracy of 30.8% on CIFAR10.1. After finetuning, the model achieved
an accuracy of 99.2% on CIFAR10.1.

We evaluate RELOAD unlearning in 3 modes. 1) We unlearn samples from the original CIFAR10 dataset after
finetuning on CIFAR10.1 (Table 34, 2) We unlearn samples from CIFAR10.1 after finetuning on CIFAR10.1

(Table 35), 3) We unlearn samples from both CIFAR10 and CIFARI10.1 after finetuning on CIFAR10.1
(Table 36).

Method RA (1) AFA (1) AFE (1) AFMIA (1) RSKL () FSKL (1)
RELOAD(OURS) 98.16;&0,01 0~57:H).46 0.06;&0,03 0.01;&0,01 0.91:&0.02 3~45i0.06

Retrained (Baseline) 92.3440.6 34.57+0.00 2.3340.00 0.5140.01

Table 34: 10% Random Forgetting from CIFAR-10 after finetuning on CIFAR-10.1 (ResNet-18)

Method RA (1) AFA (1) AFE (1) AFMIA (]) RSKL () FSKL (])

RELOAD (OURS) 98.89i0‘19 2.85i2_05 (].2()i0_13 0‘()5:&()‘04 0‘51:&0‘02 3.95i0‘27

Retrained (Baseline) 99.73:&0,11 32‘4:&2.78 2.70i0_11 0‘54:&0‘05

Table 35: 10% Random Forgetting from CIFAR-10.1 after finetuning on CIFAR-10.1 (ResNet-18)

Method RA () AFA (1) AFE (1) AFMIA (J) RSKL (J) FSKL ({)
RELOAD (OURS) 99.6940.13 3.8841.52 0.2740.11 0.02+10.01 1.0440.13 3.97410.15

Retrained (Baseline) 89.3942.89 35.83+0.93 2.3440.05 0.5240.02

Table 36: 10% Random Forgetting from CIFAR-10 and CIFAR-10.1 after finetuning on CIFAR-10.1 (ResNet-18)

49

	Motivation
	Method
	Setting and Notation
	The Reload Algorithm
	Algorithmic Insights

	Empirical Results and Analysis
	Methodological Introspection
	Classical Unlearning Experiments
	Entity Unlearning with LMs
	Corrective Unlearning
	Ablation of Reload Components

	Related Work
	Discussion, Limitations, and Conclusion
	Formal Treatment and Gradient Derivations
	The Reload Algorithm
	Gradient Information and Derivation
	The Reload Algorithm for Language Models
	Contextual Fine-Tuning for Unlearning from Language Models
	Corrective Unlearning and Gradient Derivation
	Corrective Unlearning
	Corrective Unlearning (with replacement)

	Experimental Details and Results
	Baselines for Classical Unlearning
	Baselines for Corrective Unlearning
	Evaluation Metrics for Machine Unlearning
	Classical Unlearning Results
	Random 10% Forgetting
	Random 30% Forgetting
	Random 100 In Class Forgetting - Additional Experiments

	Language Model Entity Unlearning Results
	Corrective Unlearning Results
	Hyperparameter Selection
	Weight Reset/Reinitialisation Methods
	Hyperparameters for Classical Unlearning
	Hyperparameters for Language Model Entity Unlearning
	Hyperparameters for Corrective Unlearning

	Hardware Usage

	Further ablations
	Ablation: Critical Components of Reload
	Ablation: Empirical Evidence
	Ablation: Learning Rate p and Threshold
	Ablation: RELOAD on Vision Transformers
	Ablation: RELOAD with Quantized Gradients
	Ablation: RELOAD with Finetuning

