

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 MITIGATING PRIVACY RISK VIA FORGET SET-FREE UN- LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Training machine learning models requires the storage of large datasets, which often contain sensitive or private data. Storing data is associated with a number of potential risks which increase over time, such as database breaches and malicious adversaries. Machine unlearning is the study of methods to efficiently remove the influence of training data subsets from previously-trained models. Existing unlearning methods typically require direct access to the "forget set"—the data to be forgotten—and organisations must retain this data for unlearning rather than deleting it immediately upon request, increasing risks associated with the forget set. We introduce *partially-blind unlearning*—utilizing auxiliary information to unlearn without explicit access to the forget set. We introduce a practical framework RELOAD, a partially-blind method based on gradient optimization and structured weight sparsification to operationalize partially-blind unlearning. We show that RELOAD efficiently unlearns, approximating models retrained from scratch, and outperforms several forget set-dependent approaches. On language models, RELOAD unlearns entities using <0.025% of the retain set and <7% of model weights in <8 minutes on Llama2-7B. In the corrective case, RELOAD achieves unlearning even when only 10% of corrupted data is identified.<sup>1</sup>

## 1 MOTIVATION

In many facets of modern life, individuals consent for institutions to collect and use their personal data. Patients allow their data to be stored in electronic health records, internet surfers allow their browsing behaviour to be used to customize their searches, and citizens respond to public surveys, file their taxes, and register to vote using online government services. Frequently, institutions leverage machine learning (ML) models to derive insights, generate knowledge, or extract value from user data (Shinde & Shah, 2018; Pi, 2021; Sarker, 2021; Rahman et al., 2024). However, the act of collecting and storing a user's data poses inherent risk to the user. For example, cybercriminals may breach an institution's data security to commit identity theft (Anderson et al., 2008) or leak user data (Kenny, 2018; Zou et al., 2018), or patient records in an electronic health record system may be improperly accessed by curious healthcare workers (Long, 2016). These kind of breaches have the potential to cause users financial, clinical, and reputational harm.

Informally, modern machine learning systems expose the user to two types of risk: *dataset risk* represents the user risk associated with an institution storing a user's data, while *model risk* represents the additional risk to the user when his or her data is used to train a machine learning model. Whereas an ordinary data breach is an example of dataset risk, the reconstruction of user data from model weights by malicious actors (Shokri et al., 2017; Haim et al., 2022; Oz et al., 2024) is an example of model risk. If we assume that instances of dataset risk and model risk each occur with some nonnegative rate,  $\mathcal{R}_{\mathcal{D}}$ ,  $\mathcal{R}_{\mathcal{M}}$ , respectively, we can represent the instantaneous risk borne by an individual at time  $t$  as  $\mathcal{R}$  as  $\mathcal{R}(t) = \mathcal{R}_{\mathcal{D}}(t) + \mathcal{R}_{\mathcal{M}}(t)$ . Since both risk

<sup>1</sup>A software implementation of our work can be found [in this code repository](#).

functions are nonnegative, the cumulative data risk and model risk,  $\int_0^T \mathcal{R}_D(t) dt$  and  $\int_0^T \mathcal{R}_M(t) dt$ , increase with  $T$ . This captures the simple intuition that risk compounds: the longer personal data remains stored by an institution or embedded within a model, the greater a user’s cumulative risk exposure.

“Right to be forgotten” provisions such as the GDPR (European Parliament & Council of the European Union), allow users to demand that their data be deleted from both data stores and machine learning models (via machine unlearning, Bourtoule et al. (2019))—in theory, eliminating both database and model risk. In practice, because unlearning methods directly employ the “forget set” (Graves et al., 2021; Thudi et al., 2022; Chundawat et al., 2022; Fan et al., 2023)—the user data meant to be deleted—institutions must retain the user data to perform unlearning after a request for deletion is made. This is typically not a fast process: because instance-wise unlearning is expensive on the ever-larger that are becoming commonplace, institutions often accumulate deletion requests and process them in batches using conventional forget set-dependent methods (Hu et al., 2023). However, as long as this data is retained—often for a long time, on the order of months—the user remains exposed to both  $\mathcal{R}_D(t)$  and  $\mathcal{R}_M(t)$  for all  $t$  between when the request for deletion is made and when unlearning has been completed.

This work develops a procedure for machine unlearning that does not require access to the forget set. Such a procedure would allow user data to be immediately removed when a request for deletion is made, eliminating the continued accumulation of dataset risk  $\mathcal{R}_D(t)$  after that time (the red region of Figure 1). Our algorithm, RELOAD, combines insights from three families of unlearning algorithms—gradient-based, structured sparsity-based, and finetuning-based algorithms—to implement a procedure that performs unlearning using only minimal auxiliary information about the forget set, rather than the forget set itself. An organisation using RELOAD would be able to immediately delete user data once a request for deletion is made without inhibiting downstream unlearning. Our work makes the following three contributions:

1. We establish and motivate the *partially-blind unlearning* (PBU) setting, capturing the intuition of unlearning without the forget set while leveraging auxiliary information. We characterise it in terms of input requirements, privacy risks, and approximation quality.
2. We introduce the RELOAD algorithm as an efficient algorithm to enable partially-blind unlearning. Rather than requiring the forget set, RELOAD only requires cached gradients from the final step of training.
3. We show that RELOAD consistently outperforms baselines across both standard and corrective unlearning scenarios (Goel et al., 2024). Surprisingly, RELOAD achieves state-of-the-art results *even when compared to algorithms that make use of the forget set*. We then extend the RELOAD algorithm to perform entity-level unlearning in language models (LMs).

Technology privacy law must be constrained by technological limitations: lawmakers cannot demand the implementation of technically-infeasible solutions. Although modern technology privacy law like GDPR permits temporary retention of data to facilitate downstream unlearning, we do not believe this provides

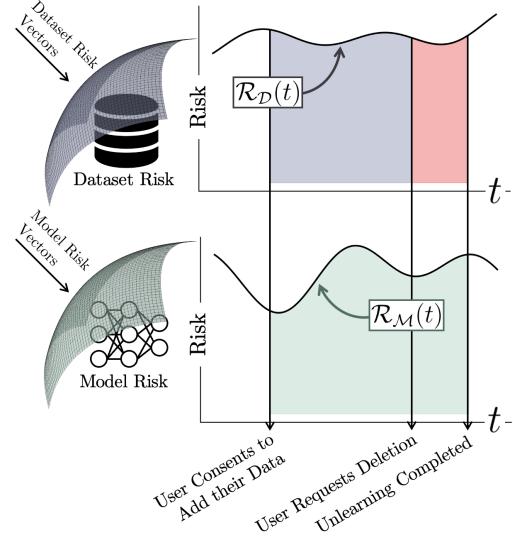


Figure 1: Conventional unlearning algorithms admit a cumulative user risk totalling the sum of the green, blue, and red regions. By allowing user data to be deleted immediately once a request for deletion is made, RELOAD eliminates the user risk associated with the red region.

094 the strongest privacy outcomes for users. Our work advances the frontier of machine unlearning to lay the  
 095 technological groundwork for stricter data-deletion timelines under right-to-be-forgotten legislation.  
 096

097 **2 METHOD**

099 **2.1 SETTING AND NOTATION**

101 Let  $\mathcal{D} = \{z_i\}_{i=1}^N$  with  $z_i \in \mathcal{Z}$  represent (i.i.d.) training data from individuals on which an organisation seeks  
 102 to train a machine learning model. For a class of models  $\mathcal{M} := \{M_\theta : \theta \in \Theta\}$  parametrised by a family  $\Theta$ ,  
 103 denote the parameters that minimise the empirical risk on  $\mathcal{D}$  by

$$104 \quad \theta^* := \arg \min_{\theta \in \Theta} \mathcal{L}(\theta; \mathcal{D}),$$

107 where  $\mathcal{L} : \Theta \times \mathcal{Z} \rightarrow \mathbf{R}^+$  is a differentiable, *additive* risk (loss) function, and denote the trained model  
 108 as  $M_{\theta^*} \in \mathcal{M}$ . For simplicity, we shorten  $\mathcal{L}(\theta; \mathcal{D})$  to  $\mathcal{L}(\mathcal{D})$ . Let  $\mathcal{D}_{forget} \subset \mathcal{D}$  represent the *forget set*, the  
 109 subset of training data corresponding to individuals who have requested deletion of their information from  
 110 the organisation’s system. Complementarily, define the *retain set*  $\mathcal{D}_{retain} := \mathcal{D} \setminus \mathcal{D}_{forget}$ . In an ideal world  
 111 where  $M_{\theta^*}$  is currently in deployment, upon the deletion of  $\mathcal{D}_{forget}$ , the organisation should deploy a new  
 112 model, model  $M_{\theta^*}$ , trained on the retain set with

$$113 \quad \theta^* := \arg \min_{\theta \in \Theta} \mathcal{L}(\theta; \mathcal{D}_{retain}),$$

115 Thus, *machine unlearning (MU)* aims to transform  $M_{\theta^*}$  into a model  $M_{\tilde{\theta}}$  close to  $M_{\theta^*}$  in some appropriate  
 116 model-distances (e.g. predictive divergence or weight distance) without costly retraining an entirely new  
 117 model. A classical unlearning algorithm is a function  $\mathcal{A}_{MU}$  mapping  $\mathcal{A}_{MU}(M_{\theta^*}, \mathcal{D}_{retain}, \mathcal{D}_{forget})$  to  
 118 weights  $\tilde{\theta} \in \Theta$  such that  $M_{\tilde{\theta}} \approx M_{\theta^*}$  typically by directly using  $\mathcal{D}_{forget}$  in the update rule (e.g., targeted  
 119 gradient steps, reweighting, or pointwise correction). As previously discussed, classical unlearning approaches  
 120 that require direct access to  $\mathcal{D}_{forget}$  continually compound data subjects’ cumulative risk, yet completely  
 121 eliminating the influence of  $\mathcal{D}_{forget}$  from  $M_{\theta^*}$  without any information about the forget set is impossible:  
 122 we cannot unlearn from nothing. While we must avoid retaining the raw forget set data, we can leverage  
 123 **auxiliary information** that was collected during the original training process serving as a privacy-preserving  
 124 proxy that enables effective unlearning while allowing immediate deletion of the sensitive data.

125 Thus, denote by  $\mathcal{I}_{\mathcal{D}}$  any auxiliary object derived from training on  $\mathcal{D}$  that may be retained to help perform  
 126 unlearning without keeping raw examples from  $\mathcal{D}_{forget}$ . Examples include (but are not limited to) aggregated  
 127 gradient statistics or feature summaries. We further impose the design desideratum that  $\mathcal{I}_{\mathcal{D}}$  be chosen so that  
 128 *recovering individual examples in  $\mathcal{D}_{forget}$  from  $\mathcal{I}_{\mathcal{D}}$  is difficult* in a practical sense (e.g. low instance-level  
 129 leakage or computational hardness). We do **not** require an impossibility claim; rather this is a constraint on  
 130 acceptable choices of  $\mathcal{I}_{\mathcal{D}}$ .

131 **Definition 1** (Partially-blind unlearning). *An unlearning algorithm  $\mathcal{A}_{PBU}$  operates in the partially-blind*  
 132 *unlearning (PBU) setting if it has access to (i) the trained model  $M_{\theta^*}$ , (ii) the retain set  $\mathcal{D}_{retain}$ , and*  
 133 *(iii) auxiliary training information  $\mathcal{I}_{\mathcal{D}}$ . The algorithm outputs  $M_{\tilde{\theta}} = \mathcal{A}_{PBU}(M_{\theta^*}, \mathcal{D}_{retain}, \mathcal{I}_{\mathcal{D}})$  such that*  
 134  *$M_{\tilde{\theta}} \approx M_{\theta^*}$ , where  $\theta^*$  is the retraining solution on  $\mathcal{D}_{retain}$ .*

135 **2.2 THE RELOAD ALGORITHM**

137 The RELOAD algorithm is a PBU algorithm leveraging auxiliary object  $\mathcal{I}_{\mathcal{D}} := \nabla_{\theta} \mathcal{L}(\mathcal{D})$ , the gradient of the  
 138 loss function evaluated on  $(\theta^*, \mathcal{D})$  at the final epoch of training, in order to eliminate the influence of the  
 139 forget set from the trained model. RELOAD comprises three stages combining the approaches of [Thudi et al. \(2022\)](#), [Fan et al. \(2023\)](#), and [Warnecke et al. \(2023\)](#). Figure 2 provides a summary of the method.

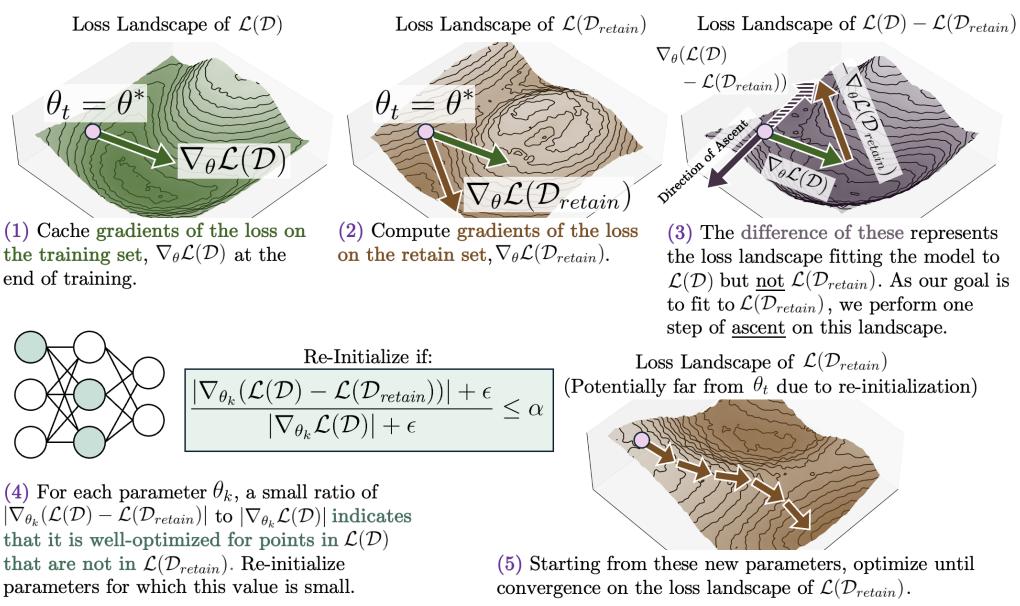


Figure 2: Overview of the RELOAD algorithm for partially-blind approximate unlearning. RELOAD marries a gradient-based unlearning step modified for the PBU setting (Steps (1) through (3)) with a weight saliency-based selective reinitialisation (Step (4)) and subsequent fine-tuning (Step (5)). Because the partially-blind unlearning setting prohibits taking gradients with respect to  $\mathcal{D}_{\text{forget}}$ , RELOAD exploits the linearity of differentiation to treat  $\nabla_{\theta}(\mathcal{L}(\mathcal{D}) - \mathcal{L}(\mathcal{D}_{\text{retain}}))$  as a proxy for  $\nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{forget}})$  at the location in weight space corresponding to  $\theta_t$ . This allows us to apply one gradient ascent step in this direction. Intuitively, this update in Step (3) removes some information about  $\mathcal{D}_{\text{forget}}$  from *all* network weights, while the reinitialisation in Step (4) reinitialises those weights with a uniquely strong correspondence to  $\mathcal{D}_{\text{forget}}$  (for which a single ascent step will not fully remove this information). RELOAD achieves state-of-the-art performance on a collection of unlearning tasks, often outperforming baselines with direct access to  $\mathcal{D}_{\text{forget}}$ .

**1. Ascent (Step (3) in Figure 2).** With the trained model  $M_{\theta^*}$ , cached gradients  $\nabla_{\theta} \mathcal{L}(\mathcal{D})$ , and the retain set  $\mathcal{D}_{\text{retain}}$ , RELOAD performs a single gradient ascent step (Thudi et al. (2022)) in the direction of  $\nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{retain}})$  with learning rate  $\eta_p$ :

$$\theta' \leftarrow \theta^* + \eta_p (\nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{retain}}))$$

**2. Re-initialisation (Step (4) in Figure 2).** RELOAD identifies weights responsible for characterizing information about  $\mathcal{D}_{\text{forget}}$  (Fan et al. (2023)) and re-initialises them. Concretely, *knowledge values* of each weight  $\theta_k$  are computed for the updated weights  $\theta'$ . For a small  $\epsilon$ , the knowledge value of  $\theta_k$  is:

$$KV_{\theta_k} := \frac{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D}) - \nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{\text{retain}})| + \epsilon}{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D})| + \epsilon}$$

where a low knowledge value indicates that  $\theta_k$  carries stronger knowledge of  $\mathcal{D}_{\text{forget}}$ . Let  $KV := \{KV_{\theta_k} : \theta_k \in \theta'\}$  denote the set of all knowledge values of  $\theta'$ . For a quantile hyperparameter  $\alpha$ , all weights  $\theta_k$  with  $KV_{\theta_k} \leq \text{Quantile}_{\alpha}(KV)$  are re-initialised. Denote by  $\theta^{\dagger}$  the weights post selective reinitialization.

**3. Finetuning (Step (5) in Figure 2).** RELOAD finetunes  $M_{\theta^{\dagger}}$  (Warnecke et al. (2023)) until convergence by minimising  $\mathcal{L}(\mathcal{D}_{\text{retain}})$  via iterative gradient-based optimization starting from  $\theta^{\dagger}$  and obtain  $\hat{\theta}$ .

188 2.3 ALGORITHMIC INSIGHTS  
189

190 **Partial blindness of  $\nabla_\theta \mathcal{L}(\mathcal{D})$ .** RELOAD uses gradients  $\nabla_\theta \mathcal{L}(\mathcal{D})$  cached upon the completion of the last  
191 training epoch as auxiliary training information. While prior work has demonstrated that inputs can be  
192 reconstructed from gradient information (Geiping et al., 2020; Zhao et al., 2020; Vero et al., 2023; Wu et al.,  
193 2023a; Gao et al., 2021), these reconstruction methods either require knowing batch sizes (unavailable in our  
194 setting) or make restrictive assumptions like no duplicate labels (Xue et al., 2023). Moreover, reconstructed  
195 images are typically unrecognizable with only a small portion showing limited fidelity (Geiping et al., 2020).  
196 Thus, cached summed gradients represent a valid choice for  $\mathcal{I}_{\mathcal{D}}$  in the partially-blind setting.

197 **Direction of Movement.** The central challenge of partially-blind unlearning is that taking repeated gradients  
198 of  $\mathcal{L}(\mathcal{D}_{forget})$  is impossible without access to  $\mathcal{D}_{forget}$ . However, from cached gradients of  $\mathcal{D}$  at the conclusion  
199 of model training,  $\nabla_\theta \mathcal{L}(\mathcal{D})$ , we can infer  $\nabla_\theta \mathcal{L}(\mathcal{D}_{forget})$  (Appendix A.1).

$$200 \quad 201 \quad \nabla_\theta \mathcal{L}(\mathcal{D}_{forget}) = \nabla_\theta \mathcal{L}(\mathcal{D}) - \nabla_\theta \mathcal{L}(\mathcal{D}_{retain}).$$

202 Therefore, a gradient-based descent update in the direction of  $\nabla_\theta \mathcal{L}(\mathcal{D}_{forget})$  moves the model weights such  
203 that they better fit to  $\mathcal{D}_{forget}$ ; because our goal is *unlearning*  $\mathcal{D}_{forget}$ , RELOAD instead begins with a single  
204 gradient *ascent* update step (in the opposite direction). This informs Step (2 - 3) in Figure 2.

205 **Targeted Weight Adjustments.** Taking a gradient step in this direction is insufficient for unlearning for two  
206 reasons: we are limited to a single step without access to  $\mathcal{D}_{forget}$ , and network modularity theory (Rodriguez  
207 et al., 2019) suggests that a small subset of weights contains disproportionate information about  $\mathcal{D}_{forget}$ .  
208 While one ascent step removes some information about  $\mathcal{D}_{forget}$  across all weights, it cannot fully remove  
209 information from the subset most responsible for characterizing the forget set.

210 We therefore perform selective reinitialisation based on weight importance to ensure full removal of in-  
211 formation from the subset most responsible for characterizing the forget set. The relative magnitude of  
212  $\nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{forget})$  compared to  $\nabla_{\theta_k} \mathcal{L}(\mathcal{D})$  represents how much weight  $\theta$  is responsible for characterizing  
213  $\mathcal{D}_{forget}$ . A small relative magnitude indicates that  $\theta_k$  is well-optimized to characterise instances in  $\mathcal{D}_{forget}$   
214 while a large relative magnitude indicates that  $\theta_k$  poorly characterises these instances. We call this the  
215 *knowledge value* of weight  $\theta_k$ , formally defined as,

$$216 \quad 217 \quad KV_{\theta_k} := \frac{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{forget})| + \epsilon}{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D})| + \epsilon} = \frac{|\nabla_{\theta_k}(\mathcal{L}(\mathcal{D}) - \mathcal{L}(\mathcal{D}_{retain}))| + \epsilon}{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D})| + \epsilon} = \frac{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D}) - \nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{retain})| + \epsilon}{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D})| + \epsilon}, \quad (1)$$

218 where  $\epsilon$  is a small Laplace smoothing constant. By selectively reinitialising all weights  $\theta_k$  if  $KV_{\theta_k} \leq$   
219 Quantile $_{\alpha}(KV)$ , where  $\alpha$  controls the aggressiveness of re-initialisation selection, we can remove the  
220 influence of the weights uniquely responsible for encoding information about  $\mathcal{D}_{forget}$ . This informs Step (4)  
221 in Figure 2. This thinking extends on lines of work in gradient-based input saliency maps (Smilkov et al.,  
222 2017) and saliency unlearning by Fan et al. (2023). We ablate knowledge value formulas in Appendix C.1.

223 *Due to this tight coupling of components, the produced effect is a large modification to weights which strongly  
224 characterise instances in  $\mathcal{D}_{forget}$  combined with a smaller modification to the remainder of the weights,  
225 enabling model-wide removal of characterisation of the instances in  $\mathcal{D}_{forget}$ . We ablate components of the  
226 RELOAD in Appendix C.2 and C.3 and confirm that these components are non-redundant and essential.*

227 3 EMPIRICAL RESULTS AND ANALYSIS  
228

229 Our empirical evaluation has five complementary objectives to assess RELOAD’s capabilities. (1) **Method-  
230 logical Inspection** empirically verifies each component of RELOAD’s unlearning procedure to ensure  
231 well-founded design choices. (2) **Classical Unlearning** evaluates RELOAD’s performance on forgetting

individuals’ private data points, assessing effectiveness at approximating models trained only on the retain set. (3) **Entity Unlearning** examines forgetting specific entities or concepts in LMs, testing RELOAD’s ability to remove knowledge about individuals from the TOFU dataset (Maini et al., 2024). (4) **Corrective Unlearning** (Goel et al., 2024) investigates mitigating training data aberrations when only a subset of affected samples can be identified, focusing on challenging scenarios where fewer than 80% of corrupted samples are identified—representing realistic conditions with incompletely diagnosed data quality issues. (5) **Ablations of RELOAD Components provides a complete picture of the algorithm’s stability across model types, gradient caching techniques, and more.**

### 3.1 METHODOLOGICAL INTROSPECTION

To introspect on RELOAD, we focus on the simplest unlearning task: unlearning a class of data from a trained model. In this case, we unlearn the class “8” from a ResNet-18 model trained on the SVHN dataset. We further ablate on the number of ascent steps, knowledge value formulas, and hyperparameters in Appendix C.

Figure 3 visualises selected feature maps of the ResNet-18 model at different stages of RELOAD and their t-SNE representations (van der Maaten & Hinton, 2008), colored by their predicted label<sup>2</sup>. The experiment demonstrates the importance of the reinitialisation step (Step (4) in Figure 2), as even after a single ascent step, the model still finds “8” to be the most probable class. Only after the important weights are identified and reinitialised does the model emit a lower-entropy distribution classifying the digit as a “2”. This suggests that the primary utility of the ascent step in our algorithm is in amending the representations of  $\mathcal{D}_{forget}$  in the later layers of the network, while the selective weight reinitialisation step modifies the representations produced by earlier layers. The findings of this experiment provide a degree of empirical confirmation of the intuition presented in Section 2.3.

### 3.2 CLASSICAL UNLEARNING EXPERIMENTS

**Baselines.** We compare RELOAD against baseline approaches of GA (Thudi et al., 2022), FT (Warnecke et al., 2023), SSD (Foster et al., 2023), SCRUB (Kurmanji et al., 2023), CF- $k$  (Goel et al., 2022), EU- $k$  (Goel et al., 2022), SalUn (Fan et al., 2023), and Fisher (Golatkar et al., 2020). FT, CF- $k$ , EU- $k$ , and Fisher are partially-blind algorithms, whereas the others require direct access to  $\mathcal{D}_{forget}$ . We also present results from ground-truth retraining from scratch,  $M_{\theta\sim}$ , to evidence the performance of unlearning algorithms. More details on baselines are provided in Appendix B.1.

**Evaluation.** We assess the performance similarity between our learned model and a baseline version of  $M_{\theta\sim}$  trained naively from scratch using two key metrics. First, we calculate the forget accuracy difference ( $\Delta FA$ , ↓), representing the performance gap between our method and the baseline  $M_{\theta\sim}$  on  $\mathcal{D}_{forget}$ . Second, we compute the difference in forget membership inference attack success rates ( $\Delta FMIA$ , ↓), which quantifies how well the membership inference attack from (Shokri et al., 2017) can identify  $\mathcal{D}_{forget}$  samples in each model’s training data relative to the baseline identification rate on  $M_{\theta\sim}$ . Additional evaluation metrics, experimental details, and hyperparameter configurations are detailed in Appendices B.3, B.7, and B.8 respectively.

**RELOAD effectively unlearns both random and correlated samples** We evaluate RELOAD under two regimes: randomly selecting 10% of CIFAR-100 training samples for  $\mathcal{D}_{forget}$ , and selecting 100 samples from a single class to assess unlearning of correlated data. Partial results are reported in Table 1 while complete results are deferred to tables in Appendix B.4. In both settings, RELOAD achieves strong performance across key metrics. For random sample unlearning, RELOAD attains the highest RA while maintaining the lowest  $\Delta FA$ ,  $\Delta FE$ ,  $\Delta FMIA$ , and  $FSKL$ , suggesting superior approximation of  $M_{\theta\sim}$  compared to baselines. For correlated sample unlearning, RELOAD achieves the lowest  $\Delta FMIA$  and  $FSKL$  and performs competitively

<sup>2</sup>t-SNE visualizations in Figure 3 are of a separate, independent run from the left-hand side figure.

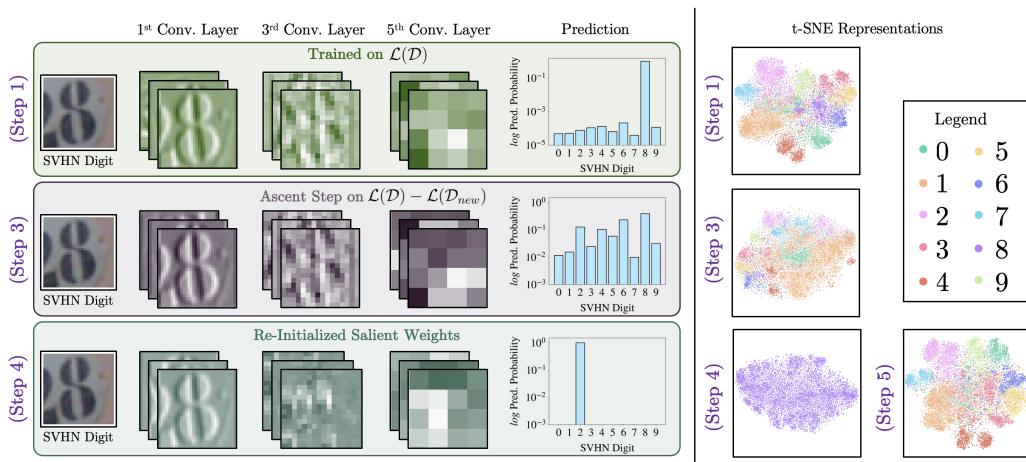


Figure 3: Introspecting on selected feature maps of a ResNet-18 model when using RELOAD to unlearn the class “8”. (Left) The feature maps (activations) of the first channel for the first, third, and fifth convolutional layers after the application of each algorithm step in Figure 2. After Step (3), the activations of the model remain largely unchanged, although the logits represent a considerably more uniform distribution over the digits. After Step (4), the activation of the first convolutional layer is largely unchanged—which is expected, as the earlier layers of CNNs tend to correspond to broad feature detectors (Zeiler & Fergus, 2014)—although the feature maps change and the predictive distribution concentrates around “2”. (Right) t-SNE visualisations of the 5<sup>th</sup> Conv. Layer of a ResNet-18 trained on the same task in a different training run. At Step (1), classes largely cluster into nice separated regions with some overlap. The Ascent Step (3) disrupts the cluster separation, preserving some clustering structure while breaking apart much of the original class boundaries. Reinitialisation (Step (4)) reveals that the model collapses onto one label at this stage (on the left ‘2’, on the right, “8”—though in our experience it is coincidental that this run happens to concentrate on the class we desire to unlearn). Finally, Finetuning (Step (5)) recovers much of the original separability, restoring the distinct class clusters seen in the initial t-SNE. Importantly, we observe that no samples are predicted to be “8”.

| Algorithm     | 10% Random                        |                                   | 100 In-Class                      |                                   | Algorithm      | Entity Unlearning 1% |                |
|---------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------|----------------------|----------------|
|               | $\Delta FA \downarrow$            | $\Delta FMIA \downarrow$          | $\Delta FA \downarrow$            | $\Delta FMIA \downarrow$          |                | $FQ \uparrow$        | $MU \uparrow$  |
| GA            | $18.77 \pm 2.43$                  | $0.21 \pm 0.06$                   | $23.33 \pm 1.06$                  | $0.07 \pm 0.06$                   | GA             | 0.0068               | -0.0233        |
| SSD           | $74.17 \pm 2.04$                  | $0.15 \pm 0.21$                   | $68.67 \pm 1.97$                  | $0.38 \pm 0.14$                   | Grad Diff      | 0.0143               | -0.0198        |
| SCRUB         | $18.85 \pm 2.39$                  | $0.20 \pm 0.06$                   | $27.55 \pm 1.43$                  | $0.07 \pm 0.06$                   | NPO-RT         | 0.5786               | -0.1361        |
| CF- $k$       | $18.01 \pm 2.60$                  | $0.20 \pm 0.06$                   | $21.84 \pm 0.88$                  | $0.07 \pm 0.06$                   | Pref Opt       | 0.0971               | -0.0021        |
| SalUn         | $13.14 \pm 2.53$                  | $7.39 \pm 2.60$                   | $12.08 \pm 3.13$                  | <b><math>0.02 \pm 0.02</math></b> | ECO (Zero-Out) | <b>0.9900</b>        | +0.0000        |
| Fisher        | $22.99 \pm 2.30$                  | $7.27 \pm 2.48$                   | $10.72 \pm 1.98$                  | $0.03 \pm 0.04$                   | Original       | 0.0030               | +0.0000        |
| <b>RELOAD</b> | <b><math>0.30 \pm 0.50</math></b> | <b><math>0.01 \pm 0.01</math></b> | <b><math>3.44 \pm 1.46</math></b> | <b><math>0.02 \pm 0.02</math></b> | <b>RELOAD</b>  | 0.4046               | <b>+0.0748</b> |

Table 1: Benchmarking RELOAD against baselines in the uncorrelated 10% setting, 100 in-class samples setting, and 1% forgetting entity unlearning setting. Best performances are **bolded**.

on other metrics, closely approximating  $M_{\theta \sim}$ . While Fisher marginally outperforms RELOAD in the correlated setting, it requires over twice the computational time as retraining, making RELOAD more practical. Methods like CF- $k$  and EU- $k$  achieve higher RA in the correlated setting due to minimal weight updates, but perform poorly on critical unlearning metrics like  $\Delta FA$  and  $\Delta FE$ . Surprisingly, these results demonstrate that RELOAD’s superior approximation of  $M_{\theta \sim}$  enables more effective unlearning than methods that explicitly leverage  $\mathcal{D}_{forget}$  during the unlearning process.

329 3.3 ENTITY UNLEARNING WITH LMs  
330

331 **Baselines and Evaluation.** We compare RELOAD against baselines from Maini et al. (2024) on entity  
332 unlearning using TOFU’s synthetic author biography dataset (Maini et al., 2024). We evaluate using forget  
333 quality (KS test  $p$ -value between unlearned and retrained model distributions) and model utility (performance  
334 on retained data and real-world knowledge). Experiments use Phi 1.5 (Li et al., 2023) and Llama-2-7B-Chat  
335 (Touvron et al., 2023) with open-source fine-tuned models (locuslab, 2025; Unlearning, 2025a;b;c).

336 **RELOAD unlearns select entities.** In this experiment, we task each algorithm with unlearning a subset  
337 of the fictitious authors in TOFU from a TOFU fine-tuned model. We observe that RELOAD effectively  
338 unlearns when the number of entities to forget is small. As evidenced in Table 1, RELOAD outperforms  
339 many existing unlearning methods in the 1% forgetting case, effectively forgetting entities ( $p$ -value  $\gg 0.05$ )  
340 and *improving* model utility over the Original and Retrained (Retain) models. However, in the 5% and 10%  
341 forgetting cases, RELOAD fails to repair model utility despite successful forgetting. We hypothesise that this  
342 is due to limits on the size of  $\mathcal{D}_{repair}$ . Due to computational restrictions, the size of  $\mathcal{D}_{repair}$  was restricted  
343 (maximum 195 samples) which greatly limited the applicability of RELOAD when  $|\mathcal{D}_{prompts}| > |\mathcal{D}_{repair}|$ .  
344 As the 1% forgetting case is the only case in which  $|\mathcal{D}_{prompts}| \leq |\mathcal{D}_{repair}|$ , this suggests that this bound is a  
345 requirement for the effective application of RELOAD for entity unlearning. Similarly due to computational  
346 constraints, we reuse results and the reference implementation for experiments from prior work (Liu et al.,  
347 2024a). Further experiments are provided in Appendix B.5.

348 The experiment on Llama-2-7B-Chat completes in 8 minutes on a single RTX6000 GPU, using 7% of weights  
349 and <0.025% of retained data, demonstrating RELOAD’s efficiency for small-scale entity unlearning.

350 3.4 CORRECTIVE UNLEARNING  
351

352 **Baselines and Evaluation.** Corrective unlearning (CU) (Goel  
353 et al., 2024) considers the case where a portion  $\mathcal{D}_m$  of  $\mathcal{D}$  has  
354 been adversely affected (e.g. mislabeled or poisoned). CU aims  
355 to update  $\theta$  so as to approximate training on  $\mathcal{D} \setminus \mathcal{D}_m$  where  
356 only a subset  $\mathcal{D}_{forget} \subseteq \mathcal{D}_m$  has been identified. Existing  
357 methods degrade rapidly when  $\gamma := |\mathcal{D}_{forget}| / |\mathcal{D}_m| < 0.8$   
358 and fail under adversarial corruptions or large-scale poisoning  
359 Pawelczyk et al. (2025). To gauge performance on CU, we use  
360 the corrected accuracy  $Acc_{corr}$  ( $\uparrow$ ), measuring the performance  
361 of the unlearned model on the adversely affected data  $\mathcal{D}_m$ . Full  
362 details on prior work, baselines, and evaluation metrics for CU  
363 are detailed in Appendices A.5, B.2, and B.3.

364 **RELOAD efficiently corrects trained models.** Under adverse  
365 effects of manipulations following the baselines outlined in  
366 prior work, RELOAD outperforms on  $Acc_{corr}$  at low percentages  
367 of data identification (Figure 4) while observing competitive  
368 computational efficiency (Table 25) even at only  $\gamma = 0.1$ .  
369 RELOAD outperforms RELOAD in CIFAR-100 poisoning experiments, it bears much greater computational cost (Table  
370 25). We report further experiments and results in Appendix B.6.

371 3.5 Ablation of RELOAD Components  
372

373 **Quantized gradients do not effect RELOAD.** RELOAD incurs a storage overhead when caching gradients.  
374 We explore the feasibility of quantizing the cached gradients, to reduce the footprint of the algorithm. In this  
375 experiment, we unlearn 6000 samples (10%) of CIFAR-10 from a trained ResNet-18 model and quantize

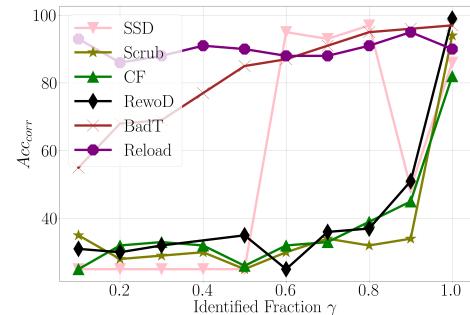


Figure 4: CU results on CIFAR-10 for dataset poisoning with  $|\mathcal{D}_m| = 100$ . RELOAD achieves high  $Acc_{corr}$  across all  $\gamma \in (0, 1.0]$  whereas baseline methods often struggle with low  $\gamma$ .

Although BadT (Chundawat et al., 2022)  
25) outperforms RELOAD in CIFAR-100 poisoning experiments, it bears much greater computational cost (Table

376 the cached gradients from `torch.float32` to `torch.float16`. Before proceeding with unlearning,  
 377 these gradients are expanded back to `torch.float32`. The ResNet18 model is trained for 400 epochs  
 378 with a learning rate of  $1e-3$  using the SGD optimizer and has a trained accuracy of 99.76%. We observe  
 379 that quantizing the stored gradients has no impact on the performance of RELOAD, due to the relative  
 380 magnitudes used for weight reinitialisation (Table 33).

| Method                | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|-----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (UN-QUANTIZED) | $99.99 \pm 0.01$  | $0.46 \pm 0.57$              | $0.76 \pm 0.08$              | $0.01 \pm 0.01$                | $0.44 \pm 0.03$       | $4.04 \pm 0.1$        |
| RELOAD (QUANTIZED)    | $99.99 \pm 0.01$  | $0.46 \pm 0.57$              | $0.76 \pm 0.08$              | $0.01 \pm 0.01$                | $0.44 \pm 0.03$       | $4.04 \pm 0.1$        |
| Retrained (Baseline)  | $99.52 \pm 0.16$  | $36.22 \pm 0.49$             | $2.25 \pm 0.03$              | $0.51 \pm 0.01$                | -                     | -                     |

386 Table 2: 10% Random Forgetting on CIFAR-10 (ResNet-18) with Quantized Cached Gradients  
 387

388 As observed, performance deterioration across key unlearning and utility metrics is minimal. Gradient  
 389 quantization is thus a highly effective and low-cost solution for mitigating storage overhead of RELOAD in  
 390 models where full gradients are required.

391 **RELOAD effectively unlearns from Vision Transformers.** Further, we study the impact of layer normalization  
 392 on the performance of RELOAD to understand the algorithm’s stability across model types. We train a Vision  
 393 Transformer (Dosovitskiy et al., 2020) on the CIFAR-10 dataset (Krizhevsky, 2012) and randomly unlearn  
 394 6000 data samples (10% of CIFAR-10).

395 We reuse a PyTorch implementation of a ViT (Wang et al., 2025) and train the model for 1000 epochs with  
 396 learning rate  $1e-4$  using the Adam (Kingma & Ba, 2014) optimizer. The baseline model is trained to an  
 397 accuracy of 99.94%. We observe that RELOAD produces a model highly similar to the retrained baseline  
 398 when applied to a ViT, showing its stability across model types (Table 32). Further ablations are presented in  
 399 Appendix C.

| Method                          | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|---------------------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (RESNET-18)              | $99.49 \pm 0.10$  | $1.83 \pm 0.83$              | $0.05 \pm 0.04$              | $0.00 \pm 0.00$                | $0.12 \pm 0.01$       | $0.53 \pm 0.07$       |
| RELOAD (ViT)                    | $99.45 \pm 0.12$  | $0.53 \pm 0.50$              | $0.79 \pm 0.1$               | $0.01 \pm 0.01$                | $0.19 \pm 0.03$       | $8.7 \pm 0.11$        |
| RETRAINED (BASELINE, RESNET-18) | $99.99 \pm 0.01$  | $94.40 \pm 0.72$             | $0.23 \pm 0.08$              | $0.50 \pm 0.01$                | -                     | -                     |
| Retrained (Baseline, ViT)       | $99.91 \pm 0.02$  | $54.11 \pm 0.50$             | $4.31 \pm 0.09$              | $0.51 \pm 0.01$                | -                     | -                     |

408 Table 3: 10% Random Forgetting on CIFAR-10, ViT compared to ResNet-18  
 409410 

## 4 RELATED WORK

411 **Exact and Approximate Unlearning.** Exact unlearning provides formal guarantees for information removal  
 412 from model weights. Methods include naive retraining (the gold standard (Cao & Yang, 2015; Thudi et al.,  
 413 2022; Shaik et al., 2024)), SISA (Bourtoule et al., 2019) for accelerated retraining via data partitioning,  
 414 Certified Data Removal (Guo et al., 2019) using reverse Newton updates, and Certified Graph Unlearning  
 415 (Chien et al., 2022) leveraging graph topology. Approximate unlearning methods like RELOAD recover  
 416 retain-set behavior without theoretical guarantees. Approximate unlearning algorithms can be classified  
 417 into gradient-based and weight-saliency approaches. (i) Gradient-based approximate unlearning methods  
 418 perform optimization using both forget and retain sets. Simple approaches apply gradient ascent on forget  
 419 loss to undo weight updates (Graves et al., 2021; Thudi et al., 2022). Teacher-student methods include Bad  
 420 Teacher (Chundawat et al., 2022), which distills from models trained on retain data ("good teacher") and  
 421 randomly initialized on forget data ("bad teacher"), and SCRUB (Kurmanji et al., 2023), where students learn  
 422

423 to disobey teachers by maximizing forget loss. Representation-based methods include DUCK (Cotogni et al.,  
 424 2023), driving forget representations toward incorrect centroids, and Boundary Unlearning (Chen et al., 2023)  
 425 for class-level decision boundary shifts. (ii) Weight saliency-based approximate unlearning methods target  
 426 specific weights based on neural modularity (Pfeiffer et al., 2023) and sparsity (Frankle & Carbin, 2018; Chen  
 427 et al., 2024). SalUn (Fan et al., 2023) uses gradient thresholds to identify forget-sensitive weights, while SSD  
 428 (Foster et al., 2023) scales weights using Fisher Information Matrix importance scores without gradient steps.

429 **Partially-Blind Unlearning.** Related to Zero-Shot Unlearning Chundawat et al. (2023) (restricted to class  
 430 unlearning), this setting is more realistic and applicable. Methods include Finetuning (FT) (Warnecke et al.,  
 431 2023) on retain sets, Catastrophically forgetting last  $k$  layers (CF- $k$ ), Exact-unlearning last  $k$  (EU- $k$ ) (Goel  
 432 et al., 2022), and Fisher Forgetting (Golatkar et al., 2020). Both FT and CF- $k$  provide no strong theoretical  
 433 indication of unlearning while RELOAD provides stronger theoretical indication by selectively reinitialising  
 434 weights bearing the most knowledge on  $\mathcal{D}_{forget}$ .

435 **Unlearning for LMs.** Most methods use optimization to balance forgetting undesirable sequences while  
 436 retaining useful ones (Yao et al., 2024; Liu et al., 2024b; He et al., 2025). Some identify and edit sparse  
 437 weight subsets (Wu et al., 2023b; Ilharco et al., 2023; Belrose et al., 2025) but require large retention datasets  
 438 or full-model updates (Eldan & Russinovich, 2023). Optimization-free methods have been explored (Liu et al.,  
 439 2024a). RELOAD offers a lightweight alternative requiring minimal data, few updates, and fast convergence.

## 441 5 DISCUSSION, LIMITATIONS, AND CONCLUSION

442 **RELOAD effectively unlearns arbitrary samples.** Despite operating in the partially-blind setting, RELOAD  
 443 outperforms MU algorithms that enjoy direct access to  $\mathcal{D}_{forget}$ . However, RELOAD trades off runtime and  
 444 performance in unlearning arbitrary samples of data, requiring the caching of summed gradients over  $\mathcal{D}$  from  
 445 the final step of training, a non-trivial spatial cost. When  $\mathcal{D}_{forget}$  is available, RELOAD does not require this  
 446 caching as the gradients can be computed at runtime. In both settings, RELOAD's method proves to be an  
 447 empirically effective approximate unlearning method.

448 **RELOAD causes LMs to forget entities.** In applications to LMs, RELOAD is able to quickly and cheaply  
 449 remove knowledge of entities when the number of target entities is  $\leq$  the size of the subset of the retained data  
 450 used for computing knowledge values. Applications of our algorithm also leads to an overall increase in model  
 451 performance. When this condition isn't met, RELOAD fails to achieve both model utility and forget quality. In  
 452 addition, RELOAD achieves this without needing to modify the inference pipeline of these models (as opposed  
 453 to baselines such as (Liu et al., 2024a)). **RELOAD corrects data aberrations.** In corrective unlearning,  
 454 RELOAD remains an efficient, performant method in this regime, outperforming existing baselines and serving  
 455 as a viable approach for all currently explored forms of corrective unlearning. RELOAD demonstrates its  
 456 ability to unlearn manipulations when  $< 80\%$  of the manipulated data is identified in all corrective cases,  
 457 presenting a step up from prior results (Goel et al., 2024). This holds practical value when  $\gamma$  is not known  
 458 in deployment. This suggests that our work may contain generalizable insights about learning to fit  
 459 arbitrary downstream transformations of data.

460 By enabling unlearning without direct access to the forget set, RELOAD addresses the fundamental privacy  
 461 paradox in machine unlearning: that the very data subjects wish to remove must be retained during the  
 462 unlearning process. This capability allows organisations to immediately delete requested data upon receipt of  
 463 deletion requests, effectively stopping the cumulation of database-related privacy risks rather than perpetuating  
 464 them through batched processing delays. In doing so, RELOAD represents a meaningful step toward aligning  
 465 technological capabilities with regulatory mandates for deletion “without undue delay” and the privacy  
 466 protection goals underlying right-to-be-forgotten legislation. While our work demonstrates substantial  
 467 empirical improvements across multiple unlearning scenarios, future research may explore extending partially-  
 468 blind unlearning to broader model classes and further reducing auxiliary data requirements.

## 470 REFERENCES

471  
472 Keith B Anderson, Erik Durbin, and Michael A Salinger. Identity theft. *Journal of Economic Perspectives*,  
473 22(2):171–192, 2008.474  
475 Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella Biderman.  
476 Leace: Perfect linear concept erasure in closed form, 2025. URL <https://arxiv.org/abs/2306.03819>.477  
478 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers,  
479 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. 12 2019. URL <http://arxiv.org/abs/1912.03817>.480  
481 Yinzhong Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015 IEEE  
482 Symposium on Security and Privacy*, pp. 463–480, 2015. doi: 10.1109/SP.2015.35.483  
484 Asic Chen, Ruian Ian Shi, Xiang Gao, Ricardo Baptista, and Rahul G Krishnan. Structured neural networks  
485 for density estimation and causal inference. *Advances in Neural Information Processing Systems*, 36, 2024.486  
487 Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid forgetting  
488 of deep networks via shifting the decision boundary. *2023 IEEE/CVF Conference on Computer Vision and  
489 Pattern Recognition (CVPR)*, pp. 7766–7775, 2023. URL <https://api.semanticscholar.org/CorpusID:257636742>.490  
491 Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. *ArXiv*, abs/2206.09140, 2022. URL  
492 <https://api.semanticscholar.org/CorpusID:249890116>.493  
494 Younwoo Choi, Muhammad Adil Asif, Ziwen Han, John Willes, and Rahul G. Krishnan. Teaching llms how  
495 to learn with contextual fine-tuning, 2025. URL <https://arxiv.org/abs/2503.09032>.496  
497 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan S. Kankanhalli. Can bad teaching induce  
498 forgetting? unlearning in deep networks using an incompetent teacher. *ArXiv*, abs/2205.08096, 2022. URL  
499 <https://api.semanticscholar.org/CorpusID:248834527>.500  
501 Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine  
502 unlearning. *IEEE Transactions on Information Forensics and Security*, 18:2345–2354, 2023. ISSN  
503 1556-6021. doi: 10.1109/tifs.2023.3265506. URL <http://dx.doi.org/10.1109/TIFS.2023.3265506>.504  
505 Marco Cotogni, Jacopo Bonato, Luigi Sabetta, Francesco Pelosin, and Alessandro Nicolosi. Duck:  
506 Distance-based unlearning via centroid kinematics. *ArXiv*, abs/2312.02052, 2023. URL <https://api.semanticscholar.org/CorpusID:265609937>.507  
508 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,  
509 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.  
510 An image is worth 16x16 words: Transformers for image recognition at scale. *ArXiv*,  
511 abs/2010.11929, 2020. URL <https://api.semanticscholar.org/CorpusID:225039882>.512 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms, 2023. URL  
513 <https://arxiv.org/abs/2310.02238>.514  
515 European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the European  
516 Parliament and of the Council. URL <https://data.europa.eu/eli/reg/2016/679/oj>.

517 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Empowering  
 518 machine unlearning via gradient-based weight saliency in both image classification and generation, 2023.  
 519 URL <https://arxiv.org/abs/2310.12508>.

520

521 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining through se-  
 522 lective synaptic dampening. *ArXiv*, abs/2308.07707, 2023. URL <https://api.semanticscholar.org/CorpusID:260900355>.

523

524 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.  
 525 *arXiv preprint arXiv:1803.03635*, 2018.

526

527 Tianxiao Gao, Wu Wei, Zhongbin Cai, Zhun Fan, Shane Xie, Xinmei Wang, and Qiuda Yu. Ci-net:  
 528 Contextual information for joint semantic segmentation and depth estimation, 2021. URL <https://arxiv.org/abs/2107.13800>.

529

530 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients – how easy  
 531 is it to break privacy in federated learning?, 2020. URL <https://arxiv.org/abs/2003.14053>.

532

533 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,  
 534 and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):  
 535 665–673, 2020.

536

537 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.  
 538 In Yee Whye Teh and Mike Titterington (eds.), *Proceedings of the Thirteenth International Conference on  
 539 Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pp. 249–256,  
 540 Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL <https://proceedings.mlr.press/v9/glorot10a.html>.

541

542 Shashwat Goel, Ameya Prabhu, and Ponnurangam Kumaraguru. Evaluating inexact unlearning requires  
 543 revisiting forgetting. *ArXiv*, abs/2201.06640, 2022. URL <https://api.semanticscholar.org/CorpusID:246015741>.

544

545 Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal. Corrective  
 546 machine unlearning. *Transactions on Machine Learning Research*, 2024. URL <https://openreview.net/forum?id=v8enu4jP9B>.

547

548 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective  
 549 forgetting in deep networks. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition  
 550 (CVPR)*. IEEE, June 2020. doi: 10.1109/cvpr42600.2020.00932. URL <http://dx.doi.org/10.1109/CVPR42600.2020.00932>.

551

552 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *Proceedings of the AAAI  
 553 Conference on Artificial Intelligence*, volume 35, pp. 11516–11524, 2021.

554

555 Chuan Guo, Tom Goldstein, Awini Y. Hannun, and Laurens van der Maaten. Certified data removal from  
 556 machine learning models. *ArXiv*, abs/1911.03030, 2019. URL <https://api.semanticscholar.org/CorpusID:207847600>.

557

558 Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data from  
 559 trained neural networks. *arXiv [cs.LG]*, June 2022.

560

561 Estrid He, Tabinda Sarwar, Ibrahim Khalil, Xun Yi, and Ke Wang. Deep contrastive unlearning for language  
 562 models, 2025. URL <https://arxiv.org/abs/2503.14900>.

563

564 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-  
 565 level performance on imagenet classification. In *2015 IEEE International Conference on Computer Vision*  
 566 (*ICCV*), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

567 Yuke Hu, Jian Lou, Jiaqi Liu, Wangze Ni, Feng Lin, Zhan Qin, and Kui Ren. ERASER: Machine unleaRning  
 568 in MLaaS via an inferencE seRving-aware approach. *arXiv [cs.CR]*, November 2023.

570 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh  
 571 Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL <https://arxiv.org/abs/2212.04089>.

573 Caitlin Kenny. The equifax data breach and the resulting legal recourse. *Brook. J. Corp. Fin. & Com. L.*, 13:  
 574 215, 2018.

576 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980,  
 577 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

578 Alex Krizhevsky. Learning multiple layers of features from tiny images. *University of Toronto*, 05 2012.

580 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research).  
 581 URL <http://www.cs.toronto.edu/~kriz/cifar.html>.

582 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine  
 583 unlearning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=OveBaTtUAT>.

586 Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Textbooks  
 587 are all you need ii: phi-1.5 technical report, 2023. URL <https://arxiv.org/abs/2309.05463>.

588 Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via  
 589 embedding-corrupted prompts, 2024a. URL <https://arxiv.org/abs/2406.07933>.

591 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,  
 592 Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang Liu.  
 593 Rethinking machine unlearning for large language models, 2024b. URL <https://arxiv.org/abs/2402.08787>.

595 locuslab. tofu\_ft\_retain90\_phi-1.5. [https://huggingface.co/locuslab/tofu\\_ft\\_](https://huggingface.co/locuslab/tofu_ft_retain90_phi-1.5)  
 596 [retain90\\_phi-1.5](https://huggingface.co/locuslab/tofu_ft_retain90_phi-1.5), 2025.

597 Kurt J Long. Do no harm: the insider threat to patient data. *Engineering & Technology Reference*, (2016),  
 598 2016.

600 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of  
 601 fictitious unlearning for llms, 2024. URL <https://arxiv.org/abs/2401.06121>.

602 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential  
 603 learning problem. *Psychology of Learning and Motivation*, 24:109–165, 1989. URL <https://api.semanticscholar.org/CorpusID:61019113>.

606 Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in natural images with  
 607 unsupervised feature learning. 2011. URL <https://api.semanticscholar.org/CorpusID:16852518>.

609 Yakir Oz, Gilad Yehudai, Gal Vardi, Itai Antebi, Michal Irani, and Niv Haim. Reconstructing training data  
 610 from real world models trained with transfer learning. *arXiv [cs.LG]*, July 2024.

611 Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Ayush Sekhari, Gautam Kamath, and Seth Neel. Machine  
612 unlearning fails to remove data poisoning attacks, 2025. URL <https://arxiv.org/abs/2406.17216>.

613

614 Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Ponti. Modular deep learning. *Transactions on*  
615 *Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=z9EkXfvxta>. Survey Certification.

616

617 Yulu Pi. Machine learning in governments: Benefits, challenges and future directions. *JeDEM-eJournal of*  
618 *eDemocracy and Open Government*, 13(1):203–219, 2021.

619

620 Anichur Rahman, Tanoy Debnath, Dipanjali Kundu, Md Saikat Islam Khan, Airin Afroj Aishi, Sadia Sazzad,  
621 Mohammad Sayduzzaman, and Shahab S Band. Machine learning and deep learning-based approach in  
622 smart healthcare: Recent advances, applications, challenges and opportunities. *AIMS Public Health*, 11(1):  
623 58, 2024.

624

625 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers generalize  
626 to cifar-10? 2018. <https://arxiv.org/abs/1806.00451>.

627

628 Nathaniel Rodriguez, E. Izquierdo, and Yong-Yeol Ahn. Optimal modularity and memory capacity of neural  
629 reservoirs 1, 2019.

630

631 Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions. *SN computer*  
632 *science*, 2(3):160, 2021.

633

634 Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Xiaofeng Zhu, and Qing Li. Exploring the landscape of  
635 machine unlearning: A comprehensive survey and taxonomy, 2024.

636

637 Pramila P Shinde and Seema Shah. A review of machine learning and deep learning applications. In *2018*  
638 *Fourth international conference on computing communication control and automation (ICCUBEA)*, pp.  
639 1–6. IEEE, 2018.

640

641 R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine  
642 learning models. In *2017 IEEE Symposium on Security and Privacy (SP)*, pp. 3–18, Los Alamitos,  
643 CA, USA, may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.41. URL <https://doi.ieee.org/10.1109/SP.2017.41>.

644

645 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smoothgrad: removing  
646 noise by adding noise. *ArXiv*, abs/1706.03825, 2017. URL <https://api.semanticscholar.org/CorpusID:11695878>.

647

648 A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot. Unrolling sgd: Understanding factors influencing  
649 machine unlearning. In *2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)*, pp.  
650 303–319, Los Alamitos, CA, USA, jun 2022. IEEE Computer Society. doi: 10.1109/EuroSP53844.2022.  
651 00027. URL <https://doi.ieee.org/10.1109/EuroSP53844.2022.00027>.

652

653 Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data set for nonpara-  
654 metric object and scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30  
655 (11):1958–1970, 2008.

656

657 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
658 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton  
659 Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

658 Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan  
 659 Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh  
 660 Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,  
 661 Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy  
 662 Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan  
 663 Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin  
 664 Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien  
 665 Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned  
 666 chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.

667 Open Unlearning. `tofu_llama-2-7b-chat-hf_retain90`. [https://huggingface.co/open-unlearning/tofu\\_Llama-2-7b-chat-hf\\_retain90](https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain90), 2025a.

668 Open Unlearning. `tofu_llama-2-7b-chat-hf_retain95`. [https://huggingface.co/open-unlearning/tofu\\_Llama-2-7b-chat-hf\\_retain95](https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain95), 2025b.

669 Open Unlearning. `tofu_llama-2-7b-chat-hf_retain99`. [https://huggingface.co/open-unlearning/tofu\\_Llama-2-7b-chat-hf\\_retain99](https://huggingface.co/open-unlearning/tofu_Llama-2-7b-chat-hf_retain99), 2025c.

670 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning  
 671 Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.

672 Mark Vero, Mislav Balunović, Dimitar I. Dimitrov, and Martin Vechev. Tableak: Tabular data leakage in  
 673 federated learning, 2023. URL <https://arxiv.org/abs/2210.01785>.

674 Phil Wang, Zack Ankner, Yonghye Kwon, murufeng, Minh-Long Luu (), Sri Kumar Sastry, Steven Walton,  
 675 roydenwa, Ali Hassani, Artem Lukin, Baraa sameeh, JacobLinCool, Jason Chou, Jonathan Tow, Kale  
 676 Kundert, Loc Truong, Ryan Russell, SOUMYADIP MAL, umbertov, Zhengzhong Tu, Aditya Mishra,  
 677 Andrés, and shabie. lucidrains/vit-pytorch. <https://github.com/lucidrains/vit-pytorch>, nov 22 2025. URL  
 678 <https://github.com/lucidrains/vit-pytorch>.

679 Alexander Warnecke, Lukas Pirch, Christian Wressnegger), and Konrad Rieck. Machine unlearning of  
 680 features and labels. In *Proceedings 2023 Network and Distributed System Security Symposium*, NDSS 2023.  
 681 Internet Society, 2023. doi: 10.14722/ndss.2023.23087. URL <http://dx.doi.org/10.14722/ndss.2023.23087>.

682 Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q. Weinberger. Learning to invert: Simple adaptive attacks  
 683 for gradient inversion in federated learning, 2023a. URL <https://arxiv.org/abs/2210.10880>.

684 Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong. Depn:  
 685 Detecting and editing privacy neurons in pretrained language models, 2023b. URL <https://arxiv.org/abs/2310.20138>.

686 Dongyun Xue, Haomiao Yang, Mengyu Ge, Jingwei Li, Guowen Xu, and Hongwei Li. Fast generation-based  
 687 gradient leakage attacks against highly compressed gradients. In *IEEE INFOCOM 2023 - IEEE Conference  
 688 on Computer Communications*, pp. 1–10, 2023. doi: 10.1109/INFOCOM53939.2023.10229091.

689 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning, 2024. URL <https://arxiv.org/abs/2310.10683>.

690 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In *Computer  
 691 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings,  
 692 Part I 13*, pp. 818–833. Springer, 2014.

705 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020. URL  
706 <https://arxiv.org/abs/2001.02610>.

707  
708 Yixin Zou, Abraham H Mhaidli, Austin McCall, and Florian Schaub. "i've got nothing to lose": Consumers'  
709 risk perceptions and protective actions after the equifax data breach. In *Fourteenth Symposium on Usable*  
710 *Privacy and security (soups 2018)*, pp. 197–216, 2018.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

---

752 **A FORMAL TREATMENT AND GRADIENT DERIVATIONS**  
753

754 **A.1 THE RELOAD ALGORITHM**  
755

756 **Algorithm 1** The RELOAD Algorithm for Partially-Blind Unlearning  
757

---

758 1: **Input:**  $M_{\theta^*}$ , cached  $\nabla_{\theta}\mathcal{L}(\mathcal{D})$ ,  $\mathcal{D}_{retain}$   
759 2: **weights:**  $\eta_p$ : priming step learning rate,  $\epsilon$ : noise weight,  $\alpha$ : reset proportion  
760 3: **Output:** Trained model approximating  $M_{\theta^*}$   
761 4:  
762 5: **procedure** RELOAD( $M_{\theta^*}$ ,  $\nabla_{\theta}\mathcal{L}(\mathcal{D})$ ;  $M_{(\theta^*)}$ ,  $\mathcal{D}_{retain}$ )  
763 6:    $\theta' \leftarrow \theta^* + \eta_p(\nabla_{\theta}\mathcal{L}(\mathcal{D}) - \nabla_{\theta}\mathcal{L}(\mathcal{D}_{retain}))$  ▷ Step (2 – 3) (Fig. 2)  
764 7:    $KV \leftarrow \left\{ \frac{|\nabla_{\theta_k}\mathcal{L}(\mathcal{D}) - \nabla_{\theta_k}\mathcal{L}(\mathcal{D}_{retain})| + \epsilon}{|\nabla_{\theta_k}\mathcal{L}(\mathcal{D})| + \epsilon} \right\}_{\theta_k \in \theta}$  ▷ Step (3) (Fig. 2)  
765 8:   **for**  $\theta_k \in \theta'$  **do**  
766 9:     **if** QUANTILE<sub>KV</sub>( $KV_{\theta_k}$ )  $\leq \alpha$  **then**  
767 10:        $\theta'_k \leftarrow \text{INITIALIZE}(\cdot)$  ▷ Step (4) (Fig. 2)  
768 11:       **end if**  
769 12:     **end for**  
770 13:     Train  $M_{(\theta')}$  to convergence on  $\mathcal{D}_{retain}$  ▷ Step (5) (Fig. 2)  
771 14: **end procedure**  


---

772 Our RELOAD algorithm (Fig. 2) contains the following steps based on the intuition presented in Section 2.3.  
773

774 (1) Cache the gradients  $\nabla_{\theta}\mathcal{L}(\mathcal{D})$  at the end of training.  
775

776 (2) Compute  $\nabla_{\theta}\mathcal{L}(\mathcal{D}_{retain})$ .  
777

778 (3) Perform *one* step of gradient *ascent* in the direction of  $\nabla_{\theta}\mathcal{L}(\mathcal{D}) - \nabla_{\theta}\mathcal{L}(\mathcal{D}_{retain})$ .  
779

780 (4) Reinitialize all weights  $\theta_k$  that are smaller than the  $\alpha$ -QUANTILE of knowledge values.  
781

782 (5) fine-tune until convergence on  $\mathcal{L}(\mathcal{D}_{retain})$ .  
783

784 A formal description of this algorithm is shown in Algorithm 1.  
785

786 For entity unlearning in language models, the RELOAD algorithm requires modifications. The design of  
787 RELOAD for LMs is outlined in Appendix ??.

799  
800

## A.2 GRADIENT INFORMATION AND DERIVATION

801  
802  
803  
804  
805

**Information contained in gradients.** RELOAD relies on information about  $\mathcal{D}$  contained within the cached gradients, raising the question of how it behaves in the modern setting where networks are trained to convergence. We first observe that  $\|\nabla \mathcal{L}(\mathcal{D})\|_{\theta_k} \rightarrow 0$  does not imply  $\|\nabla \mathcal{L}(\mathcal{S})\|_{\theta_k} \rightarrow 0$  for  $\mathcal{S} \subset \mathcal{D}$ . This means that even if the summed-cached gradients are all approximately zero, Step (3) may still induce non-trivial weight updates. For the same reason, the numerator (from Equation 1) in Step (4) is non-zero.

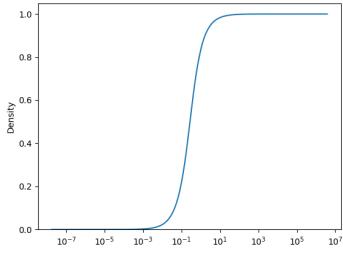
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822

Figure 5: (Smoothed) empirical distribution of knowledge values computed over the weights of ResNet-18 trained on SVHN.

However, as  $\|\nabla \mathcal{L}(\mathcal{D})\|_{\theta_k} \rightarrow 0$ , the denominator in Equation ?? approaches  $\epsilon$ . This does not influence the behaviour of RELOAD, because this scaling by  $\frac{1}{\epsilon}$  applies uniformly to all knowledge values, and  $\alpha$  is a quantile of the empirical distribution of the knowledge values. As such, a constant scaling factor applied to the knowledge values will not affect which weights are re-initialized. Figure 5 shows a smoothed empirical distribution of knowledge values demonstrating the spread of values computed for different weights across a ResNet-18 network.

RELOAD relies on equating  $\nabla_{\theta} \mathcal{L}(\mathcal{D}_{forget})$  to  $\nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{retain})$ . We provide a full derivation below following from the linearity of differentiation and is used to justify the RELOAD algorithm in the partially-blind setting of classical machine unlearning and corrective machine unlearning. For the purpose of corrective unlearning (with replacement), additional arguments are required and presented in Appendix A.5.

823  
824

**Gradient Derivation.** Recall that  $\mathcal{D} = \{z_i\}_{i=1}^N$  with  $z_i \in \mathcal{Z}$ . Let  $z_i = (x_i, y_i)$  represent an input-output pair in the dataset. Then, let  $\hat{y}_i = M_{\theta}(x_i)$  represent the model’s prediction on  $x_i$ . Subsequently,

$$\nabla_{\theta} \mathcal{L}(\mathcal{D}_{forget}) = \sum_{(x_i, y_i) \in \mathcal{D}_{forget}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) = \sum_{(x_i, y_i) \in \mathcal{D} \setminus \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) \quad (2)$$

828

where the second equality follows from  $\mathcal{D}_{retain} = \mathcal{D} \setminus \mathcal{D}_{forget}$ . Equivalently,

$$= \sum_{(x_i, y_i) \in \mathcal{D}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \mathbb{1}_{(x_i, y_i) \in \mathcal{D}_{retain}} [\nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i)] \quad (3)$$

$$= \sum_{(x_i, y_i) \in \mathcal{D}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \sum_{(x_i, y_i) \in \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) \quad (4)$$

$$= \nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{retain}). \quad (5)$$

836  
837

## A.3 THE RELOAD ALGORITHM FOR LANGUAGE MODELS

838  
839  
840  
841

RELOAD on LMs leverages insights from investigations into language models (Choi et al., 2025) to produce richer gradients. This is necessary as LMs are prohibitively-large for the standard RELOAD procedure which requires  $\mathcal{D}_{retain}$  and cached gradients. By reducing the requirements of RELOAD for LMs to  $\mathcal{D}_{prompts}$ , we enable practical partially-blind unlearning on LMs without modifying the inference pipeline.

842  
843  
844  
845

In this setting, we assume access to a model trained on a dataset  $\mathcal{D}$ . Additionally, we assume access to a dataset of prompts inquiring about  $\mathcal{D}_{forget}$ ,  $\mathcal{D}_{prompts}$  (eg. ‘Who is Harry Potter?’ if  $\mathcal{D}_{forget}$  contained texts on Harry Potter). Finally, we assume access to a small sample of the retain set  $\mathcal{D}_{repair} \subseteq \mathcal{D}_{retain}$ . We also select a subset of model layers to unlearn from,  $\mathcal{D}_{layers}$ , with total parameters  $\theta_{selected}$ . All gradients and

846 computations are performed solely on these layers, enabling parameter-efficient optimization and unlearning.  
 847 Given that modern language models are trained on very large datasets and contain billions of parameters, it is  
 848 crucial to be able to perform unlearning with small datasets in a parameter-efficient manner (operating on a  
 849 small subset of model weights).

850 This procedure contains the following steps.  
 851

- 852 (1) Collect the outputs of the model on  $\mathcal{D}_{prompts}$  in  $\mathcal{D}_{outputs}$ .
- 853 (2) Embed each element of  $\mathcal{D}_{outputs}$  in contextual fine tuning (Choi et al., 2025) to create  $\mathcal{D}_{embedded}$  (see  
 854 Appendix A.4).
- 855 (3) Collect the outputs of the model on  $\mathcal{D}_{embedded}$  in  $\mathcal{D}_{embedded\_outputs}$ .
- 856 (4) Collect language-modelling gradients  $\nabla_{\theta}\mathcal{L}(\mathcal{D}_{repair})$ , but do not update parameters.
- 857 (5) Collect language-modelling gradients  $-\nabla_{\theta}\mathcal{L}(\mathcal{D}_{embedded\_outputs})$ , and update parameters (one step of  
 858 gradient ascent).
- 859 (6) Reinitialize all parameters  $\theta_k \subseteq \theta_{selected}$  that are smaller than the  $\alpha$ -QUANTILE of knowledge values.
- 860 (7) fine-tune until convergence on  $\mathcal{L}(\mathcal{D}_{repair})$ .

861 A formal description is also shown (Algorithm 2).

862 It is important to note that in this setting, RELOAD does not require storing gradients, reducing space  
 863 utilization and overhead. However, due to the requirement of prompts in  $\mathcal{D}_{prompts}$ , it offers weaker privacy  
 864 guarantees (ie. knowing which concept is being unlearned).

---

865 **Algorithm 2** The RELOAD Algorithm for LMs

---

```

866 1: Input:  $M_{\theta^*}$ ,  $\mathcal{D}_{prompts}$ ,  $\mathcal{D}_{repair}$ 
867 2: Parameters:  $\eta_p$ : priming step learning rate,  $\epsilon$ : noise parameter,  $\alpha$ : reset proportion
868 3: Output: Trained model approximating  $M_{\theta^*}$ 
869 4:
870 5: procedure RELOAD-LM( $M_{\theta^*}$ ,  $\mathcal{D}_{prompts}$ ,  $\mathcal{D}_{repair}$ )
871 6:    $\mathcal{D}_{outputs} \leftarrow M_{(\theta^*)}(\mathcal{D}_{prompts})$ 
872 7:    $\mathcal{D}_{embedded} \leftarrow \text{CFT}(\mathcal{D}_{outputs})$ 
873 8:    $\mathcal{D}_{embedded\_outputs} \leftarrow M_{(\theta^*)}(\mathcal{D}_{embedded})$ 
874 9:    $\text{KV} \leftarrow \left\{ \frac{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{embedded\_outputs})| + \epsilon}{|\nabla_{\theta_k} \mathcal{L}(\mathcal{D}_{repair})| + \epsilon} \right\}_{\theta_k \in \theta_{selected}}$  ▷ Step (3) (Fig. 2)
875 10:   $\theta'_{selected} \leftarrow \theta^* + \eta_p \nabla_{\theta} (\mathcal{L}(\mathcal{D}_{embedded\_outputs}))$  ▷ Step (2 – 3) (Fig. 2)
876 11:  for  $\theta_k \in \theta'_{selected}$  do
877 12:    if QUANTILEKV( $KV_{\theta_k}$ )  $\leq \alpha$  then
878 13:       $\theta'_k \leftarrow \text{INITIALIZE}(\cdot)$  ▷ Step (4) (Fig. 2)
879 14:    end if
880 15:  end for
881 16:  Train  $M_{(\theta')}$  to convergence on  $\mathcal{D}_{repair}$  ▷ Step (5) (Fig. 2)
882 17: end procedure

```

---

883  
 884 A.4 CONTEXTUAL FINE-TUNING FOR UNLEARNING FROM LANGUAGE MODELS

885  
 886 Choi et al. (2025) outline that embedding a prompt with their method improves the model's ability to capture  
 887 underlying functional relationships. In addition, this method of fine-tuning LM's has been shown to lead  
 888 to improved learning. Therefore, parameter updates informed through this method are more informed -  
 889 suggesting that the gradients produced may be more informed about parameter knowledge themselves.

893 We find that using this method of contextual embedding to produce gradients for RELOAD leads to better  
 894 identification of knowledgeable parameters about  $\mathcal{D}_{prompts}$ . This wholly informs the functionality of our  
 895 unlearning algorithm, leading to quick and effective forgetting from LMs.  
 896

897 Given a prompt  $x$  and a model  $M$ , we extract the knowledge contained within the LM by performing  
 898 a forward pass on the prompt  $x$  to obtain  $M(x)$ .  $M(x)$  is a textual representation of what the LM  
 899 knows about the concept prompted in  $x$ . We then insert  $M(x)$  into the {content} field of the prompt  
 900 presented below which we pass to a black-box LM (in our experiments we use the Anthropic API to access  
 901 claude-3-5-haiku-20241022). This yields a contextual fine-tuning prompt,  $y$ , aimed at extracting  
 902 the most knowledge about a topic from an LM. We then perform a forward pass on  $y$  to yield  $M(y)$  on which  
 903 we collect language modeling gradients.  
 904

905 The following is the fine-tuning prompt used for black-box LMs for unlearning:  
 906

```
"""
Based on the TARGET CONCEPT:
Generate a concise "contextual prompt" that will enhance learning effectiveness and draw out all
relevant knowledge.
The prompt should:
1. Follow the style of [select one learning theory approach: In-Depth Exploration/Reflective
Thinking/Summarization and Synthesis/Focus on Key Concepts/Contextual Understanding/Critical
Analysis/Question-Based Learning]
2. Explicitly identify:
   • The fundamental concepts that must be understood
   • Key relationships between important elements
   • Critical facts that require focus for mastery
   • How these elements connect to and are relevant for reasoning or application
3. Be formatted as a directive that encourages active engagement with the material (approximately
3-5 sentences)
4. Frame the learning in a way that facilitates long-term retention, practical application, and
maximizes extracting knowledge from the learner.
TARGET CONCEPT: {content}
Your contextual prompt should help the learner not just memorize information but develop a deeper,
more applicable understanding of the concept.
"""

```

## 919 920 921 A.5 CORRECTIVE UNLEARNING AND GRADIENT DERIVATION

### 922 923 A.5.1 CORRECTIVE UNLEARNING

924 Goel et al. (2024) introduce the setting of *corrective unlearning* in which a subset of the training data  $\mathcal{D}_m \subset \mathcal{D}$   
 925 is adversely manipulated. This could include mislabeling, backdoors, and data poisoning. The corrective  
 926 unlearning case studies the ability of unlearning algorithms to unlearn the adverse effects produced by the  
 927 presence of these aberrations in the training dataset when a sample of them are identified ( $\mathcal{D}_{forget} \subset \mathcal{D}_m$ ).  
 928 This extends machine unlearning beyond privacy-related deletions. Interestingly, in this setting, a naively-  
 929 retrained model is *not* the gold-standard, as manipulated data may remain in  $\mathcal{D}_{retain}$  unknown to the  
 930 practitioner. Existing methods degrade rapidly when  $\gamma = \frac{|\mathcal{D}_{forget}|}{|\mathcal{D}_m|} < 0.8$ , and fail under adversarial  
 931 corruptions or large-scale poisoning (Pawelczyk et al., 2025).

932 Following prior work, let  $\mathcal{D}_m \subseteq \mathcal{D}$  denote the subset of training points that are adversely affected (mislabeled,  
 933 corrupted, or poisoned). Only a portion of these may be identified as the forget set. Corrective unlearning  
 934 aims to obtain  $M_{\tilde{\theta}} \approx M_{\theta^*}$ . Therefore, we write  
 935

$$936 \mathcal{D}_{forget} \subseteq \mathcal{D}_m, \quad \gamma \triangleq \frac{|\mathcal{D}_{forget}|}{|\mathcal{D}_m|} \in [0, 1], \quad \theta^* \triangleq \arg \min_{\theta \in \Theta} \mathcal{L}(\theta; \mathcal{D} \setminus \mathcal{D}_m),$$

938 so  $\gamma$  is the fraction of adverse instances that are identified. The difficulty of corrective unlearning increases as  
 939  $\gamma$  decreases because  $\mathcal{D}_{retain} = \mathcal{D} \setminus \mathcal{D}_{forget}$  not  $\mathcal{D} \setminus \mathcal{D}_m$ .

940 A.5.2 CORRECTIVE UNLEARNING (WITH REPLACEMENT)  
941

942 In addition to studying the corrective unlearning case, we provide a weaker extension of the corrective setting.  
943 Our expansion to the corrective unlearning setting is applicable when the identified samples in  $\mathcal{D}_{forget}$  are  
944 additionally *transformed*, *corrected*, or *amended* and *included* in  $\mathcal{D}_{retain}$ . In this setting, let  $f : \mathcal{Z} \rightarrow \mathcal{Z}$   
945 denote a transformation, and write  $z'_i = f(z_i)$ . Then,  $\mathcal{D}_{retain}$  represents the result of applying  $f$  item-wise to  
946  $K$  elements of  $\mathcal{D}$ , and applying the identity transform to the remaining  $N - K$  elements, as

$$947 \mathcal{D}_{retain} = \{z'_i\}_{i=1,\dots,K} \cup \{z_i\}_{i=K+1,\dots,N}. \quad (6)$$

948 This is an extension of the corrective unlearning problem, as we wish to “unlearn” the influence of  $\{z_i\}_{i=1,\dots,K}$   
949 on our original model, and “relearn” the influence of  $\{z'_i\}_{i=1,\dots,K}$ . This additional setting encompasses the  
950 following data transformations, among others:

- 952 1. *Covariate Correction*:  $\mathcal{D}_{retain} = \{z'_i = (x'_i, y_i)\}_{i=1,\dots,K} \cup \{z_i\}_{i=K+1,\dots,N}$ , where  $x'_i$  represents a  
953 corrected version of the features  $x_i$ , and indices  $K + 1, \dots, N$  correspond to those with erroneous covariates  
954 (e.g., data was corrupted during collection/pre-processing).
- 955 2. *Label Correction*:  $\mathcal{D}_{retain} = \{z'_i = (x_i, y'_i)\}_{i=1,\dots,K} \cup \{z_i\}_{i=K+1,\dots,N}$ , where  $y'_i$  represents a corrected  
956 version of the label  $y_i$ , and indices  $K + 1, \dots, N$  correspond to those that were originally mis-labelled  
957 during annotation.
- 958 3. *Backdoor Removal*:  $\mathcal{D}_{retain} = \{z'_i = (x'_i, y_i)\}_{i=1,\dots,K} \cup \{(x_i, y_i)\}_{i=K+1,\dots,N}$ , where  $x'_i$  represents a  
959 version of the features  $x_i$  lacking the injected backdoor pattern, and indices  $K + 1, \dots, N$  correspond to  
960 those that were originally transformed with a backdoor during processing. Models trained with backdoors  
961 in the training set learn shortcuts (Geirhos et al., 2020), which can be exploited to induce misclassification.

962 For simplicity, we use  $\mathcal{S}^c$  to denote the complement of the set or dataset  $\mathcal{S}$ .

963 In classical and regular corrective unlearning, our goal is to obtain a gradient in the direction of  $\mathcal{D}_{forget}$   
964 for RELOAD. The corrective unlearning (with replacement) case is more general: the goal is to obtain  
965  $\nabla_{\theta} \mathcal{L}(\mathcal{D} \cap \mathcal{D}_{retain}^c)$ , a gradient pointing towards the empirical minimum of the loss on elements that are  
966 uniquely contained in  $\mathcal{D}$  and not in  $\mathcal{D}_{retain}$ , and  $-\nabla_{\theta} \mathcal{L}(\mathcal{D}^c \cap \mathcal{D}_{retain})$ , a gradient pointing *away* from the  
967 empirical minimum of the loss on elements uniquely contained in  $\mathcal{D}_{retain}$  but not in  $\mathcal{D}$ . This is a general  
968 abstraction of the difference in gradients between a dataset and a subset of that dataset, to the difference  
969 in gradients between two datasets. Unlearning represents the special case of this framework in which  
970  $\mathcal{D} \cap \mathcal{D}_{retain}^c = \mathcal{D}_{forget}$  and  $\mathcal{D}^c \cap \mathcal{D}_{retain} = \emptyset$ . In the corrective unlearning (with replacement) setting, the  
971 desired gradient is also  $\nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{retain})$ ; for which we provide justification and a derivation below.  
972 This validates Step (2 - 3) in RELOAD for this problem.

973 We now outline the derivation of the gradients informing the RELOAD algorithm in the context of corrective  
974 unlearning (with replacement). Recall that in this case,  $\mathcal{D}_{retain} \neq \mathcal{D} - \mathcal{D}_{forget}$ , which invalidates the  
975 justification outlined in Section 2.3. Below, we provide a derivation which justifies the same choice of  
976 gradient for the corrective unlearning (with replacement) setting.

977  
978 In the setting of corrective unlearning (with replacement), we construct these sets.

$$979 \mathcal{D} \cap \mathcal{D}_{retain}^c = \{z_i = (x_i, y_i)\}_{i=K+1\dots N}, \mathcal{D}^c \cap \mathcal{D}_{retain} = \{z'_i = (x'_i, y'_i)\}_{i=K+1\dots N}, \text{ and} \quad (7)$$

$$980 \mathcal{D} \cap \mathcal{D}_{retain} = \{z_i = (x_i, y_i)\}_{i=1\dots K} \quad (8)$$

987 The gradient then formulates as

$$\sum_{\substack{(x_i, y_i) \in \\ \{(x_i, y_i)\}_{i=K+1 \dots N}}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \sum_{\substack{(x_i, y_i) \in \\ \{(x'_i, y'_i)\}_{i=K+1 \dots N}}} \nabla_{\theta} \mathcal{L}((x'_i, y'_i), \hat{y}_i) = \sum_{(x_i, y_i) \in \mathcal{D}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) \quad (9)$$

$$- \mathbb{1}_{\substack{(x_i, y_i) \in \\ \mathcal{D} \cap \mathcal{D}_{retain}}} [\nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i)] - \left( \sum_{(x_i, y_i) \in \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \mathbb{1}_{\substack{(x_i, y_i) \in \\ \mathcal{D} \cap \mathcal{D}_{retain}}} [\nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i)] \right) \quad (10)$$

$$= \sum_{(x_i, y_i) \in \mathcal{D}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \sum_{(x_i, y_i) \in \mathcal{D} \cap \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \sum_{(x_i, y_i) \in \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) + \sum_{(x_i, y_i) \in \mathcal{D} \cap \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) \quad (11)$$

$$= \sum_{(x_i, y_i) \in \mathcal{D}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) - \sum_{(x_i, y_i) \in \mathcal{D}_{retain}} \nabla_{\theta} \mathcal{L}((x_i, y_i), \hat{y}_i) \quad (12)$$

$$= \nabla_{\theta} \mathcal{L}(\mathcal{D}) - \nabla_{\theta} \mathcal{L}(\mathcal{D}_{retain}) \quad (13)$$

1000 In this work, we consider the Corrective Unlearning (with replacement) cases that correspond to the classical  
1001 corrective unlearning scenarios outlined by [Goel et al. \(2024\)](#). We recreate the experimental settings exactly,  
1002 except the samples in  $\mathcal{D}_{forget}$  are *corrected*, and included in  $\mathcal{D}_{retain}$ .

## 1004 B EXPERIMENTAL DETAILS AND RESULTS

### 1005 B.1 BASELINES FOR CLASSICAL UNLEARNING

1008 **Gradient ascent (GA)** ([Thudi et al., 2022](#)). GA operates by taking several steps of *gradient ascent* on  $\mathcal{D}_{forget}$   
1009 thereby removing the trained model from a loss minimum on  $\mathcal{D}_{forget}$ . This approach is not partially-blind.

1011 **Fine-Tuning (FT)** ([Warnecke et al., 2023](#)). FT leverages the concept of catastrophically-forgetting ([McCloskey & Cohen, 1989](#)) to unlearn  $\mathcal{D}_{forget}$  by fine-tuning on  $\mathcal{D}_{retain}$ . This approach is partially-blind.

1013 **Selective Synaptic Dampening (SSD)** ([Foster et al., 2023](#)). SSD studies the amount of information about  
1014  $\mathcal{D}_{forget}$  contained within weights using an approximation of the Fisher Information Matrix. Proportional  
1015 to each weight’s ‘importance’, SSD scales the weight value to induce forgetting. This approach is not  
1016 partially-blind.

1017 **Scalable Remembering and Unlearning Bound (SCRUB)** ([Kurmanji et al., 2023](#)). SCRUB alternates  
1018 optimising between distilling away from the original model on  $\mathcal{D}_{forget}$  and towards the original model on  
1019  $\mathcal{D}_{retain}$ . Notably, the second distillation loss is combined with a task-specific loss (eg. cross-entropy for  
1020 classification).

1021 **Catastrophically Forgetting the last  $k$ -layers (CF- $k$ )** ([Goel et al., 2022](#)). CF- $k$  leverages the concept of  
1022 catastrophically-forgetting ([McCloskey & Cohen, 1989](#)) by freezing all but the last  $k$  layers of the model and  
1023 performing fine-tuning on  $\mathcal{D}_{retain}$ . This approach is partially-blind.

1025 **Exact Unlearning the last  $k$ -layers (EU- $k$ )** ([Goel et al., 2022](#)). EU- $k$  reinitialises the weights of the last  $k$   
1026 layers, freezes the rest, and fine-tunes on  $\mathcal{D}_{retain}$ . This approach is partially-blind.

1027 **Salience Unlearning (SalUn)** ([Fan et al., 2023](#)). SalUn is a framework in which important weights to  
1028  $\mathcal{D}_{forget}$  are identified and all but those are frozen for optimisation updates. Authors report the greatest  
1029 improvement when combined with Random Labelling (RL) ([Golatkar et al., 2020](#)). RL assigns random labels  
1030 to instances in  $\mathcal{D}_{forget}$  and then fine-tunes on this data. This approach is not partially-blind.

1031 **Fisher Forgetting (Fisher)** ([Golatkar et al., 2020](#)). Fisher leverages the Fisher Information Matrix over  
1032  $\mathcal{D}_{forget}$  to perform a Fisher-regularised weight update to the model. This approach is not partially-blind.

1034 B.2 BASELINES FOR CORRECTIVE UNLEARNING  
10351036 Baselines are taken directly from [Goel et al. \(2024\)](#). We repeat their details below.1037 **Retrain without Deletion Set (RewoD).** RewoD represents a naively retrained model on  $\mathcal{D}_{retain} = \mathcal{D} \setminus$   
1038  $\mathcal{D}_{forget}$ . Notably in this setting, some affected samples of  $\mathcal{D}_m$  may still be in  $\mathcal{D}_{retain}$ .  
10391040 **Catastrophically Forgetting all layers/Finetuning (CF)** ([Goel et al., 2022](#); [Warnecke et al., 2023](#)). CF  
1041 leverages the concept of catastrophically-forgetting ([McCloskey & Cohen, 1989](#)) by performing fine-tuning  
1042 on  $\mathcal{D}_{retain}$ .1043 **Selective Synaptic Dampening (SSD)** ([Foster et al., 2023](#)). SSD studies the amount of information about  
1044  $\mathcal{D}_{forget}$  contained within weights using an approximation of the Fisher Information Matrix. Proportional to  
1045 each weight’s ‘importance’, SSD scales the weight value to induce forgetting.1046 **Knowledge Distillation from a Bad Teacher (BadT)** ([Chundawat et al., 2022](#)). BadT uses a combined  
1047 distillation approach by learning from a randomly initialised network on  $\mathcal{D}_{forget}$  and the original model on  
1048  $\mathcal{D}_{retain}$ .  
10491050 **Scalable Remembering and Unlearning Bound (SCRUB)** ([Kurmanji et al., 2023](#)). SCRUB alternates  
1051 optimising between distilling away from the original model on  $\mathcal{D}_{forget}$  and towards the original model on  
1052  $\mathcal{D}_{retain}$ . Notably, the second distillation loss is combined with a task-specific loss (eg. cross-entropy for  
1053 classification).1054 B.3 EVALUATION METRICS FOR MACHINE UNLEARNING  
10551056 We present the evaluation metrics used in our experiments comparing the RELOAD algorithm with baselines.  
1057 An up arrow  $\uparrow$  indicates that the higher the better, while a down arrow  $\downarrow$  indicates that the lower the better.1058 One of the goals of unlearning is to produce a model that is a close approximation of the naively retrained one.  
1059 FSKL and RSKL are evaluation metrics which quantify the dissimilarity between the outputs of the unlearned  
1060 model and the retrained model on the same data.  $\Delta$ FA,  $\Delta$ FE,  $\Delta$ FMIA are comparison metrics to benchmark  
1061 the difference in performance between the unlearned model and the retrained model on the same data. Similar  
1062 behaviour on  $\mathcal{D}_{forget}$  implies that the unlearned model is indistinguishable from a retrained one. Unlearning  
1063 is only a useful procedure if it is cheap and yields a useful model. RA measures the utility of the unlearned  
1064 model, and Cost measures how expensive the unlearning procedure is, relative to retraining from scratch.  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080

| Statistic                                                            | Abbr.         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy on $\mathcal{D}_{retain}$ ( $\uparrow$ )                    | RA            | Model accuracy on the $\mathcal{D}_{retain}$ . In unlearning, a higher accuracy indicates that the unlearning process has not negatively impacted the model's performance on the retained data.                                                                                                                                                                                                                                                |
| Diff. in Accuracy on $\mathcal{D}_{forget}$ ( $\downarrow$ )         | $\Delta FA$   | The change in accuracy on the forget set between the current model and $\mathcal{M}^{\theta^*}$ . A smaller difference, approaching the accuracy of the retrained model, indicates that the unlearning method has been more effective in "forgetting" the forget set.                                                                                                                                                                          |
| Diff. in Error on $\mathcal{D}_{forget}$ ( $\downarrow$ )            | $\Delta FE$   | The reduction in error on the forget set between the current model and $\mathcal{M}^{\theta^*}$ . A smaller difference, approaching the error of the retrained model, signifies that the unlearning method has been more effective at "forgetting" the forget set.                                                                                                                                                                             |
| Diff. in MIA Success Rate on $\mathcal{D}_{forget}$ ( $\downarrow$ ) | $\Delta FMIA$ | Difference in success rate of a membership inference attack (MIA) on the forget set between the current model and $\mathcal{M}^{\theta^*}$ . In this work, we use the attack from (Shokri et al., 2017) implemented in the repository for (Kurmanji et al., 2023). A success rate approaching that of the retrained model implies the forgotten data is indistinguishable to an MIA on in-distribution data that the model was not trained on. |
| Symmetric KL-Divergence on $\mathcal{D}_{retain}$ ( $\downarrow$ )   | RSKL          | Symmetric KL-Divergence between the logits of the current model and those of $\mathcal{M}^{\theta^*}$ . This metric is averaged over all instances in the $\mathcal{D}_{retain}$ . A lower symmetric KL divergence indicates an unlearning method that behaves similarly on the $\mathcal{D}_{retain}$ to a model retrained from scratch without the forget set.                                                                               |
| Symmetric KL-Divergence on $\mathcal{D}_{forget}$ ( $\downarrow$ )   | FSKL          | The Symmetric KL-Divergence between the logits of the current model and those of $\mathcal{M}^{\theta^*}$ . This metric is averaged over all instances in the $\mathcal{D}_{forget}$ . A lower symmetric KL divergence indicates that the unlearning method that behaves similarly on the $\mathcal{D}_{forget}$ to a model retrained from scratch without the forget set.                                                                     |
| Cost ( $\downarrow$ )                                                | Cost          | Ratio of the runtime of the unlearning method to the runtime of retraining a baseline model from scratch without the forget set. A lower cost indicates a more computationally efficient method.                                                                                                                                                                                                                                               |

Table 4: Evaluation Statistics for Unlearning.

### Corrective Unlearning (with and without replacement) Evaluation Metrics

| Statistic                         | Abbr.          | Description                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Retain Accuracy ( $\uparrow$ )    | $Acc_{retain}$ | Model accuracy on a held out test set ( $\mathcal{D}_{retain}^{(test)}$ ) of the same distribution as $\mathcal{D}_{retain}$ . In corrective unlearning, a higher accuracy indicates that the corrective unlearning process has correctly adapted the model to its new training set.                                                                                                  |
| Corrected Accuracy ( $\uparrow$ ) | $Acc_{corr}$   | Model accuracy on the adversely affected data $\mathcal{D}_m$ . In the case of backdoor attacks or noisy corrective unlearning, a higher value indicates the relearned model correctly has lost its reliance on the backdoor pattern. In label correction setting, the desirable value is the percentage of samples that did not have their labels flipped (in our experiments, 90%). |
| Cost ( $\downarrow$ )             | Cost           | Ratio of the runtime of the corrective unlearning method to the runtime of retraining a baseline model from scratch without the forget set. A lower cost indicates a more computationally efficient method.                                                                                                                                                                           |

Table 5: Evaluation Statistics for Corrective Unlearning.

1128  $\text{Acc}_{\text{retain}}$  and  $\text{Acc}_{\text{corr}}$  are metrics introduced in [Goel et al. \(2024\)](#) to measure the effectiveness of a corrective  
 1129 unlearning algorithm. Cost is the same as above, to compare the unlearning algorithm to the expense of full  
 1130 training.

1132 **B.4 CLASSICAL UNLEARNING RESULTS**

1134 We present a full set of experiments exploring the effectiveness of the RELOAD algorithm on the classical  
 1135 unlearning task of *item unlearning*. This suite of experiments include unlearning randomly-selected samples  
 1136 and correlated samples. Across these categories we select 10% and 30% of training data samples for random-  
 1137 sample unlearning, and 100 data points from a single class for correlated-sample unlearning. These cases are  
 1138 explored across 3 datasets (CIFAR10, CIFAR100, and SVHN) and 2 models (ResNet-18 and VGG16-BN).

1139 As previously discussed, RELOAD operates in a partially-blind setting. This means that within the results  
 1140 presented below, RELOAD performs this unlearning without access to  $\mathcal{D}_{\text{forget}}$ .

1141 **RELOAD unlearns randomly-selected samples.** We randomly assign 10% of CIFAR-100 training samples  
 1142 to  $\mathcal{D}_{\text{forget}}$ , to showcase how well each method can unlearn arbitrary training samples from a ResNet-18 and  
 1143 report our results in Table 10. RELOAD achieves the highest RA, while maintaining the lowest  $\Delta\text{FA}$ ,  $\Delta\text{FE}$ ,  
 1144  $\Delta\text{FMIA}$ , and  $\text{FSKL}$  of all approaches. This suggests that RELOAD successfully approximates  $M_{\theta^*}$  better  
 1145 than the baselines. That FT achieves a lower  $\text{RSKL}$  than RELOAD is hardly surprising, as  $\text{RSKL}$  measures  
 1146 dissimilarity in logits on  $\mathcal{D}_{\text{retain}}$ , and FT adjusts a converged model  $M_{\theta^*}$  to fit a subset of its original task.  
 1147 Similarly, the computational cost of RELOAD, though similar to many baselines, is considerably greater than  
 1148 either SSD or GA.

1149 **RELOAD efficiently unlearns correlated samples.** We randomly assign 100 samples from a single class  
 1150 of the training data to  $\mathcal{D}_{\text{forget}}$ , to evaluate how well each method can unlearn arbitrary but related training  
 1151 samples and report our results in Table 17. RELOAD achieves the lowest  $\Delta\text{FMIA}$  and  $\text{FSKL}$  of all approaches  
 1152 and very close to the lowest  $\Delta\text{FA}$ ,  $\Delta\text{FE}$ , and  $\text{RSKL}$  of all approaches, suggesting that RELOAD closely  
 1153 approximates  $M_{\theta^*}$  in this setting. RELOAD is marginally outperformed by Fisher in these settings, but is far  
 1154 more feasible, as Fisher requires over twice as much time as retraining. Although RELOAD achieves an RA  
 1155 competitive with that of most baselines, naive gradient ascent, CF- $k$ , and EU- $k$  yield a marginally higher RA.  
 1156 This can be attributed to the small number of unlearning samples; optimizing to maximize the loss on these  
 1157 samples does not provide a strong enough gradient update. CF- $k$  and EU- $k$  both make few weight updates to  
 1158  $M_{\theta^*}$ , which leads to a high RA but poor performance on unlearning metrics like  $\Delta\text{FA}$  and  $\Delta\text{FE}$ .

1159 Further experimental results on random 10% and random 30% forgetting are provided in the tables below  
 1160 (Appendix B.4.1, B.4.2). Results on 100 correlated-sample unlearning are provided in Appendix B.4.3.

1175  
1176

## B.4.1 RANDOM 10% FORGETTING

1177  
1178

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.38 $\pm$ 0.21                 | 3.86 $\pm$ 0.66                 | 0.21 $\pm$ 0.07                 | 0.04 $\pm$ 0.02                 | <b>0.00<math>\pm</math>0.00</b> | 0.06 $\pm$ 0.02                 | 0.66 $\pm$ 0.06                 |
| FT                   | 98.24 $\pm$ 0.21                 | <b>1.45<math>\pm</math>0.53</b> | 0.16 $\pm$ 0.03                 | 0.03 $\pm$ 0.01                 | 0.27 $\pm$ 0.00                 | <b>0.05<math>\pm</math>0.01</b> | <b>0.48<math>\pm</math>0.04</b> |
| SSD                  | 20.02 $\pm$ 29.99                | 75.65 $\pm$ 26.45               | 1.88 $\pm$ 0.62                 | 0.01 $\pm$ 0.02                 | 0.01 $\pm$ 0.00                 | 8.30 $\pm$ 3.11                 | 7.83 $\pm$ 2.70                 |
| SCRUB                | 98.41 $\pm$ 0.20                 | 3.89 $\pm$ 0.70                 | 0.21 $\pm$ 0.07                 | 0.04 $\pm$ 0.02                 | 0.02 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.65 $\pm$ 0.04                 |
| CF- $k$              | 98.28 $\pm$ 0.23                 | 3.81 $\pm$ 0.71                 | 0.21 $\pm$ 0.07                 | 0.05 $\pm$ 0.02                 | 0.21 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.04                 |
| EU- $k$              | 98.31 $\pm$ 0.21                 | 3.83 $\pm$ 0.71                 | 0.21 $\pm$ 0.07                 | 0.05 $\pm$ 0.01                 | 0.21 $\pm$ 0.00                 | 0.07 $\pm$ 0.02                 | 0.56 $\pm$ 0.04                 |
| SalUn                | 99.78 $\pm$ 0.05                 | 3.68 $\pm$ 0.48                 | 0.26 $\pm$ 0.02                 | 0.01 $\pm$ 0.01                 | 0.16 $\pm$ 0.01                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.04                 |
| Fisher               | 99.51 $\pm$ 0.17                 | 3.83 $\pm$ 0.44                 | 0.07 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 1.83 $\pm$ 0.06                 | 0.07 $\pm$ 0.02                 | 0.56 $\pm$ 0.04                 |
| RELOAD (OURS)        | <b>99.49<math>\pm</math>0.10</b> | 1.83 $\pm$ 0.83                 | <b>0.05<math>\pm</math>0.04</b> | <b>0.00<math>\pm</math>0.00</b> | 0.26 $\pm$ 0.09                 | 0.12 $\pm$ 0.01                 | 0.53 $\pm$ 0.07                 |
| Retrained (Baseline) | 99.99 $\pm$ 0.01                 | 94.40 $\pm$ 0.72                | 0.23 $\pm$ 0.08                 | 0.50 $\pm$ 0.01                 | -                               | -                               | -                               |

1185  
1186

Table 6: 10% Random Forgetting on CIFAR-10 (ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FE,  $\Delta$ FMIA by large margins. RELOAD performs competitively on the  $\Delta$ FA, FSKL, and RSKL metrics, but is outperformed by FT. RELOAD incurs a higher computational cost than other baselines other than FT.

1194

1195

1196  
1197

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.38 $\pm$ 0.21                 | 4.40 $\pm$ 0.41                 | 0.18 $\pm$ 0.02                 | 0.05 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.06 $\pm$ 0.02                 | 0.66 $\pm$ 0.06                 |
| FT                   | 98.24 $\pm$ 0.21                 | 4.33 $\pm$ 0.37                 | 0.18 $\pm$ 0.02                 | 0.04 $\pm$ 0.01                 | 0.26 $\pm$ 0.02                 | <b>0.05<math>\pm</math>0.01</b> | 0.48 $\pm$ 0.04                 |
| SSD                  | 20.02 $\pm$ 29.99                | 75.41 $\pm$ 26.74               | 1.89 $\pm$ 0.62                 | 0.02 $\pm$ 0.03                 | 0.01 $\pm$ 0.00                 | 8.30 $\pm$ 3.11                 | 7.83 $\pm$ 2.70                 |
| SCRUB                | 98.41 $\pm$ 0.20                 | 4.47 $\pm$ 0.40                 | 0.19 $\pm$ 0.02                 | 0.05 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.65 $\pm$ 0.04                 |
| CF- $k$              | 98.28 $\pm$ 0.23                 | 4.47 $\pm$ 0.39                 | 0.19 $\pm$ 0.02                 | 0.05 $\pm$ 0.01                 | 0.17 $\pm$ 0.01                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.04                 |
| EU- $k$              | 98.31 $\pm$ 0.21                 | 4.48 $\pm$ 0.40                 | 0.19 $\pm$ 0.02                 | 0.06 $\pm$ 0.01                 | 0.17 $\pm$ 0.01                 | 0.07 $\pm$ 0.02                 | 0.56 $\pm$ 0.04                 |
| SalUn                | <b>99.86<math>\pm</math>0.04</b> | 1.98 $\pm$ 0.48                 | 0.09 $\pm$ 0.02                 | 0.04 $\pm$ 0.01                 | 0.17 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.04                 |
| Fisher               | 99.61 $\pm$ 0.14                 | 0.15 $\pm$ 0.06                 | <b>0.00<math>\pm</math>0.00</b> | 0.01 $\pm$ 0.01                 | 2.17 $\pm$ 0.04                 | 0.07 $\pm$ 0.02                 | 0.56 $\pm$ 0.04                 |
| RELOAD (OURS)        | 99.76 $\pm$ 0.16                 | <b>0.08<math>\pm</math>0.08</b> | 0.01 $\pm$ 0.00                 | <b>0.00<math>\pm</math>0.00</b> | 0.12 $\pm$ 0.01                 | <b>0.05<math>\pm</math>0.03</b> | <b>0.19<math>\pm</math>0.02</b> |
| Retrained (Baseline) | 99.99 $\pm$ 0.00                 | 95.16 $\pm$ 0.30                | 0.20 $\pm$ 0.02                 | 0.50 $\pm$ 0.00                 | -                               | -                               | -                               |

1205

Table 7: 10% Random Forgetting on SVHN (ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE,  $\Delta$ FMIA, FSKL, and RSKL by large margins. RELOAD performs competitively on the Cost, but incurs a higher computational cost than other baselines other than FT, CF- $k$ , EU- $k$ .

1213

1214

1215

1216

1217

1218

1219

1220

1221

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.40 $\pm$ 0.23                 | 4.43 $\pm$ 0.44                 | 0.21 $\pm$ 0.02                 | 0.03 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.06 $\pm$ 0.02                 | 0.65 $\pm$ 0.06                 |
| FT                   | 98.30 $\pm$ 0.18                 | 4.49 $\pm$ 0.43                 | 0.22 $\pm$ 0.02                 | 0.03 $\pm$ 0.01                 | 0.24 $\pm$ 0.03                 | <b>0.05<math>\pm</math>0.01</b> | <b>0.49<math>\pm</math>0.04</b> |
| SSD                  | 22.88 $\pm$ 34.01                | 70.45 $\pm$ 29.04               | 1.80 $\pm$ 0.69                 | 0.01 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 7.99 $\pm$ 3.52                 | 7.56 $\pm$ 3.06                 |
| SCRUB                | 98.43 $\pm$ 0.22                 | 4.50 $\pm$ 0.41                 | 0.22 $\pm$ 0.02                 | 0.03 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.66 $\pm$ 0.04                 |
| CF- $k$              | 98.34 $\pm$ 0.24                 | 4.51 $\pm$ 0.42                 | 0.22 $\pm$ 0.02                 | 0.04 $\pm$ 0.01                 | 0.21 $\pm$ 0.03                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.05                 |
| EU- $k$              | 98.34 $\pm$ 0.23                 | 4.51 $\pm$ 0.42                 | 0.22 $\pm$ 0.02                 | 0.04 $\pm$ 0.01                 | 0.21 $\pm$ 0.03                 | 0.06 $\pm$ 0.02                 | 0.56 $\pm$ 0.05                 |
| SalUn                | <b>99.94<math>\pm</math>0.02</b> | 3.88 $\pm$ 0.62                 | 0.13 $\pm$ 0.01                 | 0.04 $\pm$ 0.01                 | 0.15 $\pm$ 0.00                 | 0.06 $\pm$ 0.02                 | 0.55 $\pm$ 0.05                 |
| Fisher               | 99.55 $\pm$ 0.18                 | <b>0.04<math>\pm</math>0.04</b> | <b>0.00<math>\pm</math>0.00</b> | <b>0.00<math>\pm</math>0.00</b> | 1.46 $\pm$ 0.03                 | 0.06 $\pm$ 0.02                 | 0.56 $\pm$ 0.05                 |
| RELOAD (OURS)        | 99.50 $\pm$ 0.11                 | 0.65 $\pm$ 0.72                 | 0.04 $\pm$ 0.04                 | <b>0.00<math>\pm</math>0.00</b> | 0.26 $\pm$ 0.10                 | 0.12 $\pm$ 0.01                 | 0.53 $\pm$ 0.08                 |
| Retrained (Baseline) | 99.99 $\pm$ 0.00                 | 95.08 $\pm$ 0.31                | 0.24 $\pm$ 0.02                 | 0.50 $\pm$ 0.00                 | -                               | -                               | -                               |

Table 8: 10% Random Forgetting on SVHN (VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins aside from Fisher. However, Fisher incurs a substantially higher Cost, making it far less efficient than retraining from scratch. Therefore, Fisher is impractical, and RELOAD demonstrates the best practicality as an unlearning mechanism. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.41 $\pm$ 0.25                 | 26.40 $\pm$ 1.18                | 1.64 $\pm$ 0.07                 | 0.14 $\pm$ 0.03                 | <b>0.00<math>\pm</math>0.00</b> | <b>0.06<math>\pm</math>0.03</b> | 0.66 $\pm$ 0.06                 |
| FT                   | 98.27 $\pm$ 0.20                 | 12.65 $\pm$ 1.81                | 1.16 $\pm$ 0.07                 | 0.08 $\pm$ 0.02                 | 0.25 $\pm$ 0.03                 | <b>0.06<math>\pm</math>0.01</b> | <b>0.50<math>\pm</math>0.03</b> |
| SSD                  | 22.86 $\pm$ 34.01                | 61.38 $\pm$ 15.72               | 2.57 $\pm$ 0.55                 | <b>0.02<math>\pm</math>0.05</b> | <b>0.00<math>\pm</math>0.00</b> | 8.01 $\pm$ 3.53                 | 7.57 $\pm$ 3.07                 |
| SCRUB                | 98.43 $\pm$ 0.23                 | 26.62 $\pm$ 1.10                | 1.66 $\pm$ 0.06                 | 0.14 $\pm$ 0.03                 | 0.02 $\pm$ 0.00                 | <b>0.06<math>\pm</math>0.02</b> | 0.66 $\pm$ 0.04                 |
| CF- $k$              | 98.30 $\pm$ 0.27                 | 26.26 $\pm$ 1.25                | 1.68 $\pm$ 0.06                 | 0.15 $\pm$ 0.02                 | 0.27 $\pm$ 0.04                 | <b>0.06<math>\pm</math>0.02</b> | 0.56 $\pm$ 0.04                 |
| EU- $k$              | 98.35 $\pm$ 0.25                 | 26.16 $\pm$ 1.26                | 1.67 $\pm$ 0.06                 | 0.15 $\pm$ 0.02                 | 0.27 $\pm$ 0.04                 | <b>0.06<math>\pm</math>0.02</b> | 0.57 $\pm$ 0.04                 |
| RELOAD (OURS)        | <b>99.51<math>\pm</math>0.09</b> | <b>3.37<math>\pm</math>1.55</b> | <b>0.40<math>\pm</math>0.07</b> | <b>0.02<math>\pm</math>0.01</b> | 0.24 $\pm$ 0.11                 | 0.11 $\pm$ 0.01                 | 0.51 $\pm$ 0.03                 |
| Retrained (Baseline) | 97.80 $\pm$ 0.33                 | 68.25 $\pm$ 0.49                | 1.82 $\pm$ 0.06                 | 0.50 $\pm$ 0.01                 | -                               | -                               | -                               |

Table 9: 10% Random Forgetting on CIFAR-100(VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF- $k$ , and EU- $k$ .

| Method               | RA ( $\uparrow$ )       | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | Cost ( $\downarrow$ )  | RSKL ( $\downarrow$ )  | FSKL ( $\downarrow$ )  |
|----------------------|-------------------------|------------------------------|------------------------------|--------------------------------|------------------------|------------------------|------------------------|
| GA                   | 93.81 $\pm$ 0.75        | 18.77 $\pm$ 2.43             | 0.95 $\pm$ 0.14              | 0.21 $\pm$ 0.06                | <b>0.00</b> $\pm$ 0.00 | 0.29 $\pm$ 0.09        | 2.62 $\pm$ 0.05        |
| FT                   | 96.00 $\pm$ 0.12        | 16.46 $\pm$ 2.47             | 0.89 $\pm$ 0.14              | 0.19 $\pm$ 0.08                | 0.27 $\pm$ 0.00        | <b>0.03</b> $\pm$ 0.01 | 2.11 $\pm$ 0.06        |
| SSD                  | 1.01 $\pm$ 0.02         | 74.17 $\pm$ 2.04             | 4.19 $\pm$ 0.59              | 0.15 $\pm$ 0.21                | 0.01 $\pm$ 0.00        | 14.90 $\pm$ 1.24       | 11.81 $\pm$ 1.24       |
| SCRUB                | 93.76 $\pm$ 0.74        | 18.85 $\pm$ 2.39             | 0.95 $\pm$ 0.14              | 0.20 $\pm$ 0.06                | 0.02 $\pm$ 0.00        | 0.29 $\pm$ 0.09        | 2.63 $\pm$ 0.06        |
| CF- $k$              | 94.75 $\pm$ 0.41        | 18.01 $\pm$ 2.60             | 0.94 $\pm$ 0.14              | 0.20 $\pm$ 0.06                | 0.21 $\pm$ 0.00        | 0.14 $\pm$ 0.03        | 2.47 $\pm$ 0.07        |
| EU- $k$              | 94.32 $\pm$ 0.49        | 17.93 $\pm$ 2.55             | 0.94 $\pm$ 0.14              | 0.20 $\pm$ 0.06                | 0.21 $\pm$ 0.00        | 0.19 $\pm$ 0.05        | 2.33 $\pm$ 0.05        |
| SalUn                | 99.06 $\pm$ 0.22        | 13.14 $\pm$ 2.53             | 0.11 $\pm$ 0.09              | 7.39 $\pm$ 2.60                | 0.16 $\pm$ 0.00        | 0.06 $\pm$ 0.02        | <b>0.55</b> $\pm$ 0.04 |
| Fisher               | 97.76 $\pm$ 0.78        | 22.99 $\pm$ 2.30             | 0.95 $\pm$ 0.14              | 7.27 $\pm$ 2.48                | 1.78 $\pm$ 0.04        | 0.07 $\pm$ 0.02        | 0.56 $\pm$ 0.04        |
| RELOAD (OURS)        | <b>99.56</b> $\pm$ 0.11 | <b>0.30</b> $\pm$ 0.50       | <b>0.04</b> $\pm$ 0.02       | <b>0.01</b> $\pm$ 0.01         | 0.12 $\pm$ 0.01        | 0.15 $\pm$ 0.03        | 1.23 $\pm$ 0.11        |
| Retrained (Baseline) | 99.98 $\pm$ 0.01        | 74.89 $\pm$ 2.03             | 1.06 $\pm$ 0.13              | 0.63 $\pm$ 0.20                | -                      | -                      | -                      |

Table 10: **10% Random Forgetting on CIFAR-100 (ResNet-18)**. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE,  $\Delta$ FMIA, and FSKL by large margins. RELOAD performs competitively on the RSKL metric, outperformed by FT and CF- $k$ . RELOAD incurs a higher computational cost than most baselines, but is cheaper than FT, CF- $k$ , and EU- $k$ .

#### B.4.2 RANDOM 30% FORGETTING

| Method               | RA ( $\uparrow$ )       | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ )  | RSKL ( $\downarrow$ )  | FSKL ( $\downarrow$ )  |
|----------------------|-------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|------------------------|------------------------|------------------------|
| GA                   | 17.20 $\pm$ 30.17       | 77.46 $\pm$ 26.25            | 8.86 $\pm$ 6.48              | 0.02 $\pm$ 0.02                | 0.01 $\pm$ 0.02               | <b>0.01</b> $\pm$ 0.00 | 0.06 $\pm$ 0.02        | 0.66 $\pm$ 0.06        |
| FT                   | <b>99.69</b> $\pm$ 0.24 | 3.92 $\pm$ 0.53              | 0.19 $\pm$ 0.02              | 0.02 $\pm$ 0.01                | 0.02 $\pm$ 0.00               | 0.28 $\pm$ 0.01        | <b>0.05</b> $\pm$ 0.01 | <b>0.48</b> $\pm$ 0.04 |
| SSD                  | 19.85 $\pm$ 29.65       | 74.50 $\pm$ 25.90            | 1.82 $\pm$ 0.58              | 0.01 $\pm$ 0.02                | 0.01 $\pm$ 0.02               | <b>0.01</b> $\pm$ 0.00 | 8.30 $\pm$ 3.11        | 7.83 $\pm$ 2.70        |
| SCRUB                | 82.59 $\pm$ 1.39        | 12.72 $\pm$ 1.51             | 0.31 $\pm$ 0.04              | <b>0.00</b> $\pm$ 0.00         | <b>0.00</b> $\pm$ 0.00        | 0.07 $\pm$ 0.00        | 0.06 $\pm$ 0.02        | 0.65 $\pm$ 0.04        |
| CF- $k$              | 99.58 $\pm$ 0.11        | 6.28 $\pm$ 0.19              | 0.27 $\pm$ 0.01              | 0.05 $\pm$ 0.00                | 0.05 $\pm$ 0.00               | 0.11 $\pm$ 0.00        | 0.06 $\pm$ 0.02        | 0.55 $\pm$ 0.04        |
| EU- $k$              | 99.59 $\pm$ 0.15        | 6.28 $\pm$ 0.22              | 0.27 $\pm$ 0.01              | 0.05 $\pm$ 0.01                | 0.05 $\pm$ 0.01               | 0.22 $\pm$ 0.01        | 0.07 $\pm$ 0.02        | 0.56 $\pm$ 0.04        |
| SalUn                | 99.63 $\pm$ 0.08        | 2.97 $\pm$ 0.50              | 0.37 $\pm$ 0.02              | 0.02 $\pm$ 0.02                | 0.02 $\pm$ 0.02               | 0.20 $\pm$ 0.00        | 0.06 $\pm$ 0.02        | 0.55 $\pm$ 0.04        |
| Fisher               | 99.50 $\pm$ 0.18        | 2.37 $\pm$ 0.47              | 0.08 $\pm$ 0.01              | 0.02 $\pm$ 0.00                | 0.02 $\pm$ 0.01               | 1.79 $\pm$ 0.03        | 0.07 $\pm$ 0.02        | 0.56 $\pm$ 0.04        |
| RELOAD (OURS)        | 99.51 $\pm$ 0.15        | <b>1.35</b> $\pm$ 0.83       | <b>0.05</b> $\pm$ 0.02       | <b>0.00</b> $\pm$ 0.00         | <b>0.00</b> $\pm$ 0.00        | 0.30 $\pm$ 0.10        | 0.12 $\pm$ 0.01        | 0.53 $\pm$ 0.07        |
| Retrained (Baseline) | 99.99 $\pm$ 0.01        | 94.40 $\pm$ 0.72             | 0.23 $\pm$ 0.08              | 0.50 $\pm$ 0.01                | 0.50 $\pm$ 0.00               | -                      | -                      | -                      |

Table 11: **30% Random Forgetting on CIFAR-10(ResNet-18)**

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF- $k$ , and EU- $k$ .

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|
| GA                   | 18.97 $\pm$ 28.44 | 73.93 $\pm$ 23.07            | 0.43 $\pm$ 0.01              | 0.05 $\pm$ 0.03                | 0.01 $\pm$ 0.01               | 0.01 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.66 $\pm$ 0.06       |
| FT                   | 99.37 $\pm$ 0.21  | 4.41 $\pm$ 0.53              | 0.27 $\pm$ 0.02              | 0.02 $\pm$ 0.01                | 0.02 $\pm$ 0.00               | 0.27 $\pm$ 0.01       | 0.05 $\pm$ 0.01       | 0.48 $\pm$ 0.04       |
| SSD                  | 22.73 $\pm$ 29.27 | 70.55 $\pm$ 23.73            | 1.67 $\pm$ 0.60              | 0.01 $\pm$ 0.02                | 0.01 $\pm$ 0.02               | 0.01 $\pm$ 0.00       | 8.30 $\pm$ 3.11       | 7.83 $\pm$ 2.70       |
| SCRUB                | 14.29 $\pm$ 5.02  | 77.10 $\pm$ 5.08             | 2.02 $\pm$ 0.57              | 0.01 $\pm$ 0.01                | 0.01 $\pm$ 0.00               | 0.08 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.65 $\pm$ 0.04       |
| CF-k                 | 99.46 $\pm$ 0.19  | 8.16 $\pm$ 0.27              | 0.40 $\pm$ 0.02              | 0.05 $\pm$ 0.01                | 0.05 $\pm$ 0.00               | 0.15 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| EU-k                 | 99.47 $\pm$ 0.19  | 8.17 $\pm$ 0.27              | 0.40 $\pm$ 0.02              | 0.05 $\pm$ 0.01                | 0.05 $\pm$ 0.00               | 0.30 $\pm$ 0.01       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| SalUn                | 99.73 $\pm$ 0.06  | 0.90 $\pm$ 0.25              | 0.25 $\pm$ 0.01              | 0.01 $\pm$ 0.01                | 0.01 $\pm$ 0.00               | 0.18 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| Fisher               | 99.37 $\pm$ 0.21  | 3.66 $\pm$ 0.30              | 0.13 $\pm$ 0.01              | 0.02 $\pm$ 0.01                | 0.02 $\pm$ 0.01               | 1.07 $\pm$ 0.02       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| RELOAD (OURS)        | 98.43 $\pm$ 1.49  | 2.46 $\pm$ 1.63              | 0.07 $\pm$ 0.05              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.57 $\pm$ 0.13       | 0.12 $\pm$ 0.01       | 0.53 $\pm$ 0.07       |
| Retrained (Baseline) | 99.93 $\pm$ 0.02  | 94.40 $\pm$ 0.72             | 0.23 $\pm$ 0.08              | 0.50 $\pm$ 0.01                | 0.50 $\pm$ 0.00               | -                     | -                     | -                     |

Table 12: 30% Random Forgetting on CIFAR-10(VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF-*k*, and EU-*k*.

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|
| GA                   | 36.61 $\pm$ 42.78 | 45.98 $\pm$ 28.62            | 4.71 $\pm$ 3.85              | 0.06 $\pm$ 0.08                | 0.06 $\pm$ 0.07               | 0.01 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.66 $\pm$ 0.06       |
| FT                   | 99.96 $\pm$ 0.02  | 24.94 $\pm$ 0.90             | 1.02 $\pm$ 0.04              | 0.13 $\pm$ 0.01                | 0.13 $\pm$ 0.01               | 0.27 $\pm$ 0.02       | 0.05 $\pm$ 0.01       | 0.48 $\pm$ 0.04       |
| SSD                  | 11.89 $\pm$ 32.69 | 65.53 $\pm$ 14.26            | 3.15 $\pm$ 0.75              | 0.03 $\pm$ 0.07                | 0.02 $\pm$ 0.06               | 0.01 $\pm$ 0.00       | 8.30 $\pm$ 3.11       | 7.83 $\pm$ 2.70       |
| SCRUB                | 23.96 $\pm$ 2.23  | 48.86 $\pm$ 2.24             | 1.97 $\pm$ 0.13              | 0.01 $\pm$ 0.01                | 0.01 $\pm$ 0.00               | 0.07 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.65 $\pm$ 0.04       |
| CF-k                 | 98.85 $\pm$ 0.40  | 21.38 $\pm$ 1.27             | 0.92 $\pm$ 0.04              | 0.12 $\pm$ 0.01                | 0.11 $\pm$ 0.01               | 0.10 $\pm$ 0.01       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| EU-k                 | 98.30 $\pm$ 0.55  | 20.18 $\pm$ 0.68             | 0.89 $\pm$ 0.04              | 0.11 $\pm$ 0.01                | 0.11 $\pm$ 0.01               | 0.21 $\pm$ 0.02       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| SalUn                | 97.33 $\pm$ 0.30  | 40.31 $\pm$ 3.78             | 1.20 $\pm$ 0.04              | 0.10 $\pm$ 0.01                | 0.10 $\pm$ 0.01               | 0.20 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| Fisher               | 97.76 $\pm$ 0.78  | 1.54 $\pm$ 0.27              | 0.08 $\pm$ 0.01              | 0.03 $\pm$ 0.01                | 0.03 $\pm$ 0.01               | 1.77 $\pm$ 0.03       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| RELOAD (OURS)        | 99.56 $\pm$ 0.06  | 1.47 $\pm$ 1.05              | 0.08 $\pm$ 0.05              | 0.01 $\pm$ 0.01                | 0.00 $\pm$ 0.00               | 0.32 $\pm$ 0.04       | 0.12 $\pm$ 0.01       | 0.53 $\pm$ 0.07       |
| Retrained (Baseline) | 99.98 $\pm$ 0.01  | 94.40 $\pm$ 0.72             | 0.23 $\pm$ 0.08              | 0.50 $\pm$ 0.01                | 0.50 $\pm$ 0.00               | -                     | -                     | -                     |

Table 13: 30% Random Forgetting on CIFAR-100(ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF-*k*, and EU-*k*.

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|
| GA                   | 10.75 $\pm$ 30.87 | 62.76 $\pm$ 11.35            | 2.10 $\pm$ 0.05              | 0.15 $\pm$ 0.09                | 0.02 $\pm$ 0.05               | 0.01 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.66 $\pm$ 0.06       |
| FT                   | 98.30 $\pm$ 0.53  | 15.86 $\pm$ 1.34             | 1.40 $\pm$ 0.06              | 0.06 $\pm$ 0.01                | 0.06 $\pm$ 0.01               | 0.28 $\pm$ 0.01       | 0.05 $\pm$ 0.01       | 0.48 $\pm$ 0.04       |
| SSD                  | 11.72 $\pm$ 32.14 | 62.23 $\pm$ 12.36            | 2.43 $\pm$ 0.19              | 0.02 $\pm$ 0.04                | 0.02 $\pm$ 0.05               | 0.01 $\pm$ 0.00       | 8.30 $\pm$ 3.11       | 7.83 $\pm$ 2.70       |
| SCRUB                | 1.60 $\pm$ 0.66   | 65.78 $\pm$ 0.92             | 2.39 $\pm$ 0.10              | 0.01 $\pm$ 0.00                | 0.01 $\pm$ 0.00               | 0.08 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.65 $\pm$ 0.04       |
| CF-k                 | 97.61 $\pm$ 0.61  | 29.83 $\pm$ 0.65             | 1.95 $\pm$ 0.04              | 0.14 $\pm$ 0.01                | 0.14 $\pm$ 0.01               | 0.15 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| EU-k                 | 97.71 $\pm$ 0.78  | 29.84 $\pm$ 0.84             | 1.95 $\pm$ 0.04              | 0.14 $\pm$ 0.01                | 0.14 $\pm$ 0.01               | 0.30 $\pm$ 0.01       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| SalUn                | 98.86 $\pm$ 0.27  | 3.28 $\pm$ 1.23              | 0.42 $\pm$ 0.04              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.18 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| Fisher               | 97.39 $\pm$ 0.91  | 14.19 $\pm$ 0.81             | 0.56 $\pm$ 0.02              | 0.07 $\pm$ 0.02                | 0.07 $\pm$ 0.01               | 1.06 $\pm$ 0.02       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| RELOAD (OURS)        | 88.95 $\pm$ 9.23  | 8.94 $\pm$ 5.71              | 0.18 $\pm$ 0.09              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.60 $\pm$ 0.02       | 0.12 $\pm$ 0.01       | 0.53 $\pm$ 0.07       |
| Retrained (Baseline) | 99.85 $\pm$ 0.02  | 94.40 $\pm$ 0.72             | 0.23 $\pm$ 0.08              | 0.50 $\pm$ 0.01                | 0.50 $\pm$ 0.00               | -                     | -                     | -                     |

Table 14: 30% Random Forgetting on CIFAR-100(VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF-*k*, and EU-*k*.

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|
| GA                   | 36.70 $\pm$ 41.55 | 59.35 $\pm$ 39.81            | 6.22 $\pm$ 5.55              | 0.02 $\pm$ 0.03                | 0.02 $\pm$ 0.03               | 0.01 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.66 $\pm$ 0.06       |
| FT                   | 100.00 $\pm$ 0.00 | 4.73 $\pm$ 0.20              | 0.19 $\pm$ 0.01              | 0.04 $\pm$ 0.01                | 0.04 $\pm$ 0.01               | 0.28 $\pm$ 0.01       | 0.05 $\pm$ 0.01       | 0.48 $\pm$ 0.04       |
| SSD                  | 20.64 $\pm$ 29.80 | 75.32 $\pm$ 26.33            | 1.89 $\pm$ 0.63              | 0.01 $\pm$ 0.03                | 0.01 $\pm$ 0.03               | 0.01 $\pm$ 0.00       | 8.30 $\pm$ 3.11       | 7.83 $\pm$ 2.70       |
| SCRUB                | 97.23 $\pm$ 0.29  | 0.49 $\pm$ 0.21              | 0.02 $\pm$ 0.01              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.08 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.65 $\pm$ 0.04       |
| CF-k                 | 100.00 $\pm$ 0.01 | 4.79 $\pm$ 0.22              | 0.19 $\pm$ 0.01              | 0.05 $\pm$ 0.01                | 0.05 $\pm$ 0.01               | 0.10 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| EU-k                 | 99.98 $\pm$ 0.05  | 4.76 $\pm$ 0.25              | 0.18 $\pm$ 0.01              | 0.05 $\pm$ 0.01                | 0.05 $\pm$ 0.01               | 0.19 $\pm$ 0.00       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| SalUn                | 99.65 $\pm$ 0.09  | 1.84 $\pm$ 0.31              | 0.09 $\pm$ 0.01              | 0.02 $\pm$ 0.01                | 0.02 $\pm$ 0.01               | 0.22 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| Fisher               | 99.62 $\pm$ 0.14  | 0.09 $\pm$ 0.02              | 0.00 $\pm$ 0.00              | 0.01 $\pm$ 0.01                | 0.01 $\pm$ 0.01               | 2.12 $\pm$ 0.03       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| RELOAD (OURS)        | 99.58 $\pm$ 0.30  | 0.08 $\pm$ 0.06              | 0.01 $\pm$ 0.01              | 0.00 $\pm$ 0.01                | 0.00 $\pm$ 0.01               | 0.11 $\pm$ 0.05       | 0.12 $\pm$ 0.01       | 0.53 $\pm$ 0.07       |
| Retrained (Baseline) | 100.00 $\pm$ 0.00 | 94.72 $\pm$ 0.12             | 0.25 $\pm$ 0.01              | 0.50 $\pm$ 0.00                | 0.50 $\pm$ 0.00               | -                     | -                     | -                     |

Table 15: 30% Random Forgetting on SVHN(ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF-*k*, and EU-*k*.

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | $\Delta$ AUC ( $\downarrow$ ) | Cost ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|
| GA                   | 16.05 $\pm$ 29.50 | 79.62 $\pm$ 26.16            | 0.25 $\pm$ 0.01              | 0.05 $\pm$ 0.03                | 0.01 $\pm$ 0.02               | 0.01 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.66 $\pm$ 0.06       |
| FT                   | 100.00 $\pm$ 0.00 | 4.84 $\pm$ 0.16              | 0.23 $\pm$ 0.01              | 0.03 $\pm$ 0.01                | 0.03 $\pm$ 0.01               | 0.28 $\pm$ 0.00       | 0.05 $\pm$ 0.01       | 0.48 $\pm$ 0.04       |
| SSD                  | 24.17 $\pm$ 28.49 | 71.83 $\pm$ 25.07            | 1.85 $\pm$ 0.60              | 0.01 $\pm$ 0.02                | 0.01 $\pm$ 0.02               | 0.01 $\pm$ 0.00       | 8.30 $\pm$ 3.11       | 7.83 $\pm$ 2.70       |
| SCRUB                | 24.26 $\pm$ 14.07 | 70.72 $\pm$ 13.55            | 1.85 $\pm$ 0.38              | 0.01 $\pm$ 0.00                | 0.01 $\pm$ 0.00               | 0.08 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.65 $\pm$ 0.04       |
| CF-k                 | 99.60 $\pm$ 0.14  | 4.84 $\pm$ 0.16              | 0.23 $\pm$ 0.01              | 0.04 $\pm$ 0.01                | 0.04 $\pm$ 0.01               | 0.12 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| EU-k                 | 99.60 $\pm$ 0.14  | 4.85 $\pm$ 0.16              | 0.23 $\pm$ 0.01              | 0.04 $\pm$ 0.01                | 0.04 $\pm$ 0.01               | 0.25 $\pm$ 0.00       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| SalUn                | 99.91 $\pm$ 0.04  | 0.81 $\pm$ 0.12              | 0.04 $\pm$ 0.01              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.19 $\pm$ 0.00       | 0.06 $\pm$ 0.02       | 0.55 $\pm$ 0.04       |
| Fisher               | 99.53 $\pm$ 0.16  | 0.04 $\pm$ 0.03              | 0.00 $\pm$ 0.00              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 1.43 $\pm$ 0.01       | 0.07 $\pm$ 0.02       | 0.56 $\pm$ 0.04       |
| RELOAD (OURS)        | 99.37 $\pm$ 0.15  | 0.10 $\pm$ 0.09              | 0.02 $\pm$ 0.01              | 0.00 $\pm$ 0.00                | 0.00 $\pm$ 0.00               | 0.15 $\pm$ 0.01       | 0.12 $\pm$ 0.01       | 0.53 $\pm$ 0.07       |
| Retrained (Baseline) | 100.00 $\pm$ 0.00 | 94.40 $\pm$ 0.72             | 0.23 $\pm$ 0.08              | 0.50 $\pm$ 0.01                | 0.50 $\pm$ 0.00               | -                     | -                     | -                     |

Table 16: 30% Random Forgetting on SVHN(VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than other baselines other than FT, CF-*k*, and EU-*k*.

#### B.4.3 RANDOM 100 IN CLASS FORGETTING - ADDITIONAL EXPERIMENTS

| Method               | RA ( $\uparrow$ )                | FA ( $\Delta\downarrow$ )       | FE ( $\Delta\downarrow$ )       | FMIA ( $\Delta\downarrow$ )     | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 99.57 $\pm$ 0.02                 | 4.37 $\pm$ 0.25                 | 0.17 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.05 $\pm$ 0.00                 | 0.52 $\pm$ 0.02                 |
| FT                   | <b>99.99<math>\pm</math>0.00</b> | 4.33 $\pm$ 0.22                 | 0.17 $\pm$ 0.01                 | 0.04 $\pm$ 0.01                 | 0.27 $\pm$ 0.00                 | <b>0.00<math>\pm</math>0.00</b> | 0.43 $\pm$ 0.02                 |
| SSD                  | 12.75 $\pm$ 4.69                 | 82.52 $\pm$ 4.73                | 2.12 $\pm$ 0.06                 | 0.01 $\pm$ 0.01                 | 0.01 $\pm$ 0.00                 | 8.55 $\pm$ 0.13                 | 7.88 $\pm$ 0.12                 |
| SCRUB                | 99.79 $\pm$ 0.01                 | 4.44 $\pm$ 0.26                 | 0.18 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.03 $\pm$ 0.00                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.02                 |
| CF- <i>k</i>         | 99.76 $\pm$ 0.01                 | 4.47 $\pm$ 0.24                 | 0.18 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.23 $\pm$ 0.02                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.02                 |
| EU- <i>k</i>         | 99.63 $\pm$ 0.01                 | 4.46 $\pm$ 0.25                 | 0.18 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.23 $\pm$ 0.02                 | 0.05 $\pm$ 0.00                 | 0.47 $\pm$ 0.02                 |
| SalUn                | 99.90 $\pm$ 0.04                 | 3.14 $\pm$ 1.00                 | 0.13 $\pm$ 0.03                 | 0.04 $\pm$ 0.02                 | 0.17 $\pm$ 0.00                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.02                 |
| Fisher               | 99.57 $\pm$ 0.02                 | <b>0.09<math>\pm</math>0.05</b> | <b>0.00<math>\pm</math>0.00</b> | 0.01 $\pm$ 0.00                 | 2.17 $\pm$ 0.04                 | 0.05 $\pm$ 0.00                 | 0.47 $\pm$ 0.02                 |
| RELOAD (OURS)        | 99.68 $\pm$ 0.17                 | 0.25 $\pm$ 0.21                 | 0.01 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.12 $\pm$ 0.01                 | 0.06 $\pm$ 0.02                 | <b>0.21<math>\pm</math>0.02</b> |
| Retrained (Baseline) | 99.99 $\pm$ 0.00                 | 95.12 $\pm$ 0.23                | 0.20 $\pm$ 0.01                 | 0.50 $\pm$ 0.00                 | -                               | -                               | -                               |

Table 17: 100 In Class Random Forgetting on SVHN (ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on  $\Delta$ FA,  $\Delta$ FE,  $\Delta$ FMIA, and RSKL by large margins. RELOAD performs competitively on RA and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.30 $\pm$ 0.04                 | 5.43 $\pm$ 0.55                 | 0.21 $\pm$ 0.01                 | 0.04 $\pm$ 0.00                 | <b>0.00<math>\pm</math>0.00</b> | 0.07 $\pm$ 0.00                 | 0.63 $\pm$ 0.04                 |
| FT                   | <b>98.38<math>\pm</math>0.15</b> | <b>3.19<math>\pm</math>0.41</b> | 0.15 $\pm$ 0.02                 | 0.02 $\pm$ 0.00                 | 0.27 $\pm$ 0.00                 | <b>0.05<math>\pm</math>0.01</b> | <b>0.46<math>\pm</math>0.03</b> |
| SSD                  | 10.04 $\pm$ 0.06                 | 83.15 $\pm$ 0.87                | 2.07 $\pm$ 0.02                 | <b>0.00<math>\pm</math>0.00</b> | 0.01 $\pm$ 0.00                 | 9.39 $\pm$ 0.08                 | 8.80 $\pm$ 0.05                 |
| SCRUB                | 98.33 $\pm$ 0.04                 | 6.70 $\pm$ 0.55                 | 0.22 $\pm$ 0.01                 | 0.05 $\pm$ 0.00                 | 0.02 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.63 $\pm$ 0.03                 |
| CF- $k$              | 98.27 $\pm$ 0.06                 | 5.23 $\pm$ 0.55                 | 0.21 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.23 $\pm$ 0.03                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.02                 |
| EU- $k$              | 98.28 $\pm$ 0.07                 | 5.25 $\pm$ 0.54                 | 0.22 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.23 $\pm$ 0.03                 | 0.07 $\pm$ 0.00                 | 0.52 $\pm$ 0.03                 |
| SalUn                | 99.74 $\pm$ 0.04                 | 4.11 $\pm$ 0.45                 | 0.27 $\pm$ 0.02                 | 0.01 $\pm$ 0.01                 | 0.16 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.02                 |
| Fisher               | 99.45 $\pm$ 0.02                 | 3.60 $\pm$ 0.21                 | 0.06 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 1.78 $\pm$ 0.03                 | 0.07 $\pm$ 0.00                 | 0.52 $\pm$ 0.03                 |
| RELOAD (OURS)        | 97.00 $\pm$ 1.09                 | 3.46 $\pm$ 0.86                 | <b>0.08<math>\pm</math>0.02</b> | 0.01 $\pm$ 0.01                 | 0.31 $\pm$ 0.09                 | 0.11 $\pm$ 0.03                 | 0.52 $\pm$ 0.09                 |
| Retrained (Baseline) | 98.99 $\pm$ 0.25                 | 92.81 $\pm$ 0.52                | 0.24 $\pm$ 0.01                 | 0.50 $\pm$ 0.00                 | -                               | -                               | -                               |

Table 18: 100 In Class Random Forgetting on CIFAR-10(ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on  $\Delta$ FE. RELOAD performs competitively on RA,  $\Delta$ FA,  $\Delta$ FMIA, RSKL, and FSKL but is outperformed. FT which performs well, empirically makes little adjustment to the actual FA value. RELOAD also incurs a higher computational cost than the other baselines.

| Method               | RA ( $\uparrow$ )                | $\Delta$ FA ( $\downarrow$ )    | $\Delta$ FE ( $\downarrow$ )    | $\Delta$ FMIA ( $\downarrow$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 99.02 $\pm$ 0.05                 | 6.94 $\pm$ 0.32                 | 0.33 $\pm$ 0.01                 | 0.04 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.10 $\pm$ 0.00                 | 0.91 $\pm$ 0.03                 |
| FT                   | 98.72 $\pm$ 0.30                 | 3.50 $\pm$ 0.37                 | 0.23 $\pm$ 0.01                 | 0.02 $\pm$ 0.01                 | 0.27 $\pm$ 0.01                 | <b>0.08<math>\pm</math>0.01</b> | 0.65 $\pm$ 0.03                 |
| SSD                  | 9.99 $\pm$ 0.04                  | 81.88 $\pm$ 0.50                | 2.12 $\pm$ 0.30                 | <b>0.01<math>\pm</math>0.01</b> | 0.01 $\pm$ 0.00                 | 10.88 $\pm$ 0.79                | 10.25 $\pm$ 0.83                |
| SCRUB                | 97.31 $\pm$ 3.37                 | 5.79 $\pm$ 2.28                 | 0.14 $\pm$ 0.08                 | 0.04 $\pm$ 0.01                 | 0.03 $\pm$ 0.00                 | 1.37 $\pm$ 0.45                 | 1.75 $\pm$ 0.45                 |
| CF- $k$              | <b>99.03<math>\pm</math>0.05</b> | 6.95 $\pm$ 0.33                 | 0.33 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.37 $\pm$ 0.08                 | 0.10 $\pm$ 0.01                 | 0.79 $\pm$ 0.02                 |
| EU- $k$              | 99.02 $\pm$ 0.05                 | 6.96 $\pm$ 0.35                 | 0.33 $\pm$ 0.01                 | 0.05 $\pm$ 0.01                 | 0.37 $\pm$ 0.08                 | 0.10 $\pm$ 0.00                 | 0.78 $\pm$ 0.04                 |
| SalUn                | 99.80 $\pm$ 0.02                 | <b>0.33<math>\pm</math>0.36</b> | <b>0.12<math>\pm</math>0.01</b> | <b>0.01<math>\pm</math>0.00</b> | <b>0.14<math>\pm</math>0.00</b> | 0.10 $\pm$ 0.01                 | 0.79 $\pm$ 0.02                 |
| Fisher               | 99.32 $\pm$ 0.03                 | 3.81 $\pm$ 0.46                 | 0.10 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 1.07 $\pm$ 0.03                 | 0.10 $\pm$ 0.00                 | 0.78 $\pm$ 0.04                 |
| RELOAD (OURS)        | 98.57 $\pm$ 0.24                 | 1.88 $\pm$ 1.62                 | 0.14 $\pm$ 0.09                 | <b>0.01<math>\pm</math>0.01</b> | 0.15 $\pm$ 0.07                 | 0.10 $\pm$ 0.01                 | <b>0.57<math>\pm</math>0.09</b> |
| Retrained (Baseline) | 99.56 $\pm$ 0.08                 | 92.02 $\pm$ 0.32                | 0.37 $\pm$ 0.01                 | 0.50 $\pm$ 0.01                 | -                               | -                               | -                               |

Table 19: 100 In Class Random Forgetting on CIFAR-10 (VGG16-BN). The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all baselines on  $\Delta$ FA,  $\Delta$ FE,  $\Delta$ FMIA, FSKL indicating it behaves the closes to  $M_{(\theta^\sim)}$  on  $\mathcal{D}_{forget}$ . RELOAD performs competitively on RA and RSKL, falling behind of the leading method by 0.46 for RA and 0.02 for RSKL. RELOAD incurs a higher computational cost than most baselines, but is cheaper than FT, CF- $k$ , and EU- $k$ . Other experimental settings are presented in Appendix B.4.3

| Method               | RA ( $\uparrow$ )                | FA ( $\Delta^{\downarrow}$ )    | FE ( $\Delta^{\downarrow}$ )    | FMIA ( $\Delta^{\downarrow}$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.32 $\pm$ 0.03                 | 23.33 $\pm$ 1.06                | 1.00 $\pm$ 0.06                 | 0.07 $\pm$ 0.06                 | <b>0.00<math>\pm</math>0.00</b> | 0.07 $\pm$ 0.00                 | 0.65 $\pm$ 0.06                 |
| FT                   | 98.22 $\pm$ 0.23                 | 16.84 $\pm$ 1.08                | 0.82 $\pm$ 0.06                 | 0.05 $\pm$ 0.03                 | 0.27 $\pm$ 0.00                 | <b>0.05<math>\pm</math>0.01</b> | <b>0.48<math>\pm</math>0.04</b> |
| SSD                  | 10.01 $\pm$ 0.05                 | 68.67 $\pm$ 1.97                | 5.75 $\pm$ 0.99                 | 0.38 $\pm$ 0.14                 | <b>0.00<math>\pm</math>0.00</b> | 9.33 $\pm$ 0.06                 | 8.72 $\pm$ 0.04                 |
| SCRUB                | 98.35 $\pm$ 0.03                 | 27.55 $\pm$ 1.43                | 1.02 $\pm$ 0.06                 | 0.07 $\pm$ 0.06                 | 0.02 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.65 $\pm$ 0.04                 |
| CF- $k$              | 98.22 $\pm$ 0.11                 | 21.84 $\pm$ 0.88                | 0.99 $\pm$ 0.05                 | 0.07 $\pm$ 0.06                 | 0.21 $\pm$ 0.01                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.04                 |
| EU- $k$              | 98.24 $\pm$ 0.03                 | 21.95 $\pm$ 0.78                | 0.99 $\pm$ 0.05                 | 0.07 $\pm$ 0.06                 | 0.21 $\pm$ 0.01                 | 0.07 $\pm$ 0.00                 | 0.55 $\pm$ 0.04                 |
| SalUn                | 99.57 $\pm$ 0.02                 | 12.08 $\pm$ 3.13                | 0.48 $\pm$ 0.07                 | 0.02 $\pm$ 0.02                 | 0.14 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.04                 |
| Fisher               | 97.50 $\pm$ 0.06                 | 10.72 $\pm$ 1.98                | 0.19 $\pm$ 0.04                 | 0.03 $\pm$ 0.04                 | 1.81 $\pm$ 0.04                 | 0.07 $\pm$ 0.00                 | 0.55 $\pm$ 0.04                 |
| RELOAD (OURS)        | <b>99.47<math>\pm</math>0.09</b> | <b>3.44<math>\pm</math>1.46</b> | <b>0.20<math>\pm</math>0.16</b> | <b>0.02<math>\pm</math>0.02</b> | 0.26 $\pm$ 0.11                 | 0.12 $\pm$ 0.01                 | 0.53 $\pm$ 0.08                 |
| Retrained (Baseline) | 95.50 $\pm$ 0.24                 | 70.05 $\pm$ 1.99                | 1.13 $\pm$ 0.07                 | 0.83 $\pm$ 0.20                 | -                               | -                               | -                               |

Table 20: 100 In Class Random Forgetting on CIFAR-100(ResNet-18)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^{\downarrow}$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^{\sim})}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^{\sim})}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA,  $\Delta$ FE, and  $\Delta$ FMIA, by large margins. RELOAD performs competitively on RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

| Method               | RA ( $\uparrow$ )                | FA ( $\Delta^{\downarrow}$ )    | FE ( $\Delta^{\downarrow}$ )    | FMIA ( $\Delta^{\downarrow}$ )  | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 98.31 $\pm$ 0.03                 | 28.55 $\pm$ 2.02                | 1.70 $\pm$ 0.04                 | 0.03 $\pm$ 0.02                 | <b>0.00<math>\pm</math>0.00</b> | 0.07 $\pm$ 0.00                 | 0.65 $\pm$ 0.04                 |
| FT                   | 98.14 $\pm$ 0.25                 | 11.44 $\pm$ 1.77                | 1.07 $\pm$ 0.09                 | <b>0.01<math>\pm</math>0.01</b> | 0.28 $\pm$ 0.01                 | <b>0.06<math>\pm</math>0.01</b> | <b>0.47<math>\pm</math>0.03</b> |
| SSD                  | 10.00 $\pm$ 0.03                 | 63.86 $\pm$ 2.12                | 2.70 $\pm$ 0.13                 | 0.45 $\pm$ 0.04                 | <b>0.00<math>\pm</math>0.00</b> | 9.36 $\pm$ 0.05                 | 8.75 $\pm$ 0.04                 |
| SCRUB                | 98.33 $\pm$ 0.02                 | 30.59 $\pm$ 1.25                | 1.76 $\pm$ 0.05                 | 0.04 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.63 $\pm$ 0.03                 |
| CF- $k$              | 98.15 $\pm$ 0.12                 | 26.86 $\pm$ 2.16                | 1.75 $\pm$ 0.07                 | 0.04 $\pm$ 0.01                 | 0.34 $\pm$ 0.07                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.03                 |
| EU- $k$              | 98.22 $\pm$ 0.04                 | 25.37 $\pm$ 1.35                | 1.68 $\pm$ 0.06                 | 0.03 $\pm$ 0.02                 | 0.33 $\pm$ 0.07                 | 0.07 $\pm$ 0.00                 | 0.55 $\pm$ 0.03                 |
| SalUn                | 99.40 $\pm$ 0.04                 | 7.56 $\pm$ 0.47                 | 0.31 $\pm$ 0.16                 | 0.00 $\pm$ 0.00                 | 0.13 $\pm$ 0.00                 | 0.07 $\pm$ 0.00                 | 0.54 $\pm$ 0.03                 |
| Fisher               | 97.16 $\pm$ 0.03                 | 19.55 $\pm$ 0.59                | 0.67 $\pm$ 0.05                 | 0.03 $\pm$ 0.00                 | 1.05 $\pm$ 0.04                 | 0.07 $\pm$ 0.00                 | 0.55 $\pm$ 0.03                 |
| RELOAD (OURS)        | <b>99.47<math>\pm</math>0.04</b> | <b>1.84<math>\pm</math>1.26</b> | <b>0.14<math>\pm</math>0.04</b> | 0.03 $\pm$ 0.02                 | 0.29 $\pm$ 0.01                 | 0.12 $\pm$ 0.01                 | 0.51 $\pm$ 0.02                 |
| Retrained (Baseline) | 93.85 $\pm$ 1.04                 | 65.26 $\pm$ 2.16                | 1.95 $\pm$ 0.10                 | 0.93 $\pm$ 0.02                 | -                               | -                               | -                               |

Table 21: 100 In Class Random Forgetting on CIFAR-100(VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^{\downarrow}$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^{\sim})}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^{\sim})}$  on the metric. These results show that RELOAD outperforms all the baselines on RA,  $\Delta$ FA, and  $\Delta$ FE by large margins. RELOAD performs competitively on  $\Delta$ FMIA, RSKL and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

| Method               | RA ( $\uparrow$ )                 | FA ( $\Delta^\downarrow$ )      | FE ( $\Delta^\downarrow$ )      | FMIA ( $\Delta^\downarrow$ )    | Cost ( $\downarrow$ )           | RSKL ( $\downarrow$ )           | FSKL ( $\downarrow$ )           |
|----------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| GA                   | 99.57 $\pm$ 0.02                  | 4.46 $\pm$ 0.24                 | 0.22 $\pm$ 0.01                 | 0.03 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.05 $\pm$ 0.00                 | 0.51 $\pm$ 0.02                 |
| FT                   | <b>99.99<math>\pm</math>0.001</b> | 4.47 $\pm$ 0.23                 | 0.22 $\pm$ 0.01                 | 0.03 $\pm$ 0.01                 | 0.27 $\pm$ 0.00                 | <b>0.00<math>\pm</math>0.00</b> | 0.43 $\pm$ 0.02                 |
| SSD                  | 14.55 $\pm$ 3.93                  | 84.19 $\pm$ 1.55                | 2.05 $\pm$ 0.01                 | <b>0.00<math>\pm</math>0.00</b> | 0.01 $\pm$ 0.00                 | 8.51 $\pm$ 0.03                 | 7.84 $\pm$ 0.02                 |
| SCRUB                | 99.79 $\pm$ 0.01                  | 9.55 $\pm$ 9.76                 | 0.36 $\pm$ 0.34                 | 0.03 $\pm$ 0.01                 | 0.02 $\pm$ 0.00                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.03                 |
| CF- $k$              | 99.76 $\pm$ 0.01                  | 4.53 $\pm$ 0.25                 | 0.23 $\pm$ 0.01                 | 0.04 $\pm$ 0.01                 | 0.24 $\pm$ 0.02                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.02                 |
| EU- $k$              | 99.63 $\pm$ 0.02                  | 4.54 $\pm$ 0.23                 | 0.23 $\pm$ 0.01                 | 0.04 $\pm$ 0.01                 | 0.24 $\pm$ 0.02                 | 0.05 $\pm$ 0.00                 | 0.47 $\pm$ 0.02                 |
| SalUn                | 99.94 $\pm$ 0.01                  | 5.04 $\pm$ 1.37                 | 0.16 $\pm$ 0.04                 | 0.03 $\pm$ 0.01                 | 0.14 $\pm$ 0.01                 | 0.03 $\pm$ 0.00                 | 0.50 $\pm$ 0.02                 |
| Fisher               | 99.48 $\pm$ 0.02                  | 0.09 $\pm$ 0.06                 | 0.00 $\pm$ 0.00                 | 0.00 $\pm$ 0.00                 | 1.42 $\pm$ 0.14                 | 0.05 $\pm$ 0.00                 | 0.47 $\pm$ 0.02                 |
| RELOAD (OURS)        | 99.67 $\pm$ 0.14                  | <b>0.93<math>\pm</math>1.21</b> | <b>0.05<math>\pm</math>0.06</b> | 0.01 $\pm$ 0.01                 | 0.14 $\pm$ 0.08                 | 0.06 $\pm$ 0.02                 | <b>0.21<math>\pm</math>0.02</b> |
| Retrained (Baseline) | 99.999 $\pm$ 0.001                | 95.09 $\pm$ 0.19                | 0.20 $\pm$ 0.01                 | 0.50 $\pm$ 0.00                 | -                               | -                               | -                               |

Table 22: 100 In Class Random Forgetting on SVHN (VGG16-BN)

$\uparrow$ : the goal is to have as high of a value as possible,  $\Delta^\downarrow$ : the value in the table is the difference between the result of the unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta^\sim)}$  on each metric. For any metric with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference in the value of the corresponding method on this metric to the value of  $M_{(\theta^\sim)}$  on the metric. These results show that RELOAD outperforms all the baselines on  $\Delta$ FA,  $\Delta$ FE, and FSKL, by large margins. RELOAD performs competitively on RA,  $\Delta$ FMIA, and RSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than the other baselines.

## B.5 LANGUAGE MODEL ENTITY UNLEARNING RESULTS

**Unlearning for language models (LMs).** When  $\mathcal{D}$  is a corpus of texts, we express forgetting via a set of prompts  $\mathcal{D}_{\text{prompts}}$  that target concepts or entities in  $\mathcal{D}_{\text{forget}}$ , and possibly a small repair set  $\mathcal{D}_{\text{repair}} \subseteq \mathcal{D}_{\text{retain}}$ .

The results presented below are taken from prior work (Liu et al., 2024a) with results for RELOAD appended to the bottom due to computational constraints. In these result tables, the gold-standard retrained model is denoted ‘Retain’.

Due to computational constraints and the lack of open-source retrained models for Phi-1.5 in the 1% and 5% forgetting case, our results for Phi-1.5 are limited to the 10% forgetting case.

1598

1599

1600

| Split                                                                                                                                                                                                                | Method           | Change in Model Utility from Original | Forget Quality |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|----------------|
| 1601<br>1602<br>1603<br>1604<br>1605<br>1606<br>1607<br>1608<br>1609<br>1610<br>1611<br>1612<br>1613<br>1614<br>1615<br>1616<br>1617<br>1618<br>1619<br>1620<br>1621<br>1622<br>1623<br>1624<br>1625<br>1626<br>1627 | Original         | +0.0000                               | 0.0030         |
|                                                                                                                                                                                                                      | Retain           | -0.0131                               | 1.0000         |
|                                                                                                                                                                                                                      | Grad Ascent      | -0.0233                               | 0.0068         |
|                                                                                                                                                                                                                      | Grad Diff        | -0.0198                               | 0.0143         |
|                                                                                                                                                                                                                      | 1% KL Min        | -0.0221                               | 0.0068         |
|                                                                                                                                                                                                                      | Pref Opt         | -0.0021                               | 0.0971         |
|                                                                                                                                                                                                                      | Prompt           | -0.0628                               | 0.0068         |
|                                                                                                                                                                                                                      | NPO              | -0.1725                               | 0.7659         |
|                                                                                                                                                                                                                      | NPO-KL           | -0.1703                               | 0.4046         |
|                                                                                                                                                                                                                      | NPO-RT           | -0.1361                               | 0.5786         |
|                                                                                                                                                                                                                      | ECO (Rand Noise) | +0.0000                               | 0.9188         |
|                                                                                                                                                                                                                      | ECO (Zero-Out)   | +0.0000                               | 0.9900         |
|                                                                                                                                                                                                                      | ECO (Sign-Flip)  | +0.0000                               | 0.0002         |
|                                                                                                                                                                                                                      | RELOAD (OURS)    | +0.0748                               | 0.4046         |
| 1628<br>1629<br>1630<br>1631<br>1632<br>1633<br>1634<br>1635<br>1636<br>1637<br>1638<br>1639<br>1640                                                                                                                 | Original         | +0.0000                               | 0.0000         |
|                                                                                                                                                                                                                      | Retain           | -0.0229                               | 1.0000         |
|                                                                                                                                                                                                                      | Grad Ascent      | -0.6257                               | 0.0118         |
|                                                                                                                                                                                                                      | Grad Diff        | -0.3013                               | 0.0000         |
|                                                                                                                                                                                                                      | 5% KL Min        | -0.6257                               | 0.0163         |
|                                                                                                                                                                                                                      | Pref Opt         | -0.1472                               | 0.0000         |
|                                                                                                                                                                                                                      | Prompt           | -0.1063                               | 0.0000         |
|                                                                                                                                                                                                                      | NPO              | -0.4512                               | 0.7934         |
|                                                                                                                                                                                                                      | NPO-KL           | -0.2203                               | 0.7934         |
|                                                                                                                                                                                                                      | NPO-RT           | -0.0838                               | 0.6284         |
|                                                                                                                                                                                                                      | ECO (Rand Noise) | +0.0000                               | 0.9647         |
|                                                                                                                                                                                                                      | ECO (Zero-Out)   | -0.0009                               | 0.9647         |
|                                                                                                                                                                                                                      | ECO (Sign-Flip)  | +0.0000                               | 0.0000         |
|                                                                                                                                                                                                                      | RELOAD (OURS)    | -0.2870                               | 0.5453         |
| 1641<br>1642<br>1643<br>1644                                                                                                                                                                                         | Original         | 0.0000                                | 0.0000         |
|                                                                                                                                                                                                                      | Retain           | -0.0160                               | 1.0000         |
|                                                                                                                                                                                                                      | Grad Ascent      | -0.6257                               | 0.0000         |
|                                                                                                                                                                                                                      | Grad Diff        | -0.0434                               | 0.0000         |
|                                                                                                                                                                                                                      | 10% KL Min       | -0.6257                               | 0.1810         |
|                                                                                                                                                                                                                      | Pref Opt         | -0.0862                               | 0.0000         |
|                                                                                                                                                                                                                      | Prompt           | -0.1380                               | 0.0000         |
|                                                                                                                                                                                                                      | NPO              | -0.4556                               | 0.0126         |
|                                                                                                                                                                                                                      | NPO-KL           | -0.2634                               | 0.0158         |
|                                                                                                                                                                                                                      | NPO-RT           | -0.1260                               | 0.0783         |
|                                                                                                                                                                                                                      | ECO (Rand Noise) | -0.0028                               | 0.5812         |
|                                                                                                                                                                                                                      | ECO (Zero-Out)   | -0.0014                               | 0.9674         |
|                                                                                                                                                                                                                      | ECO (Sign-Flip)  | -0.0022                               | 0.0000         |
|                                                                                                                                                                                                                      | RELOAD (OURS)    | -0.3384                               | 0.7000         |

Table 23: Change in Model Utility and Forget Quality of different unlearning methods on unlearning entities from the TOFU dataset on

| 1645 | Split | Method           | Change in Model Utility from Original | Forget Quality |
|------|-------|------------------|---------------------------------------|----------------|
| 1646 |       | Original         | 0.0000                                | 0.0000         |
| 1647 |       | Retain           | +0.0053                               | 1.0000         |
| 1648 |       | Grad Ascent      | -0.5518                               | 0.2107         |
| 1649 |       | Grad Diff        | -0.1999                               | 0.0000         |
| 1650 | 10%   | KL Min           | -0.5518                               | 0.4158         |
| 1651 |       | Pref Opt         | -0.0379                               | 0.0000         |
| 1652 |       | Prompt           | -0.0363                               | 0.0000         |
| 1653 |       | NPO              | -0.3669                               | 0.0013         |
| 1654 |       | NPO-KL           | -0.2520                               | 0.0049         |
| 1655 |       | NPO-RT           | -0.1144                               | 0.7000         |
| 1656 |       | ECO (Rand Noise) | -0.0003                               | 0.8635         |
| 1657 |       | ECO (Zero-Out)   | -0.0031                               | 0.9844         |
| 1658 |       | ECO (Sign-Flip)  | -0.0001                               | 0.0446         |
| 1659 |       | RELOAD (OURS)    | -0.3384                               | 0.4680         |

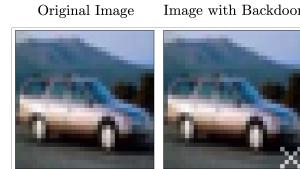
1660  
1661 Table 24: Change in Model Utility and Forget Quality of different unlearning methods on unlearning entities from the  
1662 TOFU dataset on Phi-1.5  
1663

## 1664 B.6 CORRECTIVE UNLEARNING RESULTS

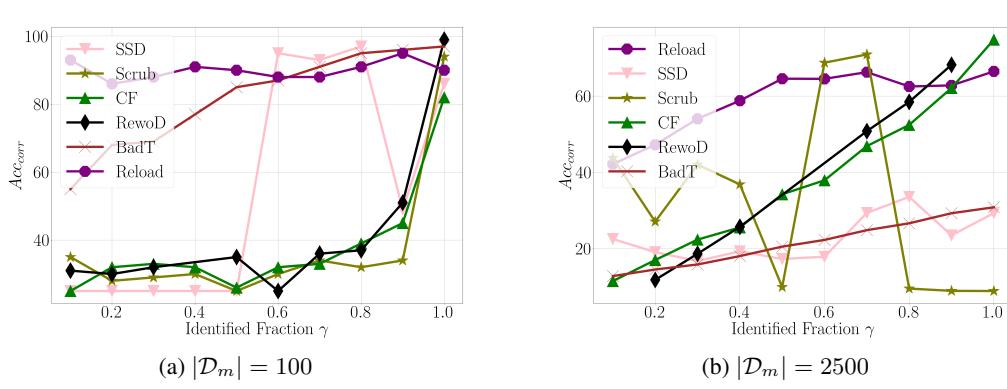
1665  
1666 **Baselines.** The corrective unlearning setting admits different baselines than the unlearning setting based on  
1667 prior work (Goel et al., 2024). RewoD represents a baseline model trained directly on  $\mathcal{D}_{retain}$ .

1668  
1669 **Evaluation.** We evaluate corrective unlearning following Goel et al. (2024). The corrected accuracy  $Acc_{corr}$   
1670 measures the performance of the unlearned model on the adversely affected data,  $\mathcal{D}_m$ . The retain accuracy  
1671  $Acc_{retain}$  measures unlearned model performance on a held-out validation sample of  $\mathcal{D}_{retain}$ ,  $\mathcal{D}_{retain}^{(test)}$ . Cost  
1672 measures the runtime of the algorithm in comparison to retraining (Table 4).

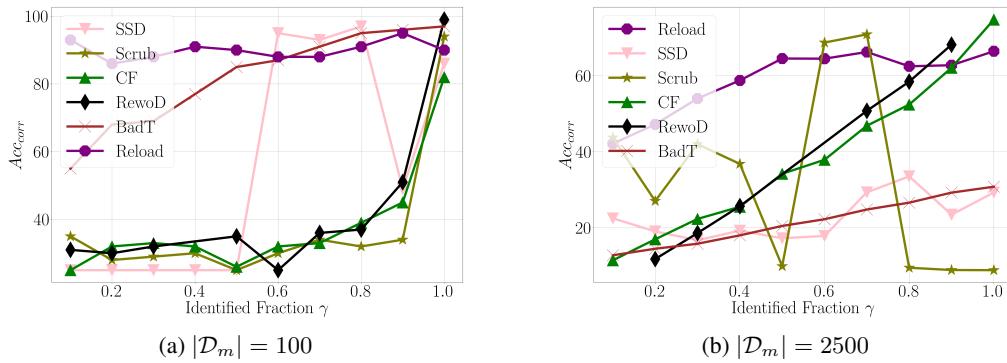
1673 **Reload efficiently corrects trained models.** We evaluate RELOAD’s ability  
1674 to unlearn adverse effects of manipulations following the baselines outlined in  
1675 prior work (Goel et al., 2024). We present results for RELOAD and unlearning  
1676 baselines on the two conventional corrective unlearning tasks, Poisoning  
1677 and Interclass Confusion (IC), as well as the corrective unlearning (with re-  
1678 placement) settings introduced in Appendix ???. The results of this experiment  
1679 over different settings are presented in Table 26 and Figures 9, 10, 11, and  
1680 12 in Appendix ?? for consistency with prior work. RELOAD outperforms  
1681 baselines on  $Acc_{corr}$  at low percentages of data identification (Figures 8a, 8b)  
1682 while observing competitive computational efficiency (Table 25), even at only  
1683 10% data identification ( $\gamma = 0.1$ ). Across 10 values of  $\gamma$  from the corrective  
1684 setting (Goel et al., 2024), RELOAD consistently outperforms all other baselines  
1685 in most experiments. Although BadT (Chundawat et al., 2022) outperforms RELOAD in CIFAR100 Poisoning  
1686 experiments, it bears much greater computational cost (Table 25).  
1687  
1688  
1689  
1690  
1691



1687 Figure 6: Data poisoning in-  
1688 serts the patterns (right) in all  
1689 selected images in  $\mathcal{D}$ .  
1690  
1691



1705 Figure 7: Corrective Accuracy ( $Acc_{corr}$ ) after applying different unlearning methods. This measures the performance  
1706 of the unlearned model on the domain representing the adversely affected data,  $\mathcal{D}_m$ .  $\gamma$  measures the proportion of  
1707 the adversely affected data which was identified and collected within  $\mathcal{D}_m$ . We note that at small  $\gamma$ , RELOAD achieves  
1708 consistently higher  $Acc_{corr}$  than existing baselines and performs across  $\gamma$  values.



1722 Figure 8: Corrective Accuracy ( $Acc_{corr}$ ) after applying different unlearning methods. This measures the performance  
1723 of the unlearned model on the domain representing the adversely affected data,  $\mathcal{D}_m$ .  $\gamma$  measures the proportion of the  
1724 adversely affected data which was identified and collected within  $\mathcal{D}_{forget}$ . We note that at small  $\gamma$ , RELOAD achieves  
1725 consistently higher  $Acc_{corr}$  than existing baselines and performs across  $\gamma$  values.

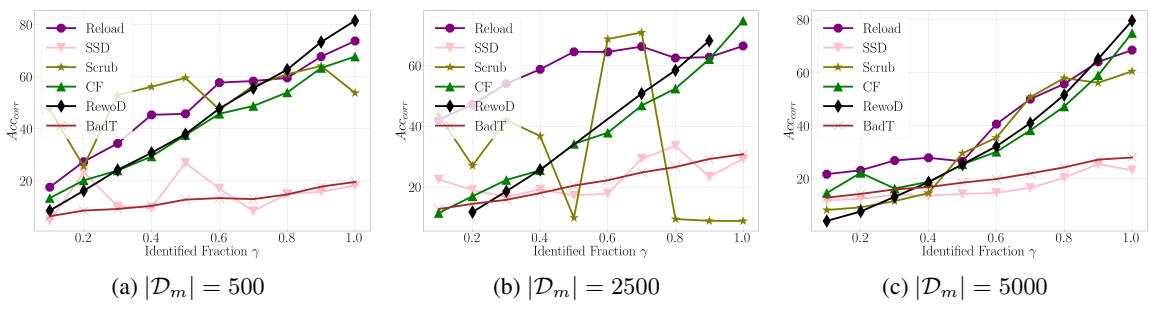


Figure 9: CIFAR10 Interclass Confusion

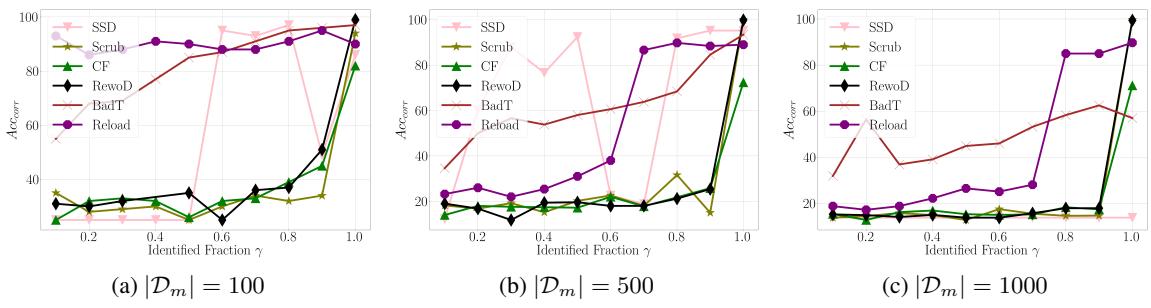


Figure 10: CIFAR10 Poisoning

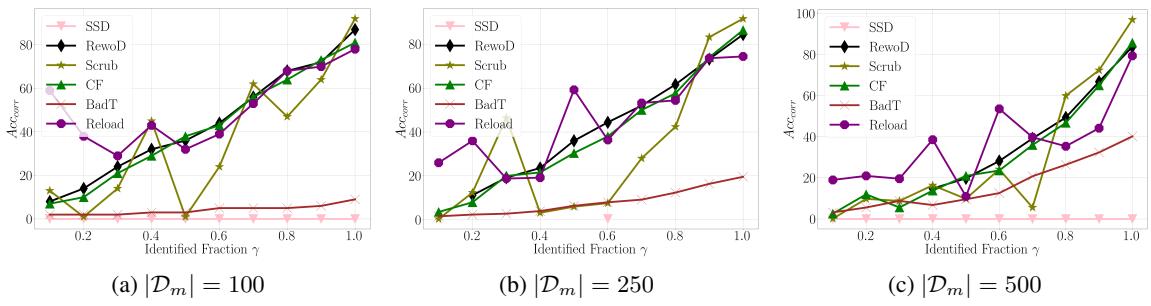


Figure 11: CIFAR100 Interclass Confusion

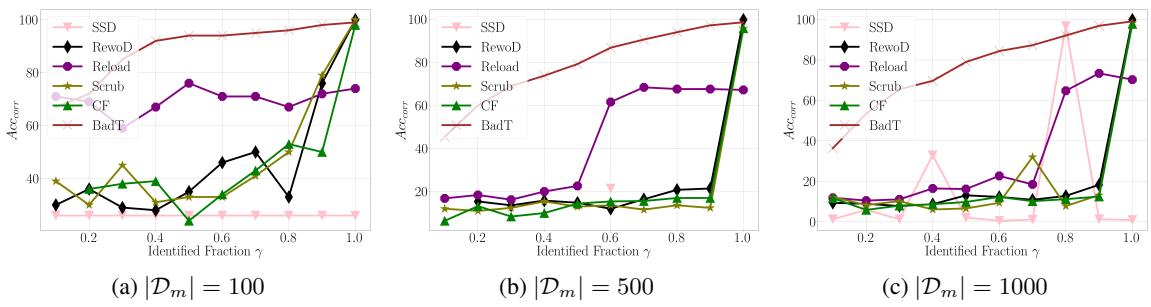


Figure 12: CIFAR100 Poisoning

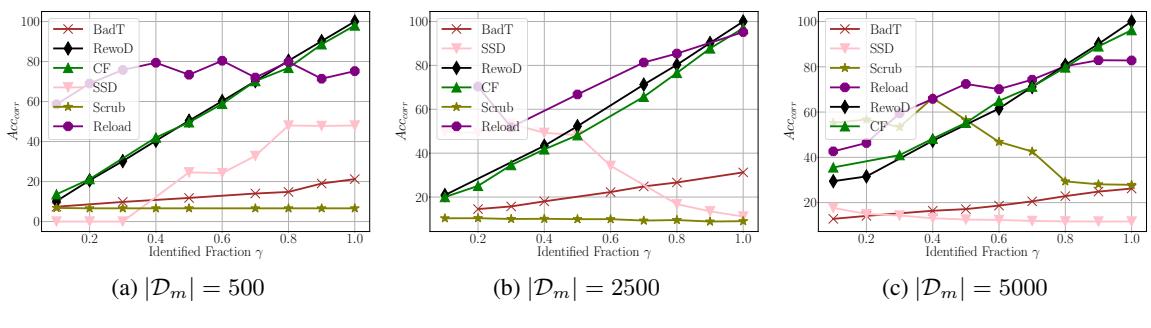


Figure 13: CIFAR10 Interclass Confusion (with replacement)

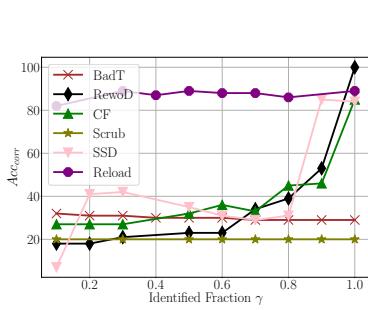
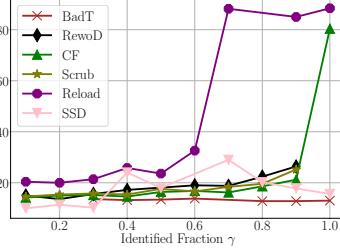
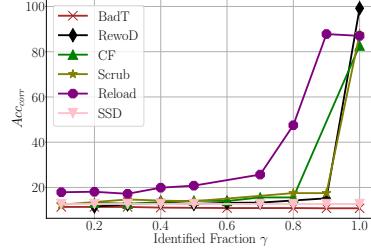


Figure 14: CIFAR10 Poisoning (with replacement)

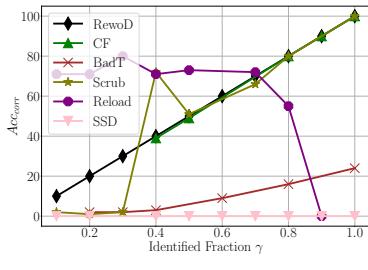
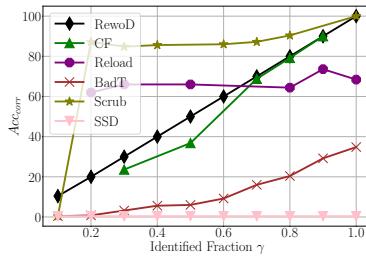
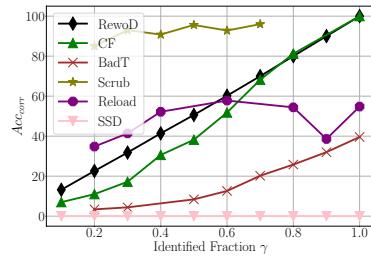


Figure 15: CIFAR100 Interclass Confusion (with replacement)

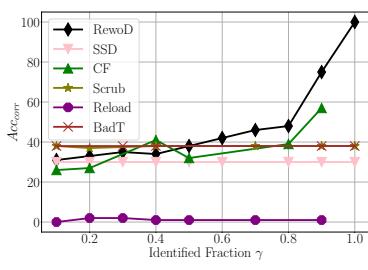
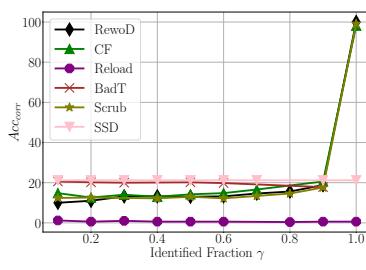
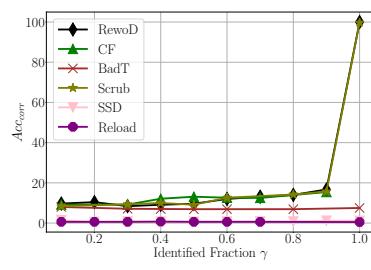


Figure 16: CIFAR100 Poisoning (with replacement)

| Cost (↓)                  | CIFAR10         | CIFAR100        | Cost (↓)                  | CIFAR10         | CIFAR100        | Cost (↓)                  | CIFAR10         | CIFAR100        |
|---------------------------|-----------------|-----------------|---------------------------|-----------------|-----------------|---------------------------|-----------------|-----------------|
| Poisoning                 |                 |                 | Poisoning                 |                 |                 | Poisoning                 |                 |                 |
| BadT                      | 0.44 $\pm$ 0.00 | 0.68 $\pm$ 0.00 | BadT                      | 0.46 $\pm$ 0.01 | 0.68 $\pm$ 0.00 | BadT                      | 0.46 $\pm$ 0.01 | 0.68 $\pm$ 0.00 |
| CF                        | 0.26 $\pm$ 0.00 | 0.25 $\pm$ 0.00 | CF                        | 0.27 $\pm$ 0.00 | 0.25 $\pm$ 0.00 | CF                        | 0.27 $\pm$ 0.00 | 0.25 $\pm$ 0.00 |
| SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 | SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 | SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 |
| Scrub                     | 0.26 $\pm$ 0.00 | 0.31 $\pm$ 0.00 | Scrub                     | 0.27 $\pm$ 0.00 | 0.31 $\pm$ 0.00 | Scrub                     | 0.27 $\pm$ 0.00 | 0.31 $\pm$ 0.00 |
| RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 | RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 | RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 |
| RELOAD                    | 0.37 $\pm$ 0.02 | 0.24 $\pm$ 0.00 | RELOAD                    | 0.29 $\pm$ 0.01 | 0.25 $\pm$ 0.00 | RELOAD                    | 0.33 $\pm$ 0.02 | 0.25 $\pm$ 0.00 |
| Interclass Confusion (IC) |                 |                 | Interclass Confusion (IC) |                 |                 | Interclass Confusion (IC) |                 |                 |
| BadT                      | 0.42 $\pm$ 0.01 | 0.68 $\pm$ 0.02 | BadT                      | 0.46 $\pm$ 0.00 | 0.68 $\pm$ 0.01 | BadT                      | 0.43 $\pm$ 0.02 | 0.68 $\pm$ 0.00 |
| CF                        | 0.23 $\pm$ 0.00 | 0.26 $\pm$ 0.01 | CF                        | 0.27 $\pm$ 0.00 | 0.25 $\pm$ 0.00 | CF                        | 0.27 $\pm$ 0.01 | 0.25 $\pm$ 0.00 |
| SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 | SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 | SSD                       | 0.04 $\pm$ 0.00 | 0.06 $\pm$ 0.00 |
| Scrub                     | 0.24 $\pm$ 0.00 | 0.31 $\pm$ 0.01 | Scrub                     | 0.27 $\pm$ 0.01 | 0.31 $\pm$ 0.00 | Scrub                     | 0.27 $\pm$ 0.01 | 0.31 $\pm$ 0.00 |
| RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 | RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 | RewoD                     | 1.00 $\pm$ 0.00 | 1.00 $\pm$ 0.00 |
| RELOAD                    | 0.28 $\pm$ 0.01 | 0.14 $\pm$ 0.00 | RELOAD                    | 0.40 $\pm$ 0.00 | 0.15 $\pm$ 0.00 | RELOAD                    | 0.14 $\pm$ 0.00 | 0.14 $\pm$ 0.00 |
| Num. Corrupted Samples    |                 |                 | Num. Corrupted Samples    |                 |                 | Num. Corrupted Samples    |                 |                 |
| CIFAR10                   | Poison          | 100             | CIFAR10                   | Poison          | 500             | CIFAR10                   | Poison          | 1000            |
| CIFAR100                  | Poison          | 100             | CIFAR100                  | Poison          | 500             | CIFAR100                  | Poison          | 1000            |
| CIFAR10                   | IC              | 500             | CIFAR10                   | IC              | 2500            | CIFAR10                   | IC              | 5000            |
| CIFAR100                  | IC              | 100             | CIFAR100                  | IC              | 250             | CIFAR100                  | IC              | 500             |

Table 25: Cost ( $\downarrow$ ) values across different sizes of  $\mathcal{D}_{forget}$  (Corrective Unlearning). Results are reported as mean  $\pm$  std dev over 10 values of  $\gamma$ .

| $Acc_{retain}(\uparrow)$         | CIFAR10          | CIFAR100          | $Acc_{retain}(\uparrow)$ | CIFAR10            | CIFAR100          | $Acc_{retain}(\uparrow)$ | CIFAR10          | CIFAR100          |
|----------------------------------|------------------|-------------------|--------------------------|--------------------|-------------------|--------------------------|------------------|-------------------|
| <b>Poisoning</b>                 |                  |                   |                          |                    |                   |                          |                  |                   |
| None                             | 91.35            | 74.05             | None                     | 90.97              | 74.20             | None                     | 90.84            | 74.34             |
| BadT                             | 0.13 $\pm$ 0.04  | 0.13 $\pm$ 0.05   | BadT                     | -0.05 $\pm$ 0.17   | -0.32 $\pm$ 0.11  | BadT                     | 0.01 $\pm$ 0.07  | -0.24 $\pm$ 0.22  |
| CF                               | 0.09 $\pm$ 0.12  | 0.54 $\pm$ 0.17   | CF                       | 0.35 $\pm$ 0.14    | 0.32 $\pm$ 0.24   | CF                       | 0.27 $\pm$ 0.10  | 0.39 $\pm$ 0.19   |
| SSD                              | -3.05 $\pm$ 4.56 | -2.08 $\pm$ 0.00  | SSD                      | -14.03 $\pm$ 22.86 | 0.00 $\pm$ 0.00   | SSD                      | -0.66 $\pm$ 1.47 | -0.61 $\pm$ 0.60  |
| Scrub                            | 0.01 $\pm$ 0.11  | 0.25 $\pm$ 0.23   | Scrub                    | 0.43 $\pm$ 0.04    | 0.20 $\pm$ 0.19   | Scrub                    | 0.27 $\pm$ 0.05  | 0.00 $\pm$ 0.11   |
| RewoD                            | 0.86 $\pm$ 0.00  | 1.14 $\pm$ 0.00   | RewoD                    | 1.25 $\pm$ 0.00    | 0.71 $\pm$ 0.00   | RewoD                    | 0.92 $\pm$ 0.00  | 1.18 $\pm$ 0.00   |
| RELOAD                           | -7.83 $\pm$ 0.20 | -13.20 $\pm$ 0.69 | RELOAD                   | -8.14 $\pm$ 0.22   | -13.22 $\pm$ 0.54 | RELOAD                   | -7.55 $\pm$ 0.24 | -13.63 $\pm$ 0.61 |
| <b>Interclass Confusion (IC)</b> |                  |                   |                          |                    |                   |                          |                  |                   |
| None                             | 93.01            | 73.82             | None                     | 92.22              | 74.06             | None                     | 92.81            | 73.81             |
| BadT                             | 0.39 $\pm$ 0.09  | 0.22 $\pm$ 0.04   | BadT                     | 0.81 $\pm$ 0.12    | 0.05 $\pm$ 0.07   | BadT                     | 0.52 $\pm$ 0.11  | -0.02 $\pm$ 0.13  |
| CF                               | 0.16 $\pm$ 0.16  | 0.63 $\pm$ 0.14   | CF                       | 0.59 $\pm$ 0.30    | 0.46 $\pm$ 0.18   | CF                       | 0.49 $\pm$ 0.31  | 0.53 $\pm$ 0.17   |
| SSD                              | -1.45 $\pm$ 4.44 | 0.14 $\pm$ 0.00   | SSD                      | 0.73 $\pm$ 0.17    | 0.00 $\pm$ 0.00   | SSD                      | 0.72 $\pm$ 0.31  | 0.00 $\pm$ 0.00   |
| Scrub                            | 0.19 $\pm$ 0.19  | 0.17 $\pm$ 0.06   | Scrub                    | 0.63 $\pm$ 0.56    | -0.06 $\pm$ 0.14  | Scrub                    | -1.10 $\pm$ 1.85 | -0.05 $\pm$ 0.18  |
| RewoD                            | 0.82 $\pm$ 0.00  | 1.29 $\pm$ 0.00   | RewoD                    | 1.14 $\pm$ 0.00    | 0.99 $\pm$ 0.00   | RewoD                    | 0.95 $\pm$ 0.00  | 1.13 $\pm$ 0.00   |
| RELOAD                           | -0.20 $\pm$ 0.22 | -4.45 $\pm$ 0.87  | RELOAD                   | -2.18 $\pm$ 1.43   | -5.21 $\pm$ 0.76  | RELOAD                   | -1.14 $\pm$ 0.54 | -4.93 $\pm$ 0.81  |
| <b>Num. Corrupted Samples</b>    |                  |                   |                          |                    |                   |                          |                  |                   |
| CIFAR10                          | Poison           | 100               | CIFAR10                  | Poison             | 500               | CIFAR10                  | Poison           | 1000              |
| CIFAR100                         | Poison           | 100               | CIFAR100                 | Poison             | 500               | CIFAR100                 | Poison           | 1000              |
| CIFAR10                          | IC               | 500               | CIFAR10                  | IC                 | 2500              | CIFAR10                  | IC               | 5000              |
| CIFAR100                         | IC               | 100               | CIFAR100                 | IC                 | 250               | CIFAR100                 | IC               | 500               |

Table 26:  $\text{Acc}_{\text{retain}}(\uparrow)$  values across different sizes of  $\mathcal{D}_{\text{forget}}$  (Corrective Unlearning). Results are reported as mean  $\pm$  std dev over 10 values of  $\gamma$ .

| 1880                             | Cost (↓)        | CIFAR10         | CIFAR100        | Cost (↓)        | CIFAR10         | CIFAR100        | Cost (↓)        | CIFAR10         | CIFAR100        |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <b>Poisoning</b>                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| 1884                             | BadT            | 0.63 $\pm$ 0.01 | 0.69 $\pm$ 0.00 | 1885            | BadT            | 0.64 $\pm$ 0.01 | 0.70 $\pm$ 0.00 | 1886            | BadT            | 0.64 $\pm$ 0.01 | 0.68 $\pm$ 0.01 |                 |
| CF                               | 0.26 $\pm$ 0.01 | 0.25 $\pm$ 0.00 | SSD             | 0.06 $\pm$ 0.01 | 0.06 $\pm$ 0.00 | SSD             | 0.26 $\pm$ 0.01 | 0.25 $\pm$ 0.00 | CF              | 0.25 $\pm$ 0.01 | 0.25 $\pm$ 0.00 |                 |
| 1886                             | Scrub           | 0.27 $\pm$ 0.01 | 0.30 $\pm$ 0.00 | 1887            | Scrub           | 0.28 $\pm$ 0.01 | 0.31 $\pm$ 0.00 | 1888            | Scrub           | 0.28 $\pm$ 0.01 | 0.30 $\pm$ 0.00 |                 |
| RewoD                            | 1.00 $\pm$ 0.04 | 1.00 $\pm$ 0.01 | RELOAD          | 0.44 $\pm$ 0.03 | 0.31 $\pm$ 0.00 | 1887            | RewoD           | 1.00 $\pm$ 0.04 | 1.00 $\pm$ 0.01 | RELOAD          | 1.00 $\pm$ 0.03 | 1.00 $\pm$ 0.04 |
| <b>Interclass Confusion (IC)</b> |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| 1889                             | BadT            | 0.62 $\pm$ 0.01 | 0.68 $\pm$ 0.01 | 1890            | BadT            | 0.63 $\pm$ 0.01 | 0.67 $\pm$ 0.00 | 1891            | BadT            | 0.64 $\pm$ 0.02 | 0.68 $\pm$ 0.00 |                 |
| CF                               | 0.25 $\pm$ 0.01 | 0.25 $\pm$ 0.00 | SSD             | 0.06 $\pm$ 0.01 | 0.06 $\pm$ 0.00 | SSD             | 0.27 $\pm$ 0.01 | 0.25 $\pm$ 0.00 | CF              | 0.27 $\pm$ 0.01 | 0.25 $\pm$ 0.00 |                 |
| 1892                             | Scrub           | 0.27 $\pm$ 0.01 | 0.30 $\pm$ 0.00 | 1893            | Scrub           | 0.27 $\pm$ 0.01 | 0.30 $\pm$ 0.00 | 1894            | Scrub           | 0.27 $\pm$ 0.01 | 0.31 $\pm$ 0.00 |                 |
| RewoD                            | 1.00 $\pm$ 0.04 | 1.00 $\pm$ 0.04 | RELOAD          | 0.35 $\pm$ 0.01 | 0.20 $\pm$ 0.00 | 1893            | RewoD           | 1.00 $\pm$ 0.05 | 1.00 $\pm$ 0.05 | RELOAD          | 0.46 $\pm$ 0.03 | 0.20 $\pm$ 0.00 |
| <b>Num. Corrupted Samples</b>    |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| 1895                             | CIFAR10         | Poison          | 100             | 1896            | CIFAR10         | Poison          | 500             | 1897            | CIFAR10         | Poison          | 1000            |                 |
| CIFAR100                         | Poison          | 100             |                 | CIFAR100        | Poison          | 500             |                 | CIFAR100        | Poison          | 1000            |                 |                 |
| CIFAR10                          | IC              | 500             |                 | CIFAR10         | IC              | 2500            |                 | CIFAR10         | IC              | 5000            |                 |                 |
| CIFAR100                         | IC              | 100             |                 | CIFAR100        | IC              | 250             |                 | CIFAR100        | IC              | 500             |                 |                 |

Table 27: Cost (↓) values across different sizes of  $\mathcal{D}_{forget}$  (Corrective Unlearning with replacement). Results are reported as mean  $\pm$  stddev over 10 values of  $\gamma$ .

| 1904                             | Acc <sub>retain</sub> (↑) | CIFAR10            | CIFAR100           | Acc <sub>retain</sub> (↑) | CIFAR10            | CIFAR100          | Acc <sub>retain</sub> (↑) | CIFAR10            | CIFAR100          |        |      |
|----------------------------------|---------------------------|--------------------|--------------------|---------------------------|--------------------|-------------------|---------------------------|--------------------|-------------------|--------|------|
| <b>Poisoning</b>                 |                           |                    |                    |                           |                    |                   |                           |                    |                   |        |      |
| 1907                             | None                      | 91.35              | 74.05              | None                      | 90.97              | 74.20             | None                      | 90.84              | 74.34             |        |      |
| 1908                             | BadT                      | -0.02 $\pm$ 0.06   | -0.13 $\pm$ 0.15   | BadT                      | -0.35 $\pm$ 0.14   | -0.72 $\pm$ 0.42  | BadT                      | -0.19 $\pm$ 0.30   | -1.37 $\pm$ 0.65  |        |      |
| CF                               | 0.07 $\pm$ 0.09           | 0.37 $\pm$ 0.07    | CF                 | 0.34 $\pm$ 0.11           | 0.22 $\pm$ 0.11    | CF                | 0.36 $\pm$ 0.13           | 0.38 $\pm$ 0.11    |                   |        |      |
| 1909                             | SSD                       | -16.01 $\pm$ 23.22 | 0.00 $\pm$ 0.00    | SSD                       | -40.73 $\pm$ 30.47 | 0.00 $\pm$ 0.00   | SSD                       | -0.00 $\pm$ 0.00   | -73.34 $\pm$ 0.00 |        |      |
| 1910                             | Scrub                     | -0.01 $\pm$ 0.01   | -0.01 $\pm$ 0.06   | Scrub                     | 0.50 $\pm$ 0.13    | 0.36 $\pm$ 0.17   | Scrub                     | 0.41 $\pm$ 0.12    | 0.61 $\pm$ 0.16   |        |      |
| RewoD                            | 0.72 $\pm$ 0.10           | 1.31 $\pm$ 0.19    | RewoD              | 1.31 $\pm$ 0.09           | 0.94 $\pm$ 0.20    | RewoD             | 1.11 $\pm$ 0.11           | 0.96 $\pm$ 0.11    |                   |        |      |
| 1911                             | RELOAD                    | -10.03 $\pm$ 0.42  | -73.04 $\pm$ 0.01  | RELOAD                    | -7.92 $\pm$ 0.38   | -73.20 $\pm$ 0.01 | RELOAD                    | -8.49 $\pm$ 0.29   | -73.33 $\pm$ 0.15 |        |      |
| <b>Interclass Confusion (IC)</b> |                           |                    |                    |                           |                    |                   |                           |                    |                   |        |      |
| 1913                             | None                      | 93.01              | 73.82              | None                      | 92.22              | 74.06             | None                      | 92.81              | 73.81             |        |      |
| 1914                             | BadT                      | 0.39 $\pm$ 0.16    | 0.03 $\pm$ 0.11    | BadT                      | 0.83 $\pm$ 0.12    | -0.23 $\pm$ 0.04  | BadT                      | 0.56 $\pm$ 0.13    | -0.15 $\pm$ 0.12  |        |      |
| CF                               | -0.27 $\pm$ 0.22          | 0.48 $\pm$ 0.21    | CF                 | -0.18 $\pm$ 0.18          | 0.14 $\pm$ 0.26    | CF                | -0.07 $\pm$ 0.08          | 0.15 $\pm$ 0.27    |                   |        |      |
| 1915                             | SSD                       | -44.46 $\pm$ 24.45 | -72.80 $\pm$ 0.00  | SSD                       | -21.52 $\pm$ 22.80 | 0.00 $\pm$ 0.00   | SSD                       | -1.23 $\pm$ 1.63   | -72.79 $\pm$ 0.00 |        |      |
| 1916                             | Scrub                     | 0.38 $\pm$ 0.01    | 0.12 $\pm$ 0.28    | Scrub                     | 0.99 $\pm$ 0.25    | -0.05 $\pm$ 0.25  | Scrub                     | -17.88 $\pm$ 20.93 | -0.07 $\pm$ 0.18  |        |      |
| 1917                             | RewoD                     | 0.66 $\pm$ 0.10    | 1.30 $\pm$ 0.10    | RewoD                     | 0.99 $\pm$ 0.24    | 1.03 $\pm$ 0.11   | RewoD                     | 0.31 $\pm$ 0.50    | 1.03 $\pm$ 0.16   |        |      |
| 1918                             | RELOAD                    | -5.84 $\pm$ 3.03   | -30.63 $\pm$ 16.14 | RELOAD                    | -0.01 $\pm$ 1.12   | -22.25 $\pm$ 1.63 | RELOAD                    | -3.02 $\pm$ 4.14   | -26.35 $\pm$ 6.45 |        |      |
| <b>Num. Corrupted Samples</b>    |                           |                    |                    |                           |                    |                   |                           |                    |                   |        |      |
| 1919                             | CIFAR10                   | Poison             | 100                | 1920                      | CIFAR10            | Poison            | 500                       | 1921               | CIFAR10           | Poison | 1000 |
| CIFAR100                         | Poison                    | 100                |                    | CIFAR100                  | Poison             | 500               |                           | CIFAR100           | Poison            | 1000   |      |
| CIFAR10                          | IC                        | 500                |                    | CIFAR10                   | IC                 | 2500              |                           | CIFAR10            | IC                | 5000   |      |
| CIFAR100                         | IC                        | 100                |                    | CIFAR100                  | IC                 | 250               |                           | CIFAR100           | IC                | 500    |      |

Table 28: Acc<sub>retain</sub> (↑) values across different sizes of  $\mathcal{D}_{forget}$  (Corrective Unlearning with replacement). Results are reported as mean  $\pm$  stddev over 10 values of  $\gamma$ .

1927 B.7 HYPERPARAMETER SELECTION  
19281929 RELOAD admits 4 hyperparameters. Additional hyperparameters may be introduced depending on the  
1930 optimisation procedure used by the practitioner for RELOAD (eg. weight decay).  
19311932 1. Alpha ( $\alpha$ ): The quantile of weights to reinitialise  
1933 2. Ascent Learning Rate: The step size for the ascent stage of RELOAD  
1934 3. Finetuning Learning Rate: The step size for the finetuning stage of RELOAD  
1935 4. Weight Reset Method: The scheme to use for reinitialising weights  
19361937 B.7.1 WEIGHT RESET/REINITIALISATION METHODS  
19381939 First, we detail the different weight reinitialisation methods we explore as options for the resetting step of  
1940 RELOAD. This setting is a hyperparameter of RELOAD .  
19411942 *Mean*. The selected parameters are replaced with the mean value of the tensor they are part of.  
19431944 *Zero*. The selected parameters are replaced with the value 0.  
19451946 *Normal*. The selected parameters are replaced with a random number drawn from  $\mathcal{N}(0, 1)$ .  
19471948 *Uniform*. The selected parameters are replaced with a random number drawn from  $\mathcal{U}(-1, 1)$ .  
19491950 *Xavier Uniform*. The selected parameters are replaced with values obtained through Xavier Uniform  
1951 initialisation (Glorot & Bengio, 2010).  
19521953 *Xavier Normal*. The selected parameters are replaced with values obtained through Xavier Normal initialisation  
1954 (Glorot & Bengio, 2010).  
19551956 *Kaiming Uniform*. The selected parameters are replaced with values obtained through Kaiming Uniform  
1957 initialisation (He et al., 2015).  
19581959 *Kaiming Normal*. The selected parameters are replaced with values obtained through Kaiming Normal  
1960 initialisation (He et al., 2015).  
19611962 B.7.2 HYPERPARAMETERS FOR CLASSICAL UNLEARNING  
19631964 We train ResNet-18 and VGG16-BN models on CIFAR-10 (Krizhevsky, 2012), CIFAR-100 (Krizhevsky  
1965 et al.), and SVHN (Netzer et al., 2011) for image classification for 182 epochs. We apply the cross-entropy  
1966 loss function and a learning rate of 0.1 with a batch size of 256. We conducted these experiments over 10  
1967 random seeds to obtain average results and standard deviation measurements. The results in our tables are  
1968 reported in the format  $\mu \pm \sigma$  where  $\mu$  is the average value and  $\sigma$  is the standard deviation, across the 10 seeds.  
19691970 The 10 seeds we selected for unlearning experiments were seeds {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.  
19711972 Hyperparameters for RELOAD were chosen through a bayesian hyperparameter sweep. The chosen hyperpa-  
1973 rameters for the unlearning tasks are presented in Table 29.  
19741975 We empirically find that the cumulative distribution function of the knowledge-values for forgetting 10%  
1976 of data from a ResNet-18 model trained on SVHN forms a sigmoid-like curve around  $10^{-1}$ . This further  
1977 evidences the existence of clear differences in the knowledge-values for different parameters. Experimentally,  
1978 we select the thresholding hyperparameter  $\alpha$  using a hyperparameter sweep. We have included in ablation  
1979 (Appendix ??), a study with varying learning rates ( $\eta$ ) and thresholds ( $\alpha$ ).  
1980

| Experiment            | Alpha ( $\alpha$ ) | Ascent Learning Rate | Finetuning Learning Rate | Weight Reset Method |
|-----------------------|--------------------|----------------------|--------------------------|---------------------|
| SVHN + ResNet-18      | 0.1                | 0.243                | 0.098                    | Uniform             |
| SVHN + VGG16-BN       | 0.1                | 0.496                | 0.496                    | Xavier Uniform      |
| CIFAR-10 + ResNet-18  | 0.1                | 0.44                 | 0.33                     | Xavier Uniform      |
| CIFAR-10 + VGG16-BN   | 0.1                | 0.167                | 0.39                     | Kaiming Uniform     |
| CIFAR-100 + ResNet-18 | 0.1                | 0.18                 | 0.33                     | Xavier Normal       |
| CIFAR-100 + VGG16-BN  | 0.1                | 0.325                | 0.164                    | Kaiming Normal      |

Table 29: RELOAD Hyperparameter Settings for Unlearning

**Baseline Implementations.** Implementations for baselines were taken from the reference implementations for SCRUB, SSD, EU- $k$ , and CF- $k$ . Implementations for FT and GA were taken from the repository for SalUn.

**Codebase Structure.** Our codebase is built on the publicly-released repository for SalUn (Fan et al., 2023).

### B.7.3 HYPERPARAMETERS FOR LANGUAGE MODEL ENTITY UNLEARNING

For our base models we employ open-source model weights fine-tuned on the TOFU dataset publicly available on HuggingFace for Llama-2-7b-Chat (Touvron et al., 2023) and Phi-1.5 (Li et al., 2023). We use open-source fine-tuned models available on Hugging Face (locuslab, 2025; Unlearning, 2025a;b;c) as our gold-standard retrained models.

Hyperparameters for RELOAD were chosen through a bayesian hyperparameter sweep. The chosen hyperparameters for the unlearning tasks are presented in Table 30. All experiments were conducted using the AdamW optimizer from PyTorch.

As discussed, RELOAD for LMs is parameter-efficient, and operates on a subset of the model parameters in a language model. As such, the entire RELOAD process is performed over a subset of the layers in the language model. We selected this layer as a hyperparameter through a sweep, and report it as Target Layers in the below table. This structure enabled effective unlearning, and also increased the efficiency of the algorithm as gradients were only computed for certain layers. This allowed RELOAD to operate on large language models on less powerful hardware setups and in less time.

| Experiment                 | Alpha ( $\alpha$ ) | Ascent Learning Rate | Finetuning Learning Rate | Weight Reset Method | Retain Sample Size | Target Layers           | Repair Epochs |
|----------------------------|--------------------|----------------------|--------------------------|---------------------|--------------------|-------------------------|---------------|
| Llama-2-7b-Chat + Forget01 | 0.008              | 0.039                | 0.0002                   | Zero                | 152                | mlp.gate_proj.weight    | 5             |
| Llama-2-7b-Chat + Forget05 | 0.017              | 0.049                | 0.0002                   | Uniform             | 193                | self_attn.k_proj.weight | 5             |
| Llama-2-7b-Chat + Forget10 | 0.303              | 0.022                | 0.0488                   | Xavier Uniform      | 60                 | self_attn.q_proj.weight | 28            |
| Phi-1.5 + Forget10         | 0.396              | 0.094                | 0.0445                   | Uniform             | 90                 | self_attn.v_proj.weight | 40            |

Table 30: Hyperparameter Settings for LM Entity Unlearning

**Baseline Implementation and Results.** Baseline implementations and results were obtained and reused from the repository and paper of Liu et al. (2024a).

**Codebase Structure.** For LM Entity Unlearning we reuse the publicly-released repository for Large Language Model Unlearning via Embedding-Corrupted Prompts (Liu et al., 2024a) to which we add our implementation of RELOAD for LMs.

### B.7.4 HYPERPARAMETERS FOR CORRECTIVE UNLEARNING

We train ResNet-9 models on CIFAR-10 (Krizhevsky, 2012) for 4000 pretraining iterations. We train ResNet-28x10 models on CIFAR-100 (Krizhevsky et al.) for 6000 pretraining iterations. We apply the cross-entropy loss function, a batch-size of 512, and a learning rate of 0.025. The results in our tables are reported in a

2021 manner consistent with prior work (Goel et al., 2024) across 10 selections of  $\gamma$  where  $\gamma$  is the proportion of  
 2022 the forget set identified.

2023  
 2024 Hyperparameters for RELOAD are chosen through a Bayesian Hyperparameter sweep. The chosen hyperpa-  
 2025 rameters are presented in Table 31. Hyperparameters for baselines are chosen through a grid search defined  
 2026 in the reference implementation. For all experiments we employ the SGD (Stochastic Gradient Descent)  
 2027 optimizer with momentum 0.9 and weight decay 0.0005.

| Experiment                                     | Alpha ( $\alpha$ ) | Ascent Learning Rate | Finetuning Learning Rate | Weight Reset Method |
|------------------------------------------------|--------------------|----------------------|--------------------------|---------------------|
| CIFAR10 + ResNet-9 + Poisoning                 | 0.3984             | 0.01                 | 0.00381                  | Xavier Normal       |
| CIFAR10 + ResNet-9 + Interclass Confusion      | 0.1978             | 0.01                 | 0.00957                  | Mean                |
| CIFAR100 + ResNet-28x10 + Poisoning            | 0.2401             | 0.01                 | 0.00483                  | Xavier Normal       |
| CIFAR100 + ResNet-28x10 + Interclass Confusion | 0.0924             | 0.01                 | 0.00237                  | Zero                |

2033 Table 31: RELOAD Hyperparameter Settings for corrective unlearning (with and without replacement)

2034  
 2035 **Baseline Implementation.** Baseline implementations are taken from the reference implementations provided  
 2036 in the repository for Corrective Machine Unlearning.

2037  
 2038 **Codebase Structure.** For corrective unlearning we reuse the publicly-released repository for Corrective  
 2039 Machine Unlearning (Goel et al., 2024) to which we add our implementation of RELOAD. To this repository,  
 2040 we also add our implementation of corrective unlearning (with replacement) experiments.

## 2041 B.8 HARDWARE USAGE

2042  
 2043 **Hardware for Classical Unlearning** All experiments were run on 4 CPU cores, 20 GB of RAM, and 1  
 2044 NVIDIA T4 GPU.

2045  
 2046 **Hardware for Language Model Entity Unlearning** All experiments were run on 30 CPU cores, 60GB of  
 2047 RAM, and 1 NVIDIA A40 GPU. Some experiments were also conducted using 1 NVIDIA RTX6000 GPU to  
 2048 highlight the lightweight nature of RELOAD for LMs.

2049  
 2050 **Hardware for Corrective Unlearning** All experiments were run on 4 CPU cores, 60 GB of RAM, and 1  
 2051 NVIDIA RTX6000 GPU.

## 2052 C FURTHER ABLATIONS

### 2053 C.1 ABLATION: CRITICAL COMPONENTS OF RELOAD

2054  
 2055 In designing the knowledge values for identifying knowledgeable parameters, we considered several other  
 2056 approaches in addition to the final formula (Eq. 1). This includes normalising gradients and utilising cosine  
 2057 similarity for the computation of knowledge values.

2058  
 2059 **Ascent Steps.** In designing the ascent step, we considered the possibility of needing multiple steps to  
 2060 appropriately scrub the global information from the model parameters. Theoretically, this notion violates the  
 2061 partially-blind nature of the unlearning setup, and was thus undesirable. Empirically, we noted that using  
 2062 multiple ascent steps does not improve forgetting and can lead to further performance degradation on  $\mathcal{D}_{retain}$   
 2063 requiring more retraining to get to a final unlearned model. As it is the only partially-blind variant, we include  
 2064 a study of RELOAD when the ascent step is not applied below.

2068  
2069

## C.2 ABLATION: EMPIRICAL EVIDENCE

2070  
2071

Below we present a short ablation study on 3 different variations of components of the RELOAD algorithm.

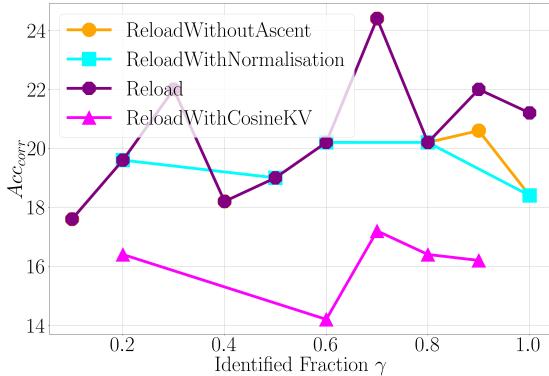
2072  
2073

1. ReloadWithoutAscent: This is the same as the standard RELOAD algorithm without the ascent step
2. ReloadWithNormalisation: This variant employs gradient normalisation before the calculation of knowledge values to increase directional information and reduce scaling issues
3. ReloadWithCosineKV: This variant uses cosine similarity between gradients to compute knowledge values instead of gradient magnitudes

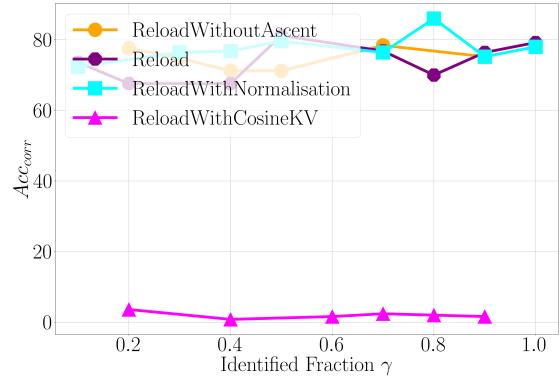
2074  
2075  
2076  
2077

We demonstrate these variants against the baselines RELOAD algorithm on corrective unlearning tasks. Select results for corrective unlearning are shown in Figure 17.

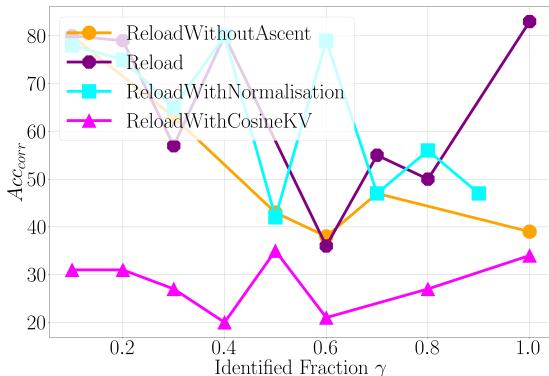
2080



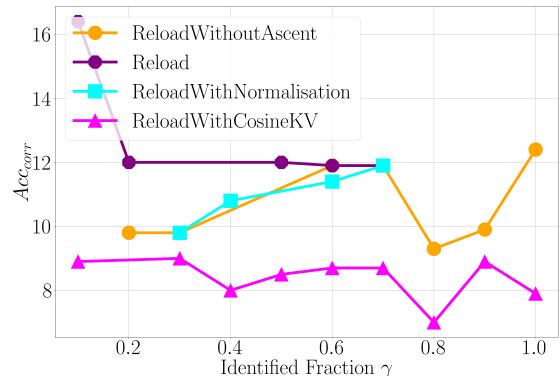
(a) CIFAR10 Example 1



(b) CIFAR10 Example 2



(c) CIFAR100 Example 1



(d) CIFAR100 Example 2

2106

2107

Figure 17: Corrective Accuracy ( $Acc_{corr}$ ) across variants of RELOAD.2110  
2111  
2112  
2113  
2114In the case of corrective unlearning, we note that the variants of RELOAD perform comparatively to the base algorithm but all note significant weaknesses in comparison. ReloadWithCosineKV produces unlearned models with higher utility (higher  $Acc_{retain}$ , Table 18) but significantly lower corrective accuracy ( $Acc_{corr}$ , Fig. 17). On the other hand, ReloadWithoutAscent and ReloadWithNormalisation both exhibit better

2115 corrective accuracy performance than ReloadWithCosineKV but are still weaker than RELOAD and have  
 2116 lower  $\text{Acc}_{\text{retain}}$ .  
 2117

| $\text{Acc}_{\text{retain}} (\uparrow)$ | CIFAR10          | CIFAR100           |
|-----------------------------------------|------------------|--------------------|
| <b>Poisoning</b>                        |                  |                    |
| RELOAD                                  | $-2.84 \pm 2.56$ | $-5.08 \pm 1.39$   |
| ReloadWithoutAscent                     | $-3.28 \pm 2.49$ | $-5.24 \pm 1.65$   |
| ReloadWithNormalisation                 | $-4.23 \pm 2.11$ | $-5.34 \pm 1.72$   |
| ReloadWithCosineKV                      | $0.24 \pm 0.12$  | $0.49 \pm 0.15$    |
| <b>Interclass Confusion (IC)</b>        |                  |                    |
| RELOAD                                  | $-2.70 \pm 1.99$ | $-26.18 \pm 29.97$ |
| ReloadWithoutAscent                     | $-3.66 \pm 2.13$ | $-16.83 \pm 23.29$ |
| ReloadWithNormalisation                 | $-4.27 \pm 1.56$ | $-16.67 \pm 21.67$ |
| ReloadWithCosineKV                      | $0.01 \pm 0.12$  | $0.24 \pm 0.15$    |
| <b>Num. Corrupted Samples</b>           |                  |                    |
| CIFAR10                                 | Poison           | 100                |
| CIFAR100                                | Poison           | 100                |
| CIFAR10                                 | IC               | 500                |
| CIFAR100                                | IC               | 100                |

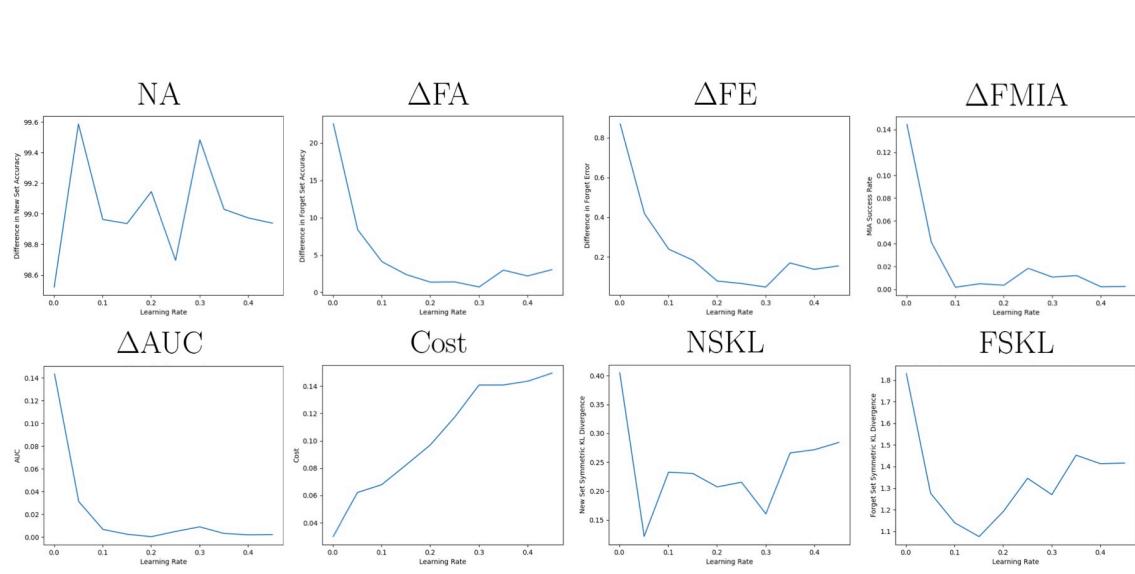
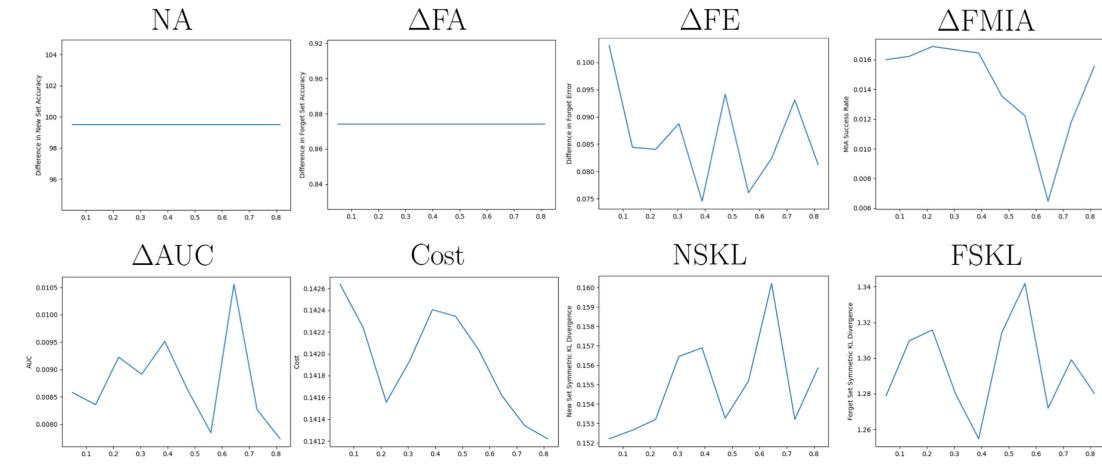
2125 Figure 18: Model Utility across variants of RELOAD  
 2126  
 2127

### 2135 C.3 ABLATION: LEARNING RATE $\eta_p$ AND THRESHOLD $\alpha$

2137 We study the effect of different learning rates on the unlearning performance exhibited by the RELOAD  
 2138 algorithm. For this study, we select the case of randomly forgetting 10% of the training data from a ResNet-18  
 2139 model trained on CIFAR-100.

2141 As shown in Figure 19, we observe that the choice of learning rate has a significant impact on performance.  
 2142 This is particularly true in the case of  $\Delta\text{FA}$ ,  $\Delta\text{FE}$ ,  $\Delta\text{FMIA}$ , and  $\Delta\text{AUC}$  measurements - which are the primary  
 2143 metrics evaluating how well the model has forgotten  $\mathcal{D}_{\text{forget}}$ . Based on these plots, we choose  $\eta = 0.33$ .

2144 Figure 20 shows the effect of varying the proportion of the parameters that are selected for reinitialization ( $\alpha$ ).  
 2145 We observe that the choice of threshold has an impact on the performance of the RELOAD algorithm and that  
 2146 its selection involves a tradeoff between the different metrics we consider. Thus, the best choice of  $\alpha$  should  
 2147 ideally be selected through a hyperparameter search.

Figure 19: Impact of Learning Rate ( $\eta$ ) on RELOAD performanceFigure 20: Impact of Threshold ( $\alpha$ ) on RELOAD performance

2209 C.4 ABLATION: RELOAD ON VISION TRANSFORMERS  
22102211 We study the impact of layer normalization on the performance of RELOAD . We train a Vision Trans-  
2212 former (Dosovitskiy et al., 2020) on the CIFAR-10 dataset (Krizhevsky, 2012) and randomly unlearn 6000  
2213 data samples (10% of CIFAR-10).2214 We reuse a PyTorch implementation of a ViT (Wang et al., 2025) and train the model for 1000 epochs with  
2215 learning rate 1e-4 using the Adam (Kingma & Ba, 2014) optimizer. The baseline model is trained to an  
2216 accuracy of 99.94%. Results are presented in Table 32.  
2217

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (OURS)        | $99.45 \pm 0.12$  | $0.53 \pm 0.50$              | $0.79 \pm 0.1$               | $0.01 \pm 0.01$                | $0.19 \pm 0.03$       | $8.7 \pm 0.11$        |
| Retrained (Baseline) | $99.91 \pm 0.02$  | $54.11 \pm 0.50$             | $4.31 \pm 0.09$              | $0.51 \pm 0.01$                | -                     | -                     |

2218 Table 32: 10% Random Forgetting on CIFAR-10 (ViT)  
22192220  $\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the  
2221 unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to  
2222 have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric  
2223 with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference  
2224 in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that  
2225 RELOAD performs similarly to the ground truth Retrained model on RA,  $\Delta$ FA,  $\Delta$ FMIA, and RSKL. RELOAD strays  
2226 from the Retrained model in  $\Delta$ FE and FSKL.  
22272228 C.5 ABLATION: RELOAD WITH QUANTIZED GRADIENTS  
22292230 RELOAD incurs a storage overhead when caching gradients. We explore the feasibility of quantizing the  
2231 cached gradients, to reduce the footprint of the algorithm. In this experiment, we unlearn 6000 samples  
2232 (10%) of CIFAR-10 from a trained ResNet-18 model and we quantize the cached gradients from  
2233 `torch.float32` to `torch.float16`. Before proceeding with unlearning, we expand these gradients  
2234 back to `torch.float32`. The ResNet18 model is trained for 400 epochs with a learning rate of 1e-3 using  
2235 the SGD optimizer. The model has a trained accuracy of 99.76%. Results are presented in Table 33.  
2236

| Method                | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|-----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (UN-QUANTIZED) | $99.99 \pm 0.01$  | $0.46 \pm 0.57$              | $0.76 \pm 0.08$              | $0.01 \pm 0.01$                | $0.44 \pm 0.03$       | $4.04 \pm 0.1$        |
| RELOAD (QUANTIZED)    | $99.99 \pm 0.01$  | $0.46 \pm 0.57$              | $0.76 \pm 0.08$              | $0.01 \pm 0.01$                | $0.44 \pm 0.03$       | $4.04 \pm 0.1$        |
| Retrained (Baseline)  | $99.52 \pm 0.16$  | $36.22 \pm 0.49$             | $2.25 \pm 0.03$              | $0.51 \pm 0.01$                | -                     | -                     |

2237 Table 33: 10% Random Forgetting on CIFAR-10 (ResNet-18) with Quantized Cached Gradients  
22382239  $\uparrow$ : the goal is to have as high of a value as possible,  $\Delta\downarrow$ : the value in the table is the difference between the result of the  
2240 unlearning method and retraining (bottom row) on the metric and the goal is to have a low difference,  $\downarrow$ : the goal is to  
2241 have as low of a value as possible. The bottom row presents the absolute value of  $M_{(\theta\sim)}$  on each metric. For any metric  
2242 with  $\Delta$ , the raw value is instead reported. Rows for  $\Delta$ FA ( $\downarrow$ ),  $\Delta$ FE ( $\downarrow$ ), and  $\Delta$ FMIA ( $\downarrow$ ) present the absolute difference  
2243 in the value of the corresponding method on this metric to the value of  $M_{(\theta\sim)}$  on the metric. These results show that  
2244 RELOAD performs similarly to the ground truth Retrained model on RA,  $\Delta$ FA,  $\Delta$ FE  $\Delta$ FMIA, RSKL. RELOAD strays  
2245 from the Retrained model in FSKL.  
22462247 C.6 ABLATION: RELOAD WITH FINETUNING  
22482249 In this section we explore the practicality of applying RELOAD after some finetuning has been performed on  
2250 the model. To explore this, we first train a ResNet18 model on CIFAR-10 for 400 epochs with a learning  
2251 rate of 1e-3 to a training accuracy of 99.76%. Afterwards, we finetune the model on the out-of-distribution  
2252

2256 CIFAR-10.1 (Torralba et al., 2008; Recht et al., 2018) dataset for 100 epochs with a learning rate of 1e-3.  
 2257 Prior to finetuning, the model had an accuracy of 30.8% on CIFAR10.1. After finetuning, the model achieved  
 2258 an accuracy of 99.2% on CIFAR10.1.

2259  
 2260 We evaluate RELOAD unlearning in 3 modes. 1) We unlearn samples from the original CIFAR10 dataset after  
 2261 finetuning on CIFAR10.1 (Table 34), 2) We unlearn samples from CIFAR10.1 after finetuning on CIFAR10.1  
 2262 (Table 35), 3) We unlearn samples from both CIFAR10 and CIFAR10.1 after finetuning on CIFAR10.1  
 2263 (Table 36).

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (OURS)        | 98.16 $\pm$ 0.01  | 0.57 $\pm$ 0.46              | 0.06 $\pm$ 0.03              | 0.01 $\pm$ 0.01                | 0.91 $\pm$ 0.02       | 3.45 $\pm$ 0.06       |
| Retrained (Baseline) | 92.34 $\pm$ 0.6   | 34.57 $\pm$ 0.00             | 2.33 $\pm$ 0.00              | 0.51 $\pm$ 0.01                | -                     | -                     |

2264 Table 34: **10% Random Forgetting from CIFAR-10 after finetuning on CIFAR-10.1 (ResNet-18)**  
 2265  
 2266

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (OURS)        | 98.89 $\pm$ 0.19  | 2.85 $\pm$ 2.05              | 0.20 $\pm$ 0.13              | 0.05 $\pm$ 0.04                | 0.51 $\pm$ 0.02       | 3.95 $\pm$ 0.27       |
| Retrained (Baseline) | 99.73 $\pm$ 0.11  | 32.4 $\pm$ 2.78              | 2.70 $\pm$ 0.11              | 0.54 $\pm$ 0.05                | -                     | -                     |

2267 Table 35: **10% Random Forgetting from CIFAR-10.1 after finetuning on CIFAR-10.1 (ResNet-18)**  
 2268  
 2269

| Method               | RA ( $\uparrow$ ) | $\Delta$ FA ( $\downarrow$ ) | $\Delta$ FE ( $\downarrow$ ) | $\Delta$ FMIA ( $\downarrow$ ) | RSKL ( $\downarrow$ ) | FSKL ( $\downarrow$ ) |
|----------------------|-------------------|------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------|
| RELOAD (OURS)        | 99.69 $\pm$ 0.13  | 3.88 $\pm$ 1.52              | 0.27 $\pm$ 0.11              | 0.02 $\pm$ 0.01                | 1.04 $\pm$ 0.13       | 3.97 $\pm$ 0.15       |
| Retrained (Baseline) | 89.39 $\pm$ 2.89  | 35.83 $\pm$ 0.93             | 2.34 $\pm$ 0.05              | 0.52 $\pm$ 0.02                | -                     | -                     |

2270 Table 36: **10% Random Forgetting from CIFAR-10 and CIFAR-10.1 after finetuning on CIFAR-10.1 (ResNet-18)**  
 2271  
 2272