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1. Introduc�on 

Cogni�ve diagnos�c models (CDMs; Rupp et al., 2010) analyze responses to test ques�ons/items to reveal 
whether each person has mastered specific fine-grained latent skills (also known as atributes). This 
informa�on helps teachers adapt their curricula, course materials, and teaching methods to meet their 
students’ needs. Ini�ally, CDMs sought to iden�fy which skills a student had mastered, but now, they also 
aim to grasp how students learn these skills in sequence, which has driven the development of hierarchical 
CDMs (HCDMs) to map out these learning paths (Leighton et al., 2004). 

Prior studies examined the effects of misspecified hierarchical structures on parameter es�ma�on 
and classifica�on accuracy (e.g., Liu, 2018; Liu et al., 2016; Templin et al., 2008). Although past models 
o�en assumed that all students followed the same learning path, their actual paths could differ (mixture 
of hierarchical atribute structures), which led to inaccurate classifica�ons. To address this shortcoming, 
we ran simula�ons to assess how mixed atribute hierarchies within a sample affect classifica�on accuracy 
in CDMs. A�er a brief overview of CDMs and the hierarchical structure of atributes, we lay out the 
simula�on design. Then, we report our findings, and discuss their implica�ons. 

Abstract 
Cogni�ve diagnos�c models (CDMs) give detailed informa�on about how well examinees’ grasp a set of 
fine-grained, discrete, latent skills/atributes. This informa�on allows researchers and teachers to tailor 
instruc�on and cra� cost-effec�ve interven�ons to improve student learning. While learning, a student 
typically masters lower-level skills before a higher-level skill, which suggests four hierarchical atribute 
structures: linear, convergent, divergent, and unstructured (Leighton et al., 2024). Past studies assumed 
that all students within a sample have the same hierarchical structure (e.g., linear structure for primary 
school students’ learning of arithme�c). However, students’ learning processes can vary widely and yield 
different hierarchical atribute structures. Recognizing this possibility, this study ran simula�ons to test 
how well cogni�ve diagnos�c models classified students across hierarchical atribute structures. The 
findings revealed that the distribu�on of these structures impacted classifica�on accuracy. More 
candidate hierarchical atribute structures for classifying students yielded greater accuracy. 
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2. Cogni�ve diagnos�c models (CDMs) 

In CDMs, a Q-matrix defines the links between items and atributes through an item-to-atribute mapping 
J × K matrix (Tatsuoka, 1983). J is the number of items (j=1,…, J), and K is the number of atributes (k=1,…, 
K). Each Q-matrix element qjk specifies whether the kth atribute is required to solve the jth item correctly: 
if yes, qjk = 1, otherwise, qjk = 0. Also, the vector 𝜶𝜶𝑖𝑖= (𝛼𝛼𝑖𝑖1,𝛼𝛼𝑖𝑖2, … ,𝛼𝛼𝑖𝑖𝑖𝑖) captures individual mastery of each 
atribute (also known as attribute profile). If the ith individual has mastered the kth atribute, 𝛼𝛼𝑖𝑖𝑖𝑖 = 1; 
otherwise, 𝛼𝛼𝑖𝑖𝑖𝑖 = 0. 

In this study, we used the deterministic inputs, noisy “AND” gate (DINA) model (Junker & Sijtsma, 

2001) to examine how mixed atribute hierarchies affect classifica�on accuracy. The DINA model assumes 

that correctly answering an item requires mastery of all its specified atributes. In this framework, a latent 

response vector of the jth item for the ith individual is defined as 𝜼𝜼𝑖𝑖 = (𝜂𝜂𝑖𝑖1, 𝜂𝜂𝑖𝑖2, … , 𝜂𝜂𝑖𝑖𝑖𝑖), where 𝜂𝜂𝑖𝑖𝑖𝑖 =

∏ 𝛼𝛼𝑖𝑖𝑖𝑖
𝑞𝑞𝑗𝑗𝑗𝑗𝑖𝑖

𝑖𝑖=1 . If the ith individual has mastered all required atributes for the jth item, 𝜂𝜂𝑖𝑖𝑖𝑖  = 1; otherwise, 𝜂𝜂𝑖𝑖𝑖𝑖  = 

0.  

The DINA model has two key parameters: slipping (𝑠𝑠𝑖𝑖) and guessing (𝑔𝑔𝑖𝑖). Slipping is the probability 

of an incorrect response by individuals who have mastered all the required atributes for the jth item. 

Conversely, guessing is the probability of a correct response by individuals who have not mastered all of 

these atributes for the jth item. For the atribute vector 𝜶𝜶𝑖𝑖, the probability of individual i correctly answer 

item j  (𝑋𝑋𝑖𝑖𝑖𝑖) is: 

   𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝜶𝜶𝑖𝑖) = 𝑔𝑔𝑖𝑖
1−𝜂𝜂𝑖𝑖𝑗𝑗(1 − 𝑆𝑆𝑖𝑖

𝜂𝜂𝑖𝑖𝑗𝑗)    (1)  

We chose the DINA model for its simplicity and ease of interpreta�on (de la Torre, 2009), though other 

CDMs can also be used to examine mixed hierarchical structures of atributes. 

3. Hierarchical structure of atributes 

Atributes that students learn are o�en hierarchically correlated (e.g., Crowley, 1987; Mayer, 1996). For 

instance, in arithme�c, students must grasp basic concepts in addi�on and subtrac�on as prerequisites 

for learning advanced opera�ons like mul�plica�on and division. Leighton et al. (2004) proposed four 

types of hierarchical atribute structures: linear, convergent, divergent, and unstructured (see Figure 1). 

In the linear structure, failure to master the first atribute (A1) inhibits mastery of the subsequent 

atributes (A2–A5). The convergent structure offers a choice: master either one of the atributes (A3 or 

A4) or both to achieve mastery of A5. In the divergent structure, a person must master all three preceding 

atributes (A1, A2, and A3) before mastering either one of the subsequent atributes (A4, or A5). Lastly, 

for the unstructured case, mastery of one atribute (A1) enables mastery of any of subsequent atributes 

(A2, A3, A4, or A5). 
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Figure 1. Four Hierarchical Structures Using Five Atributes 

Note. A means atribute.  

 

Allowing different hierarchical structures limits the number of atribute profiles available to 

recover individuals’ mastery statuses (rather than all possible atribute profiles, see Table 1). For example, 

the linear structure is the most restric�ve, yielding only six possible atribute profiles. By contrast, the 

unstructured one is the least restric�ve and yields 17 atribute profiles. These hierarchical structures share 

possible atribute profiles to varying degrees. As shown in Table 1, all atribute profiles (i.e., six atribute 

profiles) in the linear structure are also present in the convergent, divergent, and unstructured structures. 

However, nine atribute profiles in the unstructured structure do not appear in the linear, convergent, or 

divergent structures. This suggests that misclassifying atribute order (e.g., assigning lower-level atributes 

to a higher-level structure) or structures (e.g., fi�ng a linear structure to unstructured data) reduces 

classifica�on accuracy (e.g., Liu, 2018; Liu et al., 2016; Templin et al., 2008). 

 

Table1. The Atribute Profiles Across Various Hierarchical Structures Using Five Atributes 

1. Linear 
(P=6) 

2. Convergent 
(P=7) 

3. Divergent 
(P=7) 

4. Unstructured 
(P=17) 

(0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0) 
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(1,0,0,0,0) (1,0,0,0,0) (1,0,0,0,0) (1,0,0,0,0) 
(1,1,0,0,0) (1,1,0,0,0) (1,1,0,0,0) (1,1,0,0,0) 
(1,1,1,0,0) (1,1,1,0,0) (1,1,1,0,0) (1,1,1,0,0) 
(1,1,1,1,0) (1,1,1,1,0) (1,1,1,1,0) (1,1,1,1,0) 
(1,1,1,1,1) (1,1,1,1,1) (1,1,1,1,1) (1,1,1,1,1)  

(1,1,0,1,0) 
 

(1,1,0,1,0)   
(1,1,1,0,1) (1,1,1,0,1)    

(1,0,1,0,0)    
(1,0,0,1,0)    
(1,0,1,1,0)    
(1,0,0,0,1)    
(1,1,0,0,1)    
(1,0,1,0,1)    
(1,0,0,1,1)    
(1,1,0,1,1)    
(1,0,1,1,1) 

Note. P means the number of atribute profiles, and grey colors mean that an atribute profile presented 

in other hierarchical structures.  

 4. Simula�on study 

Our simula�on study explores the impacts of heterogeneous hierarchical structures on classifica�on 
accuracy. Specifically, we introduced three mixed propor�ons of hierarchical structure combina�ons 
(0.5/0.5, 0.2/0.8, and 0.8/0.2) among all possible pairs of six heterogeneous hierarchical structures within 
the four hierarchies in Figure 1 (e.g., linear vs. convergent, linear vs. divergent, and linear vs. 
unstructured). This yielded 18 types of hierarchical structure mixtures (see Table 2). In the genera�on 
process, each hierarchical structure was represented by three categories within the mixtures: equivalent 
propor�ons, minor propor�ons, and major propor�ons. For example, Hierarchical Structure Mixture 1 
featured an equivalent propor�on of linear and convergent hierarchies, whereas Hierarchical Structure 
Mixture 2 had a minor propor�on (i.e., 0.2) from the linear hierarchy and a major propor�on (i.e., 0.8) 
from the divergent hierarchy.  

 

Table 2. The Hierarchical Structure Mixtures 

Hierarchical Structure Mixture Mixed Propor�on Hierarchy 1 Hierarchy 2 
1 0.5/0.5 Linear Convergent 
2 0.2/0.8 Linear Convergent 
3 0.8/0.2 Linear Convergent 
4 0.5/0.5 Linear Divergent 
5 0.2/0.8 Linear Divergent 
6 0.8/0.2 Linear Divergent 
7 0.5/0.5 Linear Unsturctured 
8 0.2/0.8 Linear Unsturctured 
9 0.8/0.2 Linear Unsturctured 

10 0.5/0.5 Convergent Divergent 
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11 0.2/0.8 Convergent Divergent 
12 0.8/0.2 Convergent Divergent 
13 0.5/0.5 Convergent Unsturctured 
14 0.2/0.8 Convergent Unsturctured 
15 0.8/0.2 Convergent Unsturctured 
16 0.5/0.5 Divergent Unsturctured 
17 0.2/0.8 Divergent Unsturctured 
18 0.8/0.2 Divergent Unsturctured 

 

We inves�gated the effects of heterogeneous hierarchical distribu�ons on classifica�on  accuracy. 

To minimize the influence of the selected CDM, Q-matrix design, and item quality, we used a basic CDM 

(i.e., the DINA model), two simple Q-matrix structures, and high-quality items. Accordingly, we fixed both 

the g- and s-parameters to 0.1 in the DINA model. In the two Q-matrix structures, one had 10 items 

measuring five atributes and the other had 20 items measuring five atributes. Each item measured a 

single atribute. We generated 300 examinees. Each examinee had a 50% chance of mastering each 

atribute independently. This specifica�on yielded 36 condi�ons: 2 (Q-matrix structure) × 3 (mixed 

propor�on) × 6 (hierarchical structure combina�on) = 36. Each condi�on was replicated 30 �mes.  

We fited each of the 18 mixtures to the four hierarchies in Figure 1 separately, running the 

simula�ons with Bayesian es�ma�on via the R package. We assessed classifica�on accuracy by the 

propor�on of examinees with correctly classified atribute profiles: 

∑ 𝐼𝐼(𝜶𝜶�𝑖𝑖𝜶𝜶𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
.                                       (2) 

If  𝜶𝜶�𝑖𝑖 = 𝜶𝜶𝑖𝑖 , the indicator func�on 𝐼𝐼(𝜶𝜶�𝑖𝑖𝜶𝜶𝑖𝑖) equals 1; otherwise, it equals 0. N is the total number of 

examinees.  

5. Simula�on result 

Figures 2 and 3 show the classifica�on accuracies across 36 simula�on condi�ons, fi�ng the linear, 

convergent, divergent, and unstructured hierarchies. As an�cipated, the classifica�on accuracy rates 

under the 20×5 Q-matrix were higher than those observed for the 10×5 Q-matrix. This patern held 

consistent across different mixture propor�ons and hierarchical structure composi�ons. The superior 

performance of the 20×5 Q-matrix can be atributed to its greater informa�onal capacity; the larger 

number of items facilitates a more precise es�ma�on of examinees' atribute profiles compared to the 

smaller items in the 10×5 Q-matrix. 
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Regardless of the Q-matrix design, mixture propor�on, or hierarchical structure composi�on, 

classifica�on accuracy declined when ignoring hierarchical structures with greater heterogeneity (by 

es�ma�on with a restricted hierarchy). This effect was most stark when a minimally restricted hierarchy 

cons�tuted more than a minor propor�on of the overall hierarchical structure. Sepcifically, when using 

predefined, restricted hierarchical structures (e.g., convergent), classifica�on accuracy was lower with an 

unstructured hierarchy within the mixture (e.g., convergent vs. unstructured)—especially with equivalent 

or major propor�ons—than without it.  

Conversly, the decline in classifica�on accuracy diminished when es�ma�ng with a predefined, 

minimally restricted hierarchy (e.g., unstructured). That is, es�ma�on with a predefined unstructured 

hierarchical structure, which offers many atribute profiles, mi�gated this decline. For instance, within the 

10×5 Q-matrix, the classifica�on accuracy rates for three mixed propor�ons of linear and unstructured 

hierarchies (i.e., 0.2/0.8, 0.5/0.5, and 0.8/0.2) were: linear (.42, .58, .72), convergent (.47, .58, .73), 

divergent (.45, .60, .73), and unstructured (.70, .75, .77). 

 

 
Figure 2. Classifica�on Accuracy Under 10×5 Q-matrix 

Note. LC = linear and convergent hierarchies, LD = linear and divergent hierarchies, LU = linear and 
unstructured hierarchies, CD = convergent and divergent hierarchies, CU = convergent and unstructured 
hierarchies, DU = divergent and unstructured hierarchies, and Generated Mixed Propor�on = propor�ons 
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generated from two hierarchical structures (e.g., Generated Mixed Propor�on: 0.2/0.8 with LC, indica�ng 
that examinees' atribute structures were generated 20% from the linear hierarchy and 80% from the 
divergent hierarchy. 

 

 
Figure 3. Classifica�on Accuracy Under 20×5 Q-matrix 

Note. LC = linear and convergent hierarchies, LD = linear and divergent hierarchies, LU = linear and 

unstructured hierarchies, CD = convergent and divergent hierarchies, CU = convergent and unstructured 

hierarchies, DU = divergent and unstructured hierarchies, and Generated Mixed Propor�on = propor�ons 

generated from two hierarchical structures (e.g., Generated Mixed Propor�on: 0.2/0.8 with LC, indica�ng 

that examinees' atribute structures were generated 20% from the linear hierarchy and 80% from the 

divergent hierarchy. 

6. Conclusion 

This study examined how ignoring heterogeneity within a hierarchical structure affected classifica�on 

accuracy in CDM. Simula�on studies of various degrees of heterogeneity within hierarchical structures 

showed that they affect classifica�on accuracy. Neglect of greater heterogeneity reduced accuracy. This 

decline was especially severe when less restric�ve hierarchies comprised substan�al propor�ons of the 

structure and/or when unstructured hierarchies accompanied restricted ones. Conversely, using 

predefined, less restricted hierarchies (e.g., unstructured hieararchies) mi�gated the decline. The 

underlying reason may stem from the limited number of atribute profiles available for es�ma�ng 
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individuals' mastery statuses. Specifically, restricted hierarchies offer fewer atribute profiles, thereby 

constraining the recovery capacity in addressing greater heterogeneity. In contrast, less restricted 

hierarchies provide a wider range of atribute profiles, enhancing the ability to accommodate 

heterogeneity and improving recovery poten�al.  

These findings underscore how addressing heterogeneity and aligning structure boosts 

classifica�on accuracy. Moreover, heterogeneity is inherently complex and unpredictable. Advanced skills 

(e.g., higher-order cogni�ve abili�es) are typically more intricate than basic ones (e.g., lower-order 

abili�es). Consequently, adop�ng a minimally restricted hierarchy, such as an unstructured hierarchy, 

might be op�mal. One prac�cal sugges�on is to first iden�fy one or two fundamental prerequisite skills, 

and then employ an unstructured hierarchy to organize the hierarchical framework. For instance, in 

learning arithme�c opera�ons, addi�on serves as the founda�on skill for the other three opera�ons, 

sugges�ng mastery of addi�on enables mastery of any of the subsequent atributes (subtrac�on, 

mul�plica�on, or division). Furthermore, determining the op�mal number of basic skills to be iden�fied 

when using a minimally restricted hierarchy to enhance classifica�on efficiency represents an important 

avenue for future inves�ga�on. 

This study’s limita�ons include the restricted scope of manipula�ons and the lack of real-world 

data. Specifically, only limited factors and levels were considered in the simula�on studies. Hence, future 

studies can explore a broader range of factors or levels (e.g., more CDMs, Q-matrix structures, atributes, 

or complexity in the combina�ons of heterogeneity). This would give a beter picture of the effects and 

make the findings more useful.  
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