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Abstract

Humans can recognize categories, shapes, colors, grasp/manipulate objects, run or
take a plane. To reach this level of cognition, developmental psychology identifies
two key elements: 1- children have a spontaneous drive to explore and learn
open-ended skills, called intrinsic motivation; 2- perceiving and acting are deeply
intertwined: a chair is a chair because I can sit on it. This supports the hypothesis
that the development of perception and skills may be continually underpinned
by one guiding principle. Here, we investigate the consequence of maximizing
the multi-information of a simple cognitive architecture, modelled as a causal
model. We show that it provides a coherent unifying view on numerous results in
unsupervised learning of representations and intrinsic motivations. This makes our
framework a serious candidate to be a guiding unifying principle.

1 Introduction

Children spontaneously explore their environment and learn skills in an open-ended way [Piaget and
Cook, 1952, Ryan and Deci, 2000], driven by the so called intrinsic motivation (IM). During this
process, perception and action selection are deeply intertwined. Humans gather observations as a
result of their actions, select actions based on their representation of their state [Byrge et al., 2014]
and perceive by looking at their action effect [O’regan and Noë, 2001, Gibson, 1977]. It results a
progressive construction of perception and skills.

Yet, in machine learning (ML), IMs are often unrelated to unsupervised representation learning
objectives like invariances learning Chen et al. [2020], covariances learning Dangovski et al. [2021]
or disentanglement Kingma and Welling [2014]. In practice, even IMs are highly heterogeneous; for
example, one can maximize like bottleneck research [McGovern and Barto, 2001, Menache et al.,
2002], expected cover time [Jinnai et al., 2019], saliency search [Bruce and Tsotsos, 2005] or novelty
seeking behaviors Bellemare et al. [2016]. The information compression principle [Schmidhuber,
2008], which states that biological organisms aim to compress the data, is a natural candidate to
unify IMs and representation learning objectives. This is because of its ability to explain diverse
behaviors (e.g novelty) and feelings (e.g subjective beauty) [Schmidhuber, 2008]. However it lacks a
quantitative instance of this principle that could guide unsupervised learning methods.
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Figure 1: Left: BN B that sums up a simplified HRL-based cognitive model of an agent. We assume
through the dotted arrows that the model is consistent through time and hierarchie. Please refer
to the text for more information about the semantic of variables. Right: BN that considers initial
independent modalities (multimodality). In our generic model, fusion of modalities may occur at an
arbitrary level.

Here, we hypothesize that an agent is driven to maximize the information it compresses in its
cognitive architecture. We model the cognitive architecture of an agent as a modular Bayesian
network (BN) decomposed into modular goal/representation loops. We quantify the compressed
information as the multi-information of the BN and propose that an agent maximize it through
learning representations and skills. Our main contribution is the following: we show that the multi-
information of modular goal/representation loops unifies 1- an information-theoretic taxonomy of
IMs [Aubret et al., 2021] accounting for exploration behaviors and the learning of a hierarchy of
skills; 2- several approaches in unsupervised representation learning based on learning invariant,
covariant and disentangled representations. 3- the framework of Active Efficient Coding (AEC)
[Teulière et al., 2015], which simulates early infants behaviors. This makes our framework a serious
candidate to be a guiding principle. For an introduction to information theory, Bayesian networks
and hierarchical reinforcement learning (HRL), please, refer to Appendix A.

2 Information compression in goal/representation loops

We aim to propose a computational framework that unifies objectives/results in representation learning
and IMs. To unify these methods, our framework entails two key steps: 1) Proposing a simplified
cognitive architecture, modelled as a BN; 2) Deriving the multi-information of the model. In the
following, we successively describe the two steps.

Causal model of the cognitive architecture. We consider a simple architecture endowed with
high-level findings in the brain: we integrate neural-based representations [Kruger et al., 2012,
Quiroga et al., 2005] and goals [Koechlin et al., 2003]. These groups of neurons perceive and act
over increasingly larger time windows [Badre and D’Esposito, 2007] and increasingly larger number
of modalities [Wallace and Stein, 1997].

Figure 1 shows the Bayesian network B of a goal-making step at the first and second level of a
HRL framework, assuming for simplicity that the second-level goals last for two timesteps. Each
module (e.g M1) corresponds to a tuple (Representation, Goal) at one level of hierarchy with one
set of modalities. First, an observation ot is processed through a representation function to get
a representation RM1

t = f(ot) and reprocessed with potentially other representations RM1

∆t =

(RM1
t−1, R

M1
t ) into a higher-level representation RM2

t = fM2(RM1

∆t ). Then it uses a high-level
goal-conditioned policy, πM2 to select a goal GM2

t ∼ πM2(·|RM2
t , . . . ). The goal-conditioned

policy that achieves the goal GM2
t in RM2

t , also named a skill, selects the ground action GM1
t ∼

πM1(·|RM2
t , GM2

t , RM1
t ). The agent assumes that the environment deals with the ground action and

the previous observation to output a new observation. The sensori-motor loop continues this way.

In Figure 1(right), each observation corresponds to a modality, which is initially assumed indepen-
dent from other modalities by the agent. Actions can impact several observations (here all) and
representations can aggregate different modalities (like visual, auditory, proprioceptive, . . . ).
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Objective Representation functions Policies
I(RMT ;R

Mprev

∆t ) Compression Novelty
I(RM

next∪Mapnext

T ;GMnext , RMnext |RMapnext) Covariance Skill learning
I(OoT ;OoT−1, G

o
T−1) ∅ Controllability

Table 1: Summary of functions of the three parts of the lower bound.

Information compression. Our principle sums up as maximizing the information compressed by
our causally represented modular cognitive model B. We quantify the information compressed with
the multi-information MI(B).

In order to better understand the result of this maximization, we rewrite the multi-information as the
sum of mutual information terms between a node and its parents [Slonim et al., 2001]. However, each
combination of time × observation is a random variable in the Bayesian Network, making difficult
to maximize MI(B). Thus, we assume that the conditional dependencies between variables are
stationary over time, i.e p(Xt|Pa(Xt)) = p(X|Pa(X)) where X represents any random variables
and Pa represents the time-dependent parents (cf. Appendix B). It leaves us with:

MI(B) =
∑

M∈Mods
t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )︸ ︷︷ ︸
Goal achievement

+ I(RMT ;R
Mprev

∆t )︸ ︷︷ ︸
Compression/Novelty

+
∑
o∈O

I(OoT ;OoT−1, G
o
T−1)︸ ︷︷ ︸

Controllability

(1)

where T0 is the current step for a given module (VT0
) = V for all random variables V ) and T the step

corresponding to the computation of the next representation; O the set of modal-specific observations;
Mnext are the modules that directly follow M (immediate larger timescale or set of modalities);
Mprev the ones that precede M including observations and RMprev

∆t the representations of Mprev

between RM and RMT . To the best of our knowledge, Goal achievement does not directly relate
to an existing loss. To compensate this, we propose to relate information transmission of the Goal
achievement to information transmission between two high-level representation. We can quantify
the relation between the two and we exhibit our lower-bound in Equation 2 (cf. Appendix C for the
derivation),∑

t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )︸ ︷︷ ︸
Goal achievement

≥ I(RM
next∪Mapnext

T ;GMnext , RMnext |RMapnext)︸ ︷︷ ︸
Covariance/Skill learning

(2)

withMapnext being all the modules that precede those that followM . In the next section, we interpret
the different parts of Equation 1 and Equation 2 relatively to IMs and representation learning methods.

3 Works unified through the compressed information

Let us look at the maximization of our lower bound with the representation functions and the policies.
We sum up our set of objectives in Table 1.

Compression Compression typically refers to an infomax loss [Linsker, 1990, Hjelm et al., 2019].
Originally, infomax maximizes the mutual information between inputs X and ouputs Y of a neural
network I(X;Y ). In our case, we set X = R

Mprev

∆t and Y = RMT such that an agent builds a
representation that maximally keeps information about downstream trajectories and modalities. In
some case, we may have Hmax(RMT ) < Hmax(R

Mprev

∆t ) because of some architectural constrains. It
results in a lossy compression setup, i.e the agent necessarily lose information.

In the case of a multimodal agent, lossy compression induces an interesting property. Our architecture
implies that incoming modalities are a priori independent, which may be wrong in practice: haptic
feedbacks possibly give information about visual inputs. Because of this wrong prior knowledge,
the agent may focus on redundant information across modalities [Wilmot and Triesch, 2021] (cf.
Appendix D). In developmental psychology, this privileged perception refers to the intersensory
redundancy hypothesis [Wilcox et al., 2007, Bahrick et al., 2004]. For example, an agent endowed
with touch and vision may encode the shape of the object as a priority. We leave to Appendix E an
analysis of how compression can induce disentanglement.
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Covariance. The Covariance impacts what information is kept in a representation. We are only
aware of works considering its non-hierarchical unimodal variant without considering ground obser-
vations (Mapnext ≈ ∅) through contrastive learning approximations [Poole et al., 2018].

Let us focus on the maximization of I(RMT ;GM , RM ) [Nachum et al., 2019, Shu et al., 2020]. This
makes RM covariant to GM , meaning that the agent must keep both low-frequency information
(as before) and the higher-frequency variation caused by the action (or augmentation). In RL, the
resulting representation can be optimal to solve a RL task (extrinsic rewards) [Rakelly et al., 2021]. In
visual/video contrastive learning, explicit sensitivity to some augmentations GM can improve object
categorization [Dangovski et al., 2021, Zhang et al., 2019, Xiao et al., 2020], even though they mostly
apply biologically not plausible image transformation like color jittering. We note an exception [Jenni
and Jin, 2021] which shows improved video representations. Our derivation essentially augments this
loss to scale it to hierarchically ordered representations.

Novelty The Novelty has recently been formalized in Aubret et al. [2021] as maximizing I(O;R) =
H(O) − H(O|R). This tells us where an agent must go to improve its representation of the
environment and is known to incite a wide exploration of an environment (maximizing H(O)) Aubret
et al. [2021]. As such, it may avoid the dark-room problem faced by the Free-Energy Principle (FEP)
[Friston, 2010] without adding ad hoc priors [Friston et al., 2012]. Our derivation emphasizes the
need of looking for new trajectories and multi-modal combinations rather than observations.

In case of multimodal agents, we have seen with the Compression term that multimodal compression
favors cross-modal redundant information. An agent may also actively look for such redundant
information. It has been explored under the principle of Active Efficient coding (AEC) [Teulière
et al., 2015], which is an IM that states humans act and perceive to better compress their sensory
inputs. Several formalisms of AEC consider multimodal agents, an agent that separately perceives
through its two eyes [Zhao et al., 2012, Eckmann et al., 2020, Vikram et al., 2014] or through visual
and proprioceptive inputs [Wilmot and Triesch, 2021]. Our formalism of multimodal novelty directly
matches [Eckmann et al., 2020], where they show that it can model the accommodation-convergence
reflex in humans. This reflex describes the ability of humans to focus or defocus the vision on nearby
or distant objects. Our loss suggests that similar results could be obtained for higher level behaviors.

Skill learning. Skill learning makes possible learrning of reusable skills, i.e goal-conditioned
policies that have a predictable trajectory. In the DRL literature, an agent learns abstract skills
by ensuring that low-level skills follow its high-level assigned goals [Aubret et al., 2021]. This is
formalized as maximizing I(G;Rδt) where u extracts a subpart of the trajectory (e.g a state). For an
agent that controls its torques (low-level actions), an example of time-extended skill can be to directly
navigate in cardinal directions in a maze [Li et al., 2021]. Our derivation differs from the original
formalism [Aubret et al., 2021] by including the previous representations RMapnext . This highlights
two properties. First, skills are relative to their starting position, so that they apply a shift in the
representation (like going to the right) rather than targeting a particular representation (reaching the
wall). In practice, this may require to know which skill can be executed where, i.e skills affordances
[Gibson, 1977, Khetarpal et al., 2020]. Second, it scales the loss to a hierarchy of time-extended
skills as they also impact lower-level representations. At the lowest observations/actuators level, skill
learning collapses to Controllability such that the agent tries to smartly select the actions to make
according to how well the consequences are predictable [Touchette and Lloyd, 2004].

4 Conclusion

We hypothesized that an intrinsically motivated entity spontaneously tries to compress information.
We propose to instantiate it as the maximization the multi-information of the constrained cognitive
architecture of an agent. We showed that this amounts to maximize close-to previously known
objectives within a modular hierarchy of goals/representations loops, thereby accounting for the
autonomous learning of temporally/modality-extended representations and skills.

Our framework presents several limitations. First, we consider a very simple cognitive architecture.
Second, our framework does not aim to explain how to maximize the local information theoretic
terms. It implies to approximate information theoretic values which is known difficult [Belghazi
et al., 2018, Poole et al., 2019]. Third, we hope future works will connect our contribution to studies
about the impact of multi-information maximization at the level of neurons [Ay, 2002].
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A Background

In this section, we introduce the basic components of our theory, namely Bayesian networks, infor-
mation theory and hierarchical reinforcement learning.

A.1 Bayesian networks

Bayesian networks (or graphical models) are directed acyclic graphs for which 1-vertices correspond
to random variables which represent part of the state of the system; 2-edges reflect statistical depen-
dencies between these variables, i.e a causal relationship. Figure 2 (left) illustrates a simple example
of Bayesian network. Given the dependencies, a joint probability p(X,Y,C, Z) is conform to the
graphical model if p(X,Y,C, Z) = p(X)p(Y |X)p(Z)p(C|Z, Y ). More generally, if (V0, . . . , VN )
are the N + 1 vertices of a graph, and Pa(V ) sums up the parents of V with respect to the edges, we
can write [Pearl, 2014]:

p(V0, . . . , VN ) =

N∏
i=0

p(Vi|Pa(Vi)). (3)

These models are convenient to model action-perception loops [Touchette and Lloyd, 2004, Klyubin
et al., 2004, Levine, 2018] and allow to compute information theoretic measures. In this setting,

8



Figure 2: Left: Simple example of Bayesian network. Right: Simple example of Bayesian net-
work.Bayesian network which sums up the perception-action loop of an agent, adapted from Klyubin
et al. [2004]. t refers to the discrete time index, S are the hidden states of an environment, O the
observations of an agent, A the ground actions of an agent, M the memory or internal state of an
agent.

parameters, actions, states, decisions etc. . . are all random variables. Figure 2 (right) shows the
Bayesian network induced by a typical perception-action loop which is unrolled through time. This
kind of unrollment is typical through Dynamical Bayesian networks [Dagum et al., 1992]. In the
following, while we could also use a Structured Graphical Model [Pearl, 2010], we assume that the
standard Bayesian network is simpler and makes our results more reachable.

A.2 Measuring information

The Shannon entropy quantifies the mean necessary information to determine the value of a random
variable. Let X be a random variable, its entropy is defined by:

H(X) = −
∫
X

p(x) log p(x). (4)

The entropy is maximal when p(X) encodes a uniform distribution, and minimal when p(X) follows
a Dirac distribution. Similarly to the entropy, we can define the entropy conditioned on a random
variable Y :

H(X|Y ) = −
∫
Y

p(y)

∫
X

p(x|y) log p(x|y). (5)

Using these definition, we can introduce the mutual information, which quantifies the information
that a random variable Y contains about another random variable X:

I(X;Y ) = H(X)−H(X|Y ) (6)

The mutual information between two independent variables equals zero (since H(X|Y ) = H(X)).
Similarly to the conditional entropy, we can introduce the mutual information between variables X
and Y knowing another random variable W :

I(X;Y |W ) = H(X|S)−H(X|Y,W ) (7)

= DKL

[
p(X,Y |W )||p(X|W )p(Y |W )

]
. (8)

Following Equation 8, one can interpret the mutual information as being the difference between the
joint distribution of two variables and the distributions of variables assuming they are independent.

It is straightforward to generalize mutual information to several random variables, it leads to the
multi-information [Slonim et al., 2001], also named total correlation [Watanabe, 1960]:

MI(X0, . . . , XN ) = DKL

[
p(X0, . . . , XN )||

N∏
i=0

p(Xi)
]

(9)

It quantifies the information that variables X0, . . . , XN contain about each other. As above, it is
described as the discrepancy between the joint distribution p(X0, . . . , XN ) and the same distribution
if variables were independent.
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A.3 Hierarchical and developmental reinforcement learning

A Markov Decision process (MDP) is defined through S the set of possible states; A the set of
possible actions; T the transition function T : S × A × S → p(s′|s, a); R the reward function
R : S ×A× S → R; ρ0 : S → R the initial distribution of states.

An agent starts in a state s0 given by ρ0. At each time step t, the agent is in a state st and performs
an action at; then it waits for the feedback from the environment composed of a state st+1 sampled
from the transition function T , and a reward rt given by the reward function R. The agent repeats
this interaction loop until the end of an episode. In reinforcement learning [Sutton and Barto, 1998],
an agent aims to associate actions a to states s through a policy π in order to maximize the expected
discounted reward defined by

∑∞
t=0 γ

tR(st, at, st+1.

In developmental machine learning [Colas et al., 2020], a goal is defined by the pair (g,RG)
where G ⊂ Rd, RG is a goal-conditioned reward function and g ∈ G is the d-dimensional goal
embedding. We can now define the skill associated to each goal as the goal-conditioned policy
πg(a|s) = π(a|g, s); in other words, a skill refers to the sensori-motor mapping that achieve a goal
[Thill et al., 2013]. This skill may by learnt or unlearnt according to the expected intrinsic rewards
it gathers. It implies that, if the goal space is well-constructed (as often a ground state space for
example, RG = S), the agent can generalize its policy across the goal space, i.e the corresponding
skills of two close goals are similar.

The approach can be extended to a hierarchy of RL agents, which is then denoted as hierarchical
reinforcement learning. Typically, in feudal reinforcement learning [Dayan and Hinton, 1993], an
upper-level manager learns a policy that assigns goals g ∈ G to workers. To guide the learning
process of the workers, the manager rewards them according to their actions. Once a worker achieves
its goal, the manager sets another one and the execution loop continues. In practice, we can stack
several levels of managers, so that there may be k > 2 levels in the hierarchy.

B Time independence

Let us derive of the time-independent mutual information between variables. Assuming we have
p(Xt) = p(X|t) = P (X) and p(Xt|Pa(Xt)) = p(X|Pa(X)) where X can represent any random
variables and Pa represent the time-dependent parents, we have, with t = 0, . . . , N :

∑
t

I(Xt;Xt−1, Yt) =
∑
t

I(X ′;X,Y |t)

=
∑
t

H(X ′|t)−H(X ′|X,Y, t)

=
∑
t

−
∑
X′

p(x′, t) log p(x′|t) +
∑

X′,X,Y

p(x′, x, y, t) log p(x′|x, y, t)

= −
∑
X′

∑
t

p(x′|t)p(t) log p(x′|t) +
∑
X′

∑
X,Y

∑
t

p(x′, x, y|t)p(t) log p(x′|x, y, t)

(1)
= −

∑
X′

∑
t

p(x′)p(t) log p(x′) +
∑
X′

∑
X,Y

∑
t

p(x′, x, y)p(t) log p(x′|x, y)

(2)
= −

∑
X′

∑
t

p(x′)
1

N
log p(x′) +

∑
X′

∑
X,Y

∑
t

p(x′, x, y)
1

N
log p(x′|x, y)

=
∑
t

1

N

[
−
∑
X′

p(x′) log p(x′) +
∑
X′

∑
X,Y

p(x′, x, y) log p(x′|x, y)
]

= I(X ′;X,Y ) (10)

where we applied p(X|t) = p(X) in (1) and noticed that p(t) = 1
N in (2).
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Symbol Description
Mnext Modules that directly depend on M
Mprev Modules that directly condition M
Maprev Modules that directly and indirectly condition M
Mapnext Modules that directly/indirectly conditions a module that follows M
GM∆T All goals generated in M between two higher level representations.

Table 2: The notations used to discuss modules.

C Proof of Equation 2

Before startign the proof, let us rigorously define a module and its corresponding notations. A module
represents a bio-inspired building block [Mussa-Ivaldi and Solla, 2004, Mussa-Ivaldi and Bizzi,
2000, Butz, 2016] associated to 1- a temporal/inter-modal receptive field over incoming observations
[Hasson et al., 2015]; 2- an independent part of a lateral decomposition. The temporal receptive field
refers to the number of temporally different indirectly processed observations, while the inter-modal
receptive field refers to the set of indirectly processed modalities. This generic module is composed
of a representation and goal variables (and their respective functions f and π) with the temporally-
dependent causal relationships displayed in Figure 1 that makes them interact with each other. Let us
define a module formally, assuming causal relationships are consistent over time:

Definition 1. A module M is a set of random variables (GMt , R
M
t ) with a causal relation RMt → GMt

and a conditioning module.

Definition 2. A module M depends on an other module Mp according to a temporal scale ∆T if
we have for a given T 1- one causal relation RMp

∆T → RMT where RMp

∆T = {RMp

T−∆T , ..., R
Mp

T }; 2-
several (RMT−∆T , G

M
T−∆T )→ G

Mp

t for each t ∈ [T −∆T, ..., T [. Inversely, Mp conditions M .

Table 2 sums up the notations that derive from these two definitions.

Now, let us recall Equation ?? and start our derivation.

MI(BG) =
∑

M∈Modules

[ ∑
GM

t ∈[RMnext ;R
Mnext
T ]

[I(GMt ;GMnext , RMnext , RM )] + I(RMT ;R
Mprev

∆t )︸ ︷︷ ︸
Compression/Novelty

]
+
∑
o∈O

I(OoT ;Oo, Go)︸ ︷︷ ︸
Controllability

To derive the lower-bound of the Skill learning, we mostly take advantage of the data processing
inequality (DPI):

We want to lower-bound:∑
t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )

Thanks to conditional independence, add representations conditioning RMnext :

=
∑

t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMapnext , RMt )

Apply DPI to condition all goals on the same representations:

≥
∑

t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMapnext)

Bring together sequential goals into one group of variables:

≥ I(GM∆T ;GMnext , RMnext , RMapnext) (11)
We separate the term in two parts with the chain rule:

= I(GM∆T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

11



Figure 3: Bayesian network that replicates B, but illustrates how we can aggregate different variables
in E.

Thanks to conditional independence, we can extend the left part:
(12)

= I(GM∆T , G
Mapnext , OMapnext ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

We can aggregate all goals and observations at the current timestep like in Figure 3 [Chang and Fung,
1989]:

= I(EM ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

We apply the DPI on EM to exhibit RMapnext

T :

≥ I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

(13)

The first and last lower-bounds becomes narrow when lower-level modules maximize their own
objectives. For the second lower-bound we use the fact that I(X,Y ;V |W ) ≤ I(X;V |W ) +
I(Y ;V |W ).

Finally, we leave a rigorous proof to future work and hypothesize that the lower-bound in Equation 15
is narrow. It may be because the right-hand term is unlikely to also maximize our Novelty/Covariance
term.

I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext) (14)

≥ I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) (15)

D Multi-modal Compression/Novelty

According to our objective, a multimodal agent subject to lossy compression favors cross-modal
redundant information with its novelty/compression term. Let us formalize this observation. In Figure
1 (right), our agent processes each modality independently and maximizing our Novelty amounts
to compression maximization. Since our modal-specific modules M1 and M2 have a timescale
equal to one, our Novelty becomes I(RM1

T , RM2

T ;RM3

T ) where M3 depends on M1 and M2. We can
decompose it into

I(RM1

T , RM2

T ;RM3

T ) = I(RM1

T ;RM3

T ) + I(RM2

T ;RM3

T )

− I(RM1

T , RM2

T ) + I(RM1

T , RM2

T |R
M3

T )

= I(RM1

T ;RM3

T ) + I(RM2

T ;RM3

T ) (16)

where we apply the independence assumption in Equation 16. The best way to maximize Equation 16
under lossy compression is to first maximize I(RM1

T , RM2

T )−I(RM1

T , RM2

T |R
M3

T ), i.e the information
shared by RM1

T and RM2

T about RM3

T as it will simultaneously maximize both terms. We will now
review this objective through concrete works applied to multimodal agents.
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Figure 4: Module-based Bayesian network inducing the disentanglement of a representation.

E Disentanglement

Let us consider the architecture in Figure 4, displayed with notations introduced in Appendix C. It
displays a typical separate/rebranch pattern without extension of the temporal receptive field. Unlike
when compressing multimodal data, we can not assume M2, ...,Ml to be independent because of
their common predecessor. Let us compute the compression term of Ml+1:

Ldis = I(R
Ml+1

T ;RM2 , ..., RMl−1
)

=

l−1∑
i=2

[
H(RMi))︸ ︷︷ ︸

Individual information

]
+H(RM2 , ..., RMl−1 |RMl+1)︸ ︷︷ ︸

Global information preservation

−MI(RM2 , ..., RMl−1)︸ ︷︷ ︸
Independency

. (17)

Interestingly, Independency objective has been explored in the context of (Beta-) Variational Auto-
Encoder (VAE) [Esmaeili et al., 2019, Chen et al., 2018, Gao et al., 2019, Kim and Mnih, 2018] and
independent component analysis [Bell and Sejnowski, 1995, Lee et al., 2000]. These work suggest
that it rules the disentanglement of a representation, i.e its decomposition into semantically different
parts of the data (color, shape, motion, size, orientation . . . ).
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