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Abstract

We propose a new framework for imitation learning—treating imitation as a two-player
ranking-based game between a policy and a reward. In this game, the reward agent learns
to satisfy pairwise performance rankings between behaviors, while the policy agent learns
to maximize this reward. In imitation learning, near-optimal expert data can be difficult to
obtain, and even in the limit of infinite data cannot imply a total ordering over trajectories
as preferences can. On the other hand, learning from preferences alone is challenging as
a large number of preferences are required to infer a high-dimensional reward function,
though preference data is typically much easier to collect than expert demonstrations. The
classical inverse reinforcement learning (IRL) formulation learns from expert demonstrations
but provides no mechanism to incorporate learning from offline preferences and vice versa.
We instantiate the proposed ranking-game framework with a novel ranking loss giving
an algorithm that can simultaneously learn from expert demonstrations and preferences,
gaining the advantages of both modalities. Our experiments show that the proposed method
achieves state-of-the-art sample efficiency and can solve previously unsolvable tasks in the
Learning from Observation (LfO) setting. Project video and code can be found at this URL.

1 Introduction

Reinforcement learning relies on environmental reward feedback to learn meaningful behaviors. Reward
specification is a hard problem (Krakovna, 2018), thus motivating imitation learning (IL) as a technique
to bypass reward specification and learn from expert data, often via Inverse Reinforcement Learning (IRL)
techniques. Imitation learning typically deals with the setting of Learning from Demonstrations (LfD), where
expert states and actions are provided to the learning agent. A more practical problem in imitation learning
is Learning from Observations (LfO), where the learning agent has access to only the expert observations.
This setting is common when access to expert actions are unavailable such as when learning from accessible
observation sources like videos or learning to imitate across different agent morphologies. We note that LfD
and LfO settings differ from the setting where the agent has access to the environment reward function along
with expert transitions, referred to as Reinforcement Learning from Demonstrations (RLfD) (Jing et al., 2020;
Zhang et al., 2020; Brys et al., 2015).

Learning to imitate using expert observations alone can require efficient exploration when the expert actions
are unavailable as in LfO (Kidambi et al., 2021). Incorporating preferences over potentially suboptimal
trajectories for reward learning can help reduce the exploration burden by regularizing the reward function
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and providing effective guidance for policy optimization. Previous literature in learning from preferences
either assumes no environment interaction (Brown et al., 2019; 2020a) or assumes an active query framework
with a restricted reward class (Palan et al., 2019). The classical IRL formulation suffers from two issues:
(1) Learning from expert demonstrations and learning from preferences/rankings provide complementary
advantages for increasing learning efficiency (Ibarz et al., 2018; Palan et al., 2019); however, existing IRL
methods that learn from expert demonstrations provide no mechanisms to incorporate offline preferences
and vice versa. (2) Optimization is difficult, making the learning sample inefficient (Arenz & Neumann,
2020; Ho & Ermon, 2016) due to the adversarial min-max game.

Our primary contribution is an algorithmic framework casting imitation learning as a ranking game which
addresses both of the above issues in IRL. This framework treats imitation as a ranking game between two
agents: a reward agent and a policy agent—the reward agent learns to satisfy pairwise performance rankings
between different behaviors represented as state-action or state visitations, while the policy agent maximizes
its performance under the learned reward function. The ranking game is detailed in Figure 1 and is specified
by three components: (1) The dataset of pairwise behavior rankings, (2) A ranking loss function, and (3)
An optimization strategy. This game encompasses a large subset of both inverse reinforcement learning (IRL)
methods and methods which learn from suboptimal offline preferences. Popular IRL methods such as GAIL,
AIRL, f -MAX (Ho & Ermon, 2016; Ghasemipour et al., 2020; Ke et al., 2021) are instantiations of this
ranking game in which rankings are given only between the learning agent and the expert, and a gradient
descent ascent (GDA) optimization strategy is used with a ranking loss that maximizes the performance
gap between the behavior rankings.

The ranking loss used by the prior IRL approaches is specific to the comparison of optimal (expert)
vs. suboptimal (agent) data, and precludes incorporation of comparisons among suboptimal behaviors.

Policy agent Reward Agent

Dataset 𝐷

𝜌!"#$% ≼ 𝜌&

𝜌'' ≼ 𝜌'(
𝜌(' ≼ 𝜌((

.

.
𝜌$)'' ≼ 𝜌$(

𝜌'*$% ≼ 𝜌(*$%
𝜌(*$% ≼ 𝜌+*$%

.
𝜌$)'*$% ≼ 𝜌$*$%
𝜌$*$% ≼ 𝜌&

max 𝐽(𝜋; 𝑅)

+ Automatically 
generated 
rankings
(auto)

+ Offline annotated
Rankings from human or 

offline dataset (pref)

Policy agent 
generates 
rankings
(vanilla)

min 𝐿,(𝐷)

Satisfy
rankings

Leader/Follower Follower/Leader

Figure 1: rank-game: The Policy agent maximizes the re-
ward function by interacting with the environment. The Re-
ward agent satisfies a set of behavior rankings obtained from
various sources: generated by the policy agent (vanilla), au-
tomatically generated (auto), or offline annotated rankings
obtained from a human or offline dataset (pref). Treat-
ing this game in the Stackelberg framework leads to either
Policy being a leader and Reward being a follower, or vice-
versa.

In this work, we instantiate the ranking game by
proposing a new ranking loss (Lk) that facilitates in-
corporation of rankings over suboptimal trajectories
for reward learning. Our theoretical analysis reveals
that the proposed ranking loss results in a bounded
performance gap with the expert that depends on
a controllable hyperparameter. Our ranking loss
can also ease policy optimization by supporting
data augmentation to make the reward landscape
smooth and allowing control over the learned reward
scale. Finally, viewing our ranking game in the
Stackelberg game framework (see Section 3)—an
efficient setup for solving general-sum games—we
obtain two algorithms with complementary benefits
in non-stationary environments depending on which
agent is set to be the leader.

In summary, this paper formulates a new framework
rank-game for imitation learning that allows us to
view learning from preferences and demonstrations
under a unified perspective. We instantiate the
framework with a principled ranking loss that
can naturally incorporate rankings provided by
diverse sources. Finally, by incorporating additional
rankings—auto-generated or offline—our method:
(a) outperforms state-of-the-art methods for imita-
tion learning in several MuJoCo simulated domains
by a significant margin and (b) solves complex
tasks like imitating to reorient a pen with dextrous
manipulation using only a few observation trajectories that none of the previous LfO baselines can solve.
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IL Method Offline Expert Ranking Reward Active Human
Preferences Data Loss Function Query

MaxEntIRL, AdRIL,GAN-GCL,
✗ LfD supremum non-linear ✗GAIL,f -MAX, AIRL

BCO,GAIfO, DACfO,
✗ LfO supremum non-linear ✗OPOLO,f -IRL

TREX, DREX ✓ ✗ Bradley-Terry non-linear ✗

BREX ✓ ✗ Bradley-Terry linear ✗

DemPref ✓ LfO/LfD Bradley-Terry linear ✓

Ibarz et al. (2018) ✓ LfD Bradley-Terry non-linear ✓

rank-game ✓ LfO/LfD Lk non-linear ✗

Table 1: A summary of IL methods demonstrating the data modalities they can handle (expert data and/or preferences),
the ranking-loss functions they use, the assumptions they make on reward function, and whether they require availability
of an external agent to provide preferences during training. We highlight whether a method enables LfD, LfO, or both
when it is able to incorporate expert data.

2 Related Work

Imitation learning methods are broadly divided into two categories: Behavioral cloning (Pomerleau, 1991;
Ross et al., 2011) and Inverse Reinforcement Learning (IRL) (Ng et al., 2000; Abbeel & Ng, 2004; Ziebart
et al., 2008; Finn et al., 2016; Fu et al., 2017; Ho & Ermon, 2016; Ghasemipour et al., 2020). Our work
focuses on developing a new framework in the setting of IRL through the lens of ranking. Table 1 shows a
comparison of the proposed rank-game method to prior works.

Classical Imitation Game for IRL: The classical imitation game for IRL aims to solve the adversarial
min-max problem of finding a policy that minimizes the worst-case performance gap between the agent and
the expert. A number of previous works (Ghasemipour et al., 2020; Swamy et al., 2021; Ke et al., 2021)
have focused on analyzing the properties of this min-max game and its relation to divergence minimization.
Under some additional regularization, this min-max objective can be understood as minimizing a certain
f -divergence (Ho & Ermon, 2016; Ghasemipour et al., 2020; Ke et al., 2021) between the agent and expert
state-action visitation. More recently, Swamy et al. (2021) showed that all forms of imitation learning (BC
and IRL) can be understood as performing moment matching under differing assumptions. In this work,
we present a new perspective on imitation in which the reward function is learned using a dataset of behavior
comparisons, generalizing previous IRL methods that learn from expert demonstrations and additionally
giving the flexibility to incorporate rankings over suboptimal behaviors.

Learning from Preferences and Suboptimal Data: Learning from preferences and suboptimal data is
important when expert data is limited or hard to obtain. Preferences (Akrour et al., 2011; Wilson et al., 2012;
Sadigh et al., 2017; Christiano et al., 2017; Palan et al., 2019; Cui et al., 2021) have the advantage of providing
guidance in situations expert might not get into, and in the limit provides full ordering over trajectories which
expert data cannot. A previous line of work (Brown et al., 2019; 2020b;a; Chen et al., 2020) has studied this
setting and demonstrated that offline rankings over suboptimal behaviors can be effectively leveraged to learn a
reward function. Christiano et al. (2017); Palan et al. (2019); Ibarz et al. (2018) studied the question of learning
from preferences in the setting when a human is available to provide online preferences1 (active queries), while
Palan et al. (2019) additionally assumed the reward to be linear in known features. Our work makes no such as-
sumptions and allows for integrating offline preferences and expert demonstrations under a common framework.

Learning from Observation (LfO): LfO is the problem setting of learning from expert observations. This
is typically more challenging than the traditional learning from demonstration setting (LfD), because actions
taken by the expert are unavailable. LfO is broadly formulated using two objectives: state-next state marginal
matching (Torabi et al., 2019; Zhu et al., 2020b; Sun et al., 2019) and direct state marginal matching (Ni
et al., 2020; Liu et al., 2019). Some prior works (Torabi et al., 2018a; Yang et al., 2019; Edwards et al., 2019)
approach LfO by inferring expert actions through a learned inverse dynamics model. These methods assume

1We will use preferences and ranking interchangebly
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injective dynamics and suffer from compounding errors when the policy is deployed. A recently proposed
method OPOLO (Zhu et al., 2020b) derives an upper bound for the LfO objective which enables it to utilize
off-policy data and increase sample efficiency. Our method outperforms baselines including OPOLO, by a
significant margin.

3 Background

We consider a learning agent in a Markov Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 2018)
which can be defined as a tuple: M = (S,A, P, R, γ, ρ0), where S and A are the state and action spaces; P
is the state transition probability function, with P (s′|s, a) indicating the probability of transitioning from s
to s′ when taking action a; R : S ×A → R is the reward function bounded in [0, Rmax]; We consider MDPs
with infinite horizon, with the discount factor γ ∈ [0, 1], though our results extend to finite horizons as well;
p0 is the initial state distribution. We use Π and R to denote the space of policies and reward functions
respectively. A reinforcement learning agent aims to find a policy π : S → A that maximizes its expected
return, J(R; π) = 1

1−γE(s,a)∼ρπ(s,a)[R(s, a)], where ρπ(s, a) is the stationary state-action distribution induced
by π. In imitation learning, we are provided with samples from the state-action visitation of the expert
ρπE (s, a) but the reward function of the expert, denoted by Rgt, is unknown. We will use ρE(s, a) as a
shorthand for ρπE (s, a).

Classical Imitation Learning: The goal of imitation learning is to close the imitation gap J(Rgt; πE)−
J(Rgt; π) defined with respect to the unknown expert reward function Rgt. Several prior works (Ho & Ermon,
2016; Swamy et al., 2021; Kostrikov et al., 2019; Ni et al., 2020) tackle this problem by minimizing the
imitation gap on all possible reward hypotheses. This leads to a zero-sum (min-max) game formulation of
imitation learning in which a policy is optimized with respect to the reward function that induces the largest
imitation gap:

imit-game(π) = arg min
π∈Π

sup
f∈R

EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (1)

Here, assuming realizability (Rgt ∈ R), the imitation gap is upper bounded as follows (∀π):

J(Rgt; πE)− J(Rgt; π) ≤ sup
f∈R

1
1− γ

[EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]]. (2)

Note that, when the performance gap is maximized between the expert πE and the agent π, we can observe
that the worst-case reward function fπ induces a ranking between policy behaviors based on their performance:
ρE ⪰ ρπ := EρE(s,a)[fπ(s, a)] ≥ Eρπ(s,a)[fπ(s, a)], ∀π. Therefore, we can regard the above loss function that
maximizes the performance gap (Eq. 2) as an instantiation of the ranking-loss. We will refer to the implicit
ranking between agent and the expert ρE ⪰ ρπ as vanilla rankings and this variant of the ranking-loss function
as the supremum-loss.

Stackelberg Games: A Stackelberg game (Başar & Olsder, 1998) is a general-sum game between two
agents where one agent is set to be the leader and the other a follower. The leader in this game optimizes
its objective under the assumption that the follower will choose the best response for its own optimization
objective. More concretely, assume there are two players A and B with parameters θA, θB and corresponding
losses LA(θA, θB) and LB(θA, θB). A Stackelberg game solves the following bi-level optimization when A
is the leader and B is the follower: minθA

LA(θA, θ∗
B(θA)) s.t θ∗

B(θA) = arg minθ LB(θA, θ). Rajeswaran
et al. (2020) showed that casting model-based RL as an approximate Stackelberg game leads to performance
benefits and reduces training instability in comparison to the commonly used GDA (Schäfer & Anandkumar,
2019) and Best Reponse (BR) (Cesa-Bianchi & Lugosi, 2006) methods. Fiez et al. (2019); Zheng et al. (2021)
prove convergence of Stackelberg games under smooth player cost functions and show that they reduce the
cycling behavior to find an equilibrium and allow for better convergence.

4 A Ranking Game for Imitation Learning

In this section, we first formalize the notion of the proposed two-player general-sum ranking game for imitation
learning. We then propose a practical instantiation of the ranking game through a novel ranking-loss (Lk).
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Algorithm 1 Meta algorithm: rank-game (vanilla) for imitation

1: Initialize policy π0
θ , reward funtion Rϕ, empty dataset Dπ. empirical expert data ρ̂E

2: for t = 1..T iterations do
3: Collect empirical visitation data ρ̂πt

θ with πt
θ in the environment. Set Dπ = {(ρ̂π ⪯ ρ̂E)}

4: Train reward Rϕ to satisfy rankings in Dπ using ranking loss Lk in equation 3.
5: Optimize policy under the reward function: πt+1

θ ← argmaxπ′J(Rϕ; π′)
6: end for

The proposed ranking game gives us the flexibility to incorporate additional rankings—both auto-generated
(a form of data augmentation mentioned as ‘auto’ in Fig. 1) and offline (‘pref’ in Fig. 1)—which improves
learning efficiency. Finally, we discuss the Stackelberg formulation for the two-player ranking game and
discuss two algorithms that naturally arise depending on which player is designated as the leader.

4.1 The Two-Player Ranking Game Formulation

We present a new framework, rank-game, for imitation learning which casts it as a general-sum ranking game
between two players — a reward and a policy.

argmaxπ∈ΠJ(R; π)︸ ︷︷ ︸
Policy Agent

argminR∈RL(Dp; R)︸ ︷︷ ︸
Reward Agent

In this formulation, the policy agent maximizes the reward by interacting with the environment, and the
reward agent attempts to find a reward function that satisfies a set of pairwise behavior rankings in the
given dataset Dp; a reward function satisfies these rankings if Eρπi [R(s, a)] ≤ Eρπj [R(s, a)], ∀ρπi ⪯ ρπj ∈ Dp,
where ρπi

, ρπj can be state-action or state vistitations.

The dataset of pairwise behavior rankings Dp can be comprised of the implicit ‘vanilla’ rankings between
the learning agent and the expert’s policy behaviors (ρπ ⪯ ρE), giving us the classical IRL methods when a
specific ranking loss function – supremum-loss is used (Ho & Ermon, 2016; Ghasemipour et al., 2020; Ke
et al., 2021). If rankings are provided between trajectories, they can be reduced to the equivalent ranking
between the corresponding state-action/state visitations. In the case when Dp comprises purely of offline
trajectory performance rankings then, under a specific ranking loss function (Luce-shepard), the ranking
game reduces to prior reward inference methods like T-REX (Brown et al., 2019; 2020b;a; Chen et al., 2020).
Thus, the ranking game affords us a broader perspective of imitation learning, going beyond only using expert
demonstrations.

4.2 Ranking Loss Lk for the Reward Agent

We use a ranking-loss to train the reward function—an objective that minimizes the distortion (Iyer & Bilmes,
2012) between the ground truth ranking for a pair of entities {x, y} and rankings induced by a parameterized
function R : X → R for a pair of scalars {R(x), R(y)}. One type of such a ranking-loss is the supremum-loss
in the classical imitation learning setup.

We propose a class of ranking-loss functions Lk that attempts to induce a performance gap of k ∈ [0, Rmax]
for all behavior preferences in the dataset. Formally, this can be implemented with the regression loss:

Lk(Dp; R) = E(ρπi ,ρπj )∼Dp

[
Es,a∼ρπi

[
(R(s, a)− 0)2]

+ Es,a∼ρπj

[
(R(s, a)− k)2]]

. (3)

where Dp contains behavior pairs (ρπi

, ρπj ) with the prespecified ranking ρπi ⪯ ρπj .

The proposed ranking loss allows for learning bounded rewards with user-defined scale k in the agent and
the expert visitations as opposed to prior works in Adversarial Imitation Learning (Ho & Ermon, 2016; Fu
et al., 2017; Ghasemipour et al., 2020). Reward scaling has been known to improve learning efficiency in deep
RL; a large reward scale can make the optimization landscape less smooth (Henderson et al., 2018; Glorot &
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Bengio, 2010) and a small scale might make the action-gap small and increase susceptibility to extrapolation
errors (Bellemare et al., 2016). In contrast to the supremum loss, Lk can also naturally incorporate rankings
provided by additional sources by learning a reward function satisfying all specified pairwise preferences. The
following theorem characterizes the equilibrium of the rank-game for imitation learning when Lk is used as
the ranking-loss.
Theorem 4.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of the imitation
rank-game (π̂, R̂), such that the ranking loss Lk generalization error is bounded by 2R2

maxϵr and the policy is
near-optimal with J(R̂; π̂) ≥ J(R̂; π)− ϵπ ∀π, then at this equilibrium pair under the expert’s unknown reward
function Rgt bounded in [0, RE

max]:

∣∣J(Rgt, πE)− J(Rgt, π̂)| ≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
ϵr

k

1− γ
(4)

If reward is a state-only function and only expert observations are available, the same bound applies to the
LfO setting.

Proof. We defer the proof to Appendix A.

Figure 2: Figure shows learned reward function
when agent and expert has a visitation
shown by pink and black markers respectively.
rank-game (auto) results in smooth reward
functions more amenable to gradient-based
policy optimization compared to GAIL.

Comments on Theorem 4.1: The ranking loss trains the
reward function with finite samples using supervised learning.
We can quantify ϵr, the finite sample generalization error for the
reward function, using standard concentration bounds (Shalev-
Shwartz & Ben-David, 2014; Hoeffding, 1994) with high prob-
ability. We use ϵπ to denote the policy optimization error from
solving the reinforcement learning problem. In Deep Rein-
forcement Learning, this error can stem as a result of function
approximation, biases in value function update, and finite sam-
ples. Accounting for this error allows us to bring our analysis
closer to the real setting. Note that the performance gap be-
tween agent policy and expert policy depends on the scale of
the expert reward function RE

max. This behavior is expected
as the performance gap arising as a result of differences in be-
haviors/visitations of agent policy and expert policy, can be
amplified by the expert’s unknown reward scale. We assume
realizability i.e the expert reward function lies in the agent
reward function class, which ensures that RE

max ≤ Rmax. The performance bound in Theorem 4.1 is derived
in Appendix A by first proving an intermediate result that demonstrates ρπ̂ and ρπE are close in a specific
f -divergence at the equilibrium, a bound that does not depend on the unknown expert reward scale RE

max.

Theoretical properties: We now discuss some theoretical properties of Lk. Theorem 4.1 shows that
rank-game has an equilibrium with bounded performance gap with the expert. Second, our derivation for
Theorem 4.1 also shows that — an optimization step by the policy player, under a reward function optimized
by the reward player, is equivalent to minimizing an f -divergence with the expert. Equivalently, at iteration
t in Algorithm 1: maxπt Eρπt [R∗

t ]− EρπE [R∗
t ] = minπt Df (ρπt∥ρπE ). We characterize and elaborate on the

regret of this idealized algorithm in Appendix A. Theorem 4.1 suggests that large values of k, upto Rmax, can
guarantee the agent’s performance is close to the expert. In practice, we observe intermediate values of k also
preserve imitation equilibrium optimality with a benefit of promoting sample efficient learning. We attribute
this observation to the effect of reward scaling described earlier. We validate this observation further in
Appendix D.9. rank-game naturally extends to the LfO regime under a state-only reward function where
Theorem 4.1 results in a divergence bound between state-visitations of the expert and the agent. A state-only
reward function is also a sufficient and necessary condition to ensure that we learn a dynamics-disentangled
reward function (Fu et al., 2017).

Lk can incorporate additional preferences that can help learn a regularized/shaped reward function that pro-
vides better guidance for policy optimization, reducing the exploration burden and increasing sample efficiency
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for IRL. A better-guided policy optimization is also expected to incur a lower ϵπ. However, augmenting the rank-
ing dataset can lead to decrease in the intended performance gap (keff < k) between the agent and the expert
(Appendix A). This can loosen the bound in Eq 4 and lead to sub-optimal imitation learning. We hypothesize
that given informative preferences, decreased ϵπ can compensate potentially decreased intended performance
gap keff to ensure near optimal imitation. In our experiments, we observe this hypothesis holds true; we enjoy
sample efficiency benefits without losing any asymptotic performance. To leverage these benefits, we present
two methods for augmenting the ranking dataset below and defer the implementation details to Appendix B.

4.2.1 Generating the Ranking Dataset

Reward loss w/ automatically generated rankings (auto): In this method, we assume access to the
behavior-generating trajectories in the ranking dataset. A trajectory τ is a sequence of states (LfO) given by
[s0, s1, ..sH ] or state-action pairs (LfD) given by [s0, a0, s1, a1..sH , aH ]. For each pairwise comparison ρi ⪯ ρj

present in the dataset, Lk sets the regression targets for states in ρi to be 0 and for states visited by ρj to be
k. Equivalently, we can rewrite minimizing Lk as regressing an input of trajectory τi to vector 0, and τj to
vector k1 where τi, τj are trajectories that generate the behavior ρi, ρj respectively. We use the comparison
ρi ⪯ ρj to generate additional behavior rankings ρi = ρλ0,ij ⪯ ρλ1,ij ⪯ ρλ2,ij .. ⪯ ρλP ,ij ⪯ ρj = ρλP +1,ij where
0 = λ0 < λ1 < λ2 < ... < λP < 1 = λP +1. The behavior ρλp,ij is obtained by independently sampling the
trajectories that generate the behaviors ρi, ρj and taking convex combinations i.e. τλp,ij = λpτi + (1− λp)τj

and their corresponding reward regressions targets are given by kp = λp0 + (1− λp)k1. The loss function
takes the following form:

SLk(D; R) = Eρi,ρj∼D

[
1

P + 2

P +1∑
p=0

Es,a∼ρλp,ij(s,a)
[
(R(s, a)− kp)2]]

(5)

This form of data augmentation can be interpreted as mixup (Zhang et al., 2017) regularization in the
trajectory space. Mixup has been shown to improve generalization and adversarial robustness (Guo et al., 2019;
Zhang et al., 2017) by regularizing the first and second order gradients of the parameterized function. Following
the general principle of using a smoothed objective with respect to inputs to obtain effective gradient signals,
explicit smoothing in the trajectory-space can also help reduce the policy optimization error ϵπ. A didactic
example showing rewards learned using this method is shown in Figure 2. In a special case when the expert’s un-
known reward function is linear in observations, these rankings reflect the true underlying rankings of behaviors.

Reward loss w/ offline annotated rankings (pref): Another way of increasing learning efficiency is
augmenting the ranking dataset containing the vanilla ranking ({ρπ ⪯ ρE} := Dπ) with offline annotated
rankings (Doffline). These rankings may be provided by a human observer or obtained using an offline
dataset of behaviors with annotated reward information, similar to the datasets used in offline RL (Fu
et al., 2020; Levine et al., 2020). We combine offline rankings by using a weighted loss between Lk for
satisfying vanilla rankings (ρπ ⪯ ρE) and offline rankings, grounded by an expert. Providing offline rankings
alone that are sufficient to explain the reward function of the expert (Brown et al., 2019) is often a difficult
task and the number of offline preferences required depends on the complexity of the environment. In the
LfO setting, learning from an expert’s state visitation alone can be a hard problem due to exploration
requirements (Kidambi et al., 2021). This ranking-loss combines the benefits of using preferences to shape the
reward function and guide policy improvement while using the expert to guarantee near-optimal performance.
The weighted loss function for this setting takes the following form:

Lk(Dπ,Doffline; R) = αLk(Dπ; R) + (1− α) ∗ Lk(Doffline; R) (6)

4.3 Optimizing the Two-Player General-Sum Ranking Game as a Stackelberg Game

Solving the ranking-game in the Stackelberg setup allows us to propose two different algorithms depending on
which agent is set to be the leader and utilize the learning stability and efficiency afforded by the formulation
as studied in Rajeswaran et al. (2020); Zheng et al. (2021); Fiez et al. (2019).
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Policy as leader (PAL): Choosing policy as the leader implies the following optimization:

max
π

{
J(R̂; π) s.t. R̂ = arg min

R
L(Dπ; R)

}
(7)

Reward as leader (RAL): Choosing reward as the leader implies the following optimization:

min
R̂

{
L(Dπ; R̂) s.t π = arg max

π
J(R̂; π)

}
(8)

We follow the first order gradient approximation for leader’s update from previous work (Rajeswaran
et al., 2020) to develop practical algorithms. This strategy has been proven to be effective and avoids the
computational complexity of calculating the implicit Jacobian term (dθ∗

B/dθA). PAL updates the reward to
near convergence on dataset Dπ (Dπ contains rankings generated using the current policy agent only π ⪯ πE)
and takes a few policy steps. Note that even after the first-order approximation, this optimization strategy
differs from GDA as often only a few iterations are used for training the reward even in hyperparameter
studies like Orsini et al. (2021). RAL updates the reward conservatively. This is achieved through aggregating
the dataset of implicit rankings from all previous policies obtained during training. PAL’s strategy of using
on-policy data Dπ for reward training resembles that of methods including GAIL (Ho & Ermon, 2016; Torabi
et al., 2018b), f -MAX (Ghasemipour et al., 2020), and f -IRL (Ni et al., 2020). RAL uses the entire history
of agent visitation to update the reward function and resembles methods such as apprenticeship learning
and DAC (Abbeel & Ng, 2004; Kostrikov et al., 2018). PAL and RAL bring together two seemingly different
algorithm classes under a unified Stackelberg game viewpoint.

5 Experimental Results

We compare rank-game against state-of-the-art LfO and LfD approaches on MuJoCo benchmarks having
continuous state and action spaces. The LfO setting is more challenging since no actions are available, and is
a crucial imitation learning problem that can be used in cases where action modalities differ between the
expert and the agent, such as in robot learning. We focus on the LfO setting in this section and defer the LfD
experiments to Appendix D.2. We denote the imitation learning algorithms that use the proposed ranking-loss
Lk from Section 4.2 as RANK-{PAL, RAL}. We refer to the rank-game variants which use automatically
generated rankings and offline preferences as (auto) and (pref) respectively following Section 4.2. In all our
methods, we rely on an off-policy model-free algorithm, Soft Actor-Critic (SAC) (Haarnoja et al., 2018), for
updating the policy agent (in step 5 of Algorithm 1).

We design experiments to answer the following questions:

1. Asymptotic Performance and Sample Efficiency: Is our method able to achieve near-expert performance
given a limited number (one) of expert observations? Can our method learn using fewer environment
interactions than prior state-of-the-art imitation learning (LfO) methods?

2. Utility of preferences for imitation learning: Current LfO methods struggle to solve a number of complex
manipulation tasks with sparse success signals. Can we leverage offline annotated preferences through
rank-game in such environments to achieve near-expert performance?

3. Choosing between PAL and RAL methods: Can we characterize the benefits and pitfalls of each method,
and determine when one method is preferable over the other?

4. Ablations for the method components: Can we establish the importance of hyperparameters and design
decisions in our experiments?

Baselines: We compare RANK-PAL and RANK-RAL against 6 representative LfO approaches that covers
a spectrum of on-policy and off-policy model-free methods from prior work: GAIfO (Torabi et al., 2018b;
Ho & Ermon, 2016), DACfO (Kostrikov et al., 2018), BCO (Torabi et al., 2018a), f -IRL (Ni et al., 2020)
and recently proposed OPOLO (Zhu et al., 2020b) and IQLearn (Garg et al., 2021). We do not assume
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access to expert actions in this setting. Our LfD experiments compare to the IQLearn (Garg et al., 2021),
DAC (Kostrikov et al., 2018) and BC baselines. Detailed description about the environments and baselines
can be found in Appendix C.

5.1 Asymptotic Performance and Sample Efficiency

In this section, we compare RANK-PAL(auto) and RANK-RAL(auto) to baselines on a set of MuJoCo
locomotion tasks of varying complexities: Swimmer-v2, Hopper-v2, HalfCheetah-v2, Walker2d-
v2, Ant-v2 and Humanoid-v2. In this experiment, we provide one expert trajectory for all methods and
do not assume access to any offline annotated rankings.

Env Hopper HalfCheetah Walker Ant Humanoid
BCO 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaIFO 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
RANK-
PAL(ours)

87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28

RANK-
RAL(ours)

99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13

Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 2: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks.
The standard deviation is calculated with 5 different runs each averaging over 10 trajectory returns. For unnormalized
score and more details, check Appendix D. We omit IQlearn due to poor performance.
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Figure 3: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard
deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency. Complete set of results can be found in Appendix D.1

Asymptotic Performance: Table 2 shows that both rank-game methods are able to reach near-expert
asymptotic performance with a single expert trajectory. BCO shows poor performance which can be attributed
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to the compounding error problem arising from its behavior cloning strategy. GAIfO and DACfO use GDA
for optimization with a supremum loss and show high variance in their asymptotic performance whereas
rank-game methods are more stable and low-variance.

Sample Efficiency: Figure 3 shows that RANK-RAL and RANK-PAL are among the most sample efficient
methods for the LfO setting, outperforming the recent state-of-the-art method OPOLO (Zhu et al., 2020b) by
a significant margin. We notice that IQLearn fails to learn in the LfO setting. This experiment demonstrates
the benefit of the combined improvements of the proposed ranking-loss with automatically generated rankings.
Our method is also simpler to implement than OPOLO, as we require fewer lines of code changes on top of
SAC and need to maintain fewer parameterized networks compared to OPOLO which requires an additional
inverse action model to regularize learning.

5.2 Utility of Preferences in Imitation
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Figure 4: Offline annotated preferences can help solve LfO
tasks in the complex manipulation environments Pen-v0
and Door, whereas prior LfO methods fail. Black dotted
line shows asymptotic performance of RANK-PAL (auto)
method.

Our experiments on complex manipulation
environments—door opening with a parallel-
jaw gripper (Zhu et al., 2020a) and pen manipulation
with a dexterous adroit hand (Rajeswaran et al.,
2017) – reveal that none of the prior LfO methods
are able to imitate the expert even under increasing
amounts of expert data. This failure of LfO methods
can be potentially attributed to the exploration
requirements of LfO compared to LfD (Kidambi
et al., 2021), coupled with the sparse successes
encountered in these tasks, leading to poorly guided
policy gradients.

In these experiments, we show that rank-game
can incorporate additional information in the form
of offline annotated rankings to guide the agent
in solving such tasks. These offline rankings are
obtained by uniformly sampling a small set of trajectories (10) from the replay buffer of SAC (Haarnoja et al.,
2018) labeled with a ground truth reward function. We use a weighted ranking loss (pref) from Section 4.2.

Figure 4 shows that RANK-PAL/RAL(pref) method leveraging offline ranking is the only method that can
solve these tasks, whereas prior LfO methods and RANK-PAL/RAL(auto) with automatically generated
rankings struggle even after a large amount of training. We also point out that T-REX, an offline method
that learns using the preferences grounded by expert is unable to achieve near-expert performance, thereby
highlighting the benefits of learning online with expert demonstrations alongside a set of offline preferences.

5.3 Comparing PAL and RAL

PAL uses the agent’s current visitation for reward learning, whereas RAL learns a reward consistent with
all rankings arising from the history of the agent’s visitation. These properties can present certain benefits
depending on the task setting.

To test the potential benefits of PAL and RAL, we consider two non-stationary imitation learning problems,
similar to (Rajeswaran et al., 2017) – one in which the expert changes it’s intent and the other where dynamics
of the environment change during training in the Hopper-v2 locomotion task. For changing intent, we present
a new set of demonstrations where the hopper agent hops backwards rather than forward. For changing
environment dynamics, we increase the mass of the hopper agent by a factor of 1.2. Changes are introduced
at 1e5 time steps during training at which point we notice a sudden performance drop.

In Figure 5 (left), we notice that PAL adapts faster to intent changes, whereas RAL needs to unlearn
the rankings obtained from the agent’s history and takes longer to adapt. Figure 5 (right) shows that
RAL adapts faster to the changing dynamics of the system, as it has already learned a good global
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notion of the dynamics-disentangled reward function in the LfO setting, whereas PAL only has a local
understanding of reward as a result of using ranking obtained only from the agent’s current visitation.
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Figure 5: We compare the relative strengths of PAL and
RAL. Left plot shows a comparison when the goal is
changed, and right plot shows a comparison when dynamics
of the environment is changed. These changes occur at
1e5 timesteps into training. PAL adapts faster to changing
intent and RAL adapts faster to changing dynamics.

Ablation of Method Components: Appendix D
contains eight additional experiments to study the
importance of hyperparameters and design decisions.
Our ablations validate the importance of using auto-
matically generated rankings, the benefit of ranking
loss over supremum loss, and sensitivity to hyperpa-
rameters like the intended performance gap k, policy
iterations, and the reward regularizer. We find that
key improvements in learning efficiency are driven by
using the proposed ranking loss, controlling the reward
range, and the reward/policy update frequency in the
Stackelberg framework. In Figure 6, we also analyze
the performance of rank-game with a varying num-
ber of expert trajectories and its robustness to noisy
offline-annotated preferences. We find rank-game to
consistently outperform baselines with a varying num-
ber of expert trajectories. On Door manipulation task rank-game is robust to 60 percent noise in the
offline-annotated preferences. Experiments on more environments and additional details can be found in
Appendix D.
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Figure 6: (a) RANK-PAL outperforms other methods with varying number of expert trajectories. Error bars denote
standard deviation. (b) On Door-v0 environment, RANK-PAL(pref) is robust to at least 60 percent noisy preferences.

6 Conclusion

In this work, we present a new framework for imitation learning that treats imitation as a two-player
ranking-game between a policy and a reward function. Unlike prior works in imitation learning, the ranking
game allows incorporation of rankings over suboptimal behaviors to aid policy learning. We instantiate the
ranking game by proposing a novel ranking loss which guarantees agent’s performance to be close to expert
for imitation learning. Our experiments on simulated MuJoCo tasks reveal that utilizing additional ranking
through our proposed ranking loss leads to improved sample efficiency for imitation learning, outperforming
prior methods by a significant margin and solving some tasks which were unsolvable by previous LfO methods.

Limitations and Negative Societal Impacts: Preferences obtained in the real world are usually
noisy (Kwon et al., 2020; Jeon et al., 2020; Bıyık et al., 2021) and one limitation of rank-game is that it
does not suggest a way to handle noisy preferences. Second, rank-game proposes modifications to learn
a reward function amenable to policy optimization but these hyperparameters are set manually. Future
work can explore methods to automate learning such reward functions. Third, despite learning effective
policies we observed that we do not learn reusable robust reward functions (Ni et al., 2020). Negative Societal
Impact: Imitation learning can cause harm if given demonstrations of harmful behaviors, either accidentally
or purposefully. Furthermore, even when given high-quality demonstrations of desirable behaviors, our
algorithm does not provide guarantees of performance, and thus could cause harm if used in high-stakes
domains without sufficient safety checks on learned behaviors.
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A Theory

We aim to show that rank-game has an equilibrium that bounds the f -divergence between the agent and the
expert (Theorem A.1) in the imitation learning setting. For imitation learning, we have the vanilla implicit
ranking ρagent ⪯ ρE , between the behavior of agent and the expert. Later, we show that, the bounded
f -divergence can be used to bound the performance gap with the expert under the expert’s unknown reward
function using a solution to Vajda’s tight lower bound (Corollary A.1.1). Our proof proceeds by first showing
that minimizing the empirical ranking loss produces a reward function that is close to the reward function
obtained by the true ranking loss. Then, we show that even under the presence of policy optimization errors
maximizing the obtained reward function will lead to a bounded f -divergence with the expert.
Theorem A.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of the imitation
rank-game (π̂, R̂), such that R̂ minimizes the empirical ranking-loss for dataset Dπ̂ = {(ρπ̂, ρE)} and the
ranking-loss generalization error is bounded by ϵ′

r = 2R2
maxϵr, and the policy π̂ has bounded suboptimality

with J(R̂; π̂) ≥ J(R̂; π′)− ϵπ ∀π
′ , then we have that at this equilibrium pair:

Df

(
ρπ̂(s, a)||ρE(s, a)

)
≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(9)

where Df is an f-divergence with the generator function f(x) = 1−x
1+x (Rényi, 1961; Ali & Silvey, 1966;

Csiszár, 1967; Liese & Vajda, 2006).
Proof. Previous works (Xu et al., 2021; Swamy et al., 2021) characterize the equilibrium in imitation learning
based on the supremum ranking loss/min-max adversarial setting under no error assumption. In this section,
we consider the ranking loss function Lk and derive the equilibrium for the rank-game in presence of reward
learning and policy optimization errors. Lk attempts to explain the rankings between the agent and the
expert using their state-action visitations Dπ = {ρπ(s, a), ρE(s, a)} respectively, by attempting to induce a
performance gap of k. With this dataset Dπ, Lk regresses the return of state or state-action pairs in the
expert’s visitation to a scalar k and the agent’s visitation to a value of 0. Thus, we have:

Lk(D; R) = EρE(s,a)
[
(R(s, a)− k)2]

+ Eρπ(s,a)
[
(R(s, a)− 0)2]

(10)

The above ranking loss is minimized (∇Lk = 0) pointwise when

R∗(s, a) = k(ρE(s, a))
ρE(s, a) + ρπ(s, a) (11)

In practice, we have finite samples from both the expert visitation distribution and the agent distribution so
we minimize the following empirical ranking loss L̂k(D; R):

L̂k(D; R) =
∑

s,a∈ρ̂E [(R(s, a)− k)2]
|ρ̂E |

+
∑

s,a∈ρ̂π [(R(s, a)− 0)2]
|ρ̂π|

(12)

where ρ̂E and ρ̂π are empirical state-action visitations respectively.

From empirical loss function to reward optimality: Since the reward function is trained with supervised
learning, we can quantify the sample error in minimizing the empirical loss using concentration bounds (Shalev-
Shwartz & Ben-David, 2014) up to a constant with high probability. Since 0 < R(s, a) < Rmax With high
probability,

∀R, |Lk(D; R)− L̂k(D; R)|≤ 2R2
maxϵr (13)

where ϵr is the statistical estimation error that can be bounded using concentration bounds such as Hoeffding’s.
Let R∗ belong to the optimal solution for Lk(D; R) and R̂∗ belong to the optimal minimizing solution for
L̂k(D; R). Therefore, we have that,

∀R, L̂k(D; R̂∗) ≤ L̂k(D; R) (14)

Using Eq 13 and Eq 14, we have

∀R, L̂k(D; R̂∗) ≤ L̂k(D; R) (15)
≤ Lk(D; R) + 2R2

maxϵr (16)
≤ Lk(D; R∗) + 2R2

maxϵr (17)
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and similarly

∀R, Lk(D; R∗) ≤ Lk(D; R) (18)
≤ L̂k(D; R) + 2R2

maxϵr (19)
≤ L̂k(D; R̂∗) + 2R2

maxϵr (20)

Eq 17 and Eq 20 implies that Lk(D; R∗) and L̂k(D; R̂∗) are bounded with high probability. i.e

|Lk(D; R∗)− L̂k(D; R̂∗)|≤ 2R2
maxϵr (21)

We will use Eq 21 to show that indeed R̂∗ has a bounded loss compared to R∗.

L̂k(D; R̂∗)− Lk(D; R∗) ≤ 2R2
maxϵr (22)

Lk(D; R̂∗)− 2R2
max − Lk(D; R∗)ϵr ≤ 2R2

maxϵr (23)
Lk(D; R̂∗)− Lk(D; R∗) ≤ 4R2

maxϵr (24)

We consider the tabular MDP setting and overload R to denote a vector of reward values for the entire
state-action space of size |S × A|. Using the Taylor series expansion for loss function Lk, we have:

Lk(D; R̂∗)− Lk(D; R∗) ≤ 4R2
maxϵr (25)

Lk(D; R∗) + ⟨∇R∗Lk(D; R∗), R̂∗ −R∗⟩
+0.5(R̂∗ −R∗)T H(R̂∗ −R∗)− Lk(D; R∗) ≤ 4R2

maxϵr (26)
(R̂∗ −R∗)T H(R̂∗ −R∗) ≤ 8R2

maxϵr (27)

where H denotes the hessian for the loss function w.r.t R and is given by H = P ρπ + P ρE where P ρ is a
matrix of size |S × A|×|S × A| with ρ vector of visitations as its diagonal and zero elsewhere.

(R̂∗ −R∗)T H(R̂∗ −R∗) ≤ 8R2
maxϵr (28)

Es∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
+ Es∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr (29)

Since both terms in the LHS are positive we have Es,a∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr

and Es,a∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr. Applying Jensen’s inequality, we further have

(Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr and (Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr. Hence,∣∣∣Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr , and (30)∣∣∣Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr (31)

At this point we have bounded the expected difference between the reward functions obtained from the
empirical ranking loss and the true ranking loss. We will now characterize the equilibrium obtained by
learning a policy on the reward function R̂∗ that is optimal under the empirical ranking loss. Under a policy
optimization error of ϵπ we have:

J(R̂∗; π̂) ≥ J(R̂∗; π′)− ϵπ ∀π
′
∈ Π (32)

where J(R; π) denotes the performance of policy π under reward function R.

Taking π
′ = πE , we can reduce the above expression as follows:

J(R̂∗, πE)− J(R̂∗, π̂) ≤ϵπ (33)
1

1− γ

[
EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]]
≤ ϵπ (34)

19



Published in Transactions on Machine Learning Research (01/2023)

Using Eq 30 and Eq 31 we can lower bound EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
as follows:

EρE(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R∗(s, a)]−Rmax

√
8ϵr (35)

Eρπ(s,a)

[
R̂∗(s, a)

]
≤ Eρπ(s,a)[R∗(s, a)] + Rmax

√
8ϵr (36)

where R∗(s, a) is given by Equation 11.

Subtracting Equation 36 from Equation 35, we have

EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R∗(s, a)]− Eρπ(s,a)[R∗(s, a)]− 2Rmax

√
8ϵr (37)

Plugging in the lower bound from Equation 37 in Equation 34 we have:
1

1− γ
[EρE(s,a)[R∗(s, a)]− Eρπ(s,a)[R∗(s, a)]− 2Rmax

√
8ϵr] ≤ ϵπ (38)

Replacing R∗ using Equation 11 we get,

1
1− γ

[
EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− 2Rmax

√
8ϵr

]
≤ ϵπ (39)

EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr (40)

EρE(s,a)

[
(ρE(s, a)− ρπ(s, a))
ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

k
(41)

The convex function f(x) = 1−x
1+x in R+ defines an f -divergence. Under this generator function, the LHS

of Equation 41 defines an f -divergence between the state-visitations of the agent ρπ(s, a) and the expert
ρE(s, a). Hence, we have that

Df [ρπ(s, a), ρE(s, a)] ≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(42)

This bound shows that the equilibrium of the ranking game is a near-optimal imitation learning solution when
ranking loss target k trades off effectively with the policy optimization error ϵπ and reward generalization
error ϵr. We note that, since k ≤ Rmax we can get the tightest bound when k = Rmax. Now, in imitation
learning both k and Rmax are tunable hyperparameters. We vary k while keeping k = Rmax and observe in
appendix D.9 that this hyperparameter can significantly affect learning performance.

Corollary A.1.1. (From f -divergence to performance gap) For the equilibrium of the rank-game (π̂, R̂) as
described in Theorem A.1, we have that the performance gap of the expert policy with π̂ is bounded under the
unknown expert’s reward function (rgt) bounded in [0, RE

max] as follows:

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(43)

Proof. In Theorem A.1, we show that the equilibrium of rank-game ensures that.the f -divergence of expert
visitation and agent visitation is bounded with the generator function f = 1−x

1+x . First we attempt to find a
tight lower bound of our f -divergence in terms of the total variational distance between the two distributions.
Such a bound has been discussed in previous literature for the usual f -divergences like KL, Hellinger and
χ2. This problem of finding a tight lower bound in terms of variational distance for a general f -divergence
was introduced in Vajda (1970) and referred to as Vajda’s tight lower bound and a solution for arbitrary
f -divergences was proposed in Gilardoni (2006). The f -divergence with generator function f = 1−x

1+x satisfies
that f(t) = tf( 1

t ) + 2f ′(1)(t− 1) and hence the total variational bound for this f divergence takes the form
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Df ≥ 2−DT V

2 f( 2+DT V

2−DT V
)− f ′(1)DT V . Plugging in the function definition f = 1−x

1+x the inequality simplifies to:

Df (ρπ(s, a)∥ρE(s, a)) ≥ (DT V (ρπ(s, a)∥ρE(s, a))2

4 (44)

We also note an upper bound for this f -divergence in TV distance, sandwiching this particular f -divergence
with TV bounds:

Df (ρπ(s, a)∥ρE(s, a)) = EρE(s,a)

[
ρE(s, a)

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
ρE(s, a)

ρE(s) + ρπ(s, a)

]
(45)

≤
∑

s,a∈S×A

∣∣ρE(s, a)− ρπ(s, a)
∣∣ ∣∣∣∣ ρE(s, a)

ρE(s, a) + ρπ(s, a)

∣∣∣∣ (46)

≤ DT V (ρπ(s, a)∥ρE(s, a)) (47)

So,

DT V (ρπ(s, a)∥ρE(s, a)) ≥ Df (ρπ(s, a)∥ρE(s, a)) ≥ (DT V (ρπ(s, a)∥ρE(s, a))2

4 (48)

Therefore from Eq 42 we have that,

DT V (ρπ(s, a)||ρE(s, a)) ≤ 2
√

(1− γ)ϵπ + 4Rmax

√
2ϵr

k
(49)

For any policy π, and experts unknown reward function rgt, J(π, r) = 1
1−γ [Es,a∼ρπ [r(s, a)]]. Therefore,

|J(πE , rgt)− J(π, rgt)| =
∣∣∣∣ 1
1− γ

[Es,a∼ρE [rgt(s, a)]]− 1
1− γ

[Es,a∼ρπ [rgt(s, a)]]
∣∣∣∣ ∀π (50)

= 1
1− γ

∣∣∣∣∣∣
∑

s,a∈S×A
|(ρE − ρπ)rgt(s, a)

∣∣∣∣∣∣ (51)

≤ RE
max

1− γ

∑
s,a∈S×A

∣∣(ρE − ρπ)
∣∣ (52)

≤ 2RE
max

1− γ
DT V (ρE , ρπ) (53)

(54)

where RE
max is the upper bound for the expert’s reward function. Under a worst case expert reward function

which assigns finite reward values to the expert’s visitation and −∞ outside the visitation, even a small
mistake (visiting any state outside the expert’s visitation) by the policy can result in an infinite performance
gap between expert and the agent. Thus, this parameter is decided by the expert and is not in control of the
learning agent.

From Eq 49 and Eq 53 we have

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(55)

Lemma A.2. (Regret bound under finite data assumptions) Let M̂t denote the approximate transition model
under the collected dataset of transitions until iteration t. Assume that the ground truth model M and the
reward function are realizable. Under these assumptions the regret of rank-game at tth iteration:

V πE

M − V πt

M ≤ 2γϵπt

m Rmax

(1− γ)2 + 4Rmax

1− γ

√
Df (ρπE

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
ϵr

k
(56)
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where V π
M denotes the performance of policy π under transition dynamics M , ϵπt

m is expected model error under
policy πt’s visitation, ρπ

M is the visitation of policy π in transition dynamics M and ϵstat is the statistical
error due to finite expert samples.

Proof. We use M to denote the ground truth model and M̂t to denote the approximate transition model with
collected data until the tth iteration of rank-game. We are interested in solving the following optimization
problem under finite data assumptions:

max
π

Es,a∼ρπ

M̂t

[
f̂∗

π(s, a)
]
−

∑
s,a∈ρ̂E [f̂∗

π(s, a)]
|ρ̂E |

s.t f̂∗
π = arg min

f
(L̂k(f ; Dπ

M̂t
)) (57)

where ρ̂E is the empirical distribution generated from finite expert samples and Dπ
M̂t

= {(ρ̂π
M̂t

, ρ̂E
M )}. Using

standard concentration bounds such as Hoeffding’s (Hoeffding, 1994), we can bound the empirical estimate
with true estimate ∀π with high probability:∣∣∣∣

∑
s,a∈ρ̂E [f∗

π(s, a)]
|ρ̂E |

− Es∼ρE
M

[f∗
π(s, a)]

∣∣∣∣ ≤ ϵstat (58)

Using the concentration bounds and the fact that πt is the solution that maximizes the optimization problem
Eq 57 at t-iteration,

E
s,a∼ρπt

M̂t

[
f̂∗

πt(s, a)
]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]
|ρ̂E |

≥E
s,a∼ρπE

M̂t

[
f̂∗

πE (s, a)
]
−

∑
s,a∈ρ̂E [f̂∗

πE (s, a)]
|ρ̂E |

(59)

≥ E
s,a∼ρπE

M̂t

[
f̂∗

πE (s, a)
]
− Es,a∼ρE

M

[
f̂∗

πE (s, a)
]
− ϵstat (60)

f̂∗
πt is the reward function that minimizes the empirical ranking loss L̂k. Let f∗

πt be the solution to the true
ranking loss Lk. As shown previously in Eq 30 and Eq 31, we can bound the expected values of these two
quantities with high probability under agent or expert distribution.

We also have from concentration bound:

E
s,a∼ρπt

M̂t

[
f̂∗

πt(s, a)
]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]
|ρ̂E |

≤ E
s,a∼ρπt

M̂t

[
f̂∗

πt(s, a)
]
− Es,a∼ρE

M

[
f̂∗

πt(s, a)
]

+ ϵstat (61)

Therefore, combining Eq 61 and Eq 59:

E
s,a∼ρπt

M̂t

[
f̂∗

πt(s, a)
]
− Es,a∼ρE

M

[
f̂∗

πt(s, a)
]
≥ E

s,a∼ρπE

M̂t

[
f̂∗

πE (s, a)
]
− Es,a∼ρE

M

[
f̂∗

πE (s, a)
]
− 2ϵstat (62)

The LHS of the Eq. 62 can be further upper bounded as follows:

E
s,a∼ρπt

M̂t

[
f̂∗

πt(s, a)
]
− Es,a∼ρE

M

[
f̂∗

πt(s, a)
]
≤ E

s,a∼ρπt

M̂t

[f∗
πt(s, a)]− Es,a∼ρE

M
[f∗

πt(s, a)] + 2Rmax

√
8ϵr (63)

= E
s,a∼ρπt

M̂t

[
kρπE

M (s, a)
ρπE

M (s, a) + ρπt

M̂t
(s, a)

]

− Es,a∼ρE
M

[
kρπE

M (s, a)
ρπE

M (s, a) + ρπt

M̂t
(s, a)

]
+ 2Rmax

√
8ϵr (64)

= kE
s,a∼ρπE

M

ρπt

M̂t
(s, a)− ρπE

M (s, a)
ρπt

M̂t
(s, a) + ρπE

M (s, a)

 + 2Rmax

√
8ϵr (65)

= −kDf (ρπt

M̂t
∥ρπE

M ) + 2Rmax

√
8ϵr (66)
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Similarly the RHS of Eq 62 can be further lower bounded as follows:

E
s,a∼ρπE

M̂t

[
f̂∗

πE (s, a)
]
− Es,a∼ρE

M

[
f̂∗

π(s, a)
]
− 2ϵstat (67)

≥ E
s,a∼ρπE

M̂t

[f∗
πE (s, a)]− Es∼ρE

M
[f∗

π(s, a)]− 2ϵstat − 2Rmax

√
8ϵr (68)

= kE
s,a∼ρπE

M

ρπE

M̂t
(s, a)− ρπE

M (s, a)
ρπE

M̂t
(s, a) + ρπE

M (s, a)

− 2ϵstat − 2Rmax

√
8ϵr (69)

= −kDf (ρE
M̂t
∥ρE

M )− 2ϵstat − 2Rmax

√
8ϵr (70)

Plugging the relations obtained (Eq 70 and 66) back in Eq 62, we see that the f -divergence between the
agent visitation in the learned MDP and the expert visitation in the ground truth MDP is bounded by the
f -divergence of the expert policy’s visitation on the learned vs. ground truth environment. We expect this
term to be low if the dynamics are accurately learned at the transitions encountered in visitation of expert.

Df (ρπt

M̂t
∥ρπE

M ) ≤ Df (ρπE

M̂t
∥ρπE

M ) + 2ϵstat + 4Rmax

√
8ϵr

k
(71)

We can use the total-variation lower bound for this f -divergence to later obtain a performance bound between
the policy in learned MDP and expert in ground-truth MDP.

DT V (ρπt

M̂t
∥ρπE

M ) ≤ 2
√

Df (ρπt

M̂t
∥ρπE

M ) ≤ 2
√

Df (ρπE

M̂t
∥ρπE

M ) + 2ϵstat + 4Rmax

√
8ϵr

k
(72)

Similar to Corollary A.1.1, we can further get a performance bound:

|V πE

M − V πt

M̂
|≤ 2Rmax

1− γ
DT V (ρπt

M̂t
∥ρπE

M ) ≤ 4Rmax

1− γ

√
Df (ρπE

M̂t
∥ρπE

M ) + 2ϵstat + 4Rmax

√
8ϵr

k
(73)

Let the local model error in the visitation of πt be bounded by ϵπt

m , i.e Es,a∼ρπt

[
DT V (PM (.|s, a)∥PM̂ (.|s, a))

]
≤

ϵπt

m . Using simulation lemma for local models (Kearns & Singh, 1998; Kakade & Langford, 2002), we have:

|V πt

M − V πt

M̂
|≤ 2γϵπt

m Rmax

(1− γ)2 (74)

We are interested in bounding the performance of the policy πt in ground-truth MDP rather than the learned
MDP.

V πE

M − V πt

M ≤ V πE

M − V πt

M̂
+ 4Rmax

1− γ

√
Df (ρπE

M̂t
∥ρπE

M ) + 2ϵstat + 4Rmax

√
8ϵr

k
(75)

≤ 2γϵπt

m Rmax

(1− γ)2 + 4Rmax

1− γ

√
Df (ρπE

M̂t
∥ρπE

M ) + 2ϵstat + 4Rmax

√
8ϵr

k
(76)

The regret of an algorithm with ranking-loss depends on the accuracy of the approximate transition model at
the visitation of the output policy πt and the expected accuracy of the approximate transition model at the
transitions encountered in the visitation of expert. Using an exploratory policy optimization procedure, the
regret grows sublinearly as shown in (Kidambi et al., 2021). Kidambi et al. (2021) uses an exploration bonus
and shows that the RHS in the above regret simplifies to be information gain and for a number of MDP
families the growth rate of information gain is mild.
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Potential imitation suboptimality with additional rankings

In this section, we consider how additional rankings can affect the intended performance gap as discussed
in 4.2. Consider a tabular MDP setting in which we are given a set of rankings ρπ ⪯ ρ1 ⪯ .. ⪯ ρn ⪯ ρE .
In such a case, we regress the state-action pairs from their respective visitations to [0, k1, k2, ..kn, k] where
0 < k1 < k2.. < kn < k. We will discuss in Appendix B.1.1 how this regression generalizes Lk and make it
computationally more efficient. For this regression, the optimal reward function that minimizes the ranking
loss pointwise is given by:

R∗(s, a) =
∑n

i=1 kiρ
πi(s, a) + ρE(s, a)

ρπ(s, a) +
∑n

i=1 ρπi(s, a) + ρE(s, a)
(77)

We consider a surrogate ranking loss with regression target keff that achieves the same optimal reward when
only ρ ⪯ ρE ranking is given. Therefore:∑n

i=1 kiρ
i(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρi(s, a) + ρE(s, a)
= keff ρE(s, a)

ρE(s, a) + ρπ(s, a) (78)

keff can be upper bounded as follows:

keff = ρE(s, a) + ρπ(s, a)
ρE(s, a)

∑n
i=1 kiρ

πi(s, a) + kρE(s, a)
ρπ(s, a) +

∑n
i=1 ρπi(s, a) + kρE(s, a)

(79)

≤ ρE(s, a) + ρπ(s, a)
ρE(s, a)

∑n
i=1 kiρ

πi(s, a) + kρE(s, a)
ρπ(s, a) + ρE(s, a) (80)

= k +
n∑

i=1
ki

ρπi(s, a)
ρE(s, a) (81)

keff can be lower bounded by:

keff = ρE(s, a) + ρπ(s, a)
ρE(s, a)

∑n
i=1 kiρ

πi(s, a) + kρE(s, a)
ρπ(s, a) +

∑n
i=1 ρπi(s, a) + ρE(s, a)

(82)

≥ ρE(s, a) + ρπ(s, a)
ρE(s, a)

kρE(s, a)
ρπ(s, a) +

∑n
i=1 ρπi(s, a) + ρE(s, a)

(83)

= k

1 +
∑n

i=1
ρπi (s,a)

ρπ(s,a)+ρE(s,a)

(84)

Thus, keff can increase or decrease compared to k after augmenting the ranking dataset. We discuss the
consequences of a decreased k in Section 4.2.

B Algorithm Details

B.1 Ranking Loss for the Reward Agent

Consider a dataset of behavior rankings D = {(ρ1
1 ⪯ ρ2

1), (ρ1
2 ⪯ ρ2

2), ...(ρ1
n ⪯ ρ2

n)}, wherein for ρi
j — i denotes

the comparison index within a pair of policies, j denotes the pair number, and ρ1
1 ⪯ ρ2

1 denotes that ρ2
1

is preferable in comparison to ρ1
1 and in turn implies that ρ2

1 has a higher return. Each pair of behavior
comparisons in the dataset are between the state-action or state visitations. We will restrict our attention to a
specific instantiation of the ranking loss (a regression loss) that attempts to explain the rankings between each
pair of policies present in the dataset by a performance gap of at least k, i.e. Eρ1 [R(s, a)] ≤ Eρ2 [R(s, a)]− k.
Formally, the ranking loss is defined as follows:

min
R

Lk(D; R) = min
R

E(ρ1,ρ2)∼D
[
Es∼ρ1(s,a)

[
(R(s, a)− 0)2]

+ Es∼ρ2(s,a)
[
(R(s, a)− k)2]]

(85)

When k is set to 1 (k = 1), this loss function resembles the loss function used for SQIL (Reddy et al., 2019) if
fixed rewards were used instead of learned. Thus, SQIL can be understood as a special case. We also note
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that a similar ranking loss function has been previously used for training generative adversarial networks in
LS-GAN (Mao et al., 2017).

Our work explores the setting of imitation learning given samples from state or state-action visitation ρE

of the expert πE . We will use πagent
m to denote the mth update of the agent in Algorithm 1. The updated

agent generates a new visitation in the environment which is stored in an empty dataset Donline
m given by

Donline
m = {ρπagent

m ⪯ ρπE}

B.1.1 Reward loss with automatically generated rankings (auto)

The ranking dataset Dp contains pairwise comparison between behaviors ρi ⪯ ρj . First, we assume access to
the trajectories that generate the behaviors, i.e ρi = {τ i

1, τ i
2...τ i

n} and ρj = {τ j
1 , τ j

2 ...τ j
m} In this method we

propose to automatically generate additional rankings using the following procedure: (a) Sample trajectory
τ i ∼ ρi and τ j ∼ ρj . Both trajectories are equal length because of our use of absorbing states (see Appendix C).
(b) Generate an interpolation τ ij

λp
between trajectories depending on a parameter λp. A trajectory is a matrix

of dimensions H × (|S|+|A|), where H is the horizon length of all the trajectories.

τ ij
λp

= λpτi + (1− λp)τj (86)

These intermediate interpolated trajectories lead to a ranking that matches the ranking under the expert
reward function if the reward function is indeed linear in state features. We further note that τ can also be a
trajectory of features rather than state-action pairs.

Next, we generate regression targets for the interpolated trajectories. For a trajectory τ ij
λp

the regression
target is given by a vector λp0 + (1− λp)k1, where vectors 0, 1 are given by [0,0,..0] and [1,1,...,1] of length
H respectively. This procedure can be regarded as a form of mixup (Zhang et al., 2017) in trajectory space.
The set of obtained τ ij

λp
after expending the sampling budget forms our behavior ρij

λp
.

A generalized and computationally efficient interpolation strategy for rank-game

Once we have generated P interpolated rankings, we effectively have O(P 2) rankings that we can use to
augment our ranking dataset. Using them all naively would incur a high memory burden. Thus, we present
another method for achieving the same objective of using automatically generated rankings in a more efficient
and generalized way. For each pairwise ranking ρi ⪯ ρj in the dataset Dp, we have the following new set of
rankings ρi ⪯ ρij

λ1
⪯ .. ⪯ ρij

λP
⪯ ρj . Using the O(P 2) rankings in the ranking loss Lk, the ranking loss can be

simplified to the following using basic algebraic manipulation:

(P + 1)E(s,a)∼ρj

[
(R(s, a)− k)2]

+ (P )E(s,a)∼ρij
λP

[
(R(s, a)− k)2]

+ .. + (1)E(s,a)∼ρij
λ1

[
(R(s, a)− k)2]

+(P + 1)E(s,a)∼ρi

[
(R(s, a)− 0)2]

+ (P )E(s,a)∼ρij
λ1

[
(R(s, a)− 0)2]

+ .. + (1)E(s,a)∼ρij
λP

[
(R(s, a)− 0)2] (87)

The reward function that minimizes the above loss pointwise is given by:

R∗(s, a) =
k[(P + 1)ρj + Pρij

λP
+ (P − 1)ρij

λP −1
+ .. + ρij

λ1
]

(P + 1)(ρj + ρij
λP

+ .. + ρij
λ1

+ ρi)
(88)

=
k[ρj + P

P +1 ρij
λP

+ P −1
P +1 ρij

λP −1
+ .. + 1

P +1 ρij
λ1

]
(ρj + ρij

λP
+ .. + ρij

λ1
+ ρi)

(89)

We consider a modification to the ranking loss objective (Equation 85) that increases flexibility in regression
targets for ranking as well as reducing the computational burden from dealing with O(P 2) rankings pairs to
O(P ). In this modification we regress the current agent, the expert, and each of the intermediate interpolants
(ρi, ρij

λ1
, ..., ρij

λP
, ρE) to a fixed scalar return (k0, k1, ..., kP +1) where k0 ≤ k1 ≤ ... ≤ kP +1 = k. The optimal

reward function for this loss function is given by:

R∗(s, a) =
kp+1ρE(s, a) + kpρij

λP
(s, a) + kp−1ρij

λP −1
(s, a) + .. + k1ρij

λ1
(s, a) + k0ρπ(s, a)

(ρE(s, a) + ρij
λP

(s, a) + .. + ρij
λ1

(s, a) + ρπ)(s, a)
(90)
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This modified loss function generalizes Eq 88 and recovers it exactly when [k0, k1.., kP +1] is set to be
[0, k 1

P +1 , .., k P
P +1 , k]. We will call this reward loss function a generalized ranking loss.

Shaping the ranking loss: The generalized ranking loss contains a set of regression targets (k0, k1, ..., kP +1)
which needs to be decided apriori. We propose two strategies for deciding these regression targets.We consider
two families of parameterized mappings: (1) linear in α (kα = α ∗ k) and (2) rate of increase in return
exponential in α ( dkα

dα ∝ eβα), where β is the temperature parameter and denote this family by exp-β. We
also set kα=0 = 0 (in agent’s visitation) and kα=1 = k (in expert’s visitation) under the reward function
that is bounded in [0, Rmax]. The shaped ranking regression loss, denoted by SLk(D; R), that induces a
performance gap between p + 2 consecutive rankings (ρi = ρij

λ0
, ρij

λ1
, ..., ρij

λP
, ρj = ρij

λP +1
) is given by:

SLk(D; R) = 1
p + 2

p+1∑
i=0

Es∼ρij
λi

(s,a)
[
(R(s, a)− ki)2]

(91)
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Figure 7: This figure shows the assignment of value kα (intended return value) corresponding to values of α (degree of
time-conditional interpolation between the visitation distribution of the agent and the expert). When the rate of
increase is exponential with positive slope, we have a higher performance gap over comparisons closer to the expert
and when the rate of increase is negative, the performance gap is higher for comparisons closer to the agent.
Figure 7 above shows the flexibility in reward shaping afforded by the two families of parameterized functions.
The temperature parameter β > 0 encourages the initial preferences to have a smaller performance gap than
the latter preferences. Conversely, β < 0 encourages the initial preferences to have a larger performance gap
compared to the latter preferences. We ablate these choices of parameteric functions in Appendix D.5.

B.1.2 Reward loss with offline annotated rankings (pref)

Automatically generated rankings are generated without any additional supervision and can be understood
as a form of data augmentation. By contrast, with offline annotated rankings, we are given a fixed dataset
of comparisons which is a form of additional supervision for the reward function. Automatically generated
rankings can only help by making the reward landscape easier to optimize, but offline rankings can help
reduce the exploration burden by informing the agent about counterfactuals that it had no information about.
This can, for instance, help the agent avoid unnecessary exploration by providing a dense improvement signal.
The offline rankings are either provided by a human or extracted from a set of trajectories for which ground
truth reward is known. In our work, we extract offline preferences by uniformly sampling p trajectories from
an offline dataset obtained from a training run of an RL method (SAC) (Haarnoja et al., 2018) with ground
truth reward.
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For imitation learning with offline annotated rankings, at every iteration m of Algorithm 1 we have a new
dataset of rankings given by Donline

m = {ρagent
m ⪯ ρE} along with a fixed offline dataset containing rankings

of the form (Doffline = {ρ1 ⪯ ρ2... ⪯ ρp}). We always ground the offline preferences by expert’s visitation in
our experiments, i.e ρp ⪯ ρE . We incorporate the offline rankings as a soft constraint in reward learning by
combining the ranking loss Lk between the policy agent and the expert, with a ranking loss Lk or a shaped
ranking loss SLk (Equation 91) over offline trajectories:

Loffline
k (Donline,Doffline; R) = αLk(Donline; R) + (1− α) ∗ Lk(Doffline; R) (92)

Here, instead of the consecutive rankings being interpolants, they are offline rankings. The videos attached
in the supplementary show the benefit of using preferences in imitation learning. The policy learned without
preferences in the pen environment drops the pen frequently and in the door environment is unable to
successfully open the door.

B.2 Stackelberg Game Instantiation

A Stackelberg game view of optimizing the two-player game with a dataset of behavior rankings leads to two
methods: PAL (Policy as Leader) and RAL (Reward as Leader) (refer Section 4.3). PAL uses a fast reward
update step and we simulate this step by training the reward function until convergence (using a validation
set) on the dataset of rankings. We simulate a slow update step of the policy by using a few iterations of the
SAC (Haarnoja et al., 2018) update for the policy. RAL uses a slow reward update which we approximate
by dataset aggregation — aggregating all the datasets of rankings generated by the agent in each previous
iteration enforces the reward function to update slowly. A fast policy update is simulated by using more
iterations of SAC. Since SAC does not perform well with a high update to environment step ratio, more
iterations of SAC would imply more environment steps under a fixed reward function. This was observed to
lead to reduced learning efficiency, and an intermediate value of SAC updates was observed to perform best
(Table 5).

B.2.1 Policy as Leader

Algorithm 2 presents psuedocode for a practical instantiation of the PAL methods - RANK-PAL (vanilla),
RANK-PAL (auto) and RANK-PAL (pref) that we use in our work. Recall that (vanilla) variant uses no
additional rankings, whereas (auto) uses automatically generated rankings and (pref) uses offline annotated
ranking.

B.2.2 Reward as Leader

Algorithm 3 presents psuedocode for a practical instantiation of the RAL methods - RANK-RAL (vanilla),
RANK-RAL (auto).

C Implementation and Experiment Details

Environments: Figure 8 shows some of the environments we use in this work. For benchmarking we use 6
MuJoCo (licensed under CC BY 4.0) locomotion environments. We also test our method on manipulation
environments - Door opening environment from Robosuite (Zhu et al., 2020a) (licensed under MIT License)
and the Pen-v0 environment from mjrl (Rajeswaran et al., 2017) (licensed under Apache License 2.0).

Expert data: For all environments, we obtain expert data by a policy trained until convergence using
SAC (Haarnoja et al., 2018) with ground truth rewards.

Baselines: We compare our proposed methods against 6 representative LfO approaches that cover a spectrum
of on-policy and off-policy, model-free methods from prior work: GAIfO (Torabi et al., 2018b; Ho & Ermon,
2016), DACfO (Kostrikov et al., 2018), BCO (Torabi et al., 2018a), f -IRL (Ni et al., 2020), OPOLO (Zhu
et al., 2020b) and IQ-Learn Garg et al. (2021). GAIfO (Torabi et al., 2018b) is a modification of the
adversarial GAIL method (Ho & Ermon, 2016), in which the discriminator is trained to distinguish between
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Algorithm 2 Policy As Leader (PAL) practical instantiation
1: Initialize: Policy network πθ, reward network Rϕ, replay buffer R
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance gap

k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-PAL(pref):
Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step: πm

θ = Soft
Actor-Critic(Rm−1

ϕ ; πm−1
θ ) with transitions relabelled with reward obtained from Rm−1

ϕ . // call npol

times
5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current npol

policy update steps to make them full horizon and collect in Donline
m . Donline = Donline

m (discard old
data).

6: (for RANK-PAL(auto)) Generate interpolations for rankings in the dataset Donline and collect in
Donline

auto

7: Reward Update step: // call nrew times

Rm
ϕ =


min Lk(Donline; Rm−1

ϕ ), RANK-PAL (vanilla) (Equation 85)
min SLk(Donline

auto ; Rm−1
ϕ ), RANK-PAL (auto) (Equation 91)

min Loffline
k (Donline,Doffline; R), RANK-PAL (pref) (Equation 92)

8: end for

Algorithm 3 Reward As Leader (RAL) practical instantiation
1: Initialize: Policy network πθ, reward network Rϕ, replay buffer R, trajectory buffer D
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance gap

k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-PAL (pref):
Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step: πm

θ = Soft
Actor-Critic(Rm−1

ϕ ; πm−1
θ ) with transitions relabelled with reward obtained from Rm−1

ϕ . // call npol

times
5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current npol

policy update steps to make them full horizon and collect in Donline
m . Aggregate data in Donline =

Donline
m ∪ Donline.

6: (for RANK-RAL(auto)) Generate interpolations for rankings in the dataset Donline and collect in
Donline

auto

7: Reward Update step: // call nrew times

Rm
ϕ =

{
min Lk(Donline; Rm−1

ϕ ), RANK-RAL (vanilla) (Equation 85)
min SLk(Donline

auto , Rm−1
ϕ ), RANK-RAL(auto) (Equation 91)

8: end for

state-distributions rather than state-action distributions. DAC-fO (Kostrikov et al., 2018) is an off-policy
modification of GAIfO (Torabi et al., 2018b), in which the discriminator distinguishes the expert states with
respect to the entire replay buffer of the agent’s previously visited states, with additional implementation
details such as added absorbing states to early-terminated trajectories. BCO (Torabi et al., 2018a) learns
an inverse dynamics model, iteratively using the state-action-next state visitation in the environment and
using it to predict the actions that generate the expert state trajectory. OPOLO (Zhu et al., 2020b) is
a recent method which presents a principled off-policy approach for imitation learning by minimizing an
upper-bound of the state marginal matching objective. IQ-Learn (Garg et al., 2021) proposes to make
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Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 102.76±0.90 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaiFO 99.04±1.61 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 95.09±6.14 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 103.89±2.37 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 98.64±0.14 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
IMIT-
PAL
(ours)

105.93±3.12 86.47± 7.66 90.65±15.17 75.60±1.90 82.40±9.05 94.49±3.21

IMIT-
RAL
(ours)

100.35±3.6 92.34±8.63 96.80±2.45 94.41±2.94 78.06±4.24 91.27±9.33

RANK-
PAL
(ours)

98.83±0.09 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28

RANK-
RAL
(ours)

99.31±1.50 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13

Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 3: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks.
The results in this Table also include evaluations for the IMIT-{PAL, RAL} methods.

Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 210.22±3.43 721.92±89.89 410.83±238.02 224.58±71.42 704.88±13.49 324.94±44.39

GAIfO 202.66±4.87 2871.47±365.73 1532.57±693.72 4666.31±143.75 1141.66±1400.11 326.69±13.26
DACfO 194.65±14.08 3350.55±141.69 11057.54±407.26 3045.21±2485.33 5112.15±38.01 1165.40±1867.61
f -IRL 212.50±6.43 3446.33±35.66 12527.24±344.95 5630.32±71.35 4200.48±1124.17 4362.46±459.72

OPOLO 210.84±1.31 3168.35±206.26 11576.12±155.09 4407.70±1356.39 5529.44±164.94 1468.90± 1041.853
IMIT-PAL (ours) 216.64±7.95 3059.43±283.85 11806.47± 1750.24 4208.17±107.41 4872.39±480.23 5265.60±287.44
IMIT-RAL (ours) 205.33±8.92 3266.28±318.03 12626.18±54.71 5254.54±165.19 4612.8±192.06 5089.88±621.07
RANK-PAL (ours) 202.24±1.80 3082.98±582.59 12259.06± 206.82 5225.49±42.02 5862.42±47.68 5393.45±291.16
RANK-RAL (ours) 203.20±4.65 3512.67±21.09 13204.49±721.77 5189.51±71.27 5520.14±116.77 5262.96±337.44

Expert 204.6 ± 0 3535.88 ± 0 13051.46 ± 0 5456.91 ± 0 5926.17 ± 0 5565.53 ± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 4: Asymptotic performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks. The results in
this Table also include evaluations for the IMIT-{PAL, RAL} methods.

imitation learning non-adversarial by directly optimizing the Q-function and removing the need to learn a
reward as a subproblem. All the approaches only have access to expert state-trajectories.

We use the author’s open-source implementations of baselines OPOLO, DACfO, GAIfO, BCO available
at https://github.com/illidanlab/opolo-code. We use the author-provided hyperparameters (similar
to those used in (Zhu et al., 2020b)) for all MuJoCo locomotion environments. For f -IRL, we use the
author implementation available at https://github.com/twni2016/f-IRL and use the author provided
hyperparameters. IQ-Learn was tested on our expert dataset by following authors implementation found here:
https://github.com/Div99/IQ-Learn. We tested two IQ-Learn loss variants: ’v0’ and ’value’ as found in
their hyperparameter configurations and took the best out of the two runs.

Policy Optimization: We implement RANK-PAL and RANK-RAL with policy learn-
ing using SAC (Haarnoja et al., 2018). We build upon the SAC code (Achiam, 2018)
(https://github.com/openai/spinningup) without changing any hyperparameters.

Reward Learning: For reward learning, we use an MLP parameterized by two hidden layers of 64 dimensions
each. Furthermore, we clip the outputs of the reward network between [−10, 10] range to keep the range of
rewards bounded while also adding an L2 regularization of 0.01. We add absorbing states to early terminated
agent trajectories following Kostrikov et al. (2019). For training the ranking loss until convergence in both
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Figure 8: We evaluate rank-game over environments including Hopper-v2, Ant-v2, Humanoid-v2, Door, and Pen-v0.

update strategies (PAL and RAL), we used evaluation on a holdout set that is 0.1 the total dataset size as a
proxy for convergence.

Data sharing between players: We rely on data sharing between players to utilize the same collected
transitions for both players’ gradient updates. The reward learning objective in RANK-PAL and RANK-RAL
requires rolling out the current policy. This makes using an off-policy routine for training the policy player
quite inefficient, since off-policy model-free algorithms update a policy frequently even when executing a
trajectory. To remedy this, we reuse the data collected with a mixture of policies obtained during the previous
off-policy policy learning step for training the reward player. This allows us to reuse the same data for policy
learning as well as reward learning at each iteration.

Ranking loss for reward shaping via offline annotated rankings: In practice for the (pref) setting
(Section 4.2), to increase supervision and prevent overfitting, we augment the offline dataset by regressing the
snippets (length l) of each offline trajectory τ i for behavior ρi to k ∗ l, in addition to regressing the rewards for
each state to k. The snippets are generated as contiguous subsequence from the trajectory, similar to Brown
et al. (2019).

C.1 Hyperparameters

Hyperparameters for RANK-{PAL,RAL} (vanilla,auto and pref) methods are shown in Table 5. For RANK-
PAL, we found the following hyperparameters to give best results: npol = H and nrew = (’validation’ or H/b),
where H is the environment horizon (usually set to 1000 for MuJoCo locomotion tasks) and b is the batch size
used for the reward update. For RANK-RAL, we found npol = H and nrew = (’validation’ or |D|/b), where
|D| indicates the cumulative size of the ranking dataset. We found that scaling reward updates proportionally
to the size of the dataset also performs well and is a computationally effective alternative to training the
reward until convergence (see Section D.7).

Hyperparameter Value
Policy updates npol H
Reward batch size(b) 1024
Reward gradient updates nrew val or |D|/1024
Reward learning rate 1e-3
Reward clamp range [-10,10]
Reward l2 weight decay 0.0001
Number of interpolations [auto] 5
Reward shaping parameterization [auto] exp-[-1]
Offline rankings loss weight (λ) [pref] 0.3
Snippet length l [pref] 10

Table 5: Common hyperparameters for the RANK-GAME algorithms. Square brackets in the left column indicate
which hyperparameters that are specific to ‘auto’ and ‘pref’ methods.

30



Published in Transactions on Machine Learning Research (01/2023)

D Additional Experiments

D.1 Complete evaluation of LfO with rank-game(auto)

Figure 9 shows a comparison of RANK-PAL(auto) and RANK-RAL(auto) for the LfO setting on the
Mujoco benchmark tasks: Swimmer-v2, Hopper-v2, HalfCheetah-v2, Walker2d-v2, Ant-v2
and Humanoid-v2. This section provides complete results for Section 5.1 in the main paper.
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Figure 9: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard
deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency. Dotted blue line shows the expert’s performance.

D.2 Evaluation of LfD with rank-game(auto)

rank-game is a general framework for both LfD(with expert states and actions) and LfO (with only expert
states/observations). We compare performance of rank-game compared to LfD baselines: IQ-Learn (Garg
et al., 2021), DAC (Kostrikov et al., 2018) and BC (Pomerleau, 1991).

In figure 10, we observe that rank-game is among the most sample efficient methods for learning from
demonstrations. IQlearn shows poor learning performance on some tasks which we suspect is due to the low
number of expert trajectories we use in our experiments compared to the original work. DAC was tuned
using the guidelines from Orsini et al. (2021) to ensure fair comparison.

D.3 Utility of automatically generated rankings in rank-game(auto)

We investigate the question of how much the automatically generated rankings actually help in this experiment.
To do that, we keep all the hyperparameters same and compare RANK-GAME (vanilla) with RANK-GAME
(auto). RANK-GAME (vanilla) uses no additional ranking information and Lk is used as the reward loss.
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Figure 10: Comparison of rank-game methods with baselines in the LfD setting (expert actions are available).
RANK-{PAL,RAL} are competitive to state of the art methods.
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Figure 11: RANK-PAL(vanilla) has high variance learning curves with lower sample efficiency compared to RANK-
PAL(auto).

Figure 11 shows that in RANK-PAL (auto) has lower variance throughout training (more stable) and is more
sample efficient compared to RANK-PAL(vanilla).

D.4 Comparison of imit-game and rank-game methods

Imitation learning algorithms, particularly adversarial methods, have a number of implementation com-
ponents that can affect learning performance. In this experiment, we aim to further reduce any imple-
mentation/hyperparameter gap between adversarial imitation learning (AIL) methods that are based on
the supremum-loss (described in section 3) function and rank-game to bring out the obtained algorithmic
improvements. To achieve this, we swap out the ranking loss Lk based on regression with a supremum-loss
and call this method IMIT-{PAL,RAL}. This results in all the other hyperparameters such as batch size,
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reward clipping, policy and reward learning iterations, and optimizer iterations to be held constant across
experiments.

We present a comparison of RANK-{PAL, RAL} and IMIT-{PAL, RAL} in terms of asymptotic performance
in Table 3 and their sample efficiency in Figure 12. Note that Table 3 shows normalized returns that
are mean-shifted and scaled between [0-100] using the performance of a uniform random policy and the
expert policy. The expert returns are given in Table 4 and we use the following performance values from
random policies for normalization: { Hopper= 13.828, HalfCheetah= −271.93, Walker= 1.53, Ant= −62.01,
Humanoid= 112.19}. Table 4 shows unnormalized asymptotic performance of the different methods.

In terms of sample efficiency, we notice IMIT-{PAL, RAL} methods compare favorably to other regularized
supremum-loss counterparts like GAIL and DAC but are outperformed by RANK-{PAL, RAL} (auto)
methods. We hypothesize that better learning efficiency in Lk compared to supremum-loss is due to regression
to fixed targets being a simpler optimization than maximizing the expected performance gap under two
distributions.
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Figure 12: Comparison of performance on OpenAI gym benchmark tasks. Specifically, we seek to compare RANK-
{PAL, RAL} methods to IMIT-{PAL, RAL} methods and IMIT-{PAL, RAL} methods to their non-Stackelberg
counterparts GAIfO and DACfO. The shaded region represents standard deviation across 5 random runs. RANK-PAL
and RANK-RAL substantially outperform the baselines in sample efficiency and IMIT-{PAL, RAL} is competitive to
the strongest prior baseline OPOLO.

D.5 Effect of parameterized reward shaping in rank-game (auto)

We experiment with different ways of shaping the regression targets (Appendix B) for automatically generated
interpolations in RANK-GAME (auto) in Figure 13. In the two left-most plots for RANK-PAL (auto),
we see that reward shaping instantiations (exponential with negative temperature) which learns a higher
performance gap for pairs of interpolants closer to the agent lead to higher sample efficiency. We note that
decreasing the temperature too much leads to a fall in sample efficiency. The same behavior is observed in
RANK-RAL (two right-most plots) methods but we find them to be more robust to parameterized shaping
than PAL methods. We use the following interpolation scheme: exponential with temperature=−1 for our
experiments in the main paper.
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Figure 13: The two left-most plots show the effect of reward shaping in RANK-PAL (auto) methods using linear and
exponential shaping functions. The two right-most plots show the same effect of reward shaping in RANK-RAL (auto)
methods. Reward shaping instantiations which induce a higher performance gap between pairs of interpolants closer
to the agent perform better and RAL is more robust to reward shaping variants than PAL.

D.6 On the rank preserving nature of SLk

Figure 14: Increasing the state size of the domain increases the rank consistency afforded by SLk and increasing the
number of rankings decreases the rank consistency.

The ranking loss SLk (Appendix B, Eq 91) regresses the ρi, ρj and each of the intermediate interpolants
(ρi = ρij

λ0
, ρij

λ1
, ..., ρij

λP
, ρj = ρij

λP +1
) to fixed scalar returns (k0, k1, ..., kP +1) where k0 ≤ k1 ≤ ... ≤ kp+1 = k.

The ranking loss SLk is given by:

SLk(D; R) = 1
p + 2

P +1∑
i=0

Es∼ρij
λi

(s,a)
[
(R(s, a)− ki)2]

(93)

SLk provides a dense reward assignment for the reward agent but does not guarantee that minimizing
SLk would lead to the performance ordering between rankings, i.e Eρ1 [f(s)] < Eρ2 [f(s)] < Eρ3 [f(s)] < .. <
EρP +1 [f(s)]. An ideal loss function for this task regresses the expected return under each behavior to scalar
values indicative of ranking, but needs to solve a complex credit assignment problem. Formally, we can write
the ideal loss function for reward agent as follows

SLideal
k (D; R) = 1

p + 2

P +1∑
i=0

[Es∼ρij
λi

(s,a)[R(s, a)]− ki]2 (94)

We note that the SLk upper bounds SLideal
k using Jensen’s inequality and thus is a reasonable target for

optimization. In this section we wish to further understand if SLk has a rank-preserving policy. SLk is a family
of loss function for ranking that assigns a scalar reward value for each states of a particular state visitation
corresponding to its ranking. Ideally, given a ranking between behaviors ρ0 ⪯ ρ1 ⪯ ρ2... ⪯ ρP +1 we aim to
learn a reward function f that satisfies Eρ0 [f(s)] < Eρ1 [f(s)] < Eρ2 [f(s)] < .. < EρP +1 [f(s)]. We empirically
test the ability of the ranking loss function SLk to facilitate the desired behavior in performance ranking.
We consider a finite state space S and number of rankings P . We uniformly sample P + 1 possible state
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visitations and the intermediate regression targets {ki}n
i=1 s.t ki ≤ ki+1. To evaluate the rank-preserving

ability of our proposed loss function we study the fraction of comparisons the optimization solution that
minimizes SLk is able to get correct. Note that P + 1 sequential ranking induces P (P + 1)/2 comparisons.

Figure 14 shows that with large state spaces SLk is almost rank preserving and the rank preserving ability
degrades with increasing number of rankings to be satisfied.

D.7 Stackelberg game design

We consider the sensitivity of the two-player game with respect to policy update iterations and reward
update iterations. Our results (Figure 15) draw analogous conclusions to Rajeswaran et al. (2020) where
we find that using a validation loss for training reward function on on-policy and aggregate dataset in
PAL and RAL respectively works best. Despite its good performance, validation loss based training can
be wall-clock inefficient. We found a substitute method to perform similarly while giving improvements
in wall-clock time - make number of iterations of reward learning scale proportionally to the dataset set
size. A proportionality constant of (1/batch-size) worked as well as validation loss in practice. Contrary
to Rajeswaran et al. (2020) where the policy is updated by obtaining policy visitation samples from the
learned model, our ability to increase the policy update is hindered due to unavailability of a learned model
and requires costly real-environment interactions. We tune the policy iteration parameter (Figure 16) and
observe the increasing the number of policy updates can hinder learning performance.
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Figure 15: The left two plots use PAL strategy and the right two plots use RAL strategy. Reward learning using a
validation loss on a holdout set leads to improved learning performance compared to hand designed reward learning
iterations.
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Figure 16: Small number of policy updates are useful for good learning performance in the PAL setting here.

D.8 Sensitivity of reward range for the ranking loss Lk

In Section 4.2, we discussed how the scale of learned reward function can have an effect on learning performance.
We validate the hypothesis here, where we set Rmax = k and test the learning performance of RANK-PAL
(auto) on various different values of k. Our results in figure D.9 show that the hyperparameter k has a large
effect on learning performance and intermediate values of k works well with k = 10 performing the best.
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Figure 17: Intermediate values of k work best in practice.

D.9 Effect of regularizer for rank-game

rank-game(auto) incorporates automatically generated rankings which can be understood as a form of
regularization, particularly mixup Zhang et al. (2017) in trajectory space. In this experiment, we work in the
PAL setting with ranking loss Lk and compare the performances of other regularizers: Weight-decay (wd),
Spectral normalization (sn), state-based mixup to (auto). Contrary to trajectory based mixup (auto) where
we interpolate trajectories, in state-based mixup we sample states randomly from the behaviors which are
pairwise ranked and interpolate between them.
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Figure 18: (auto) regularization outperforms other forms of regularization in rank-game

Figure 18 shows learning with (auto) regularizer is more efficient and stable compared to other regularizers.

D.10 Ablation analysis summary

We have ablated the following components for our method: Automatically-generated rankings D.3, Ranking
loss D.4, Parameterized reward shaping D.5, Stackelberg game design D.7 and range of the bounded reward D.9.
Our analysis above (Figure 12,17 and 15) shows quantitatively that the key improvements over baselines
are driven by using the proposed ranking loss, controlling the reward range and the reward/policy update
frequency in the Stackelberg framework. Parameterized reward shaping (best hyperparameter : exp -1
compare to unshaped/linear shaping) and automatically-generated rankings contribute to relatively small
improvements. We note that a single hyperparameter combination (Table 5) works well across all tasks
demonstrating robustness of the method to environment changes.

36



Published in Transactions on Machine Learning Research (01/2023)

D.11 Varying number of expert trajectories for imitation learning
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Figure 19: We investigate learning from expert
observation+offline preferences where the of-
fline preferences are noisy. RANK-PAL shows
considerable robustness to noisy preferences.

In the main text, we considered experiment settings where the
agent is provided with only 1 expert trajectory. In this section,
we test how our methods performs compared to baselines as we
increase the number of available expert observation trajectories.
We note that these experiments are in the LfO setting. Figure 20
shows that RANK-GAME compares favorably to other meth-
ods for varying number of expert demonstrations/observations
trajectories.

D.12 Robustness to noisy preferences

In this section, we investigate the effect of noisy preferences on
imitation learning. We consider the setting of Section 5.2 where
we attempt to solve hard exploration problems for LfO setting by
leveraging trajectory snippet comparisons. In this experiment,
we consider a setting similar to Brown et al. (2019) where we
inject varying level of noise, i.e flip x% of trajectory snippet at
random. Figure 19 shows that RANK-PAL(pref) is robust in
learning near-expert behavior upto 60 percent noise in the Door
environment. We hypothesize that this robustness to noise is
possible because the preferences are only used to shape reward functions and does not change the optimality
of expert.

D.13 Learning purely from offline rankings in manipulation environments
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Figure 21: Testing with 10, 20 and 50 suboptimal preferences uniformly sampled from a replay buffer of SAC trained
from pre-specified reward we see that TREX is not able to solve these tasks. The black dotted line shows asymptotic
performance of RANK-PAL (auto) method.

In section 5.2, we saw that offline annotated preferences can help solve complex manipulation tasks via
imitation. Now, we compare with the ability of a prior method—TREX (Brown et al., 2019) that learns
purely from suboptimal preferences—under increasing numbers of preferences. We test on two manipulation
tasks: Pen-v0 and Door-v0 given varying number of suboptimal preferences: 10, 20, 50. These preferences
are uniformly sampled from a replay buffer of SAC trained until convergence under a pre-specified reward,
obtained via D4RL (licensed under CC BY) .We observe in Figure 21 that T-REX is unable to solve these
tasks under any selected number of suboptimal preferences.
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Figure 20: Performance analysis of different algorithms in the LfO setting with varying number of expert trajectories.
RANK-PAL (auto) compares favorably to other methods
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