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ABSTRACT

Large language models (LLMs) have demonstrated remarkable proficiency across
various natural language processing (NLP) tasks. However, adapting LLMs
to downstream applications requires computationally intensive and memory-
demanding fine-tuning procedures. To alleviate these burdens, parameter-efficient
fine-tuning (PEFT) techniques have emerged as a promising approach to tailor
LLMs with minimal computational overhead. While PEFT methods offer substan-
tial advantages, they do not fully address the pervasive issue of bias propagation
from pre-training data. This work introduces Bias-Alleviating Low-Rank Adapta-
tion (BA-LoRA), a novel PEFT method designed to counteract bias inheritance.
BA-LoRA incorporates three distinct regularization terms: (1) a consistency regu-
larizer, (2) a diversity regularizer, and (3) a singular value decomposition regularizer.
These regularizers aim to enhance the models’ consistency, diversity, and gener-
alization capabilities during fine-tuning. We conduct extensive experiments on
natural language understanding (NLU) and natural language generation (NLG)
tasks using prominent LLMs such as LLaMA, Mistral, and Gemma. The results
demonstrate that BA-LoRA outperforms LoRA and its state-of-the-art variants.
Moreover, our method effectively mitigates the adverse effects of pre-training bias,
leading to more reliable and robust model outputs.

1 INTRODUCTION

The emergence of large language models (LLMs) has marked a new era in natural language processing
(NLP). Models such as GPT-4 (OpenAl, [2023)), Llama (Touvron et al.,|2023)), Mistral (Jiang et al.,
2023)), and Gemma (Team et al.,[2024)) have demonstrated exceptional performance across a wide
array of NLP tasks, including language comprehension, generation, and reasoning (Zhao et al., 2023}
Chang et al.| [2024)). The remarkable advancements of LLMs can be largely attributed to their training
on vast datasets (Zhao et al., 2023)). As LLMs continue to evolve rapidly, training on extensively
scaled web-derived corpora has become standard practice to improve model generalization, thus
bypassing the labor-intensive processes of data curation and annotation (Gao et al., [2020; |Penedo
et al.| [2023). However, the corresponding increase in data volume has introduced several challenges,
such as the presence of imbalanced, duplicated, and corrupted information (Parashar et al., [2024; Liu
& Hel 2024; (Chen et al.,[2024b; |Yang et al.,|2023)).

Recent research has shown that various forms of bias in training data can negatively affect LLM
behavior (Dong et al.l 2023} |Dodge et al., [2021; Longpre et al., 2023} |Chen et al., [2024a). For
example, noise within the training data can degrade model generalization (Chen et al., [2024a),
while the long-tailed distribution of concepts in web-scale data can cause LLMs to overemphasize
overrepresented topics (Zhu et al., [2024). Furthermore, biases introduced during pre-training can
persist even after fine-tuning, potentially compromising model performance and safety in real-world
applications (Qi et al.| 2023; Bommasani et al., 2021} [Mallen et al., 2022} |Carlini et al., 2023]).

This phenomenon, termed "Catastrophic Inheritance" by (Chen et al., 2024a), has spurred investiga-
tions into mitigation strategies. While constructing less biased datasets and developing more robust
model architectures are prominent approaches (Liu & He} [2024), this study explores an alternative:
innovations in fine-tuning. Fine-tuning LLMs is a powerful method for enhancing task-specific
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performance (Han et al., 2024), aligning models with user intent (Ouyang et al.| 2022} Xu et al.,
2024]), and eliciting desired behaviors (Bai et al.| 2022; Rafailov et al.,|2024). However, fine-tuning
large-scale models’ computational and memory demands are substantial (Hu et al., |2021)). For
instance, 16-bit fine-tuning of a Llama-65B model requires over 780 GB of GPU memory (Dettmers
et al.,[2024)). To address these limitations, parameter-efficient fine-tuning (PEFT) techniques, such as
Low-Rank Adaptation (LoRA) (Hu et al.l 2021)), have gained prominence.

LoRA posits that parameter updates during fine-tuning can be efficiently represented by low-rank
matrices. Therefore, given a pre-trained weight matrix W € R™*"™ instead of updating all parameters
of W directly, LoRA introduces an auxiliary low-rank adapter AW = AB, where A € R™*" and
B € R™*" with rank r < min(m, n). Here, A and B are learnable matrices initialized as:

* Ais initialized with a scaled normal distribution: a;; ~ N (0, 0?).

* B isinitialized to zero: b;; = 0.

For a given input X, the output Y is computed as:

Y = X(W + AW) = X(W + AB). (1

Only A and B are updated during fine-tuning while W remains frozen. This initialization ensures
that AB = 0 at the start of training, thus preserving the model’s original output. Since the rank r
is significantly smaller than the dimensions of W, LoRA substantially reduces training overhead
compared to full fine-tuning (Hu et al.| [2021]).

To mitigate the detrimental effects of Catastrophic Inheritance, particularly noise and imbalance,
we propose Bias-Alleviating Low-Rank Adaptation (BA-LoRA). Building upon Principal Singular
Values and Singular Vectors Adaptation (PiSSA) (Meng et al., 2024), which addresses convergence
issues in standard LoRA, our approach incorporates three distinct regularization terms: a consistency
regularizer, a diversity regularizer, and a singular value decomposition (SVD) regularizer. The consis-
tency regularizer preserves valuable pre-trained knowledge during fine-tuning, while the diversity
regularizer encourages varied model outputs. The SVD regularizer enhances the generalization capa-
bilities of generative models. Recognizing the fundamental differences between Natural Language
Understanding (NLU) and Natural Language Generation (NLG), such as determinism in NLU versus
diversity in NLG, we tailor our regularization strategies accordingly.

To evaluate the efficacy of BA-LoRA, we conduct comprehensive experiments across diverse bench-
marks, including mathematical reasoning (GSM8K (Cobbe et al., 2021) and MATH (Yu et al.,2023))),
coding (HumanEval (Chen et al., [2021) and MBPP (Austin et al., [2021))), natural language under-
standing (GLUE (Wang et al., |2018)), and general language evaluation (MT-Bench (Zheng et al.
2024)). Our experiments utilize prominent LLMs such as LLaMA 2-7B (Touvron et al., [2023)),
Mistral-7B (Jiang et al.| 2023), and Gemma-7B (Team et al.| 2024), as well as encoder-only architec-
tures like RoBERTa-large (Liu et al.}2019)) and DeBERTa-v3-base (He et al.| 2021b). The results
unequivocally demonstrate BA-LoRA’s superiority over LoRA and PiSSA. Moreover, our method
effectively attenuates noise inherited from pre-training, leading to more robust and generalizable
models.

2 RELATED WORKS

Parameter-efficient fine-tuning (PEFT) techniques (Xu et al.,[2023b; |Han et al.,|2024)) have garnered
significant attention as an approach to adapting LLMs for specific tasks under limited hardware
resources. Three main categories of PEFT techniques are commonly used. The first category includes
adapter-based methods (Houlsby et al., [2019bj} |Lin et al., [2020; |Lei et al., [2023; He et al.,|2021a),
which introduce additional layers into the model and fine-tune these layers (typically with far fewer
parameters) to reduce computational costs. The second category comprises soft prompt tuning
methods (Hambardzumyan et al., 2021} [Lester et al., 2021} |L1 & Liang, 2021a} Liu et al.| [2023)),
which prepend learnable soft prompts to the model’s input to tailor it to specific tasks. These methods
leverage the inherent capabilities of pre-trained models, requiring only the appropriate prompts to
adapt to downstream tasks. The third category encompasses low-rank adaptation (LoRA) and its
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variants (Hu et al.|[2021; Zhang et al.| |2022; [Dettmers et al.,2024)). LoRA introduces the product of
low-rank matrices within existing layers to approximate weight updates during fine-tuning (Hu et al.}
2021)).

Variants of LoRA enhance its efficiency and performance in different ways. AdaLoRA adaptively dis-
tributes the parameter budget among weight matrices based on their importance, improving efficiency
and performance by pruning unimportant updates and minimizing computational overhead (Zhang
et al.,|2022). DoRA increases LoRA’s learning capacity and stability by decomposing pre-trained
weights into magnitude and direction components for fine-tuning (Liu et al.,|2024). LoHA enhances
LoRA by employing Hamiltonian products (Hyeon-Woo et al.l 2021). DyLoRA addresses the fixed
size and rank optimization limitations of LoRA by dynamically training LoRA blocks across varying
ranks (Valipour et al.,[2022). DeltaLoRA improves the representational capacity of LoRA by updating
the model’s original weights using parameters from adapter layers (Zi et al.,[2023). PiSSA initializes
adapter matrices A and B to approximate the original matrix W through singular value decompo-
sition, leading to faster convergence and improved performance (Meng et al., 2024)). While many
LoRA variants focus on accelerating convergence or reducing memory consumption, our BA-LoRA
method uniquely addresses the core challenge of Catastrophic Inheritance in LLM fine-tuning.

3 METHOD

3.1 PRINCIPAL SINGULAR VALUES AND SINGULAR VECTORS ADAPTATION (PISSA)

As a variant of LoRA, PiSSA addresses the convergence speed challenge by retaining the core
LoRA architecture while innovating in initialization. Specifically, PiISSA leverages the principal
components of the original weight matrix, W, to initialize the adapter matrices, A and B. The
remaining components are encapsulated within a residual matrix, W"* € R"™*". The SVD of
W e R™*" is expressed as W = USV7T, where U € R"™*™in(m:n) apnd V' € R»¥min(mn) are
orthogonal singular vectors, and S = diag(s) € R™n(mn)xmin(m.n) i 3 diagonal matrix, where
the operation diag(s) transforms s to S and s € RZ"™™ represents the singular values arranged
in descending order. PiSSA partitions the singular values and vectors into principal and residual
components, denoted as {U[:,:r]a S[:r,:r] ) ‘/[:,:r]} and {U[:,r:]a S[r:,r:]a ‘/[:,r:]}, TeSPeCtiVely, where the
matrix slicing notations are the same as those in PyTorch, [: 7] denotes the first  dimensions, and
r signifies the intrinsic rank of W. The principal components are then employed to initialize the
low-rank adapter with A € R™*" and B € R"*"™:

A= U[:7:T] S[l’{?,] S R"LXT’ (2)
B = S50 Vi € R ©

[iry:r]

The residual matrix W"® remains frozen during fine-tuning:

Wres = U[:,r:] S[r:,r:] Vv[T»p] e R™*", 4

PiSSA preserves the pre-trained model’s full capacity at the start of fine-tuning by using W =
Wres + AB. This approach prioritizes training the most influential parameters, thereby accelerating
convergence. Inheriting LoRA’s benefits of reduced parameter count and deployment simplicity,
PiSSA further leverages efficient SVD computations to expedite the training process.

3.2 BIAS-ALLEVIATING LOW-RANK ADAPTATION (BA-LORA)

Catastrophic Inheritance encapsulates the challenges posed by biased large-scale training data, which
can manifest in LLMs as vulnerabilities and limitations arising from duplicated, noisy, imbalanced,
or unethical samples. These inherited flaws can adversely impact downstream tasks, leading to dimin-
ished generalization, degraded performance, security breaches, and biased outputs. To address the
specific issues caused by noisy and imbalanced data, we introduce BA-LoRA, a method incorporating
three distinct regularization terms: (1) consistency regularizer, (2) diversity regularizer, and (3) SVD
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regularizer. Recognizing the nuanced differences between NLU and NLG, we have tailored specific
variants of each regularizer to optimize performance for respective task domains.

3.2.1 REGULARIZATIONS FOR NLU TASKS

Consistency Regularization. To safeguard valuable pre-trained knowledge during the fine-tuning
process, we introduce a regularization term based on the mean squared error (MSE) loss between
normalized output logits produced by the pre-trained model, F p, and those generated by the fine-
tuned model, F . This loss function incentivizes the fine-tuned model to retain essential pre-trained
information while adapting to downstream task requirements.

Fy Ff ?

[Fpllz IFs]l2

This objective facilitates the inheritance of critical pre-trained knowledge in F ; after fine-tuning.

(&)

LcR_NLU = H
2

Diversity Regularization. To address the detrimental effects of imbalanced data, we introduce a
diversity regularizer aimed at eliciting more diverse representational structures within LLMs and
preventing the encoding of semantically similar samples during fine-tuning. Inspired by (Bardes
et al.,|2021), we employ a covariance loss to minimize the off-diagonal elements of the covariance
matrix of the fine-tuned outputs F y:

1
Lpr NLU = D Z[C(Ff)]?’j ©®
i#£]

where D represents the dimensionality of F; and C'(Fy) is the covariance matrix of F ¢, which is
defined as:

1 M

T (=N =" %

i=1

C(Fy) =

where M denotes the number of elements involved in F¢, f; is the i-th element in F ¢, and f is the
mean value of Fy.

Singular Value Decomposition Regularization. The SVD regularizer is designed to enhance model
generalizability to mitigate the adverse effects of noisy data. Building upon the insight from (Chen
et al.,2019) that eigenvectors corresponding to the largest singular values significantly contribute to
model generalizability, we propose an SVD regularizer that maximizes the sum of the top k singular
values of a batched fine-tuned output matrix:

k
2 i1 0
D
> j=193
where k is a hyperparameter, o; denotes the i-th singular value of the top k singular values of the
output matrix, and ngﬂ 0 is the sum of all singular values obtained from the SVD of the output

®

LsVDR NLU = —

matrix. This decomposition represents the matrix as UX'V T, where X is a diagonal matrix containing
singular values {01, ...,op}. This regularization term emphasizes significant components of the
logit matrix, enhancing the model’s generalizability across various downstream tasks.

3.2.2 OVERALL OBJECTIVE FUNCTION FOR NLU

The overall objective function for NLU tasks is formulated as follows:

Lty = Liask NLU + M1 Ler NLU + A2LDR_NLU + A3LSVDR_NLU )]

where L5k NLU represents the standard cross-entropy loss function for the downstream task, and
A1, A2, and A3 are weighting parameters to balance each regularization term.
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3.2.3 REGULARIZATIONS FOR NLG TASKS

Consistency Regularization. To ensure that the fine-tuned model retains knowledge from pre-
training, we utilize the Kullback-Leibler Divergence (KLD) to measure the divergence between the
output distributions of the fine-tuned and pre-trained models (Dong et al.,[2021)). Specifically, we
define the consistency regularization loss as:

T
1
LerNie = 7 > KL (Pt (e | yers ) || Pee(ye | y<ro ) (10)
t=1

where Ppy (Y1 | y<i, x) and Py (y; | y<¢, ) represent the conditional probability distributions of the
pre-trained model and the fine-tuned model, respectively. For the current token y;, given the input
x and the preceding token sequence y;. KLD encourages the model to continuously retain useful
pre-training information during the fine-tuning process, which is crucial for maintaining the style and
coherence of the generation task.

Diversity Regularization. To enhance the diversity of the generated text, we introduce an entropy-
based regularization term, inspired by previous work (Gat et al.,|2020). This regularization term aims
to increase the entropy of the predicted token distributions during fine-tuning, thus encouraging more
varied and diverse outputs.

T N
1
Lpr_NLG = —7 E E Pr(;]he) log Pro (x|t ) (1)
t=1i=1

where, Py (z;|h:) represents the probability assigned to token x; at time step ¢, given the model’s
hidden state h,. Maximizing entropy at each time step minimizes repetitive outputs and encourages
more diverse and enriched text generation.

Singular Value Decomposition Regularization To enhance the generalization capability of genera-
tive models, we introduce a regularization technique that accentuates the most significant singular
values, enabling the model to capture the principal components of the data and prioritize the most
informative patterns.

k
Zi:l 0 (12)

LsyDR.NLG = —

where o; denotes the i-th largest singular value, o; represents the j-th singular value, and D is the
total number of singular values. This regularization term aims to maximize the relative contribution
of the top k singular values, encouraging the model to focus on the most critical aspects of the data.
By integrating this regularization, the model is steered towards generating higher-quality and more
diverse outputs, ultimately improving its performance and robustness.

3.2.4 OVERALL OBJECTIVE FUNCTION FOR NLG

The objective function for downstream NLG tasks is formulated as follows:

Lxve = Liask NLG + A Lcr_NLG + A2LDpR_NLG + A3LSVDR_NLG (13)
where L 5k NLc denotes the standard loss for the downstream generative task, and A1, Ag, and A3

are weighting parameters to balance each regularization term.

4 EXPERIMENTS

This section presents a comprehensive evaluation of our proposed BA-LoRA method across a diverse
range of natural language generation (NLG) and natural language understanding (NLU) benchmarks.
Our results unequivocally demonstrate the superiority of BA-LoRA over existing LoRA variants.
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Furthermore, through rigorous experimentation, we elucidate BA-LoRA’s efficacy in mitigating the
adverse impacts of noisy data, thereby enhancing model robustness and generalizability.

4.1 MODELS AND DATASETS

To evaluate the effectiveness of our approach, we conduct experiments using several prominent
language models and assess their performance on a diverse array of datasets, covering both Natural
Language Generation and Natural Language Understanding tasks. Specifically, for language
generation models, we include LLaMA 2-7B (Touvron et al.,[2023), LLaMA 3-8B (Al@Metal, 2024)),
Mistral-7B (Jiang et al., [2023), Gemma-7B (Team et al.| 2024)), and GPT-2-XL (Radford et al.,
2019). For language understanding models, we use BERT-Large (BERT-L) (Devlin et al.,2018)), and
DeBERTa-v3-base (He et al.,[2021b). This selection ensures coverage across various architectures
and parameter scales, facilitating a comprehensive evaluation.

For the datasets, we employ a wide range of tasks in both Natural Language Generation (GSMSK
(Cobbe et al., [2021), MATH (Yu et al.,|2023)), HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), MT-Bench (Zheng et al.|[2024)) and Natural Language Understanding. In the latter, we
assess in-domain (ID) performance using the GLUE benchmark (Wang et al.l 2018)) and out-of-
domain (OOD) generalization using the GLUE-X benchmark (Yang et al.,|2022). These datasets span
a broad range of challenges, allowing for a thorough examination of our method’s generalization
capabilities.

4.2 IMPLEMENTATION DETAILS

In our experiments, we adopt the PiSSA (Meng et al.| 2024)) implementation strategy. We compute
the loss using only the responses from the instruction-following dataset, ensuring lora_dropout to 0.
We utilize the Float32 computation type for both the base model and the adapter in BA-LoRA. For
the NLU tasks, we set the hyperparameters as: Ay = le — 4, Ay = 4e — 4, and A3 = le — 4. We set
lora_r = lora_alpha = 128 and use AdamW (Loshchilov & Hutter, 2017) optimizer with a batch size
of 128, a learning rate of 2e — 5, cosine annealing schedules, and a warmup ratio of 0.03, without
any weight decay. For the NLG tasks, the hyperparameters are set as: A\; = le — 4, Ao = 3e — 4,
and A3 = le — 4. We set lora_r as 8 and select lora_alpha in 8, 16. We utilize AdamW with a
linear learning rate schedule to optimize and tune the learning rate (LR) from 1le — 4, 2e — 4, 3e — 4,
de — 4, 5e — 4, 6e — 4, 5e — 5, 3e — 5. Batch sizes (BS) are selected from 6, 8, 16, 32. Appendix
Section [B]presents the detailed hyperparameters we utilized on the GLUE benchmark. comparison.
All experiments were conducted using NVIDIA A40 (48G) GPUs. All presented results are derived
from three independent experiments, ensuring the consistency and robustness of our findings. Each
experiment was conducted under identical conditions, and the results were averaged to mitigate any
variability. We enhanced Lsvpr_nLc’s computational efficiency by using partial SVD to compute
only the top % singular values, reducing overhead.

4.3 RESULTS AND ANALYSIS

Table 1: Performance Comparison of Various Models and Methods on NLG Tasks. The best and
second-best results are highlighted in bold and underline.

Models Methods Parameters GSM8K MATH HumanEval MBPP MT-Bench Avg
Full FT 6738M 49.05 7.22 21.34 35.59 491 23.62

LoRA 320M 42.47 5.60 17.03 31.48 4.62 20.24

LLaMA-2-7B  piSSA 320M 52.01 7.76 21.55 33.09 4.87 23.86
BA-LoRA 320M 53.83 9.13 23.58 36.86 5.11 25.70

Full FT 6738M 67.02 18.60 45.12 51.38 4.95 37.41

‘ LoRA 168M 67.68 19.90 42.54 55.74 4.92 38.16
Mistral-7B PiSSA 168M 71.90 21.72 45.20 60.83 5.23 40.98
BA-LoRA  168M 73.04 22.11 46.31 62.29 5.41 41.83

Full FT 6738M 71.34 22.74 46.95 55.64 5.40 40.41

LoRA 200M 74.64 31.16 51.64 62.84 5.01 45.06

Gemma-7B PiSSA 200M 77.58 31.47 53.15 65.49 5.66 46.67
BA-LoRA 200M 78.13 32.25 54.41 66.12 573 47.33
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Table 2: Performance comparison of different baseline methods on NLU tasks. The best and second-
best results are highlighted in bold and underline.

Methods MNLI SST-2 MRPC CoLA QNLI QQP RTE SST-B Avg
Full FT 89.90 95.61 89.50 69.23 94.09 92.44 83.85 91.71 88.29
BitFit 89.37 94.84 87.75 66.96 92.24 88.41 78.70 91.35 86.20
HAdapter 90.13 95.53 89.95 68.64 94.11 91.91 84.48 91.48 88.28
PAdapter 90.33 95.61 89.46 68.77 94.29 92.04 85.20 91.60 88.41
LoRA 90.71 94.79 89.85 70.05 93.94 92.07 85.43 91.67 88.56
LoHA 90.74 94.92 90.43 70.63 93.95 92.05 86.41 91.72 88.86
DoRA 90.29 95.79 90.93 70.85 94.10 92.17 86.04 91.79 89.00
DyLoRA 90.97 95.21 91.45 70.79 94.08 92.29 86.57 91.86 89.15
AdaLoRA 90.76 96.10 90.69 71.45 94.55 92.23 87.59 91.84 89.40
PiSSA 90.47 95.81 91.48 72.27 94.41 92.21 87.14 91.93 89.47
BA-LoRA 90.92 96.25 91.83 72.79 94.84 92.59 87.87 92.15 89.91

4.3.1 ANALYSIS OF THE NLG AND NLU PERFORMANCE OF BA-LORA

To evaluate BA-LoRA’s effectiveness on NLG tasks, we fine-tuned LLaMA-2-7B, Mistral-7B, and
Gemma-7B on the MetaMathQA dataset (Yu et al., 2023)) and assessed their mathematical problem-
solving capabilities using the GSM8K (Cobbe et al., 2021)) and MATH (Yu et al.,[2023)) validation sets,
reporting Accuracy. Similarly, models were fine-tuned on the CodeFeedback dataset (Zheng et al.|
2024) and evaluated for coding proficiency via HumanEval (Chen et al., 2021) and MBPP (Austin
et al.| [2021)), with PASS @1 metrics reported. To assess conversational abilities, models were trained
on the WizardLM-Evol-Instruct dataset (Xu et al.,[2024)) and evaluated on MT-Bench (Zheng et al.,
2024)), with response quality judged by GPT-4 and first turn scores reported. All experiments utilized
100K data points and a single training epoch for efficiency.

Table[T| presents the experimental outcomes, clearly demonstrating BA-LoRA’s superior performance
compared to baseline methods. For instance, BA-LoRA enhanced LLaMA 2-7B, Mistral-7B, and
Gemma-7B performance on GSMS8K by 1.82%, 1.14%, and 0.55%, respectively, compared to PiSSA.
HumanEval improvements were 2.03%, 1.11%, and 1.26%, while MT-Bench enhancements reached
0.24%, 0.18%, and 0.07%. Notably, BA-LoRA achieved a remarkable 6.92% performance uplift over
full parameter fine-tuning on Gemma, utilizing only 2.3% of trainable parameters across five tasks.

To assess the effectiveness of BA-LoRA on natural language understanding (NLU) tasks, we con-
ducted experiments on the GLUE benchmark (Wang et al.L|2018)), which includes two single-sentence
classification tasks (CoLA, SST), five paired-text classification tasks (MNLI, RTE, QQP, MRPC,
QNLI), and one text similarity prediction task (STS-B). The evaluation metrics comprise the over-
all matched and mismatched accuracy for MNLI, the Matthews correlation coefficient for CoLA,
the Pearson correlation coefficient for STS-B, and accuracy for the remaining tasks. We used the
DeBERTa-v3-base model (He et al.| 2021b) and compared BA-LoRA against ten baseline methods,
including Full Fine-Tuning (Full FT), BitFit (Zaken et al.|2021), HAdapter (Houlsby et al., 2019a)),
PAdapter (Pfeiffer et al.l 2020), LoRA (Hu et al.| [2021]), LoHA (Hyeon-Woo et al.,|2021)), DoRA (Liu
et al., [2024), DyLoRA (Valipour et al.} [2022), AdaLoRA (Zhang et al., [2022), and PiSSA (Meng
et al., [2024)). Table|Z|presents the results of DeBERTa-v3-base across eight tasks, demonstrating the
consistent superiority of BA-LoRA over all baselines. On average, BA-LoRA outperforms PiSSA and
LoRA by 0.44% and 1.35%, respectively. These results underscore the effectiveness of BA-LoRA in
enhancing the performance of NLU models.

A comparative analysis of Tables[I|and 2] reveals BA-LoRA’s consistent performance advantages
across both NLG and NLU tasks. This indicates BA-LoRA’s proficiency in augmenting both
generative and comprehension capabilities for language models. By incorporating consistency,
diversity, and SVD regularization, BA-LoRA effectively mitigates the adverse effects of Catastrophic
Inheritance, fostering consistent, diverse, and generalized model outputs. Furthermore, BA-LoRA’s
modest computational requirements render it suitable for efficient fine-tuning of LLMs with limited
resources.

4.3.2 ANALYSIS ON MITIGATE NOISY DATA

This study aims to evaluate BA-LoRA’s efficacy in mitigating the detrimental effects of noise inherent
in large-scale pre-training data on downstream tasks. Given the ubiquitous presence of noise in
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Table 3: ID Performance Comparison of BERT-L. and GPT-2-XL Using LoRA and BA-LoRA
Methods on GLUE Benchmark. The best outcome is highlighted in bold.

Model Methods MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg
LoRA 8724  93.19 90.10 6473 93.13 90.94 73.14 90.63 8539
BERT-L BA-LoRA 89.72 9485 9223 6549 9548 91.72 7577 91.71 87.12

LoRA 8528 9538 86.17 50.63 89.42 8856 7229 8927 82.13
GPT-2-XL  BA-LoRA 88.14 96.52 8923 5276 91.26 89.95 74.57 90.83 84.16

Table 4: OOD Performance Comparison of BERT-L and GPT-2-XL Using LoRA and BA-LoRA
Methods on GLUE-x Benchmark. The best outcome is highlighted in bold.

Model Methods MNLI SST-2 MRPC CoLA OQNLI QQP RTE STS-B Avg

LoRA 85.19 9349 89.93 6349 9232 87.73 73.65 90.57 8455
BERT-L BA-LoRA 8791 9418 90.62 6581 93.04 89.06 7541 91.21 85.91
LoRA 87.02 95.11 86.81 6095 91.77 87.59 78.76 89.25 84.66

GPT-2-XL BA-LoRA 89.58 9640 88.18 63.11 92.68 88.62 8121 9037 86.27

human-annotated datasets, its influence on pre-training is unavoidable. To comprehensively assess
the impact of noisy pre-training data, we employ both ID and OOD evaluation using the GLUE and
GLUE-x benchmarks, respectively. BERT-L (Devlin et al.|, [2018]), pre-trained on BooksCorpus (Zhu
et al.| 2015)) and English Wikipedia, and GPT-2-XL (Radford et al.,[2019)), pre-trained on the noisy
WebText dataset derived from Common Crawl, serve as our models.

As detailed in Tables [3]and @ BA-LoRA consistently outperforms LoRA across all tasks, underscor-
ing its superior generalization capabilities. Specifically, BA-LoRA achieves average performance
improvements of 2.03% and 2.47% for BERT-L and GPT-2-XL, respectively, on the GLUE bench-
mark. Similarly, on GLUE-x, BA-LoRA surpasses LoRA by 1.61% and 1.90% for BERT-L and
GPT-2-XL, respectively. These results substantiate the effectiveness of our proposed regularization
terms in mitigating the negative impacts of noise in pre-training and enhancing model robustness.
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Figure 1: t-SNE Visualizations Comparing Last Hidden Layer Features of BERT-L and GPT-2-XL
Fine-Tuned with LoRA and BA-LoRA on a Mini Subset of the GLUE Dataset.

4.3.3 ANALYSIS ON MITIGATING IMBALANCED DATA

This experiment evaluates the effectiveness of BA-LoRA in addressing imbalanced data. Specifically,
using the MNLI dataset, LORA and BA-LoRA are applied to fine-tune the BERT-L and GPT-2-XL
models, respectively. The hidden layer features of the last training step are extracted and visualized
using t-SNE (Van der Maaten & Hinton, |2008)) technology for comparison.

As shown in Figure m the models fine-tuned with standard LoRA in sub-figures (a) and (c) have low
discrimination between categories and obvious category mixing. In contrast, the models fine-tuned
with BA-LoRA in sub-figures (b) and (d) have clearer category separation, especially the results of
BERT-L, which have higher intra-category clustering and clearer boundaries. These analyses show
that BA-LoRA can effectively alleviate the impact of imbalanced data in pre-training.
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Figure 2: Ablation study results of BA-LoRA regularizations on the GSM8K and MATH datasets.
Here, "Reg" stands for "Regularization” and "w/o Reg" means "without regularization". Lor_N1LG»
Lpr_NLG, and Lsypr_NLG denote the application of only the corresponding regularization, and
"BA-LoRA" refers to the baseline using all regularizations.

Table 5: Ablation results of BA-LoRA regularization on NLU tasks. Here, "Reg" stands for "regular-
ization", and "w/o0 Reg" means "no regularization". Lcr_NLus LDR_NLU, and Lsypr_NLU Mmean
that only the corresponding regularization is applied, and "BA-LoRA" refers to the baseline using all
regularization. The best and second-best results are highlighted in bold and underline.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE SST-B Avg

w/o Reg 90.47 9581 9148 7227 9441 9221 87.14 9193 8947
Lcr NLU 90.84 96.27 91.65 72.68 94.64 9247 87.59 92.11 89.78
LDPR_NLU 90.77  96.09  91.81 72.44 9444 9241 8737 91.89 89.65
Lsyvpr NnLu  90.63 9596  91.37 7237 9458 9239 8735 9208 89.59
BA-LoRA 90.92 96.25 91.83 72.79 9484 9259 87.87 9215 8991

4.3.4 ABLATION STUDY

This ablation experiment aims to analyze the impact of three regularization terms (Lcr NLG»
Lpr_NLG> LsvDR_NLG) in BA-LoRA on model performance. The experiment selected three models,
LLaMA-2-7B, Mistral-7B, and Gemma-7B, and evaluated them on GSM8K and MATH datasets. To
ensure clear results, we only tested single regularization terms to reveal their independent contribu-
tions.

As shown in FigureEI, the model without regularization ("w/o Reg") produced the lowest perfor-
mance across both datasets. In contrast, introducing different regularization terms led to varying
degrees of performance improvement. Specifically, Lcr_npg contributes to the equilibrium gain for
both datasets. The effect of Lpr_nr.c on Gemma-7B is significantly stronger relative to Lcr NLG-
Ultimately, the model incorporating all three regularization terms achieved the highest performance
on both datasets. These findings validate the regularization strategy and show that combining the
terms in BA-LoRA further enhances model generalization. These findings confirm the effectiveness
of the proposed regularization strategy, and further indicate that combining the regularization terms
in BA-LoRA enhances the model’s generalization ability.

To further assess the impact of our proposed regularization terms on model performance, we conducted
an ablation study focusing on three terms designed for NLU tasks in BA-LoRA: Lcr_NLU, £LDR_NLUS
and Lsyvpr_nru. We employed the DeBERTa-v3-base model and evaluated it across several tasks
from the GLUE benchmark.

As shown in Table the model without any regularization (denoted as "w/o Reg") exhibited the
lowest performance, achieving an average score of 89.47. Introducing each regularization term
individually led to performance improvements across various tasks. Notably, Lcr_npu consistently
provided substantial gains, achieving an average score of 89.78, second only to the full BA-LoRA
model. The term Lpr nru showed particularly strong performance on the MRPC task, while
Lsvpr_NpLu delivered balanced improvements across most tasks. Finally, BA-LoRA, incorporating
all three regularization terms, achieved the highest overall performance with an average score of §9.91.
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These results demonstrate that each regularization term contributes to enhancing model performance,
and their combination in BA-LoRA provides optimal generalization on NLU tasks.
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Figure 3: Impact of Different Regularization Hyperparameter Sizes for Liasx nLc on Fine-Tuned
Model Performance, with Each Line Representing Results Using a Single Hyperparameter Value
(Without Combinations).

4.3.5 HYPERPARAMETER ANALYSIS

This experiment aims to explore the impact of different sizes of regularization term hyperparameters
on the performance of fine-tuned models for NLG tasks. The three regularization hyperparameters
tested in the experiment are A1, Ao, and A3, with values selected from the range of 1le — 6, 1le — 5,
le — 4, 1e — 3, and 1le — 2. We first fine-tune the LLaMA-2-7B model on the MetaMathQA dataset
and then evaluate its performance on the GSM8K and MATH datasets.

As illustrated in Figure[3] the model achieves optimal performance on both datasets when A1, Az,
and A3 are set to le~*. For smaller regularization values (e.g., 1e~% or 1e~®), the regularization
effect is minimal, leading to limited performance gains. In contrast, with larger regularization values
(e.g., le73 or 1e~2), the model’s performance decreases significantly. This decline occurs because
higher regularization values impose stronger constraints on the training process, limiting the model’s
capacity to learn and resulting in performance degradation.

5 CONCLUSION

This paper introduces Bias-Alleviating Low-rank Adaptation (BA-LoRA), a novel parameter-efficient
fine-tuning method designed to mitigate catastrophic inheritance in pre-trained language models.
BA-LoRA incorporates three key components: consistency regularization, diversity regularization,
and singular value decomposition regularization. These components work in concert to preserve
pre-training knowledge, enhance output diversity, and improve model generalization. Extensive
experiments demonstrate that BA-LoRA consistently outperforms existing baselines on various
NLG and NLU tasks while robust to noisy and imbalanced pre-training data. Furthermore, our
ablation studies confirm the effectiveness of the three regularization terms both individually and in
combination. These results highlight the potential of BA-LoRA as a general-purpose fine-tuning
method for pre-trained language models and effectively address the key challenges of deploying these
models in real applications.

6 ETHICS STATEMENT

This study aims to develop and evaluate BA-LoRA, a novel parameter-efficient fine-tuning method
designed to mitigate bias and enhance the performance of LLMs. Our research utilizes existing
open-source public datasets for both fine-tuning and evaluation purposes. For Natural Language
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Generation tasks, we employed widely recognized datasets within the research community, includ-
ing MetaMathQA, CodeFeedback, and WizardLM-Evol-Instruct. These datasets have no known
ethical concerns. For Natural Language Understanding tasks, we utilized the GLUE and GLUE-X
benchmarks, standard evaluation datasets in machine learning. We are committed to the responsible
development and application of Al technologies. Throughout this research, we will continue to
monitor and address any ethical issues that may arise.

7 REPRODUCIBILITY

To ensure the reproducibility of our results, we provide a detailed description of our experimental
setup in Section and Appendix Section [B] including model introduction, dataset introduction,
hyperparameter configuration, and evaluation procedures. All models and datasets used are publicly
available. In addition, we have refined the implementation scripts and fine-tuning strategies to
facilitate independent verification. Our source code and pre-trained model weights will be made
public upon acceptance of this paper, ensuring that our results are fully transparent and reproducible.
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A BACKGROUND

A.1 CHALLENGES OF BIAS AND NOISE IN PRE-TRAINING DATA

Bias and noise within pre-training datasets present significant hurdles in constructing dependable
machine-learning models. Mislabeled data and imbalanced distributions can lead to models that not
only underperform on downstream tasks but also reinforce existing biases in the data
Efros| 2011} [Barocas & Selbst, 2016} Mehrabi et al.| 2021)). This issue is especially problematic in
large-scale datasets, where manual curation is impractical. Consequently, reliance on automated data
collection methods may introduce various inaccuracies and biases (Northcutt et al., 2021} [Birhane &
2021). The challenge becomes even more severe when dealing with real-world, instance-
dependent label noise. Models trained on such data may inadvertently learn these inaccuracies,
resulting in poor generalization (Frénay & Verleysen| 2013}, [Song et al, 2022} [Algan & Ulusoy} 2021).
Addressing these challenges is essential for advancing machine learning and ensuring models are
both effective and equitable.
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A.2 MITIGATING BIAS AND NOISE THROUGH PARAMETER-EFFICIENT FINE-TUNING
METHODS

To counteract the adverse effects of bias and noise in pre-training data, parameter-efficient fine-tuning
methods have emerged as promising solutions. These approaches aim to adapt pre-trained models to
new tasks with minimal parameter updates, thereby reducing the risk of overfitting to noisy or biased

data (Houlsby et al.}, 20194} [Zaken et al., 2021}, [Lester et al,[2021). Techniques such as integrating
lightweight adaptation modules (Pfeiffer et al., 2020} Jang et al., [2021), utilizing prefix tuning

Liang| 2021b; [Liu et al., 2021), and employing low-rank adaptations (Hu et al.l 2021}, Ding et al.,
2023) enable efficient model refinement while preserving the valuable representations acquired
during pre-training. Selectively fine-tuning specific model components can enhance performance on
downstream tasks, improve generalization, and reduce the influence of noise and bias
[2021; [Mahabadi et al.,[2021}; [Guo et all,[2020). This strategy not only results in more robust models
but also contributes to the development of fairer Al systems by directly addressing fundamental data
quality issues.

A.3 EXAMPLES OF NOISE IN PRE-TRAINING DATA

Pre-training data typically originates from large-scale internet sources, which inevitably contain noise
and imbalance. Many advanced pre-trained models, such as LLaMA-2-7B/13B (Touvron et al.} 2023),
Mistral-7B-v0.1 [2023), Gemma-7B [2023), and GPT-4 (OpenAl, [2023), are
trained using large amounts of unlabeled internet text data. These datasets are often not thoroughly
cleaned or corrected, leading to training corpora that include irrelevant or inaccurate information.
Consequently, during the subsequent fine-tuning phase, models struggle to effectively filter out these
undesirable contents, adversely affecting their performance on downstream tasks.

Given the noise and imbalance issues present in pre-training data, understanding the specific types of
noise is crucial for improving model performance. Below, we summarize some common examples of
noise found in pre-training datasets:

¢ Low quality bias:

Duplicity: The presence of identical or similar content in the data can lead to overfitting

and privacy leakage risks (Elazar et al} [2023), (Carlini et all,[2022)), (Hernandez et al},
2022).
Corruption/noise: Inconsistent or erroneous inputs in the training data can affect model

robustness and downstream task performance (Elazar et al.},[2023)), (Fan et al,[2024),
(Caswell et al],[2021).

Contamination: Leakage of the test set into the training set may lead to distorted model

evaluation results (Roberts et al} [2023), (Schaeffer, 2023)), (Jiang et al., 2024b).

¢ Skewed distribution bias:

Category imbalance: Too few samples of certain categories cause the model to perform

poorly in predicting these categories, producing bias (Xu et al} [2023a)), (Zhu et al
2024)), (Parashar et al.| [2024).

¢ Unethical content bias:

Toxic and harmful content: The training data may contain offensive, biased, or harmful
content that may cause the model to generate harmful or inappropriate outputs

et all [2023)), (Sun et al., [2024).

B DETAILS OF MODELS AND DATASETS

B.1 DETAILS OF MODELS

We use a variety of pre-trained language models, including Meta AI’s LLaMA-2-7B and LLaMA-
2-13B (Touvron et al.| [2023)) and the latest LLaMA-3-8B and LLaMA-3-70B (AI@Meta, [2024),

which have good performance in natural language generation tasks. In addition, we also use Mistral
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AT’s Mistral-7B-v0.1 (Jiang et al.}2023) optimized for medium-sized model efficiency, and Google’s
lightweight open-source model Gemma-7B (Jiang et al., [2023)), which performs well in tasks such
as question-answering summarization and reasoning. Alibaba Cloud’s Qwen-1.5-7B (Bai et al.,
2023)) model also provides strong language understanding and generation capabilities, while the 34B
parameter Yi-1.5-34B (Young et al.,|2024) is designed for high-level language tasks. DeepSeek-MoE-
16B (Dai et al.,|2024) is a model that uses expert routing to increase capacity without significantly
increasing computational costs. Mixtral-8x7B-v0.1 (Jiang et al.,[2024a) is a Sparse Mixture of Expert
models that efficiently utilizes active parameters to outperform larger models like Llama 2 70B
and GPT-3.5 across several benchmarks. We also leveraged mature models such as BERT-Large
(Devlin et al.,[2018)), RoBERTa-large (Liu et al.l2019), DeBERTa-v3-base (He et al.,[2021b), and
GPT-2-XL (Radford et al.,|2019)), which continue to set standards in natural language processing and
text generation tasks.

Table 6: Comparison of Pre-trained Data and Methods for Various Language Models.

Model Pre-trained Data Pre-training Method

BERT-L (Devlin et al.[[2018) BooksCorpus and English Wikipedia Masked Language Modeling
RoBERTa-L (Liu et al.[[2019) BooksCorpus and English Wikipedia Masked Language Modeling
GPT-2-XL (Radford et al.[[2019) WebText Autoregressive Language Modeling

DeBERTa-v3-base (He et al.[|2021b) ~ Wikipedia, BooksCorpus, OpenWebText, CC-News, and Stories  Replaced Token Detection with GDES

Table [6] presents an overview of the pre-trained language models used in our study. BERT-Large
(BERT-L) and RoBERTa-Large (RoBERTa-L) are pre-trained on the BooksCorpus and English
Wikipedia datasets using a masked language modeling objective. In contrast, GPT-2-XL is pre-trained
on WebText with an autoregressive language modeling objective. Additionally, DeBERTa-v3-base
is trained on a diverse dataset comprising Wikipedia, BooksCorpus, OpenWebText, CC-News, and
Stories, utilizing a replaced token detection objective with Gradient Disentangled Embedding Sharing
(GDES). These models span a variety of architectures and pre-training strategies, offering a robust
basis for evaluating the performance of our proposed approach.

B.2 DETAILS OF DATASETS

Table[/| provides an overview of the GLUE benchmark datasets and their evaluation metrics. The
GLUE benchmark comprises a diverse set of natural language understanding tasks, including gram-
matical acceptability (CoLA), sentiment analysis (SST-2), paraphrase detection (MRPC and QQP),
sentence similarity (STS-B), natural language inference (MNLI, QNLI, and RTE), and coreference
resolution (WNLI). The number of training examples varies significantly across datasets, from as few
as 634 in WNLI to as many as 393,000 in MNLI. Tasks involve binary or multi-class classification,
with up to five classes in STS-B. Evaluation metrics are tailored to each task, employing accuracy,
F1 score, Matthews correlation coefficient, and Pearson/Spearman correlation coefficients where
appropriate. This comprehensive suite serves as a standard benchmark for assessing and comparing
the performance of models across a wide array of linguistic challenges.

Table [§| summarizes the GLUE-X out-of-domain tasks employed for evaluating transfer performance.
The datasets cover a broad spectrum of natural language understanding tasks, including natural
language inference (SNLI, HANS, SciTail, MNLI mismatched), sentiment analysis (IMDB), question
answering (NewsQA), semantic relatedness (SICK), and grammatical error detection (Grammar
Test). Each task involves binary classification, with test sizes ranging from 9,832 samples (MNLI
mismatched) to 570,152 samples (SNLI). Accuracy is the primary evaluation metric across most
datasets, except for the Grammar Test, which uses the Matthews correlation coefficient. These diverse
tasks provide a comprehensive benchmark for assessing the models’ ability to generalize across
different domains and tasks.

Table 0] summarizes the evaluation metrics for the natural language generation (NLG) tasks. Specif-
ically, we use Accuracy for GSM8K and MATH; Pass@1 for HumanEval and MBPP, indicating
the percentage of first generated code snippets that pass all unit tests; and GPT-4 Evaluation for
MT-Bench, where GPT-4 assesses the quality of the model’s responses.
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Table 7: GLUE Benchmark Datasets and Evaluation Metrics

Dataset Task Type Classes Train Examples Metric Description

CoLA Acceptability 2 8.5k Matthews Corr. Grammatical acceptability
SST-2 Sentiment 2 67k Accuracy Sentiment analysis
MRPC  Paraphrase 2 3.7k Accuracy/F1 Paraphrase detection

QQP Paraphrase 2 364k Accuracy/F1 Duplicate question detection
STS-B  Similarity 5 7k Pearson/Spearman Corr. Sentence similarity
MNLI NLI 3 393k Accuracy Multi-genre NLI

QNLI NLI/QA 2 108k Accuracy QA/NLI converted from SQuAD
RTE NLI 2 2.5k Accuracy Textual entailment
WNLI Coreference 2 634 Accuracy Winograd Schema Challenge

Table 8: Summary of GLUE-X Out-of-Domain Tasks for Transfer Performance Evaluation

Dataset Task Type Classes Train Examples Metric Description

SNLI NLI 2 570k Accuracy Sentence-level inference tasks
IMDB Sentiment 2 50k Accuracy Movie review sentiment analysis
HANs NLI 2 60k Accuracy Adversarial NLI examples to test models
NewsQA QA 2 119k Accuracy QA from news articles

SICK Semantic Relatedness 2 9.8k Accuracy Semantic relatedness and entailment
Grammar Test Grammar Detection 2 304k Matthews Corr. Grammatical error detection
SciTail NLI 2 26.5k Accuracy Science question entailment
MNLI mismatched NLI 2 9.8k Accuracy NLI with mismatched genres

Table 9: Evaluation Metrics for NLG Datasets

Datasets GSMS8K MATH HumanEval MBPP MT-Bench
Metric Accuracy  Accuracy Pass@1 Pass@1 GPT-4 Evaluation

B.3 SPECIFIC HYPERPARAMETER SETTINGS OF ROBERTA-LARGE AND DEBERTA-V3-BASE
ON GLUE

We fine-tuned the RoBERTa-large and DeBERTa-v3-base models on the GLUE benchmark datasets
using carefully selected hyperparameters tailored to each task. For RoBERTa-large, we trained on
MNLI and SST-2 for 10 epochs with a batch size of 32; MNLI employed a learning rate of 1 x 1074,
while SST-2 used 2 x 10~4, both with LoRA_alpha set to 16. Smaller datasets such as MRPC, CoLA,
and RTE were trained for 20 epochs with batch sizes of 16, utilizing higher learning rates ranging
from 3 x 10~* to 6 x 10~* and LoRA_alpha values of 8 or 16. For DeBERTa-v3-base, MNLI was
trained for 5 epochs with a batch size of 16, a learning rate of 5 x 1075, and LoRA_alpha set to 8.
Datasets such as SST-2 and MRPC were trained for 20 epochs with batch sizes of 16 or 32, learning
rates between 3 x 107° and 2 x 10~%, and LoRA_alpha of 8. Notably, RTE was trained for 50
epochs with a batch size of 16, a learning rate of 1 x 10~%, and LoRA_alpha of 8. The LoRA_alpha
parameter was set to either 8 or 16, depending on the model and dataset. In all cases, the LoRA_rank
was set to 8. These hyperparameters were meticulously chosen to suit the specific requirements of
each dataset, ensuring rigorous and optimal training across tasks such as natural language inference,
sentiment analysis, paraphrase detection, linguistic acceptability, and semantic textual similarity.

B.4 SPECIFIC HYPERPARAMETER SETTINGS OF BERT-L AND GPT-2-XL oN GLUE AND
GLUE-x

To ensure consistent and reliable performance, the BERT-Large (BERT-L) and GPT-2-XL models
were trained on the GLUE benchmark tasks using three different random seeds per task over 10
epochs. A hyperparameter search was conducted over learning rates {2 x 107°,3 x 1075,5 x 10~°},
and a batch size of 32 was chosen to balance computational efficiency and memory usage. For
fine-tuning, the training schedule was adjusted to 20 epochs for smaller datasets, while larger datasets
such as QNLI, MNLI, and QQP were trained for 5 epochs. Learning rates were explored within
{2x107%,3x107%,5x107*}. The parameters were set with LoRA_rank = 8 and LoRA_alpha = 16,
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with the batch size reduced to 16 due to increased model complexity. All other parameters, including
max_length, adhered to Hugging Face Transformers guideline:

Regarding the GLUE-x tasks, BERT-L and GPT-2-XL models trained on GLUE were evaluated
without further fine-tuning. GLUE-x encompasses 13 out-of-distribution (OOD) tasks, introducing
domain shifts. For sentiment analysis, models fine-tuned on SST-2 were evaluated on test sets
from IMDB (Maas et al., 2011)), Yelp (Zhang et al, 2015), Amazon (Kaushik et al., [2019), and
Flipkart (Vaghani & Thummar, 2023)), offering a broader assessment of domain variability and testing
the robustness beyond SST-2.

For t-SNE visualization, we used the MNLI subset from GLUE due to its diverse linguistic styles and
label distributions. Training was limited to one epoch to expedite the process, while still providing
insights into how well the models differentiate between classes and sentence structures.

B.5 MODEL EVALUATION DETAILS

For evaluation, we employed publicly available frameworks. The model’s code generation capabilities
were assessed using datasets like HumanEval and MBPP through the BigCode Evaluation Harnes
Instruction-following performance was evaluated using MTBenc
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Figure 5: Performance Comparison of LoRA and BA-LoRA Across Various Ranks.

C.1 ANALYSIS ON DIFFERENT SIZES AND TYPES OF MODELS

This experiment compares LoRA, PiSSA, and BA-LoRA across ten models: LLaMA-2-7/13B
vron et al) 2023), LLaMA-3-8B/70B (AI@Metad, [2024), Mistral-7B-v0.1 (Jiang et al., [2023),

Unttps://github.com/huggingface/transformers
2https: //github.com/bigcode-project/bigcode-evaluation-harness
*https://github.com/lm-sys/FastChat
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Gemma-7B (Jiang et al.| 2023), Qwen1.5-7B (Bai et al.||2023), Yi-1.5-34B (Young et al.,[2024) and
Mixture-of-Experts (MoE (Shazeer et al.,|2017)) models: DeepSeek-MoE-16B (Dai et al., [2024) and
Mixtral-8x7B-v0.1 (Jiang et al.l 2024a). These models were fine-tuned on the MetaMathQA-100K
and CodeFeedback-100K datasets and evaluated on the GSM8K and HumanEval benchmarks. As
depicted in Figure[d BA-LoRA consistently surpasses LoRA and PiSSA across all models and tasks,
underscoring its superior ability to enhance model generalization.

C.2 EVALUATING THE PERFORMANCE OF DIFFERENT RANKS

We compare the performance of BA-LoRA, LoRA, and PiSSA at different ranks using LLaMA-2-7B
and Mistral-7B-v0.1 models. Each method is fine-tuned for one epoch on the MetaMathQA-100K
dataset with ranks ranging from 1 to 128 and evaluated on the GSM8K and MATH datasets. As
shown in Figure [5] BA-LoRA consistently outperforms LoRA and PiSSA across all rank settings and
datasets. As the rank increases, the performance of BA-LoRA and PiSSA surpasses full parameter
fine-tuning. However, BA-LoRA performs better, especially on Mistral-7B-vO0.1.

C.3 IMPACT OF REGULARIZATION ON LORA VARIANTS PERFORMANCE

Table 10: Effect of regularization term in different LoRA variants. The best results are highlighted in
bold.

Methods #Params GSM8K MATH HumanEval MBPP MT-Bench Avg

Full FT 6738M 49.05 7.22 21.34 35.59 491 23.62
LoRA 320M 42.47 5.60 17.03 31.48 4.62 20.24
LoRA + Reg 320M 49.26 6.84 20.16 32.75 4.75 22.75
DoRA 321M 42.12 6.28 16.97 22.07 4.53 18.46
PiSSA 320M 52.01 7.76 21.55 33.09 4.87 23.86
DoRA +Reg  32IM 52.80 8.05 21.94 34.61 5.02 24.48
BA-LoRA 320M 53.83 9.13 23.58 36.86 5.11 25.70

In this experiment, we evaluated the impact of the regularization terms on multiple LoRA variants
using the LLaMA-2-7B. Table@ shows the performance comparison of LoORA, DoRA, PiSSA, and
BA-LoRA with and without regularization terms, where “Reg” refers to the three regularization terms
designed for each NLG task.

The experimental results indicate that incorporating regularization terms into both LoRA and DoRA
architectures significantly enhances their performance across all evaluated tasks. This finding
demonstrates that regularization techniques are broadly effective when applied to different LoRA
variants. Furthermore, BA-LoRA, which integrates PiSSA with regularization, achieves the best
performance across various tasks and substantially improves the model’s generalization capabilities.

C.4 T-SNE VISUALIZATIONS OF FEATURE EVOLUTION DURING THE FINE-TUNING WITH
LoRA AND BA-LORA

This section provides more detailed t-SNE visualization results to compare the feature evolution
during fine-tuning of LoRA and BA-LoRA.

Figure [f] shows that during LoRA fine-tuning of BERT-L, the feature separation is slow, with the
class distributions remaining scattered and overlapping even towards the end. In contrast, Figure[7]
demonstrates that with BA-LoRA fine-tuning, class separation begins earlier and is much clearer,
ultimately forming a distinct "Y" shape with well-defined class boundaries.

Similarly, Figure [§]shows that during LoRA fine-tuning of GPT-2 XL, the feature clusters remain
scattered and overlapping throughout the training, with only minimal separation between classes by
the final steps. In contrast, Figure [0]demonstrates that BA-LoRA fine-tuning results in much clearer
and more distinct class separation, with well-defined boundaries emerging earlier in the training
process and becoming more pronounced over time.
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Figure 6: t-SNE Visualization of Feature Evolution during LoRA Fine-Tuning of BERT-L.

D MORE DISCUSSIONS
Here, we offer further insights into our work.

D.1 LIMITATIONS

While BA-LoRA demonstrates significant improvements in mitigating catastrophic inheritance
and enhancing model performance, several limitations warrant further investigation. Firstly, our
evaluations primarily focus on English language tasks, which may limit the generalizability of
our findings to other languages and specialized domains. Additionally, the computational overhead
introduced by the consistency, diversity, and SVD regularizers adds complexity to the training process,
potentially impacting efficiency. Furthermore, the impact of BA-LoRA on other forms of bias, such
as fairness and societal stereotypes, remains unexplored. Lastly, the selection and weighting of
regularization terms in BA-LoRA are fixed across different tasks, which may not be optimal for all
scenarios.

D.2 FUTURE WORKS

Future research should extend assessments of BA-LoRA to multilingual settings and specialized
domains to ensure broader applicability. Exploring optimization techniques could help reduce
the computational overhead introduced by the regularizers, balancing performance gains with ef-
ficiency. Investigating the impact of BA-LoRA on other forms of bias, including fairness and
societal stereotypes, is crucial for developing more equitable models. Additionally, refining the
selection and weighting of regularization terms—possibly through automated or dynamic adjustment
methods—could enhance adaptability across different tasks and models. Testing the scalability of
BA-LoRA on larger models with hundreds of billions of parameters and exploring its integration with
other bias mitigation strategies may yield synergistic effects and further improve model robustness.
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Figure 7: t-SNE Visualization of Feature Evolution during BA-LoRA Fine-Tuning of BERT-L.
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Figure 8: t-SNE Visualization of Feature Evolution during LoRA Fine-Tuning of GPT-2-XL.
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Figure 9: t-SNE Visualization of Feature Evolution during BA-LoRA Fine-Tuning of GPT-2-XL.
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