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Abstract

Random forests have been one of the successful ensemble algorithms in machine
learning. Various techniques have been utilized to preserve the privacy of random
forests, such as anonymization, differential privacy, homomorphic encryption, etc.
This work takes one step towards data encryption by incorporating some crucial
ingredients of learning algorithm. Specifically, we develop a new encryption to
preserve data’s Gini impurity, which plays an important role during the construction
of random forests. The basic idea is to modify the structure of binary search
tree to store several examples in each node, and encrypt the data features by
incorporating label and order information. Theoretically, our scheme is proven to
preserve the minimum Gini impurity in ciphertexts without decrypting, and we also
present the security guarantee for encryption. For random forests, we encrypt data
features based on our Gini-impurity-preserving scheme, and take the homomorphic
encryption scheme CKKS to encrypt data labels owing to their importance and
privacy. We finally present extensive empirical studies to validate the effectiveness,
efficiency and security of our proposed method.

1 Introduction

From the pioneer work [1], random forests have been one successful ensemble algorithm [2–4], with
diverse applications such as ecology [5], computational biology [6], objection recognition [7], remote
sensing [8], computer vision [9], etc. The basic idea is to construct a large number of random trees
individually and make prediction based on an average of their predictions. Numerous variants of
random forests have been developed to improve performance under different settings [10–22], as well
as theoretical understandings on the success of random forests [21, 23–27]. The splitting criterion,
such as Gini impurity and information gain, has been one of the most important ingredient during the
construction of random forests [1, 28].

Various techniques have been adopted to preserve the privacy of random forests, especially for
sensitive tasks such as medical diagnosis, financial predictions, and so on. For example, differential
privacy [29] has been successfully applied to preserve the privacy of random forests [30, 31] and
decision trees [32–34], by adding certain noise perturbations. Another relevant approach is the secure
multi-party computation for random forests and decision tree [35–39], where the privacy is preserved
by multi-party joint computation over respective data inputs without leakage.

Homomorphic encryption [40–43] has been one of the most important cryptosystems in privacy-
preserving computing [44–47]. Based on such scheme, various algorithms have been developed to
train privacy random forests and decision trees [48–52], while some other methods only considered
inference without training due to computational costs [53–58]. In addition, LeFevre et al. [59] took
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Table 1: Comparisons of communications and complexities for different privacy-preserving decision trees.
Here, n is the number of examples in training data, and τ is the cardinality of label space. Let h and κ be the
height and number of leaves of decision tree (h < κ), respectively. Denote by ȷ̄ the average number of possible
splitting features and positions in the construction of decision trees, and p is the number of clients for secure
multi-party computation. ‘–’ means the corresponding methods focusing only on inference without training.

Scheme Training communication Training comp. complexity Predictive communication Predictive comp. complexity Privacy
of modelRounds Bandwidth Client Server Rounds Bandwidth Client Server

SMCDT [61] O(κ) O(ȷ̄τn) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

PPID3 [36] O(κ) O(p2ȷ̄τn) O(κp2ȷ̄τn) O(κp2ȷ̄τn) O(1) O(1) O(1) O(h) %

SID3 [37] O(hp) O(κȷ̄τ) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

OPPC4.5 [39] O(κp) O(pȷ̄τ) O(κȷ̄τ(n+ p)) O(mȷ̄τp) O(1) O(1) O(1) O(h) %

PivotRFs [62] O(κp) O(ȷ̄τ + τn) O(κȷ̄τn) O(κȷ̄τ) O(p) O(κ) O(κ) O(κ) !

MulPRFs [63] O(h) O(log n+ log d) O(hdn log n) O(hdn log n) O(h) O(1) O(h) O(h) %

PPD-ERTs [64] O(hp) O(κȷ̄τ) O(κȷ̄τn) O(κȷ̄τ) O(1) O(1) O(1) O(h) %

HEldpRFs [51] O(h) O(κȷ̄τ) O(κȷ̄τ) O(κȷ̄τn) O(1) O(κ) O(κ) O(κ) !

SecureDT [65] – – – – O(1) O(1) O(1) O(κ) !

PrivateDT [66] – – – – O(1) O(1) O(1) O(κ) !

Our work O(h) O(κȷ̄) O(κ) O(κȷ̄τn) O(1) O(1) O(1) O(h) !

the anonymization [60] for random forests by grouping similar attributes so as to hardly identify
specific individual information.

This work takes one step towards data encryption by incorporating some crucial ingredients of
learning algorithm, and main contributions can be summarized as follows:

• We present a new encryption to preserve data’s Gini impurity, and the basic idea is to modify
the structure of binary search trees to maintain several samples on each node, and encrypt
data’s features by incorporating label and order information. Our scheme could change the
data frequencies, which is also beneficial for data security.

• Theoretically, we prove the preservation of minimum Gini impurity in ciphertexts without
decryption, which plays an important role on the construction of random forests. Our scheme
also satisfies the security against Gini-impurity-preserving chosen plaintext attack.

• We focus on the privacy random forests in the popular client-server protocol, and take our
Gini-impurity-preserving encryption for data features. We adopt homomorphic encryption
CKKS to encrypt data labels. Our encrypted decision tree takes smaller communication and
computational complexities, as shown in Table 1.

• Extensive experiments show that our encrypted random forests take significantly better
performance than prior privacy random forests via encryption, anonymization and differential
privacy, and are comparable to original (plaintexts) random forests without encryption. Our
encrypted random forests make a good balance between computational cost and data security.

The rest of this work is constructed as follows: Section 2 introduces relevant work. Section 3 presents
an encryption on data’s Gini impurity. Section 4 proposes the encrypted random forests. Section 5
conducts extensive experiments. Section 6 concludes with future work.

2 Relevant Work

Homomorphic Encryption (HE) is a cryptosystem, which allows operations on encrypted data without
access to a secret key [40]. We can perform some mathematical operations such as addition and
multiplication operations on encrypted data without revealing sensitive information. Given an
encryption function E(·) and a decryption function D(·), the HE scheme provides two operators ⊕
and ⊗ such that, for every pair of plaintexts x1 and x2,

D (E(x1)⊕ E(x2)) = x1 + x2 and D (E(x1)⊗ E(x2)) = x1 × x2 ,

where + and × denote standard addition and multiplication operations, respectively.

Various HE schemes have been developed during the past years, e.g., ElGamal [67], Paillier [68],
CKKS [42] encryption, etc. Relevant techniques have been successfully applied to machine learning
tasks such as regression problem [69, 70], neural network [71–75], collaborative filtering [76], etc.
Generally, HE schemes are accompanied with high computational costs, and one main challenge is to
maintain a good trade-off among security, effectiveness and computational cost in real applications.

2



Figure 1: A simple illustration for our encryption: each plaintext is encrypted into a ciphertext vector (ci, ei,j).
Here, random numbers c1 < c2 < · · · < cs are introduced to preserve the Gini impurity for random forests, and
we take homomorphic encryption scheme for ei,j = Enc(kpub, j) in Eqn. (5), which is helpful for decryption.

Secure Multi-Party Computation (SMC) [77] is another cryptographic technique to jointly compute a
function from multiple private inputs with confidential, which has been used for machine learning to
protect privacy data, such as neural network [78–80], k-means clustering [81–83], random forests
and decision trees [35–39], etc. Differential privacy is introduced to preserve individual privacy by
taking statistically inconsequential changes to data [84], and relevant techniques have been utilized in
neural network [85–87], random forests [30, 31] and decision trees [32–34].

We introduce some notations used in this work. Write [τ ] = {1, 2, · · · , τ} for integer τ ≥ 2. Let
X ⊂ Rd and Y = [τ ] denote the feature and label space, respectively. A training sample is given
by Sn = {(x1, y1), (x2, y2), ..., (xn, yn)}. Let |A| be the cardinality of set A, and J·K denotes the
corresponding encrypted value. Let N (µ, σ2) be a normal distribution of mean µ and variance σ2.

3 An Encryption for Gini Impurity

This section presents the first encryption to preserve the minimum Gini impurity over encrypted data
without decryption. For simplicity, we give the detailed encryption on one-dimensional feature by
incorporating label information, and make similar considerations for other dimensions.

3.1 Theoretical Analysis for Gini Impurity

Let A = {(a1, y1), · · · , (an, yn)} be a dataset with labels yi ∈ [τ ], and define the Gini value as

Gini(A) = 1−
∑

y∈[τ ]
p2y ,

where py denotes the proportion of the label y. Let Al
a = {(ai, yi) : ai ≤ a, (ai, yi) ∈ A} and

Ar
a = {(ai, yi) : ai > a, (ai, yi) ∈ A} be the left and right subsets of A w.r.t. a splitting point a,

respectively. We define the Gini impurity w.r.t. dataset A and splitting point a as

IG(A, a) = wl · Gini(Al
a) + wr · Gini(Ar

a) , (1)

where wl = |Al
a|/n and wr = |Ar

a|/n. Let I∗G(A) be the minimum Gini impurity of dataset A, i.e.,

I∗G(A) = mina∈R{IG(A, a)} . (2)

The minimum Gini impurity plays a crucial role on nodes splitting during the construction of random
forests. We re-sort dataset A with a non-decreasing order for a1, a2, · · · , an as follows:

A =
{
(a⟨1⟩, y⟨1⟩), (a⟨2⟩, y⟨2⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
, (3)

where a⟨1⟩ ≤ a⟨2⟩ ≤ · · · ≤ a⟨n⟩, and y⟨1⟩, y⟨2⟩, · · · , y⟨n⟩ denote their corresponding labels. By
incorporating label information, we partition dataset A into several datasets I1, I2, · · · , Is as follows:

I1 =
{
(a⟨1⟩, y⟨1⟩), · · · , (a⟨k1⟩, y⟨k1⟩)

}
,

I2 =
{
(a⟨k1+1⟩, y⟨k1+1⟩), , · · · , (a⟨k1+k2⟩, y⟨k1+k2⟩)

}
, (4)

· · ·
Is =

{
(a⟨k1+k2+···+ks−1+1⟩, y⟨k1+k2+···+ks−1+1⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
.

Here, any two adjacent datasets have different labels, and all samples have an identical label in one
dataset Ij , i.e., y⟨i⟩ = y⟨i′⟩ for every (a⟨i⟩, y⟨i⟩) ∈ Ij and (a⟨i′⟩, y⟨i′⟩) ∈ Ij .
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Algorithm 1 The Gini-impurity-preserving encryption
Input: Dataset A = {(a1, y1), · · · , (an, yn)}
Output: Binary search tree BT , ciphertexts {Ja1K, · · · , JanK}
Initialize: Tree BT = ∅ with its cipher1 = cmax/2, where cmax = 2λ log2 n

for i = 1, · · · , n do
%% Step-I: Search a node for sample (ai, yi) in binary search tree BT

Set t = root of BT , tmin = 0, tmax = cmax and index= 1
while t is an internal node and index==1 do

index= 0
if t.left ̸= ∅ and ai < max{aj : (aj , yj) ∈ t.left.samples} then

t = t.left, tmax = t.cipher1, index = 1
else if t.right ̸= ∅ and ai > min{aj : (aj , yj) ∈ t.right.samples} then
t = t.right, tmin = t.cipher1, index = 1

end if
end while
Update t = t.left if Eqn. (6) is true, and update t = t.right if Eqn. (7) is true

%% Step-II: Update the binary search tree BT
if yi ̸= yj for some (aj , yj) ∈ t.samples then

Split node t by Algorithm 2 with inputs of (ai, yi) and the corresponding interval [tmin, tmax]
end if
Append example (ai, yi) into t.samples and update t.cipher2 = Enc(kpub, |t.samples|)
Encrypt JaiK = (t.cipher1, t.cipher2)

end for

We consider two important factors in encryption: i) preservation of the minimum Gini impurity
I∗G(A) over the encrypted data, and ii) a cryptosystem for encoding and decoding data. Based on
such recognition, we introduce the following encryption, for every example (a⟨i⟩, y⟨i⟩) ∈ Ij ,

Ja⟨i⟩K =
(
Ja⟨i⟩K1, Ja⟨i⟩K2

)
=

{
(c1,Enc(kpub, i)) for j = 1 ,

(cj ,Enc(kpub, i− k1 − · · · − kj−1)) for 2 ≤ j ≤ s .
(5)

Here, c1, c2, · · · , cs are random numbers s.t. c1 < c2 < · · · < cs, which aim to preserve the
minimum Gini impurity. We take the homomorphic encryption scheme CKKS with a public key kpub
for Ja⟨i⟩K2 = Enc(kpub, i − k1 − · · · − kj−1) in Eqn. (5), and it is useful for decryption. Figure 1
presents a simple illustration for our encryption, and the detailed decryption is given in Appendix A.

We now present our main theorem as follows:
Theorem 1. We have I∗G(A) = I∗G(A

′), for re-sort dataset A by Eqn. (3) and for the corresponding
encrypted dataset A′ = {(Ja⟨1⟩K1, y⟨1⟩), · · · , (Ja⟨n⟩K1, y⟨n⟩)} from Eqns. (4)-(5).

This theorem shows that our encryption could preserve the minimum Gini impurity over encrypted
data. The detailed proof is presented in Appendix B, which involves the proof of piecewise mono-
tonicity of IG(A, a) w.r.t. splitting point a, and then solves the minimum splitting point on plaintexts,
as well as the corresponding point on encrypted data.

3.2 Binary Search Tree for Encryption

We now present new binary search tree to encrypt a1, · · · , an dynamically, especially for un-ordered
dataset A = {(a1, y1), · · · , (an, yn)}, or when example (ai, yi) arrives in a streaming data. We
begin with an alternative structure for binary search tree to maintain several samples on a node from
Eqns. (4)-(5), rather than previous only one sample [88, 89]. Our new structure is given by

Struct Tree {Plaintext samples; Ciphertext cipher1, cipher2; Tree left, right} .

The samples stores one or multiple samples from A, and cipher1 and cipher2 are the first and second
ciphertext in Eqn. (5), and left and right denote left and right child of the current node, respectively.

We initialize an empty tree BT = ∅ and set its cipher1 = cmax/2 with cmax = 2λ log2 n, and then we
construct binary search tree iteratively. We maintain an interval [tmin, tmax] in each iteration so as
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Algorithm 2 Splitting a node for encryption
Input: Example (ai, yi), node t of binary search tree BT , and interval [tmin, tmax]
Output: Updated node t

Initialize an empty node l with l.samples = {(aj , yj) ∈ t.samples : aj < ai}
if l.samples ̸= ∅ then

if t.left ̸= ∅ then
Set l.cipher1 according to Eqn. (8), and update l.left = t.left, t.left = l

else
Set l.cipher1 according to Eqn. (9), and update t.left = l

end if
end if
Initialize an empty node r with r.samples = {(aj , yj) ∈ t.samples : aj > ai}
if r.samples ̸= ∅ then

if t.right ̸= ∅ then
Set r.cipher1 according to Eqn. (10), and update r.right = t.right, t.right = r

else
Set r.cipher1 according to Eqn. (11), and update t.right = r

end if
end if
Update t.samples = t.samples \ l.samples \ r.samples

to keep the increasing order of ciphertexts c1, c2, · · · , cs in Eqn. (5). During the i-th iteration, we
receive a sample (ai, yi), and then take two steps as follows:

Step-I: Search a node for sample (ai, yi) in binary search tree BT
Let t be a node pointer with the initialization of the root of BT . We search a path downward in BT
by comparing with ai, and the search will terminate when t is a leaf node or an empty node.

For an internal node t, the search continues to its left child and updates tmax = t.cipher1 if

the left child t.left ̸= ∅ and ai < max{aj : (aj , yj) ∈ t.left.samples} ;

and the search continues to its right child and updates tmin = t.cipher1 if

the right child t.right ̸= ∅ and ai > min{aj : (aj , yj) ∈ t.right.samples} ;

otherwise, the search terminates. This procedure can be easily implemented with a while loop.

It is necessary to consider two special cases after the above search. We update t = t.left if

t.left ̸= ∅, ai < min{aj : (aj , yj) ∈ t.samples} and yi = yj for all (aj , yj) ∈ t.left.samples . (6)

In a similar manner, we update t = t.right if

t.right ̸= ∅, ai > max{aj : (aj , yj) ∈ t.samples} and yi = yj for all (aj , yj) ∈ t.right.samples . (7)

Step-II: Update the binary search tree BT
After Step-I, we could find a node t for sample (ai, yi) and the corresponding interval [tmin, tmax].
We directly append the example (ai, yi) into t.samples if yi = yj for every (aj , yj) ∈ t.samples;
otherwise, it is necessary to split the node t according to ai.

We initialize an empty node l with l.samples = {(aj , yj) ∈ t.samples : aj < ai}, and it is sufficient
to consider l.samples ̸= ∅. If t.left ̸= ∅, then we set

l.cipher1 = (t.left.cipher1 + t.cipher1)/2 + ξ s.t. t.left.cipher1 < l.cipher1 < t.cipher1 , (8)

and update l.left = t.left, t.left = l; otherwise, we set

l.cipher1 = (tmin + t.cipher1)/2 + ξ s.t. l.cipher1 ∈ (tmin, t.cipher1) , (9)

and update t.left = l. Here, ξ is a random number sampled from N (0, 1), and notice that we may
randomly sample ξ multiple times so that the condition holds in Eqns (8)-(9), respectively.
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Algorithm 3 Finding the best splitting feature and position
Input: Encrypted datasets JSt

nK, available splitting feature and position JsKȷi=1, and secret key ksec
Output: index i∗

%% Server:
for i ∈ [ȷ] do

Calculate Gini impurity IG(JSt
nK, JsKi) from Eqn. (12) w.r.t splitting feature and position JsKi

end for
Send ciphertexts {IG(JSt

nK, JsKi)}i∈[ȷ] to the client
%% Client:

Get the decrypted {Dec(ksec, IG(JSt
nK, JsKi))}i∈[ȷ]

Set i∗ = −1 if Dec(ksec, IG(JSt
nK, JsKi)) = 0 for every i ∈ [ȷ]; otherwise, set i∗ by Eqn. (13)

Send i∗ to the server

We make similar update for the right child of node t: initialize an empty node r with r.samples =
{(aj , yj) ∈ t.samples : aj > ai}, and consider r.samples ̸= ∅. If t.right ̸= ∅, then we set
r.cipher1 = (t.cipher1+t.right.cipher1)/2+ξ s.t. t.cipher1 < r.cipher1 < t.right.cipher1 , (10)

and update r.right = t.right, t.right = r; otherwise, we set
r.cipher1 = (t.cipher1 + tmax)/2 + ξ s.t. r.cipher1 ∈ (t.cipher1, tmax) , (11)

and update t.right = r. Algorithm 2 presents the detailed descriptions on the splitting of node t.

Algorithm 1 presents an overview of our Gini-impurity-preserving encryption, and the decryption is
given in Appendix A. Our scheme does not only keep the minimum Gini impurity, but also change
frequencies to prevent decryption from frequencies, which is also beneficial for encryption [90]. Our
scheme takes an average of O(n log n) computational complexity, since it requires O(log n) and
O(1) computational complexities to search and update a node in each iteration, respectively. Finally,
the average and worst space complexities are O(log n) and O(n) for our encryption, respectively.

3.3 Security Analysis

For ciphertext vector JaK = (JaK1, JaK2) in Eqn. (5), it suffices to discuss the first ciphertext JaK1,
since the security of JaK2 has been analyzed in homomorphic encryption CKKS [42]. Following
semantic security against chosen plaintext attacks [89, 91], we define a security game GameGIPCPA:

• An adversary chooses two sequences with distinct plaintexts {a01, · · · , a0n} and {a11, · · · , a1n},
and sends them to a challenger;

• The challenger flips an unbiased coin b ∈ {0, 1} to select {ab1, · · · , abn}, and randomly sets their
corresponding labels {yb1, · · · , ybn} with each ybi drawn independently and uniformly over [τ ]. The
challenger encrypts {ab1, · · · , abn} by Eqns. (4) and (5), and sends the ciphertexts to the adversary;

• The adversary outputs a guess of b, i.e., which sequence is selected for encryption.

We then introduce the security against Gini-impurity-preserving chosen plaintext attack as follows.
Definition 2. A scheme is said to be indistinguishable under Gini-impurity-preserving chosen
plaintext attack if the probability of outputs with the correct guess b is negligible for the adversary A
in GameGIPCPA, that is,

Pr[A(GameGIPCPA) = b] < 1/2 + small constant .

The following theorem shows that our encrypted plaintexts sequences are indistinguishable.
Theorem 3. Our scheme for the first ciphertexts Ja1K1, Ja2K1, · · · , JanK1 in Section 3.2 is security
against Gini-impurity-preserving chosen plaintext attack.

The detailed proof is presented in Appendix C, and the basic idea is inspired from [88]. We take
induction on n to show that data point (abi+1, yi+1) affects the constructed binary search trees with
the same probability as b = 0 and b = 1, and then the ciphertexts of data points (abi+1, yi+1) also
follow the same distribution, i.e.,

P
(
Ja01K, · · · , Ja0i+1K|a01, · · · , a0i+1

)
= P

(
Ja11K, · · · , Ja1i+1K|a11, · · · , a1i+1

)
.

6



Table 2: Datasets

Datasets #Inst #Feat Datasets #Inst #Feat Datasets #Inst #Feat Datasets #Inst #Feat

wdbc 569 30 adver 3,279 1,558 ailerons 13,750 41 adult 48,842 14

cancer 569 31 bibtex 7,396 1,836 house 22,784 16 mnist 70,000 780

breast 699 9 phpB0 7,797 617 a9a 32,563 123 miniboone 72,998 51

diabetes 768 8 pendigits 10,992 16 amazon 32,769 9 runwalk 88,588 6

german 1,000 24 phish 11,055 30 bank 45,211 17 covtype 581,012 54

4 Encrypted Random Forests

For encrypted random forests, we follow the popular client-server protocols [51, 65, 66, 88]. A
client encrypts training and testing data, and transfers encrypted data to an honest-but-curious server.
The server trains random forests from the encrypted data with the aid of client, and finally returns
predictions on encrypted testing data.

Encryption for training and testing datasets

Recall training data Sn = {(x1, y1), · · · , (xn, yn)}with xi = (xi,1, · · · , xi,d). The client constructs
d binary search treesBT1,BT2, · · · ,BTd according to Algorithm 1 over different dimensional features
and labels in Sn, where BTj is used to encrypt features {x1,j , · · · , xn,j} for j ∈ [d].

We take the homomorphic encryption CKKS [42] to encrypt training labels y1, · · · , yn. Each label
yi is encoded with a vector of size τ by one-hot method, and we encrypt the vector by homomorphic
encryption CKKS with a public key kpub. The ciphertexts JyiK = [Jyi,1K, · · · , Jyi,τ K] is given by

Jyi,jK =
{

Enc(kpub, 1) for j = yi,
Enc(kpub, 0) otherwise.

We obtain the final training data JSnK = {(Jx1K, Jy1K), · · · , (JxnK, JynK)}.

Let S̃n′ = {x̃1, · · · , x̃n′} be a testing data with instance x̃i = (x̃i,1, · · · , x̃i,d). For every plaintext
x̃i,j with i ∈ [n′] and j ∈ [d], we search a node t in the binary search tree BTj , similarly to the node
search (Step-I) in Section 3.2, and obtain its ciphertext Jx̃i,jK = [t.cipher,Enc(kpub, i)]. We have the
encrypted testing data JS̃n′K = {Jx̃1K, · · · , Jx̃n′K}.
Construction on encrypted random forests

Encrypted random forests consist of individual decision trees DT1, · · · ,DTm, where each tree DTi
is constructed as follows. We first take a bootstrap sample JS′

nK from JSnK, and initialize DTi with
one node of data JS′

nK. We repeat the following procedure recursively for each leaf node, until the
number of training samples is smaller than α, or all instances have the same label in the leaf node:
• Select a k-subset B from d available features randomly without replacement;

• Find the best splitting feature in B and position by Gini impurity from the encrypted data;

• Split the current node into left and right children via the best splitting position and feature.

Such construction is essentially similar to original random forests [1], whereas we require a different
way to find the best splitting feature and position based on Gini impurity from the encrypted data.

Let t be the current leaf node for further splitting with the encrypted training data JSt
nK ⊆ JSnK, and

JsK1, · · · , JsKȷ denote all possible splitting features and positions in the scope of the corresponding
feature subset B from JSt

nK. Here, the information of feature and position can be derived from the
corresponding index i ∈ [ȷ] and subset B.

For each i ∈ [ȷ], the server partitions the current encrypted training data JSt
nK into left and right

subsets, i.e., JSt
nKli and JSt

nKri , according to the splitting feature and position JsKi. Let nl and nr be
the number of training examples in JSt

nKli and JSt
nKri , respectively, and denote by

JSt
nKli = {(Jxl

1K, Jy
l
1K), · · · , (Jxl

nl
K, Jylnl

K)} and JSt
nKri = {(Jxr

1K, Jy
r
1K), · · · , (Jxr

nr
K, Jyrnr

K)} .
From Eqn. (1), we have Gini impurity

IG(JSt
nK, JsKi) =

[ nl

nl + nr
⊗ IG(JSt

nKli)
]
⊕
[ nr

nl + nr
⊗ IG(JSt

nKri )
]
, (12)

7



Table 3: Comparisons of prediction accuracies (mean±std). •/◦ indicates that our encrypted random forests are
significantly better/worse than other compared random forests (pairwise t-tests at 95% significance level). ‘NA’
means that no results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc .9525±.0141 .9617±.0018 .9091±.0205• .8998±.0024• .9222±.0037• .9609±.0101 .9510±.0114 .9195±.0029•
cancer .9766±.0082 .9824±.0143 .9271±.0016• .9034±.0578• .9600±.0022• .9510±.0130• .9656±.0102 .9823±.0024

breast .9855±.0012 .9881±.0011 .9657±.0021• .9271±.0515• .9678±.0129• .9806±.0086 .9769±.0107 .9275±.0023•
german .7939±.0124 .8033±.0205 .7300±.0214• .7400±.0141• .7610±.0168• .7533±.0122• .7823±.0154 .7043±.0027•
diabetes .7641±.0093 .7677±.0309 .7193±.0023• .7328±.0124• .7448±.0193 .7419±.0061• .7611±.0035 .7478±.0193•

adver .9851±.0011 .9888±.0014 .9278±.0018• .9390±.0051• NA .9664±.0043• NA NA

bibtex .7907±.0054 .7749±.0027• .7425±.0009• .7200±.0130• NA .7461±.0193• NA NA

phpB0 .9380±.0024 .9585±.0043◦ .8641±.0009• .8920±.0031• NA NA NA NA

pendigits .9917±.0024 .9906±.0016 .9072±.0104• .9154±.0126• .9639±.0048• .9070±.0130• NA NA

phish .9798±.0026 .9716±.0018 .9032±.0014• .9318±.0089• .9555±.0125• .9454±.0067• .9401±.0102• NA

ailerons .8795±.0027 .8819±.0015 .8104±.0105• .8322±.0091• .8589±.0043• .8571±.0082• .8766±.0025 NA

house .8794±.0007 .8913±.0039◦ .8255±.0011• .8475±.0025• .8541±.0149• .8508±.0016• .8742±.0023 NA

a9a .8321±.0011 .8303±.0012 .8046±.0027• .7909±.0084• .8345±.0144 .8314±.0071 .8051±.0102• NA

amazon .9491±.0109 .9478±.0060 .9193±.0024• .9104±.0035• .9221±.0024• .9401±.0128 .9400±.0032 NA

bank .8992±.0118 .9029±.0104 .8499±.0089• .8517±.0064• .8940±.0147 .8940±.0091 .8827±.0108 NA

adult .8663±.0019 .8691±.0018 .8206±.0032• .8355±.0053• .8452±.0106• .8243±.0076• .8594±.0103 NA

mnist .9674±.0105 .9763±.0101 .9362±.0006• .9059±.0157• NA NA NA NA

miniboone .9497±.0018 .9518 ±.0013 .8977±.0101• .9111±.0104• .9301±.00021• .9501±.0011 NA NA

runwalk .9784±.0014 .9798±.0032 .9523±.0024• .9401±.0040• .9572±.0074• .9511±.0071• NA NA

covtype .9787±.0042 .9650±.0104• .9112±.0015• .9407±.0018• .9569±.0134• NA NA NA

win/tie/loss 2/16/2 20/0/0 20/0/0 17/3/0 14/6/0 10/10/0 19/1/0

where IG(JSt
nKli) = 1⊖ pl ⊙ pl and IG(JSt

nKri ) = 1⊖ pr ⊙ pr, with

pl = (1/nl)⊗ (Jyl1K⊕, · · · ,⊕Jylnl
K) and pr = (1/nr)⊗ (Jyr1K⊕, · · · ,⊕Jyrnr

K) .

Here, ⊗, ⊙, ⊕ and ⊖ denote the CKKS element-wise homomorphic multiplication, dot, addition and
subtraction functions, respectively, as in the work of [42].

The client gets plaintexts {Dec(ksec, IG(JSt
nK, JsKi))}

ȷ
i=1 by decrypting with the secret key ksec, when

the server sends ciphertexts {IG(JSt
nK, JsKi)}

ȷ
i=1. If all instances have the same label in JSt

nK, then
we have Dec(ksec, IG(JSt

nK, JsKi)) = 0 for each i ∈ [ȷ], and we set i∗ = −1; otherwise, we set i∗ as

i∗ ∈ argmini∈[ȷ]

{
Dec(ksec, IG(JSt

nK, JsKi))
}
. (13)

The client sends index i∗ to the server for further splitting. Algorithm 3 presents the detailed
descriptions on finding the best splitting feature and position.

For encrypted decision tree, the client requires the O(κ) computational complexity with κ leaves
nodes, since the client performs constant basic operations for each node. The server takes the O(κȷ̄τn)
computational complexity for Eqn. (12), where ȷ̄ is an average of number of possible splitting features
and positions, and τ and n are the number of labels and training examples, respectively.

Our method takes O(h) communication rounds of O(κȷ̄) communication bandwidth to train an
encrypted decision tree of height h. This is because we consider the breadth-first search and aggregate
all nodes in the same height and send to the client with a single message at one time.

We do not require bootstrapping for homomorphic encryption in 3-depth homomorphic multiplicative,
since we independently compute the splitting feature and position for each node from Eqn. (12). This
is different from previous encrypted decision trees [51, 62], which could take expensive computational
complexity for bootstrapping [40, 92].

Prediction on encrypted testing dataset

After getting decision trees DT1, · · · ,DTm, we predict label JỹiK = DT1(Jx̃iK)⊕ · · · ⊕ DTm(Jx̃iK)
for test instance Jx̃iK ∈ JS̃n′K. The server sends ciphertexts {Jỹ1K, · · · , Jỹn′K} to the client, and the
client decrypts those ciphertexts, and gets the final plaintext label by ỹi = argmaxj∈[τ ]{DecJỹi,jK}.

During such prediction process, the server requires the O(h) computational complexity, since we
search from the root to leaf node of tree. The client takes O(1) rounds of communication and
communication bandwidth to transfer the testing data and predicting ciphertext without interaction.
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Figure 2: Comparisons of training running time on different random forests. Notice that the y-axis is in log-scale,
and full black columns imply that no result was obtained after running out 106 seconds (about 11.6 days).

5 Experiment

We conduct experiments on 20 datasets2 as summarized in Table 2. Most datasets have been well-
studied in previous random forests. In addition to the original (plaintexts) random forests [1], we
compare with six state-of-the-art privacy-preserving random forests in recent years.

• AnonyRFs: random forests based on anonymization with a top-down greedy search [59];

• DiffPrivRFs: random forests based on differential privacy [93];

• PPD-ERTs: extremely randomized trees from distributed structured data [64];

• PivotRFs: random forests based on a hybrid of threshold partially homomorphic encryption
and secure multiparty computation techniques [62];

• MulPRFs: random forests based on the secure multiparty computation [94];

• HEldpRFs: random forests with fully homomorphic encryption and low-degree polynomial
approximations [51].

For all random forests, we train 100 individual decision trees, and randomly select ⌊
√
d⌋ candidate

features during node splitting. We set α = 10 for datasets of size smaller than 20,000 for our
encrypted random forests; otherwise, set α = 100, following [95]. For multi-class datasets, we take
the one-vs-all method for MulPRFs, since it is limited to binary classification. Other parameters are
set according to their respective references, and more details can be found in Appendix D.

Experimental comparisons

The performance is evaluated by five trials of 5-fold cross validation, and final prediction accuracies
are obtained by averaging over these 25 runs, as summarized in Table 3. It is evident that our encrypted
random forests take comparable performance with original random forests [1] on plaintexts, which
nicely supports our Theorem 1 on the preservation of minimum Gini impurity in the construction of
random forests. Our encrypted random forests are also comparable to MulPRFs if they can obtain
results within 106 seconds (about 11.6 days), since MulPRFs are essentially similar to original random
forests, yet with different implementation of secure multi-party computation.

As can be seen from Table 3, our random forests take significantly better performance than AnonyRFs
and DiffPrivRFs, since the win/tie/loss counts show that our random forests win for most times and
never lose. This is because AnonyRFs combine features by anonymization, while DiffPrivRFs add
perturbations to features via differential privacy, therefore, both of them cause information lost in
privacy process. Our random forests also achieve better performance than PivotRFs, since PivotRFs
have to limit trees’ depth for random forests due to heavy computations for HE and communications
for secure multi-party computation.

Our random forests also outperform PPD-ERTs and HEldpRFs if results are obtained in 106 seconds,
since PPD-ERTs adopt completely-random splitting, rather than selecting the minimum Gini impurity,
while HEldpRFs take homomorphic encryption on features and employ low-degree polynomial
approximation. Those approaches have modified the structures of original random forests.

2Downloaded from www.openml.org
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Figure 3: Security comparisons for different schemes: the more red the area, the higher the security.

Running time

All experiments are performed by c++ on the Ubuntu with 256GB main memory (AMD Ryzen
Threadripper 3970X). We compare the training running time of our encrypted random forests and
others, and the average CPU time (in seconds) is shown in Figure 2.

As expected, original random forests take the least running time over raw datasets without privacy
preservation. Our encrypted random forests take larger running time than AnonyRFs and DiffPrivRFs
because they are essentially similar to original random forests, yet with some simple modifications or
perturbations on features. Our encrypted random forests take better performance and higher security.

Our encrypted random forests take smaller running time than PPD-ERTs, PivotRFs, MulPRFs and
HEldpRFs, in particular for large datasets or high-dimensional datasets, where no results are obtained
even after running out 106 seconds (almost 11.6 days). Because PPD-ERTs, PivotRFs and MulPRFs
require expensive communication cost for multi-parity computation, while PivotRFs and HEldpRFs
take heavy computation costs on HE scheme.

Security analysis

We present security analysis for the first ciphertext JaK1 in ciphertext vector JaK = (JaK1, JaK2), and
the second ciphertext JaK2 can be ensured by HE scheme. We compare with four state-of-the-art
encryptions: differential privacy [93], anonymization [59], order-preserving scheme [96] and HE
scheme [42]. Here, we present results of six datasets and randomly selecting one feature, and trends
are similar on other dimensions and datasets. More results can be found in Appendix D.

Figure 3 shows the comparison results, and we take the bitwise leakage matrices to measure the
security as in [97]: the more red the area, the higher the security. As expected, HE scheme presents
the highest security, yet with heavy computational costs, for example, no results are obtained for
datasets of size exceeding 3000 even after running out 106 seconds. It is also observed that our
scheme presents higher security than the other three schemes, since those schemes simply present
perturbations, compression or preserve the entire order information regardless of learning ingredients.
In comparison, our scheme could make a good balance between security and computational cost.

6 Conclusion

This work takes one step on data encryption from some crucial ingredients of learning algorithm.
We present a new encryption to preserve data’s Gini impurity, which plays a crucial role during
the construction of random forests. For random forests, we encrypt data features based on our
Gini-impurity-preserving scheme, and take the homomorphic encryption scheme CKKS to encrypt
data labels. Both theoretically and empirically, we validate the effectiveness, efficiency and security
of our proposed method. An interesting work is to exploit other learning ingredients, such as gini
index and information gain, for data encryption in the future.
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Algorithm 4 Decryption
Input: Tree node t of BT , ciphertext JaiK
Output: plaintext ai

while JaiK1 ̸= t.cipher1 do
if JaiK1 > t.cipher1 then
t = t.right

else if JaiK1 < t.cipher1 then
t = t.left

end if
end while
Return ai = t.samples[Dec(ksec, JaiK2])

A Detailed Decryption for Our Encryption Method

A.1 Decryption for Our Encryption in Section 3.1

We present the decryption for ciphertext JaiK = (JaiK1, JaiK2) in Eqn. (5) by the following steps:

• Find the partition Ij according to JaiK1;

• Decrypt ciphertext JaiK2 by the CKKS secret key ksec, and get index τ = Dec(ksec, JaiK2)
in partition Ij .

• Obtain the plaintext ai as the τ -th sample in partition Ij .

A.2 Decryption for Our Encryption of Binary Search Tree in Section 3.2

We decrypt a ciphertext JaiK = (JaiK1, JaiK2) based on binary search tree BT (in Section 3.2) and the
CKKS secret key ksec by the following two steps, and Algorithm 4 presents the details of decryption:

• Let t be a node pointer with the initialization of the root of binary search tree BT . We then
search a path downward in BT by comparing with JaiK1. The search continues to its left
child if JaiK1 < t.cipher1 and update t = t.left; the search continues to its right child if
JaiK1 > t.cipher1 and update t = t.right until JaiK1 = t.cipher1.

• Decrypt ciphertext JaiK2 by the CKKS secret key ksec, and get index τ = Dec(ksec, JaiK2)
in t.samples. Then we use the index τ to get the plaintext ai = t.samples[τ ].

A.3 Formal Definition of Our Gini-impurity-preserving Encryption

We present a formal definition of our Gini-impurity preserving encryption as follows:

• S ← KeyGen(tmax): Generate the secret state S by initializing binary search tree BT = ∅, and
a security parameter cmax, which is a random number with cmax > n. We maintain an interval
[tmin, tmax] in each secret state S with tmin = 0 and tmax = cmax in the initial stage, so as to keep
the order of ciphertexts c1, c2, · · · , cs in Eqn. (5). In this way, the ciphertexts are random numbers
with semi-order of plaintexts, and we have different ciphertext even for the same plaintexts.

• S′, JaiK← Encrypt(S, ai): Encrypt ai and update the secret state to S′ as for receiving a sample
(ai, yi) as follows:

– Search a node for sample (ai, yi) in binary search tree BT as shown in Algorithm 1. Let t be
a node pointer with the initialization of the root of BT . We search a path downward in BT by
comparing with ai. The search will terminate when t is a leaf or an empty node.

– Update the binary search tree BT . We directly append the example (ai, yi) into t.samples if
yi = yj for every (aj , yj) ∈ t.samples; otherwise, it is necessary to split the node t according
to ai. Algorithm 2 presents the detailed descriptions on the splitting of node t.

– Compute ciphertext JaiK and update the state from S to S′. Append example (ai, yi) into
t.samples and update t.cipher2 = Enc(kpub, |t.samples|). We then compute the ciphertext
JaiK = (t.cipher1, t.cipher2), and update the state from S to S′ through our BT .
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• ai ← Decrypt(S′, JaiK): Solve plaintext ai for ciphertext JaiK based on state S′ with binary search
tree BT and the CKKS secret key ksec as follows:

– Let t be a node pointer with initialing the root of binary search tree BT . We then search a
path downward in binary search tree BT by comparing with JaiK1. The search continues to
its left child if JaiK1 < t.cipher1 and update t = t.left; the search continues to its right child
if JaiK1 > t.cipher1 and update t = t.right until JaiK1 = t.cipher1.

– Decrypt ciphertext JaiK2 by CKKS secret key ksec, and get index τ = Dec(ksec, JaiK2) in
t.samples. Then we use the index τ to get the plaintext ai = t.samples[τ ].

B Proof of Theorem 1

Lemma 4. For dataset A = {(a1, y1), · · · , (an, yn)}, let I1, I2, · · · , Is be the corresponding
partitions as defined by Eqn. (4). There exists a splitting point a∗ such that IG(A, a∗) = I∗G(A) and

a∗ ∈
⋃

i∈[s−1]

{max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2} ,

where IG(A, a∗) and I∗G(A) are defined by Eqns. (1) and (2), respectively.

Proof. Without loss of generality, we assume that a1, a2, · · · , an are distinct elements. Our goal is
to solve the optimal splitting point a∗ ∈ argmina∈R{IG(A, a)}, and we begin with some notations
used in our proof. For every label j ∈ [τ ], we denote by

νj = |{i ∈ [n] : yi = j}| ,

i.e., the number of the label j in dataset A. Let a be a splitting point, which splits A into left and
right datasets Al

a and Ar
a, that is,

Al
a = {(ai, yi) : ai ≤ a, (ai, yi) ∈ A} ,

Ar
a = {(ai, yi) : ai > a, (ai, yi) ∈ A} .

For any given a ∈ R and j ∈ [τ ], we further denote by

νlj = |{i ∈ [n] : yi = j, ai ≤ a}| ,

i.e., the number of label j in subsets Al
a. This follows that

IG(A, a) = wl − wl

∑
j∈[τ ]

(νlj)
2

|Al
a|2

+ wr − wr

∑
j∈[τ ]

(νj − νlj)
2

(n− |Al
a|)2

,

where wl = |Al
a|/n, and wr = 1−wl. In the following, we will explore the monotonicity of function

IG(A, a) when

a ≥ max{ak : (ak, yk) ∈ Ii−1}/2 + min{ak : (ak, yk) ∈ Ii}/2
a ≤ max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2 ,

for i = 2, 3, · · · , s− 1. It is easy to observe that νj and νlj keep constants except for νlj∗ , where j∗
denotes the label of instances in Ii. It remains to discuss the variable νlj∗ , and we have
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n2 ∂IG(A, a)

∂νlj∗
=

1

n

∑
j∈[τ ]

(νlj)
2

(wl)2
− 2

νlj∗
wl
− 1

n

∑
j∈[τ ]

(νj − νlj)
2

(wr)2
+ 2

(νj∗ − νlj∗)

wr

=
1

n

∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

=
1

n

∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2


+
1

n

(νlj∗
wl

)2

−

(
νj∗ − νlj∗

wr)

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

=
1

n

∑
j∈[τ ],j ̸=j∗

(
(νlj)

2

(wl)2
−

(νj − νlj)
2

(wr)2

)
+

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)(
2−

νj∗ − νlj∗
nwr

−
νlj∗
nwl

)
.

It is easy to observe that

0 ≤
νj − νlj
wr

≤ n and 0 ≤
νlj
wl
≤ n for each j ∈ [τ ] . (14)

It is sufficient to consider two cases as follows:

• We consider the first case

∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 ≥ 0 ,

and this follows that

0 ≤
∑

j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2


=
∑

j∈[τ ],j ̸=j∗

(
νlj
wl

+
νj − νlj
wr

)(
νlj
wl
−

νj − νlj
wr

)

≤
∑

j∈[τ ],j ̸=j∗

2n

(
νlj
wl
−

νj − νlj
wr

)
= 2n

∑
j∈[τ ],j ̸=j∗

(
νlj
wl
−

νj − νlj
wr

)
.

We have

n−
∑

j∈[τ ],j ̸=j∗

νj − νlj
wr

≥ n−
∑

j∈[τ ],j ̸=j∗

νlj
wl

, (15)

and it holds that

νj∗ − νlj∗
wr

≥
νlj∗
wl

. (16)

Combining with Eqns. (14)-(16), we have

∂IG(A, a)

∂νlj∗
≥ 0 ,

which proves the increasing function of IG(A, a).
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• We now consider the second case

∑
j∈[τ ],j ̸=j∗

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 < 0 ,

and this follows that

∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr

)2
 <

(
νlj∗
wl

)2

−

(
νj∗ − νlj∗

wr

)2

=

(
νlj∗
wl

+
νj∗ − νlj∗

wr

)(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
< 2n

(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
.

We have

n2 ∂IG(A, a)

∂νlj∗
=

1

n

∑
j∈[τ ]

( νlj
wl

)2

−

(
νj − νlj
wr)

)2
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)

< 2

(
νlj∗
wl
−

νj∗ − νlj∗
wr

)
+ 2

(
νj∗ − νlj∗

wr
−

νlj∗
wl

)
= 0 ,

which proves the decreasing function of IG(A, a).

In a summary, we prove the piecewise monotonicity of IG(A, a) for

a ≥ max{ak : (ak, yk) ∈ Ii−1}/2 + min{ak : (ak, yk) ∈ Ii}/2
a ≤ max{ak : (ak, yk) ∈ Ii}/2 + min{ak : (ak, yk) ∈ Ii+1}/2 ,

with i = 2, 3, · · · , s − 1. Moreover, it is easy to observe the monotonicity of IG(A, a) from
νlj = 0(j ̸= j∗) when

a ∈ (−∞, (max{ak : (ak, yk) ∈ I1}+min{ak : (ak, yk) ∈ I2}) /2] ;

and from νj − νlj = 0 (j ̸= j∗) when

a ∈ [(max{ak : (ak, yk) ∈ Is−1}+min{ak : (ak, yk) ∈ Is}) /2,+∞) .

It is not necessary to consider the splitting point a∗ > max{ak : (ak, yk) ∈ Is} with |Ar
a| = 0, as

well as the splitting point a∗ < min{ak : (ak, yk) ∈ I1} with |Al
a| = 0, i.e., without splitting dataset

A. This completes the proof.

Proof of Theorem 1

According to Lemma 6, we could find an optimal splitting point a∗ such that

a∗ ∈
⋃

i∈[s−1]

{
max{ak : (ak, yk) ∈ Ii}+min{ak : (ak, yk) ∈ Ii+1}

2

}
.

It is easy to observe that, for i ∈ [s− 1]

IG(A, (max{ak : (ak, yk) ∈ Ii}+min{ak : (ak, yk) ∈ Ii+1}/ 2) = IG(A, (ci + ci+1)/2) ,

where ci is the identical ciphertext for those elements in ∈ Ii, and we complete the proof.

Based on Theorem 1, our encryption with binary search trees (Algorithm 1) can also preserve the
minimum Gini impurity over encrypted data, which can be shown by the following theorem:

Theorem 5. We have I∗G(A) = I∗G(Â), for re-sort dataset A by Eqn. (3) and for the corresponding
encrypted dataset Â = {(Ja⟨1⟩K1, y⟨1⟩), · · · , (Ja⟨n⟩K1, y⟨n⟩)} from Algorithm 1.
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Proof. Our constructed binary search tree BT (Algorithm 1) maintains several samples on a node.
For each node t, we have t.cipher1 < t.right.cipher1 and t.cipher1 > t.left.cipher1. In this way, we
can obtain a monotone increasing sequence I1, I2, · · · , Is by inorder traversing the built Tree BT in
Algorithm 1. Each Ii for j ∈ [s] contains several samples as follows:

I1 =
{
(a⟨1⟩, y⟨1⟩), · · · , (a⟨k1⟩, y⟨k1⟩)

}
I2 =

{
(a⟨k1+1⟩, y⟨k1+1⟩), , · · · , (a⟨k2⟩, y⟨k2⟩)

}
(17)

· · ·
Is =

{
(a⟨ks−1+1⟩, y⟨ks−1+1⟩), · · · , (a⟨n⟩, y⟨n⟩)

}
,

where a⟨i′⟩ < a⟨j′⟩ for (a⟨i′⟩, y⟨i′⟩) ∈ Ii, (a⟨j′⟩, y⟨j′⟩) ∈ Ij and i < j.

For each Ii, if there is only one identical label, i.e., y⟨i⟩ = y⟨i′⟩ for every (a⟨i⟩, y⟨i⟩), (a⟨i′⟩, y⟨i′⟩) ∈
Ij , then we have I∗G(A) = I∗G(Â) from Theorem 1. On the other hand, if the values are the same for
all samples in Ij (j ∈ [s]), i.e., a⟨i⟩ = a⟨i′⟩ for every (a⟨i⟩, y⟨i⟩), (a⟨i′⟩, y⟨i′⟩) ∈ Ij , then this splitting
value is preserved without changing the minimum Gini-impurity of random forests. Hence, we also
have I∗G(A) = I∗G(Â), and this completes the proof.

C Proof of Theorem 3

Given two sequences of distinct plaintext A0 = {a01, a02, · · · , a0n} and A1 = {a11, a12, · · · , a1n}, their
corresponding labels are randomly set as follows:

• Sort Ab = {ab⟨1⟩, a
b
⟨2⟩, · · · , a

b
⟨n⟩} in ascending order, i.e., ab⟨1⟩ < ab⟨2⟩ < · · · < ab⟨n⟩ for

b ∈ {0, 1}.
• Set the corresponding labels {y⟨1⟩, y⟨2⟩, · · · , y⟨n⟩} randomly and independently from a

uniform distribution on [τ ].

Then, we have
Lemma 6. For ab1 < ab2 < · · · < abn with b = {0, 1}, we have the same Gini impurity for two
sequences A0 = {(a01, y1), (a02, y2), · · · , (a0n, yn)} and A1 = {(a11, y1), (a12, y2), · · · , (a1n, yn)}.

Proof. Let abi be a splitting point for b ∈ {0, 1} and i ∈ [n], and we split Ab into left and right
datasets Al,b

ab
i

and Ar,b

ab
i

according to abi , that is,

Al,b

ab
i

= {(ab1, y1), (ab2, y2), · · · , (abi , yi)} and Ar,b

ab
i

= {(abi+1, yi+1), (a
b
i+2, yi+2), · · · , (abn, yn)} .

For j ∈ [τ ], denote by νl,bj and νr,bj the cardinalities of subsets Al,b

ab
i

and Ar,b

ab
i

with label j, respectively.

Then, the Gini impurity of dataset Ab and splitting point abi is given by

IG(A
b, abi ) =

i

n
− i

n

∑
j∈[τ ]

(νl,bj )2

(i)2
+

n− i

n
− n− i

n

∑
j∈[τ ]

(νr,bj )2

(n− i)2
.

For b ∈ {0, 1}, Al,0
a0
i

and Al,1
a1
i

have the same labels {y1, y2, · · · , yi}, and we have∑
j∈[τ ]

(νl,0j )2 =
∑
j∈[τ ]

(νl,1j )2 .

Similarly, we have
∑

j∈[τ ](ν
r,0
j )2 =

∑
j∈[τ ](ν

r,1
j )2, and this completes the proof.

We can show that adversary can not distinguish the ciphertext of {(a0⟨1⟩, y⟨1⟩), · · · , (a
0
⟨n⟩, y⟨n⟩)} from

that of {(a1⟨1⟩, y⟨1⟩), · · · , (a
1
⟨n⟩, y⟨n⟩)} in a probabilistic perspective, i.e.,

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨n⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨n⟩, y⟨n⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨n⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨n⟩, y⟨n⟩)

)
. (18)
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We will prove Eqn. (18) by induction on n. We first have

For n = 1, we have Ja0⟨1⟩K = c0max/2 and Ja1⟨1⟩K = c1max/2 with c0max = c1max = 2λ log2 n,
according to the initialization in Algorithm 1. This follows that

Pr
(
Ja0⟨1⟩K|(a

0
⟨1⟩, y⟨1⟩)

)
= Pr

(
Ja0⟨1⟩K

)
= Pr

(
Ja1⟨1⟩K

)
= Pr

(
Ja1⟨1⟩K|(a

1
⟨1⟩, y⟨1⟩)

)
.

We assume that Eqn. (18) holds for n = i (i > 1), that is,

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩)

)
. (19)

Let us consider the case n = i+ 1, and we add the sample (ab⟨i+1⟩, y⟨i+1⟩) in binary search tree BT b

(Algorithm 1). It is sufficient to consider two cases as follows:

• If we do not need to split a node for sample (ab⟨i+1⟩, y⟨i+1⟩) in Algorithm 1, then we have
Ja1⟨i+1⟩K = Ja0⟨i+1⟩K. This is because ab⟨1⟩ < ab⟨2⟩ < · · · < ab⟨i+1⟩ for b = 0 and b = 1,
along with the same labels {y1, · · · , yi+1}. Hence, we obtain the same ciphertext for a0⟨i+1⟩
and a1⟨i+1⟩, i.e., t0.cipher1 = t1.cipher1. This follows that

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K, Ja

0
⟨i+1⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩)

)
,

and

Pr
(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K, Ja

1
⟨i+1⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩)

)
.

By induction assumption in Eqn. (19), we have

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K, Ja

0
⟨i+1⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K, Ja

1
⟨i+1⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
.

• If we need to split the node for (ab⟨i+1⟩, y⟨i+1⟩) in Algorithm 1, then we assume that t0 and
t1 are the corresponding splitting nodes. We firstly initialize the empty node lb and rb, and
update the ciphertext lb.cipher1 and rb.cipher1 by Eqns (8)-(11), respectively. Notice that
the random number ξ in Eqns (8)-(11) is sampled from N (0, 1), and thus l0.cipher1 and
l1.cipher1 are sampled from the same distribution. We have

Pr
(
l0.cipher1|(a0⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
l1.cipher1|(a1⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
.

Similarly, r0.cipher1 and r1.cipher1 are sampled from the same distribution, and we have

Pr
(
r0.cipher1|(a0⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
r1.cipher1|(a1⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
.

For the (i+ 1)-th iteration in Algorithm 1, we have

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K, Ja

0
⟨i+1⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩)

)
×Pr

(
l0.cipher1|(a0⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
×Pr

(
r0.cipher1|(a0⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
,
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Table 4: Hyperparameter settings for tree ensemble models in experiments. ‘–’ means that the parameter is not
exist in the corresponding method, and ’max_bin’ denotes the maximum splitting point of each feature.

Parameter Our Work PPD–ERTs HEldpRFs PivotRFs MulPRFs AnonyRFs DiffPrivRFs Original RFs

max_depth None None 5 4 None None None None

n_estimators 100 100 100 100 100 100 100 100

max_features ⌊
√
d ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋ ⌊

√
d⌋

differentia privacy level ϵ – – – – – – 1 –

anonymization parameter k – – – – – 10 – –

multi–party size p 2 2 2 2 2 – – –

max_bin – – – 16 – – – –

and

Pr
(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K, Ja

1
⟨i+1⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩)

)
×Pr

(
l1.cipher1|(a1⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
×Pr

(
r1.cipher1|(a1⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
.

This follows that

Pr
(
Ja0⟨1⟩K, · · · , Ja

0
⟨i⟩K, Ja

0
⟨i+1⟩K|(a

0
⟨1⟩, y⟨1⟩), · · · , (a

0
⟨i⟩, y⟨i⟩), (a

0
⟨i+1⟩, y⟨i+1⟩)

)
= Pr

(
Ja1⟨1⟩K, · · · , Ja

1
⟨i⟩K, Ja

1
⟨i+1⟩K|(a

1
⟨1⟩, y⟨1⟩), · · · , (a

1
⟨i⟩, y⟨i⟩), (a

1
⟨i+1⟩, y⟨i+1⟩)

)
.

This completes the proof.

D Experimental Details

Experimental settings

We now present some details of compared methods in this work.

• Original RFs3: The orignal plaintext random forests [1] implemented by sklearn;
• PPD-ERTs4: The extremely randomized trees algorithm for learning from distributed

horizontal partition data [64];
• PivotRFs5: A private and efficient solution for tree-based models in a vertical federated

learning setting [62], based on a hybrid of threshold partially homomorphic encryption and
secure multiparty computation techniques;

• MulPRFs6: The original random forest [1] with the secure multiparty computation library
MP-SPDZ [94], based on the sh2 protocol to support semi-honest two-party computation;

• AnonyRFs7: The random forests based on anonymization library Mondrian, is a top-down
greedy data anonymization algorithm for relational dataset [59];

• DiffPrivRFs8: Random forests based on differential privacy library Diffprivlib [93].

Tables 4 and 5 summarizes some hyperparameters settings in our experiments. Except for parameters
’n_estimators’ and ’α’ in leaf splitting, other parameters are set according to their respective references.
We set security parameter λ > 6.4 according to privacy-preserving requisites as in [89].

3The code is downloaded from github.com/scikit-learn/scikit-learn
4The code is downloaded from github.com/AminAminifar/kPPDERT_cloud
5The code is downloaded from github.com/nusdbsystem/pivot
6The code is downloaded from github.com/csiro-mlai/decision-tree-mpc
7The code is downloaded from github.com/qiyuangong/Mondrian
8The code is downloaded from github.com/IBM/differential-privacy-library
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Table 5: Hyperparameter setting of samples’ minimum number α for leaves splitting in experiments.

Parameter wdbc cancer breast diabetes german adver bibtex phpB0 pendigits phish

α 10 10 10 10 10 10 10 10 10 10

Parameter ailerons house a9a amazon bank adult mnist miniboone runwalk covtype

α 10 100 100 100 100 100 100 100 100 100

Table 6: The orders of magnitude improvement compared to other approaches in Figure 2. ‘NA’ means that no
results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc 1 ×10−3 ×10−3 ×10−3 ×2 ×10 ×25 ×400

cancer 1 ×10−3 ×10−3 ×10−3 ×1.5 ×10 ×20 ×300

breast 1 ×10−3 ×10−3 ×10−3 ×2 ×13 ×30 ×103

german 1 ×10−3 ×10−3 ×10−3 ×2 ×18 ×40 ×3000

diabetes 1 ×10−3 ×10−3 ×10−3 ×2 ×15 ×25 ×850

adver 1 ×10−3 ×10−3 ×10−3 NA ×475 NA NA

bibtex 1 ×10−3 ×10−3 ×10−3 NA ×328 NA NA

phpB0 1 ×10−3 ×10−3 ×10−3 NA NA NA NA

pendigits 1 ×10−4 ×10−4 ×10−4 ×2 ×25 NA NA

phish 1 ×10−3 ×10−3 ×10−3 ×1 ×139 ×848 NA

ailerons 1 ×10−4 ×10−4 ×10−4 ×1 ×31 ×40 NA

house 1 ×10−4 ×10−4 ×10−4 ×1 ×31 ×38 NA

a9a 1 ×10−3 ×10−3 ×10−3 ×1 ×453 ×762 NA

amazon 1 ×10−4 ×10−4 ×10−4 ×1 ×51 ×31 NA

bank 1 ×10−4 ×10−4 ×10−4 ×1.5 ×149 ×220 NA

adult 1 ×10−3 ×10−3 ×10−3 ×2 ×211 ×276 NA

mnist 1 ×10−4 ×10−4 ×10−4 NA NA NA NA

miniboone 1 ×10−4 ×10−4 ×10−4 ×2 ×35 NA NA

runwalk 1 ×10−4 ×10−4 ×10−4 ×2 ×35 NA NA

covtype 1 ×10−3 ×10−3 ×10−3 ×1 NA NA NA

Running Time

We give the prediction time comparisons(in seconds) for different methods as shown in Figure 4. As
we can see, our encrypted random forests take comparable running time with original random forests,
AnonyRFs and DiffPrivRFs, since our Gini-impurity preserving encryption method only requires
O(h) time complexity without other additional operations, where O(h) denotes the height of binary
search tree BT .

Furthermore, our encrypted random forests show superior efficiency compared to other methods,
such as MulPRFs, PPD-ERTs, PivotRFs, and HEldpRFs, with the training time obtained in 106

seconds (almost 11.6 days). This is because MulPRFs, PivotRFs, and PPD-ERTs require expensive
communication costs for multi-parity computation, while HEldpRFs takes heavy computation costs
on HE scheme. We also present the orders of magnitude improvement of training and prediction time
in Table 6 and Table 7, respectively.

Security

We analyze the security across fourteen datasets by randomly selecting an attribute that share a
similar trend as other dimensions. We compare our Gini-impurity-preserving scheme with other four
privacy-protection methods: differential privacy [93], anonymization [59], order-preserving scheme
[96] and HE scheme [42]. The results are depicted in Figure 5.

Inspired from [97], we take the bitwise leakage matrix as our metric. An initial step is to scale
and discretize the feature space into integers within the range of [0, 27], and then we sample 200
representative samples from each dataset to evaluate the security of the feature space. The primary
objective in experiment is to safeguard as many bits of the plaintexts as possible. This quantitative
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Table 7: The orders of magnitude improvement compared to other approaches in Figure 4. ‘NA’ means that no
results were obtained after running out 106 seconds (about 11.6 days).

Dataset Our encrypted RFs Original RFs AnonyRFs DiffPrivRFs PPD-ERTs PivotRFs MulPRFs HEldpRFs

wdbc 1 ×3 ×3 ×3 ×38 ×1, 220 ×93 ×4, 000

cancer 1 ×28 ×29 ×25 ×360 ×11, 052 ×851 ×41, 911

breast 1 ×25 ×31 ×27 ×308 ×11, 631 ×776 ×44, 736

german 1 ×4 ×5 ×4 ×115 ×2, 615 ×421 ×9, 615

diabetes 1 ×42 ×35 ×41 ×411 ×18, 142 ×1, 642 ×64, 285

adver 1 ×3 ×4 ×10 NA ×3, 821 NA NA

bibtex 1 ×1 ×1 ×1 NA ×1, 528 NA NA

phpB0 1 ×4 ×4 ×4 NA NA NA NA

pendigits 1 ×6 ×6 ×10 ×2384 ×18, 947 NA NA

phish 1 ×5 ×8 ×6 ×1, 966 ×1, 7619 ×2, 604 NA

ailerons 1 ×6 ×9 ×8 ×1, 581 ×30, 200 ×3, 600 NA

house 1 ×6 ×9 ×8 ×1, 581 ×30, 400 ×3, 600 NA

a9a 1 ×6 ×10 ×8 ×5, 482 ×27, 000 ×3, 250 NA

amazon 1 ×10 ×12 ×12 ×2, 208 ×54, 500 ×7, 500 NA

bank 1 ×14 ×18 ×20 ×5, 637 ×75, 500 ×10, 000 NA

adult 1 ×4 ×5 ×4 ×1, 967 ×22, 054 ×2, 876 NA

mnist 1 ×2 ×3 ×2 NA NA NA NA

miniboone 1 ×6 ×9 ×9 ×1, 800 ×75, 000 NA NA

runwalk 1 ×12 ×18 ×26 ×2, 413 ×84, 000 NA NA

covtype 1 ×7 ×10 ×8 ×2, 943 NA NA NA

Figure 4: Comparisons of the prediction running time on different random forest. Notice that the y-axis is in
log-scale, and full black columns imply that no result was obtained after running out 106 seconds for training
(about 11.6 days).

assessment is visualized through a color map: the x-axis represents the individual bits (1 through 7),
while the y-axis indicates the rank order of the 200 sampled datasets.

The color gradient, ranging from white to red, represents the degree of security, with white correlating
to minimal security and red to maximal security. The security degree was normalized within a [0, 1]
range to ensure results’ consistency. For instance, a security degree of 0 with white color indicates no
security, while a security degree of 1 with red color suggests the highest level of security.

As expected, the HE scheme presents the highest security, yet with heavy computational costs. For
example, datasets exceeding 3000 samples yielded no results under the HE scheme, even with an
extended runtime of 106 seconds. It is also observed that our proposed scheme demonstrated superior
security efficacy compared to the other three scheme: differential privacy [93], anonymization [59]
and order-preserving scheme [96]. Since those schemes rely on mere data perturbations, compressions,
or order information preservation. In comparison, our scheme makes a good balance between security
and computational cost.

E Proof of Bitwise Leakage

In this section, we present a comprehensive evaluation of the security properties for our Gini-impurity
preserving methods, full homomorphic encryption, anonymization technique, and differential privacy
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methods. The security analysis is conducted in the feature space using the bitwise leakage matrix
which is proposed by [97].

We focus on a discrete and finite feature space with a fixed size as in [97]. The feature space is
defined as X = [0, 2m−1], which means that the feature size is m bits, and the space ranges from
0 to 2m−1. Let D be the true distribution over the feature space, and dataset S = {a1, . . . , an} are
sampled independently and identically from distribution D.

The adversary A possesses two types of knowledge to achieve the goal of recovering plaintexts:

• Auxiliary knowledge about a distribution D′ over the feature space X [98], which provides
additional information to the adversary.

• Ciphertexts JSK corresponding to S, which represents the snapshot of the encrypted data
store, as described in Fuller et al. [99].

We re-sort dataset S with a non-decreasing order, i.e., S =
{
a⟨1⟩, a⟨2⟩, · · · , a⟨n⟩

}
where a⟨1⟩ ≤

a⟨2⟩ ≤ · · · ≤ a⟨n⟩. Let S⟨i⟩ be the i-th sample in S, and S⟨i⟩[j] be the j-th bit of S⟨i⟩ with i ∈ [n]
and j ∈ [m]. Then, we denote by b⟨i⟩[j] the adversary’s guess for S⟨i⟩[j] through the auxiliary
knowledge distribution D′ as follows:

b⟨i⟩[j] = arg max
b∈{0,1}

PrD′
(
S⟨i⟩[j] = b

)
=

{
0 for ED′ [S⟨i⟩[j]] ≤ 1/2
1 for ED′ [S⟨i⟩[j]] > 1/2 ,

for i ∈ [n] and j ∈ [m]. The adversary aims to correctly guess the plaintext S⟨i⟩[j] using the auxiliary
knowledge D′. Let L be a n×m matrix with

L(i, j) = Pr
(
S⟨i⟩[j] = b⟨i⟩[j]|D,D′) for i ∈ [n] and j ∈ [m] .

Similarly to [97], we have

PrD
(
S⟨i⟩[j] = 0

)
=
∑
s∈Sj

0

PrD (S⟨i⟩ = s) for i ∈ [n] and j ∈ [m] ,

and PrD
(
S⟨i⟩[j] = 1

)
= 1 − PrD

(
S⟨i⟩[j] = 0

)
, where s[j] denotes the j-th bit of s with Sj

0 =
{s|s ∈ S and s[j] = 0}. This follows that

L(i, j) = Pr
(
S⟨i⟩[j] = b⟨i⟩[j]|D,D′) = ∑

s∈Sj
b⟨i⟩[j]

PrD (S⟨i⟩ = s) .

The variable L(i, j) represents the probability that an adversary can accurately guess the j-th bit
of the plaintext S⟨i⟩. This metric can be considered as a measure of the information security for
the ciphertexts JS⟨i⟩K, in the sense that a lower value of L(i, j) signifies a higher degree of security.
Specifically, the bitwise information security of JS⟨i⟩K can be quantified as 1-L(i, j), and this metric
provides a precise and quantitative assessment of the encryption scheme’s security properties.

Specifically, we investigate the correlation among elements of L(i, j), plaintexts, ciphertexts and
secret keys. We explore the impact of different encryption parameters on the structure and behavior
of L(i, j). Our analysis reveals that the leakage pattern of L(i, j) is highly dependent on the specific
encryption scheme. Therefore, it is crucial to carefully design and select the appropriate encryption
scheme to minimize the risk of information leakage.

We now present the analysis of bitwise leakage matrix L(i, j) for our encryption method as follows.
Theorem 7. For our Gini-impurity-preserving encryption and plaintexts S, we have

L(i, j) =
∑

q∈[i,n−k+i]

I(S⟨q⟩[j]) = S⟨i⟩[j])
n− k + 1

×
∑

s∈Sj
b⟨i⟩[j]

PrD (S⟨i⟩ = s) + small constant .

Proof. Our Gini-impurity-preserving encryption transfers multiple plaintexts in Ii′ (i′ ∈ [k]) to the
identical first dimension ciphertext, i.e., ci′ , as shown in Eqn. (5). Hence, the i′-th ciphertext ci′
corresponds to multiple plaintexts, and the adversary will guess the true plaintext S⟨i⟩ of ciphertext
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Figure 5: Comparisons of the security degree for the feature space through the bitwise leakage matrix.

ci′ . Since the adversary only knows that i′ − 1 ciphertexts are smaller than ci′ and k − i′ ciphertexts
are larger than ci′ , the adversary can guess the plaintext S⟨i⟩ from

{S⟨q⟩|q ∈ [i, n− k + i]}
with the same probability. In this way, the probability of adversary guessing S⟨i⟩[j] is

Pi,j =
∑

q∈[i,n−k+i]

I(S⟨q⟩[j] = S⟨i⟩[j])
n− k + 1

.

Let b⟨i⟩[j] be the adversary’s guess for S⟨i⟩[j], we have

b⟨i⟩[j] = arg max
b∈{0,1}

PrD′
(
S⟨i⟩[j] = b

)
=

{
0 for ED′ [S⟨i⟩[j]] ≤ 1/2
1 for ED′ [S⟨i⟩[j]] > 1/2 .

The probability for the adversary correctly identifies the j-th bit of the plaintext S⟨i⟩ is

L(i, j) = Pi,j

∑
s∈Sj

b⟨i⟩[j]

PrD (S⟨i⟩ = s) + small constant ,

and we complete the proof from Lemma 8.

Lemma 8 (Roy et al. [97]). LetD be the input distribution and S = {a1, . . . , an} denotes the dataset
with each data point sampled i.i.d. from D, then we have

PrD (S⟨i⟩ = a′) =

n∑
j=n−i+1

(
n

j

)
(PrD (a < a′))

n−j
(PrD (a = a′))

j for PrD (a > a′) = 0 ,

and

PrD (S⟨i⟩ = a′) =

n∑
j=i

(
n

j

)
(PrD (a = a′))

j
(PrD (a > a′))

n−j for PrD (a < a′) = 0 ;

otherwise,

PrD (S⟨i⟩ = a′) =

n∑
j=1

min{i,n−j+1}∑
k=max{1,i−j+1}

(
n

k − 1, j, n− k − j + 1)

)
∆k−1,j,n−k−j+1 ,

where

∆k−1,j,n−k−j+1 = (PrD (a < a′))
k−1 · (PrD (a = a′))

j · (PrD (a > a′))
n−k−j+1

.
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We now provide similar analysis of bitwise leakage matrix L for ϵ-local differential privacy.
Theorem 9. For ϵ-local differential privacy, we have

L(i, j) =
Pr
(
S⟨i⟩[j] = b⟨i⟩[j]

)
+ Pr

(
S⟨i⟩[j] = S′⟨i⟩[j]

)
2

+ small constant ,

where S and S′ denotes the plaintexts and ciphertexts, respectively, and

b⟨i⟩[j] = arg max
b∈{0,1}

PrD′
(
S⟨i⟩[j] = b

)
=

{
0 if ED′ [S⟨i⟩[j]] ≤ 1/2 ,
1 if ED′ [S⟨i⟩[j]] > 1/2 .

Proof. We concern ϵ-local differential privacy by adding noise to each individual value. If the
adversary attempts to infer the original plaintext S⟨i⟩, then it relies on the ϵ-differential privacy
disturbed data S′(i) and the auxiliary knowledge distribution D′. The adversary guesses the j-th bit
of the i-th plaintext S⟨i⟩[j] through a process of deduction as follows:

S⟨i⟩[j] =


1 for b⟨i⟩[j] = 1 and S′⟨i⟩[j] = 1 ,

0 for b⟨i⟩[j] = 0 and S′⟨i⟩[j] = 0 ,

randomly select from{0, 1} otherwise .

This follows that

L(i, j) =
Pr
(
S⟨i⟩[j] = b⟨i⟩[j]

)
+ Pr

(
S⟨i⟩[j] = S′(i, j)

)
2

+ small constant .

This completes the proof.

In order to gain a deeper understanding of the security for the k-anonymous algorithm, we conduct
an analysis of the bitwise leakage matrix L. This matrix represents the amount of information
leakage that occurs when the original data X is compressed into m partitions K1,K2, · · · ,Kt by the
k-anonymous algorithm as follows:

K1 =
{
a⟨1⟩, a⟨2⟩, · · · , a⟨k1⟩

}
K2 =

{
a⟨k1+1⟩, a⟨k1+2⟩, · · · , a⟨k2⟩

}
· · ·

Kt =
{
a⟨kt−1+1⟩, a⟨kt−1+2⟩, · · · , a⟨n⟩

}
.

The bitwise leakage matrix L quantifies the amount of information that can be inferred about an
individual from the corresponding partitions. By analyzing this matrix, we can determine the level of
privacy that is maintained by the k-anonymous algorithm and identify any potential vulnerabilities
that could be exploited by an adversary. Then, we give the analysis of bitwise leakage matrix L for
k-anonymous algorithm as follows.
Theorem 10. For k-anonymous algorithm and the plaintexts S, we have

L(i, j) = Pr
(
S⟨i⟩[j] = b⟨i⟩[j]

)
+ small constan ,

where S⟨i⟩[j] denotes the j-th bit of S⟨i⟩ with S⟨i⟩ ∈ Kq(q ∈ [t]) and

b⟨i⟩[j] = arg max
b∈{0,1}

∑
x∈Kq

I[x[j] = b] PrD′ (x)

 .

Proof. The k-anonymity is a privacy-preserving technique that aims to protect the identity of individ-
uals in a dataset. It works by grouping together individuals with similar attributes and pooling their
data in a larger group, thus making it difficult for an adversary to identify any specific individual in
the group. The k-anonymity ensures that each group has at least k individuals with the same attribute
values, which further enhances the security of the data.

When the original data S⟨i⟩ is pooled in the group Kq(q ∈ [t]), the adversary attempts to guess the
j-th bit of the plaintext S⟨i⟩ using the auxiliary knowledge distribution D′ and Kq. To achieve this,
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the adversary guesses b⟨i⟩[j] as the value corresponding to the maximum probability of the j-th bit in
group Kq as follows:

b⟨i⟩[j] = arg max
b∈{0,1}

∑
x∈Kq

I[x[j] = b] PrD′(x)

 .

This completes the proof.
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