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Abstract

Federated graph learning is an emerging field with significant practical challenges.
While algorithms have been proposed to improve the accuracy of training graph
neural networks, such as node classification on federated graphs, the system per-
formance is often overlooked, despite it is crucial for real-world deployment. To
bridge this gap, we introduce FedGraph, a research library designed for practical
distributed training and comprehensive benchmarking of FGL algorithms. Fed-
Graph supports a range of state-of-the-art graph learning methods and includes
a monitoring class that evaluates system performance, with a particular focus
on communication and computation costs during training. Unlike existing feder-
ated learning platforms, FedGraph natively integrates homomorphic encryption to
enhance privacy preservation and supports scalable deployment across multiple
physical machines with system-level performance evaluation to guide the system
design of future algorithms. To enhance efficiency and privacy, we propose a low-
rank communication scheme for algorithms like FedGCN that require pre-training
communication, accelerating both the pre-training and training phases. Extensive
experiments benchmark FGL algorithms on three major graph learning tasks and
demonstrate FedGraph as the first efficient FGL framework to support encrypted
low-rank communication and scale to graphs with 100 million nodes.

1 Introduction

Graph neural networks aim to learn representations of graph-structured data that capture features
associated with graph nodes and edges between them (Bronstein et al.,|2017). Most graph applications
can modeled as one of three major graph learning problems: node classification (e.g., classifying
nodes representing papers in citation networks based on the research topic), link prediction (e.g.,
recommending the formation of links that represent friendship between users), or graph classification
(e.g. classifying types of proteins in biology, where each protein is represented as a graph). Figure|[T]
(left) illustrates these graph learning tasks (Benamira et al., 2019; [Zhang et al.| |2020b).

In practice, graph data is often too large for a single server or naturally distributed across clients.
For instance, learning from billions of website visits requires more resources than one server can
provide. Even if centralized storage were possible, privacy laws such as GDPR in Europe and PAPG
in India restrict cross-border data sharing, and users may be unwilling to share personal data with
external servers. To address these challenges, federated learning enables training accurate models on
decentralized data while preserving privacy (Zhao et al., 2018)).

These challenges motivate Federated Graph Learning (FGL) as a key research area (Liu et al.
2024). In FGL (Figure[I] right), each client trains a local graph and Graph Neural Network (GNN)
model, which are then aggregated at a coordinator server. Different FGL algorithms vary in how
they update and aggregate local models, affecting accuracy and system performance (e.g., runtime,
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Figure 1: Modeling Applications as Graph Tasks (left) and Federated Graph Training (right). Node
classification predicts labels of grey nodes from neighbors, link prediction infers future edges, and
graph classification assigns labels to whole graphs. In federated graph learning, nodes span multiple
clients with cross-client edges. Each client trains a local GNN on its subgraph and shares encrypted
updates with a server, enabling collaborative learning without exposing raw data.

communication cost)(Xie et al., 2021; Zhang et al.,|2021}; Yao et al.,|2024). While model accuracy
can be tested on open datasets(Hu et al.| 2020), evaluating real-world system performance requires
benchmarking platforms. Existing FGL benchmarks mostly simulate multiple clients on one ma-
chine (Xie et al., 2021} [Li et al., [2024)), failing to reflect real communication and computation costs.
Current libraries also lack mature GNN support: FedScale (Lai et al.,[2022) excludes graph models,
while FedGraphNN (He et al.l [2021) and FederatedScope-GNN (Wang et al.| |2022) are outdated
and limited to simple methods like FedAvg. Users must implement key FGL features themselves,
such as handling cross-client edges, and no platform natively supports advanced techniques like
homomorphic encryption (Jin et al., 2023} |Yao et al., 2024).

To meet these shortcomings, we introduce FedGraph, a research library to easily train GNNSs in
federated settings. As shown in Table[T} FedGraph supports various federated training methods of
graph neural networks under both simulated and real federated environments, as well as encrypted
communication between clients and the central server for model update and information aggregation.

Table 1: Comparison with Existing Frameworks. FedGraph supports distributed FGL, cross-client
edges, encrypted aggregation, and system-level profiling for large-scale optimization.

Vanilla FGL | FedScale | FedGraphNN | FederatedScope-GNN | FedGraph
Distributed Training X v v v v
Graph Learning v X v v v
Multiple FGL Algorithms v X X v/
Cross-Client Edges X X X X v/
Encrypted Aggregation X X X X v
System Level Profiler X X X X v
Large Scale ML Optimizations X X X X v/

We summarize the contributions of FedGraph as follows.

* FedGraph is the first Python library tailored for real-world federated graph learning (FGL),
integrating system optimizations for efficiency, scalability, and privacy, along with multiple
state-of-the-art algorithms for easy comparison.

* It natively supports homomorphic encrypted aggregation for privacy-preserving training and
offers a system-level monitor to analyze communication and computation overhead.

* A low-rank communication scheme is introduced for methods such as FedGCN, reducing
both pre-training and training communication costs.

» Extensive experiments benchmark three FGL tasks and demonstrate scalability to privacy-
preserving training on graphs with up to 100 million nodes.

In this paper, we first overview the system design in Section [2] followed by highlighting the key
system components in Section[3] In Section[d] we present a case study demonstrating how FedGraph
facilitates the design and test of low-rank pre-training communication in FGL. We then benchmark
the performance on three tasks and evaluate its scalability in Sections[5} and conclude in Appendix
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2 FedGraph System Design

In this section, we outline the design principles of the FedGraph library and demonstrate how these
principles are implemented in our system design (Figure2).

2.1 Design Principles

The main focus of FedGraph is providing a scalable and privacy-preserving federated graph learning
system with ease of use for federated learning researchers and applied scientists in industry. As
illustrated in Figure 2] (left), the system architecture is structured according to four design principles.

Optimized usability: At the access layer, users can configure training with 10-20 lines of code
and seamlessly switch between local simulation and federated training, as detailed in Section [2.2]
FedGraph abstracts away complexity, offering a unified training and evaluation platform.

Benchmarking methods: At the application layer, FedGraph supports three FGL tasks (node, link,
and graph classification) and a wide range of state-of-the-art algorithms, listed in Appendix [E}

Extensibility: At the domain layer, modular components (e.g., data loaders, trainer classes) allow
easy extension to new datasets and algorithms.

Scalability and privacy: At the infrastructure layer, FedGraph leverages Ray and Kubernetes
for distributed training, with optional homomorphic encryption to secure aggregation, supporting
large-scale, privacy-preserving FGL.
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Figure 2: Design Diagram of FedGraph (left) and Quick Start Example (right). The system is
organized into four layers: the user access layer, the application layer, the domain layer, and the
infrastructure layer. Users only need to focus on the access layer, while the developers can focus on
one of the remaining layers based on the domain knowledge.
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2.2 FedGraph Use Example

Researchers can install FedGraph with pip install fedgraph, configure experiments, and start
training federated GNN models. Details on code structure and API are in Appendices|Cl[D] and [ As
shown in Figure 2] (right), users set up experiments through a simple configuration: Task, method,
and dataset specification: define the task, algorithm, dataset, and client distribution, with enforced
task-method compatibility for reproducibility. Training configuration: specify hyperparameters
such as global rounds, local steps, learning rate, and trainer count. Security and privacy: enable
homomorphic encryption for secure aggregation. Execution: run run_fedgraph(config) to
automatically launch data loading, client initialization, and distributed training.

3 FedGraph System Highlights

In this section, we first introduce FedGraph’s monitoring system, which enables usable benchmarking
of FGL methods. We then introduce two infrastructure features, FedGraph Homomorphic Encryption
for privacy-preserving aggregation and FedGraph Kubernetes for scalable distributed training. Finally,
we discuss supported configurations for users to optimize large-scale model training.
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3.1 FedGraph Monitoring System

The system(Figure [3) uses a Moni-
tor Class to track runtime, CPU/GPU
utilization, memory use, and com-
munication costs between server and
clients, with dashboards shown in Fig-
ure O] Communication cost: logs
transfer rates to identify bottlenecks.
Training time and accuracy: records
duration and model accuracy for com-

FedGraph User

Access monitor
dashboard by
port forward

Server Node \

Server Ray Pod Trainer Node Trainer Node | | Trainer Node
Process  Auto-Scaler
API Object Object Store Object Store Object Store
Gateway Store Training Training Training
Process Process Process
"0—00 (o) g(e)
Grafana
Grafana uses PromGQL tovisulze| ) T 1 1
metrics collected by Promethus |

Promethus server collects trainer
system metrics by HTTP

Figure 3: FedGraph Monitoring System Architecture.

parison. Resource usage: tracks CPU/GPU and memory across components (e.g., Server Process,
Ray AutoScaler) to reveal inefficiencies or leaks. Section [5] further illustrates resource profiles.

3.2 FedGraph Homomorphic Encryption

FedGraph supports homomorphic encryption (HE)
for end-to-end secure computation (Figure ), mak-
ing it the first FGL library with native HE support.
It secures both (i) feature aggregation before train-
ing (Yao et all) 2024) and (ii) model aggregation
during training (Zhang et al., 2024; Kim et al.| [2025)).
Pre-training aggregation: clients encrypt node fea-
tures, the server aggregates ciphertexts, and clients
decrypt results without exposing raw features. Train-
ing aggregation: clients encrypt model updates,
and the server aggregates them without plaintext ac-
cess (Zhang et al., [2020a; Jin et al., 2023)).
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Figure 4: FedGraph Homomorphic Encryp-

tion for Secure Aggregation.

FedGCN Training Time

Homomorphic Encryption Overhead: Fig-
ure 5] shows training time and communication

cost for FedGCN with and without HE. As £
FedGCN involves pre-training and training gmo
aggregation, it highlights HE overhead, partic- 27
ularly where feature matrices exceed model = *°

parameters. This motivates communication-
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efficient techniques (Section H); detailed
benchmarks are in Appendix [G]

3.3 FedGraph Kubernetes

FedGraph employs Kubernetes to support
diverse workloads and large client popula-
tions. Unlike prior work (Table [I), it in-
tegrates natively with AWS Elastic Kuber-
netes Service for flexible resource manage-
ment. A self-managed cluster runs inten-
sive tasks, with a master node handling or-
chestration and worker nodes executing dis-
tributed training. The Kubernetes Cluster
Autoscaler dynamically adjusts resources,
ensuring efficiency under varying loads.

FedGraph User —

3.4 Optimizations for Scalability

Cora Citeseer PubMed Cora
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Figure 5: FedGCN performance on plaintext vs. HE.
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Figure 6: Kubernetes Service for Cluster Management.

FedGraph scales to graphs with millions of nodes through several optimizations. Client selection:
selectively engages a fraction of clients per round (Li et al., 2019), reducing communication and
client overhead. Minibatch training: processes graph subsets to lower computation and memory use,
enabling participation by resource-limited devices. Communication and resource optimization:
minimizes data transfer and leverages Kubernetes to dynamically manage pods.
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4 Case Study: Communication- and Computation-Efficient Federated Node
Classification with Low-Rank Feature Compression

Communication is a major challenge in federated graph learning, especially with large graphs or
privacy-preserving methods like homomorphic encryption (HE). To address this, FedGraph integrates
low-rank feature compression, reducing overhead while maintaining accuracy.

Architecture Support in FedGraph: FedGraph’s modular design separates pre-training feature
aggregation and model training, enabling tailored optimizations. In this case study, HE is applied
in both phases, while low-rank compression is used during pre-training. The HE interface naturally
supports low-rank encrypted aggregation due to its additive structure.

Low-Rank Pre-Training Feature Aggregation: In FedGCN, pre-training communication aggregates
cross-client node features, often encrypted for privacy [2024). We compress these features
via random projection: the server generates a matrix P € R*** (k <« d) and distributes it to clients.
Each client computes X; = X, P, sends it to the server, which aggregates X4, = > .-, X;, and
redistributes the result. To prevent inversion attacks, P may itself be encrypted. This method cuts
communication in both directions while preserving privacy.

FedGCN(HE)

FedGCN(HE)
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Figure 7: Comparison of communication cost (first and second plots) and training time (third and
fourth plots) for FedGCN with different low-rank compression settings. We show results with
plaintext and with HE. Each bar represents the total cost divided into pre-training (blue) and training
(green) phases, with accuracy plotted as an orange line to show performance trade-offs.

Performance Evaluation: We evaluate low-rank compression in FedGCN on the Cora dataset,
varying rank from the full 1433 features down to 100, achieving up to 93% reduction. Figure [7]
compares communication cost, training time, and accuracy. HE alone introduces large overhead,
especially in pre-training, which is substantially reduced with low-rank projection. Accuracy remains
stable across ranks, showing that low-rank compression effectively balances efficiency and privacy.

5 Benchmarking FedGraph on Graph Learning Tasks and Scalability

We benchmark FedGraph on graph classification, node classification, and link prediction, and then
evaluate its scalability on larger datasets. Additional results are in Appendix [H]

5.1 Benchmarking Federated Graph Learning Tasks

We benchmark FedGraph on three tasks-graph classification, node classification, and link prediction-
evaluating accuracy, training time, and communication cost. Federated Graph Classification: On
five datasets (IMDB-BINARY, IMDB-MULTI, MUTAG, BZR, COX2), GCFL+ and GCFL+dWs
achieve the highest accuracy but at much higher training and communication costs, especially on
IMDB. FedAvg is fastest and most communication-efficient, making it suitable for constrained
settings (Figure @ Federated Node Classification: On Cora, Citeseer, and PubMed, FedGCN
outperforms FedAvg in accuracy but incurs large pre-training communication overhead from feature
aggregation. These costs align with theory and motivate the low-rank method in Section[4] (Figure Sb).
Federated Link Prediction: Using the Foursquare dataset [2016), FedLink and STFL
reach the highest AUC but with the greatest time and communication costs. 4D-FED-GNN+ trains
fastest, while StaticGNN is most network-efficient (Figure Bc).
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Figure 8: Benchmark results on three FGL tasks (10 clients): accuracy (left), training time (middle),
and communication cost (right). (a) Graph classification, (b) Node classification, (c) Link prediction.

5.2 System Performance Monitoring and Resource Utilization

Using Grafana with Prometheus, we monitor 10 training nodes and one server. Figure [9]shows that
FedGCN converges faster and achieves higher accuracy than FedAvg. Resource usage scales with
dataset size: Cora and Citeseer yield lighter loads, while Pubmed and Ogbn-Arxiv cause higher

sustained CPU and memory usage, with spikes aligned to training rounds.
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Figure 9: Test accuracy across training rounds (left: Cora, Citeseer, Pubmed) and Grafana dashboard
showing CPU, memory, and network usage (right).

5.3 Real-World Dataset with Realistic Client Data Distribution

We benchmark FedGraph on Ogbn-Papers100M (50GB) split across 195 clients with power-law
distributions. As shown in Figure[T0] larger batch sizes slightly increase training time, accuracy peaks
at 32 then plateaus, and memory remains stable at ~17.5 GB, confirming scalability and efficiency.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: As in abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Discussed in conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Code and data are open-sourced.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Provided code link.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so AAIJN0AAI is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In main paper and appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: As in Table 5. Further error bars can be reported.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: As in appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Follows the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: As in conclusion
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Cited papers.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

13


paperswithcode.com/datasets

540

541

542

543

544
545
546

547
548

549
550

554

555

556

557

558

559

560
561
562

563

565

566
567

568
569
570
571

572

573

574

575

576

577
578
579

580
581
582

583
584

585

586

588
589

590

14.

15.

16.

Answer: [Yes]
Justification: Provided as a Python library.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Conclusion

In this paper, we presented FedGraph, a Python library designed for benchmarking federated graph
learning algorithms. Unlike general federated learning platforms, FedGraph supports a diverse set of
algorithms and enables systematic comparisons across algorithms, datasets, and system configurations.
It features fully distributed training, homomorphic encryption for privacy-preserving scenarios, and
a built-in system profiler to measure communication and computation overhead. The modular
API allows easy integration of custom datasets and algorithms. Through extensive experiments,
including low-rank compression and large-scale training on graphs with up to 100 million nodes, we
demonstrate that FedGraph is a practical and scalable tool for real-world FGL evaluation.

While this work focuses on enabling privacy-preserving federated graph learning, future efforts are
needed to explore more robust privacy risk assessments, additional optimization strategies, and the
inclusion of a broader range of FGL algorithms to expand benchmark coverage and better support
industrial deployment.

B Frequently Asked Questions

B.1 Benchmarking Scalability under Increasing Clients

We next evaluate the scalability of FedGraph by varying the number of clients in Table |2} As the
number of clients increases, the overall communication cost grows substantially, eventually becoming
the primary bottleneck. In contrast, the training time per client decreases since each client processes
a smaller subgraph.

Table 2: Training and communication time (seconds) for datasets under varying client numbers.

Clients \ Cora \ CiteSeer \ PubMed | OGBN-arXiv
| Train  Comm | Train Comm | Train Comm | Train Comm
5 1.39 1.69 1.58 2.78 2.08 1.55 | 127.71 4.48
10 1.36 2.78 1.79 6.55 1.77 2.60 45.82 5.95
15 1.56 3.99 2.40 9.58 1.57 3.84 21.77 7.7
20 1.49 4.87 2.07 13.62 1.83 4.63 17.89 9.24

B.2 Client Selection

FedGraph supports two client selection methods that randomly or uniformly select clients at each
round, as in server_class.py. Server-side algorithm components can also be added by modifying the
server class.

assert 0 < sample_ratio <=1,
num_samples = int(self.num_of_trainers *ample_ratio)
if sampling_type == :

selected_trainers_indices = random.sample(
range (self .num_of_trainers), num_samples

)
elif sampling_type == :
selected_trainers_indices = [
(
i
+ int (self.num_of_trainers * sample_ratio)
* current_global_epoch
)
% self.num_of_trainers
for i in range (num_samples)
]
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else:
raise ValueError (

)

B.3 Easy Integration with New Baselines

We agree that adding more FGL methods to FedGraph could make it more useful to users. Indeed,
our main goal is to provide a library for benchmarking the real system performance of federated
graph learning methods. Though we believe we have covered most state-of-the-art methods, we
acknowledge that some methods from the literature are missing, so we also make the library easy to
add new methods for researchers. Researchers can create a new training class based on an existing
training method in the library (e.g., FedAvg, FedGCN).

B.4 Communication Overhead after HE with Low Rank

Homomorphic Encryption (HE) has sometimes significant drawbacks, in particular, high computing
and communication loads. We include an HE implementation in the FedGraph framework as some
prior work on federated graph learning has proposed HE as a way to preserve privacy, e.g., |[Effendi
and Chattopadhyay| (2024); [Fu et al.| (2022); N1 et al.| (2021). Thus, researchers in the field may
wish to evaluate the effects of HE on various graph learning algorithms, or even evaluate new ways
to combine HE with federated graph learning. As a benchmark platform, we do not advocate for
or against such ideas; our goal is simply to facilitate the evaluation of federated graph learning
algorithms that require HE implementations. For example, researchers may wish to quantitatively
compare the training and communication time of their algorithms with and without HE in order
to precisely measure the overhead induced by using HE. We will clarify this point in the revised
manuscript.

Our work on low-rank HE is meant to serve as an example case study of the types of research that
FedGraph enables with HE. We fully agree that it does not reduce the overhead of communication
during training. However, FedGraph also facilitates implementing low-rank HE schemes for the
aggregation process, such as FedPara Hyeon-Woo et al.|(2021).

B.5 Comparison with Other Framework

The FedGraphnn and FederatedScopeGNN libraries have not been maintained since 2023. When
running FedAvg, due to using the same graph training library, PyG, and the distributed setup,
FedGraph has a similar run time as FedGraphnn and FederatedScopeGNN. As shown in Table [T}
the main advantage is supporting new algorithms, homomorphic encryption, system-level profilers,
and large-scale optimization like low rank, client selection, mini-batch, etc. Given the optimization
methods (e.g., low rank in Figure[7), FedGraph can run much faster than these frameworks.

B.6 Support Differential Privacy and Homomorphic Encryption

FedGraph supports differential privacy(DP) for aggregation as an option in configuration. Our
implementation of DP achieves comparable performance to both the plaintext version and HE without
having an accuracy loss. Table[3|provides a comparison of different matrix running FedGCN with
Cora using plaintext, HE, and DP. Results are averaged over 5 runs. Both HE and DP protect the
pre-training or training communication without exposing the raw data at the server in different
approaches. This meets our goal of presenting FedGraph to provide user with the flexibility of using
and choosing the privacy mechanism that best fits their specific needs.

Framework | Pre-train Communication (MB) | Pre-train Time (s) | Total Time (s) | Accuracy

Plaintext 56.61 491 12.08 0.793
HE 1208.87 17.49 4091 0.791
DP 57.69 5.60 13.09 0.792

Table 3: Comparison of privacy preservation methods in terms of pre-train communication cost,
pre-train time, total time, and accuracy.
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B.7 Why HE Affects Model Accuracy

HE performance is highly sensitive to hyperparameter settings. For example, in Table {f] and Table [5]
we vary the Polynomial Modulus Degree to balance security and computational capacity. A higher
degree supports more complex computations but incurs greater overhead, while a lower degree
restricts the allowable computation depth before noise dominates, leading to truncated or simplified
operations that degrade model accuracy. In some cases, decryption itself becomes inaccurate, with the
error magnitude determined by both the chosen hyperparameters and the encrypted values. Since the
decrypted outputs are used for graph model training, such errors accumulate and ultimately reduce
training accuracy.

B.8 Run on Edge Devices

In this paper, we focus on AWS cloud experiments as many of our envisioned use cases for federated
graph learning—including learning on medical record data stored at different hospitals, or user-product
consumption data stored in different countries—falls into the cross-silo federated learning paradigm,
where clients are likely large servers or computers (hospitals or countries respectively, in the two
examples above). FedGraph could also be run on Linux-based mobile or Internet of Things devices,
e.g., Jetson Nanos, as might be appropriate for mobile applications like wearable health sensing.

C FedGraph Code Structure

Fedgraph library can be separated into six modules:

Data Process Module: data_process.py. This module is responsible for data generation and
processing. It should be called before calling the runner, so it is only applicable for node classification
and graph classification in the latest version. (In link prediction, the dataset is generated and processed
inside the runner.)

Runner Module: federated_methods.py. Task-based runners are defined in this module. For
node classification and link prediction, there’s a shared runner that could call inner modules to
perform federated graph learning. For graph classification, it will further assign the program to an
algorithm-based runner.

Server Classes Module: server_class.py. It defines different task-based server classes including
server_NC, server_GC, and server_LP.

Trainer Classes Module: trainer_class.py. It defines different task-based trainer(client) classes
including trainer_NC, trainer_GC, and trainer_LP.

Backbone Models Module: gnn_models.py. It defines different backbone model classes. Generally,
it is task-based (i.e., each task corresponds to one backbone model), but for some models, their
variants are also included, and the user could also switch the backbone model or define a new one
themselves.

Utility Functions: utils_nc.py, utils_gc.py, utils_Ip.py. In the current version, the utility functions
for different tasks are located in separate Python modules, which is convenient for development.
In the later versions, it might be better to use the shared ‘utils.py‘, and use different markers like
AAIINCAAIL, AAIJGCAAI, and AAITLPAAI to distinguish them.

D FedGraph API and Runners

When calling the FedGraph API, as shown in Figure[TT] Users can simply specify the name of the
dataset and algorithm. The API will then call the corresponding data loader class to generate the
required data, which is then automatically fed into the appropriate algorithm runner for tasks like
Node Classification, Graph Classification, or Link Prediction. Additionally, users can seamlessly add
their own datasets or federated graph learning algorithms if needed, as long as they satisfy the form
requirements for the specified task.

18



727
728
729

730
731

732
733
734

736

738

739

740
741
742

743

744

745
746
747
748

User Interface Layer Application Layer Service Layer

-9 FedGraph

Node Classification ]

Graph Classification ] (/)
Task b
Algorithm -
Link Prediction
-
-
l Data l

-Q- Data Loader %

Interface

Configuration

Evaluation Output

Figure 11: High-level Demonstration of FedGraph API Design

The function run_fedgraph is a general runner that receives the dataset and the configurations. It will
further assign the program to a task-specified runner run_NC , run_GC , or run_LP based on the
user’s specification on Task.

def run_fedgraph(args, data):

if args.fedgraph_task == "NC":
run_NC(args, data)

elif args.fedgraph_task == "GC":
run_GC(args, data)

elif args.fedgraph_task == "LP":

run_LP (args)

E Supported Algorithms and Datasets

For federated node classification, link prediction, and graph classification, we integrated different
datasets and algorithms for each task, shown in Table ] and Table [5] Researchers can also easily
implement new algorithms and add their datasets.

Task Dataset
Cora, Citeseer, Pubmed,

Ogbn-Arxiv, Ogbn-Products, Ogbn-MAG Hu et al.| (2020)

MUTAG, BZR, COX2, DHFR, B ]

PTC-MR, AIDS, NCI1, ENZYMES,
DD, PROTEINS, COLLAB,
IMDB-BINARY, IMDB-MULTI Xie et al.|(2021)

Link Prediction FourSquare |[Yang et al.[(2019), WyzeRule [Kamani et al.[(2024) |

Node Classification

Graph Classification

Table 4: Supported datasets of node classification, graph classification, and link prediction in federated
learning.

F Runner Workflow

F.1 Runner Workflow for Node Classification Task

For the node classification task, the user specifies the dataset name in the configuration file. The
dataset is preprocessed and partitioned across clients based on the chosen federated setting. The data
is accessed directly from local storage or via an API, and then a time window may be generated to
support temporal learning tasks.
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Task Algorithm Backbone
FedAvg|Li et al[(2019) GCN
Distributed GCN GCN
Node Classification BNS-GCN |Wan et al.| (2022)) GCN
FedSage+|Zhang et al.| (2021) GraphSage
FedGCN |Yao et al.[(2024) GCN,GraphSage
SelfTrain GIN
FedAvg|Li et al. (2019) GIN
. . FedProx|Li et al.| (2020) GIN
Graph Classification GCFLXie et al| (2021) GIN
GCFL+ Xie et al.| (2021) GIN
GCFL+dWs Xie et al.| (2021) GIN
FedAvg|Li et al.|(2019) GCN
STFL [Lou et al.| (2021) GCN
Link Prediction FedGNN+ |Giirler and Rekik! (2022) GCN
FedLink B GCN
FedRule|Yao et al.| (2023) GCN

Table 5: Supported algorithms of node classification, graph classification, and link prediction in
federated learning.

Dataset extraction and preprocessing are managed by the function dataloader_NC in the module
data_process.py, which handles both temporal and static graph datasets. Each client holds a
subgraph or node features, and training proceeds in a federated manner.

The core execution is handled by run_NC, which directs the process to an algorithm-specific runner
run_NC_{algorithm}. Each algorithm may require different configurations, so separate .yam! files
are used. In each global round, clients perform local training, exchange model updates with the server,
and participate in global validation. Results are recorded at the end of each round. The workflow is
illustrated in Figure[T2a]

F.2 Runner Workflow for Graph Classification Task

In the graph classification task, the dataset name can be specified by the user, and it could be
either a single dataset or multiple datasets. For single dataset GC, the graphs will be assigned
to a designated number of clients; for multiple datasets GC, each dataset will correspond to
a client. Dataset generation and preparation are controlled by the function dataloader_GC
in the module data_process.py. It will further assign the data process task to the function
data_loader_GC_single or data_loader_GC_multiple. All the provided datasets are built-in
TUDatasets in the Python library torch_geometric.

For the graph classification task, different algorithms require different sets of arguments. Therefore,
we divide the configurations into separate .yaml files, each corresponding to one algorithm. In
run_GC, the program will be further assigned to an algorithm-based runner run_GC_{algorithm}.
The whole workflow is demonstrated in Figure [I2b]

F.3 Runner Workflow for Link Prediction Task

For the link prediction task, we provide a common dataset. The user only needs to specify the country
codes. The original datasets are stored in Google Drive, so the user does not need to prepare the
dataset by itself. The API will automatically check whether the dataset already exists and download
the corresponding one if not.

There are also multiple available algorithms for the link prediction task. However, they share the same
set of arguments so that we don’t need to create separate .yaml! files. The user could conveniently
select different algorithms by directly changing the algorithm field in the configuration file. All the
algorithms will share the same runner. The whole workflow is demonstrated in Figure
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(a) Node classification. (b) Graph classification. (c) Link prediction.

Figure 12: Federated graph training workflows for (a) node classification, (b) graph classification,
and (c) link prediction tasks.

G Benchmark Homomorphic Encryption

We provide a comprehensive guide for the configuration of Homomorphic Encryption in FedGraph to
provide security guarantees corresponding to the graph structure and size.

G.1 Parameter Configuration

In Table [6] we present the key parameters for configuring CKKS homomorphic encryption. The
selection of the parameters is based on the dataset size and desired security level. Different parameter
combinations create tradeoffs between computational overhead, communication cost, and precision.
We present the default setting and parameter selection range to guide the user in selecting an
appropriate combination that achieves the balance between objectives.

Parameter Default Value Description Range
scheme CKKS Encryption scheme type N/A
polynomial modu- | 16384 Maximum degree of polynomials used to repre- | 4096, 8192, 16384,
lus degree sent encrypted data (N > 2x max(nodes, fea- | 32768

tures))
coefficient modulus | [60, 40, 40, 40, 60] | Bit size for coefficient modulus that controls pre- | Array of integers in
bit size cision the range [20, 60]
global scale 210 Global scale factor for encoding precision 230 270 950 "etc.
security level 128 Bit security level 128,192, 256

Table 6: TenSEAL Homomorphic Encryption Configuration Parameters. This table shows the key
parameters for configuring the CKKS encryption scheme in the FedGraph library, including their
default values, descriptions, and available ranges.

G.2 Microbenchmark

We then provide the microbenchmark of HE on federated graph training in Table[/| The experiments
are conducted on a 2-layer FedGCN for node classification tasks, running 100 global rounds with
default settings in Cora. For CKKS parameters, we evaluate different polynomial modulus degrees
(Poly_mod), coefficient modulus sizes (Coeff_mod), and precision levels. Time(s) for the encrypted
version show pre-train/training/total times, respectively. Communication costs (Comm_cost) include
both pre-training and training rounds.

Dynamic Precision: We adjust encryption parameters based on graph sizes and the numerical
precision needed. For graphs like Cora, a polynomial modulus degree of 16384 with precision 24°
satisfies the ideal accuracy, while an increased value provides more precise security protection.
Communication Cost Optimization: We employ several strategies to manage the communication
overhead inherent in HE operation. The selection of coefficient modulus chain, [60,40,40,40,60],
etc., enables efficient depth management for multiple HE operations. Depending on specific dataset
characteristics (sparse matrix, larger datasets, etc.), we also employ efficient encryption methods to
optimize communication cost and balance the performance.

When comparing among datasets, we observe that HE maintains equivalent accuracy across different
parameter selections, as long as they satisfy the modulus requirement. If a smaller-than-required
parameter size is used, the accuracy drops sharply, which indicates invalid encryption.
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Method Poly Coeff_mod Precision | Dataset Time(s) Comm_cost Accuracy
_mod (MB)

FedGCN N/A N/A N/A Cora 13.29 59.21 0.783 + 0.07

(plaintext)

FedGCN 16384 | [60,40,40,40,60] 2%0 Cora 27.71/23.22/56.05 | 3279.15 0.779 + 0.08

(HE)

FedGCN 32768 | [60,40,40,40,60] 2°0 Cora 29.44/36.17/71.76 | 4434.58 0.781 + 0.08

(HE)

FedGCN N/A N/A N/A Citeseer 20.39 187.99 0.658 + 0.06

(plaintext)

FedGCN 8192 [60,40,40,60] 20 Citeseer | 79.35/30.63/113.08 | 5791.42 0.660 + 0.07

(HE)

FedGCN 16384 | [60,40,40,40,60] 210 Citeseer | 123.22/45.8/173.40 | 8084.50 0.652 + 0.06

(HE)

FedGCN N/A N/A N/A PubMed 25.78 150.43 0.774+ 0.12

(plaintext)

FedGCN 8192 [60,40,40,60] 20 PubMed | 70.28/19.73/93.18 | 3612.60 0.757 +0.19

(HE)

FedGCN 16384 | [60,40,40,40,60] 210 PubMed | 123.22/45.8/173.40 | 8084.50 0.769 + 0.13

(HE)

Table 7: Microbenchmark of FedGCN under Homomorphic Encryption with different CKKS scheme
parameters. The experiments are conducted on a 2-layer FedGCN for node classification tasks,
running 100 global rounds with default settings across three datasets (Cora, Citeseer, PubMed).
For CKKS parameters, we evaluate different polynomial modulus degree (Poly_mod), coefficient
modulus sizes (Coeff_mod), and precision levels. Time(s) for the encrypted version show pre-
train/training/total times, respectively. Communication costs (Comm_cost) include both pre-training
and training rounds. Plain-text FedGCN serves as the baseline for comparison. Communication costs
are measured for pre-training communication and training rounds separately.

H Additional Experiments

H.1 Increasing the Number of Clients with Fixed Computation Resources
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Figure 13: Training Time, Communication Cost, Test Accuracy on Ogbn-Arxiv in a Large Number
of Clients. All experiments run on 10 AWS instances. 1000 trainers take a long time since it runs
sequentially on 10 instances.

To better test scalability and fit real-world data, we increase the number of clients to 1000. In Figure
[13] we observe that as the number of clients increases, the overall training time grows significantly
due to sequential running on 10 instances, added communication overhead, and the need for increased
synchronization among clients.

As we scale from 10 to 1000 clients under a fixed IID Beta value, there is a small decline in accuracy,
likely due to the increased data heterogeneity each client possesses. The communication cost also
escalates notably with more clients, highlighting the trade-off between parallelism and efficiency in
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14 federated settings. This experiment shows the system’s ability to handle large-scale client distributions
815 while revealing the resources required to maintain accuracy and efficiency.
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