
FedGraph: A Research Library and Benchmark for
Federated Graph Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Federated graph learning is an emerging field with significant practical challenges.1

While algorithms have been proposed to improve the accuracy of training graph2

neural networks, such as node classification on federated graphs, the system per-3

formance is often overlooked, despite it is crucial for real-world deployment. To4

bridge this gap, we introduce FedGraph, a research library designed for practical5

distributed training and comprehensive benchmarking of FGL algorithms. Fed-6

Graph supports a range of state-of-the-art graph learning methods and includes7

a monitoring class that evaluates system performance, with a particular focus8

on communication and computation costs during training. Unlike existing feder-9

ated learning platforms, FedGraph natively integrates homomorphic encryption to10

enhance privacy preservation and supports scalable deployment across multiple11

physical machines with system-level performance evaluation to guide the system12

design of future algorithms. To enhance efficiency and privacy, we propose a low-13

rank communication scheme for algorithms like FedGCN that require pre-training14

communication, accelerating both the pre-training and training phases. Extensive15

experiments benchmark FGL algorithms on three major graph learning tasks and16

demonstrate FedGraph as the first efficient FGL framework to support encrypted17

low-rank communication and scale to graphs with 100 million nodes.18

1 Introduction19

Graph neural networks aim to learn representations of graph-structured data that capture features20

associated with graph nodes and edges between them (Bronstein et al., 2017). Most graph applications21

can modeled as one of three major graph learning problems: node classification (e.g., classifying22

nodes representing papers in citation networks based on the research topic), link prediction (e.g.,23

recommending the formation of links that represent friendship between users), or graph classification24

(e.g. classifying types of proteins in biology, where each protein is represented as a graph). Figure 125

(left) illustrates these graph learning tasks (Benamira et al., 2019; Zhang et al., 2020b).26

In practice, graph data is often too large for a single server or naturally distributed across clients.27

For instance, learning from billions of website visits requires more resources than one server can28

provide. Even if centralized storage were possible, privacy laws such as GDPR in Europe and PAPG29

in India restrict cross-border data sharing, and users may be unwilling to share personal data with30

external servers. To address these challenges, federated learning enables training accurate models on31

decentralized data while preserving privacy (Zhao et al., 2018).32

These challenges motivate Federated Graph Learning (FGL) as a key research area (Liu et al.,33

2024). In FGL (Figure 1, right), each client trains a local graph and Graph Neural Network (GNN)34

model, which are then aggregated at a coordinator server. Different FGL algorithms vary in how35

they update and aggregate local models, affecting accuracy and system performance (e.g., runtime,36
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Figure 1: Modeling Applications as Graph Tasks (left) and Federated Graph Training (right). Node
classification predicts labels of grey nodes from neighbors, link prediction infers future edges, and
graph classification assigns labels to whole graphs. In federated graph learning, nodes span multiple
clients with cross-client edges. Each client trains a local GNN on its subgraph and shares encrypted
updates with a server, enabling collaborative learning without exposing raw data.

communication cost)(Xie et al., 2021; Zhang et al., 2021; Yao et al., 2024). While model accuracy37

can be tested on open datasets(Hu et al., 2020), evaluating real-world system performance requires38

benchmarking platforms. Existing FGL benchmarks mostly simulate multiple clients on one ma-39

chine (Xie et al., 2021; Li et al., 2024), failing to reflect real communication and computation costs.40

Current libraries also lack mature GNN support: FedScale (Lai et al., 2022) excludes graph models,41

while FedGraphNN (He et al., 2021) and FederatedScope-GNN (Wang et al., 2022) are outdated42

and limited to simple methods like FedAvg. Users must implement key FGL features themselves,43

such as handling cross-client edges, and no platform natively supports advanced techniques like44

homomorphic encryption (Jin et al., 2023; Yao et al., 2024).45

To meet these shortcomings, we introduce FedGraph, a research library to easily train GNNs in46

federated settings. As shown in Table 1, FedGraph supports various federated training methods of47

graph neural networks under both simulated and real federated environments, as well as encrypted48

communication between clients and the central server for model update and information aggregation.49

Table 1: Comparison with Existing Frameworks. FedGraph supports distributed FGL, cross-client
edges, encrypted aggregation, and system-level profiling for large-scale optimization.

Vanilla FGL FedScale FedGraphNN FederatedScope-GNN FedGraph
Distributed Training ✗ ✓ ✓ ✓ ✓

Graph Learning ✓ ✗ ✓ ✓ ✓
Multiple FGL Algorithms ✓ ✗ ✗ ✓

Cross-Client Edges ✗ ✗ ✗ ✗ ✓
Encrypted Aggregation ✗ ✗ ✗ ✗ ✓
System Level Profiler ✗ ✗ ✗ ✗ ✓

Large Scale ML Optimizations ✗ ✗ ✗ ✗ ✓

We summarize the contributions of FedGraph as follows.50

• FedGraph is the first Python library tailored for real-world federated graph learning (FGL),51

integrating system optimizations for efficiency, scalability, and privacy, along with multiple52

state-of-the-art algorithms for easy comparison.53

• It natively supports homomorphic encrypted aggregation for privacy-preserving training and54

offers a system-level monitor to analyze communication and computation overhead.55

• A low-rank communication scheme is introduced for methods such as FedGCN, reducing56

both pre-training and training communication costs.57

• Extensive experiments benchmark three FGL tasks and demonstrate scalability to privacy-58

preserving training on graphs with up to 100 million nodes.59

In this paper, we first overview the system design in Section 2, followed by highlighting the key60

system components in Section 3. In Section 4, we present a case study demonstrating how FedGraph61

facilitates the design and test of low-rank pre-training communication in FGL. We then benchmark62

the performance on three tasks and evaluate its scalability in Sections 5, and conclude in Appendix A.63
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2 FedGraph System Design64

In this section, we outline the design principles of the FedGraph library and demonstrate how these65

principles are implemented in our system design (Figure 2).66

2.1 Design Principles67

The main focus of FedGraph is providing a scalable and privacy-preserving federated graph learning68

system with ease of use for federated learning researchers and applied scientists in industry. As69

illustrated in Figure 2 (left), the system architecture is structured according to four design principles.70

Optimized usability: At the access layer, users can configure training with 10-20 lines of code71

and seamlessly switch between local simulation and federated training, as detailed in Section 2.2.72

FedGraph abstracts away complexity, offering a unified training and evaluation platform.73

Benchmarking methods: At the application layer, FedGraph supports three FGL tasks (node, link,74

and graph classification) and a wide range of state-of-the-art algorithms, listed in Appendix E.75

Extensibility: At the domain layer, modular components (e.g., data loaders, trainer classes) allow76

easy extension to new datasets and algorithms.77

Scalability and privacy: At the infrastructure layer, FedGraph leverages Ray and Kubernetes78

for distributed training, with optional homomorphic encryption to secure aggregation, supporting79

large-scale, privacy-preserving FGL.80
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from fedgraph import run_fedgraph 

config = { 
# Task, Method, and Dataset
"fedgraph_task": "NC", 
"dataset": "cora", 
"method": "FedGCN", 
"iid_beta": 10000, 
# Training Configuration 
"global_rounds": 100, 
"local_step": 3, 
"learning_rate": 0.5, 
"n_trainer": 5, 
# Security and Privacy 
"use_encryption": True, 

} 

run_fedgraph(config)

Figure 2: Design Diagram of FedGraph (left) and Quick Start Example (right). The system is
organized into four layers: the user access layer, the application layer, the domain layer, and the
infrastructure layer. Users only need to focus on the access layer, while the developers can focus on
one of the remaining layers based on the domain knowledge.

2.2 FedGraph Use Example81

Researchers can install FedGraph with pip install fedgraph, configure experiments, and start82

training federated GNN models. Details on code structure and API are in Appendices C, D, and F. As83

shown in Figure 2 (right), users set up experiments through a simple configuration: Task, method,84

and dataset specification: define the task, algorithm, dataset, and client distribution, with enforced85

task-method compatibility for reproducibility. Training configuration: specify hyperparameters86

such as global rounds, local steps, learning rate, and trainer count. Security and privacy: enable87

homomorphic encryption for secure aggregation. Execution: run run_fedgraph(config) to88

automatically launch data loading, client initialization, and distributed training.89

3 FedGraph System Highlights90

In this section, we first introduce FedGraph’s monitoring system, which enables usable benchmarking91

of FGL methods. We then introduce two infrastructure features, FedGraph Homomorphic Encryption92

for privacy-preserving aggregation and FedGraph Kubernetes for scalable distributed training. Finally,93

we discuss supported configurations for users to optimize large-scale model training.94
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3.1 FedGraph Monitoring System95
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Figure 3: FedGraph Monitoring System Architecture.

The system(Figure 3) uses a Moni-96

tor Class to track runtime, CPU/GPU97

utilization, memory use, and com-98

munication costs between server and99

clients, with dashboards shown in Fig-100

ure 9. Communication cost: logs101

transfer rates to identify bottlenecks.102

Training time and accuracy: records103

duration and model accuracy for com-104

parison. Resource usage: tracks CPU/GPU and memory across components (e.g., Server Process,105

Ray AutoScaler) to reveal inefficiencies or leaks. Section 5 further illustrates resource profiles.106

3.2 FedGraph Homomorphic Encryption107
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Figure 4: FedGraph Homomorphic Encryp-
tion for Secure Aggregation.

FedGraph supports homomorphic encryption (HE)108

for end-to-end secure computation (Figure 4), mak-109

ing it the first FGL library with native HE support.110

It secures both (i) feature aggregation before train-111

ing (Yao et al., 2024) and (ii) model aggregation112

during training (Zhang et al., 2024; Kim et al., 2025).113

Pre-training aggregation: clients encrypt node fea-114

tures, the server aggregates ciphertexts, and clients115

decrypt results without exposing raw features. Train-116

ing aggregation: clients encrypt model updates,117

and the server aggregates them without plaintext ac-118

cess (Zhang et al., 2020a; Jin et al., 2023).119
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Figure 5: FedGCN performance on plaintext vs. HE.

Homomorphic Encryption Overhead: Fig-120

ure 5 shows training time and communication121

cost for FedGCN with and without HE. As122

FedGCN involves pre-training and training123

aggregation, it highlights HE overhead, partic-124

ularly where feature matrices exceed model125

parameters. This motivates communication-126

efficient techniques (Section 4); detailed127

benchmarks are in Appendix G.128

3.3 FedGraph Kubernetes129
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Figure 6: Kubernetes Service for Cluster Management.

FedGraph employs Kubernetes to support130

diverse workloads and large client popula-131

tions. Unlike prior work (Table 1), it in-132

tegrates natively with AWS Elastic Kuber-133

netes Service for flexible resource manage-134

ment. A self-managed cluster runs inten-135

sive tasks, with a master node handling or-136

chestration and worker nodes executing dis-137

tributed training. The Kubernetes Cluster138

Autoscaler dynamically adjusts resources,139

ensuring efficiency under varying loads.140

3.4 Optimizations for Scalability141

FedGraph scales to graphs with millions of nodes through several optimizations. Client selection:142

selectively engages a fraction of clients per round (Li et al., 2019), reducing communication and143

client overhead. Minibatch training: processes graph subsets to lower computation and memory use,144

enabling participation by resource-limited devices. Communication and resource optimization:145

minimizes data transfer and leverages Kubernetes to dynamically manage pods.146
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4 Case Study: Communication- and Computation-Efficient Federated Node147

Classification with Low-Rank Feature Compression148

Communication is a major challenge in federated graph learning, especially with large graphs or149

privacy-preserving methods like homomorphic encryption (HE). To address this, FedGraph integrates150

low-rank feature compression, reducing overhead while maintaining accuracy.151

Architecture Support in FedGraph: FedGraph’s modular design separates pre-training feature152

aggregation and model training, enabling tailored optimizations. In this case study, HE is applied153

in both phases, while low-rank compression is used during pre-training. The HE interface naturally154

supports low-rank encrypted aggregation due to its additive structure.155

Low-Rank Pre-Training Feature Aggregation: In FedGCN, pre-training communication aggregates156

cross-client node features, often encrypted for privacy (Yao et al., 2024). We compress these features157

via random projection: the server generates a matrix P ∈ Rd×k (k ≪ d) and distributes it to clients.158

Each client computes X̂i = XiP, sends it to the server, which aggregates X̂agg =
∑m

i=1 X̂i, and159

redistributes the result. To prevent inversion attacks, P may itself be encrypted. This method cuts160

communication in both directions while preserving privacy.161
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Figure 7: Comparison of communication cost (first and second plots) and training time (third and
fourth plots) for FedGCN with different low-rank compression settings. We show results with
plaintext and with HE. Each bar represents the total cost divided into pre-training (blue) and training
(green) phases, with accuracy plotted as an orange line to show performance trade-offs.

Performance Evaluation: We evaluate low-rank compression in FedGCN on the Cora dataset,162

varying rank from the full 1433 features down to 100, achieving up to 93% reduction. Figure 7163

compares communication cost, training time, and accuracy. HE alone introduces large overhead,164

especially in pre-training, which is substantially reduced with low-rank projection. Accuracy remains165

stable across ranks, showing that low-rank compression effectively balances efficiency and privacy.166

5 Benchmarking FedGraph on Graph Learning Tasks and Scalability167

We benchmark FedGraph on graph classification, node classification, and link prediction, and then168

evaluate its scalability on larger datasets. Additional results are in Appendix H.169

5.1 Benchmarking Federated Graph Learning Tasks170

We benchmark FedGraph on three tasks-graph classification, node classification, and link prediction-171

evaluating accuracy, training time, and communication cost. Federated Graph Classification: On172

five datasets (IMDB-BINARY, IMDB-MULTI, MUTAG, BZR, COX2), GCFL+ and GCFL+dWs173

achieve the highest accuracy but at much higher training and communication costs, especially on174

IMDB. FedAvg is fastest and most communication-efficient, making it suitable for constrained175

settings (Figure 8a). Federated Node Classification: On Cora, Citeseer, and PubMed, FedGCN176

outperforms FedAvg in accuracy but incurs large pre-training communication overhead from feature177

aggregation. These costs align with theory and motivate the low-rank method in Section 4 (Figure 8b).178

Federated Link Prediction: Using the Foursquare dataset (Yang et al., 2016), FedLink and STFL179

reach the highest AUC but with the greatest time and communication costs. 4D-FED-GNN+ trains180

fastest, while StaticGNN is most network-efficient (Figure 8c).181

5



IMDB-BINARY

IMDB-MULTI
MUTAG BZR

COX2

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FedAvg
GCFL
GCFL+
GCFL+dWs

IMDB-BINARY

IMDB-MULTI
MUTAG BZR

COX2

Dataset

0

10

20

30

40

Tr
ai

ni
ng

 T
im

e 
(s

)

FedAvg
GCFL
GCFL+
GCFL+dWs

IMDB-BINARY

IMDB-MULTI
MUTAG BZR

COX2

Dataset

0

200

400

600

800

Co
m

m
un

ica
tio

n 
Co

st
 (M

B)

FedAvg Actual
FedAvg Theoretical
GCFL Actual
GCFL Theoretical
GCFL+ Actual
GCFL+ Theoretical
GCFL+dWs Actual
GCFL+dWs Theoretical

Cora Citeseer Pubmed
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

FedAvg
FedGCN

Cora Citeseer Pubmed
0

2

4

6

8

10

12

Tr
ai

ni
ng

 T
im

e 
(s

)

FedAvg
FedGCN

Cora Citeseer Pubmed
0

200

400

600

800

1000

1200

1400

1600

C
om

m
un

ic
at

io
n 

C
os

t (
M

B
)

FedAvg Train Actual
FedAvg Train Theoretical
FedGCN Pretrain Actual
FedGCN Train Actual
FedGCN Pretrain Theoretical
FedGCN Train Theoretical

US US, BR US, BR, ID, TR, JP
Dataset (Countries)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

4D-FED-GNN+
FedLink
STFL
StaticGNN

US US, BR US, BR, ID, TR, JP
Dataset (Countries)

0

50

100

150

200

250

300

Tr
ai

n 
Ti

m
e 

(s
)

4D-FED-GNN+
FedLink
STFL
StaticGNN

US US, BR US, BR, ID, TR, JP
Dataset (Countries)

0

5

10

15

20

25

30

35

Co
m

m
un

ica
tio

n 
Co

st
 (G

B)

4D-FED-GNN+ Actual
4D-FED-GNN+ Theoretical
FedLink Actual
FedLink Theoretical
STFL Actual
STFL Theoretical
StaticGNN Actual
StaticGNN Theoretical

Figure 8: Benchmark results on three FGL tasks (10 clients): accuracy (left), training time (middle),
and communication cost (right). (a) Graph classification, (b) Node classification, (c) Link prediction.

5.2 System Performance Monitoring and Resource Utilization182

Using Grafana with Prometheus, we monitor 10 training nodes and one server. Figure 9 shows that183

FedGCN converges faster and achieves higher accuracy than FedAvg. Resource usage scales with184

dataset size: Cora and Citeseer yield lighter loads, while Pubmed and Ogbn-Arxiv cause higher185

sustained CPU and memory usage, with spikes aligned to training rounds.186
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Figure 9: Test accuracy across training rounds (left: Cora, Citeseer, Pubmed) and Grafana dashboard
showing CPU, memory, and network usage (right).

5.3 Real-World Dataset with Realistic Client Data Distribution187

We benchmark FedGraph on Ogbn-Papers100M (50GB) split across 195 clients with power-law188

distributions. As shown in Figure 10, larger batch sizes slightly increase training time, accuracy peaks189

at 32 then plateaus, and memory remains stable at ∼17.5 GB, confirming scalability and efficiency.190
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Figure 10: Training time, test accuracy, and memory usage on Ogbn-Papers100M.
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NeurIPS Paper Checklist279

1. Claims280

Question: Do the main claims made in the abstract and introduction accurately reflect the281

paper’s contributions and scope?282

Answer: [Yes]283

Justification: As in abstract and introduction.284

Guidelines:285

• The answer NA means that the abstract and introduction do not include the claims286

made in the paper.287

• The abstract and/or introduction should clearly state the claims made, including the288

contributions made in the paper and important assumptions and limitations. A No or289

NA answer to this question will not be perceived well by the reviewers.290

• The claims made should match theoretical and experimental results, and reflect how291

much the results can be expected to generalize to other settings.292

• It is fine to include aspirational goals as motivation as long as it is clear that these goals293

are not attained by the paper.294

2. Limitations295

Question: Does the paper discuss the limitations of the work performed by the authors?296

Answer: [Yes]297

Justification: Discussed in conclusion.298

Guidelines:299

• The answer NA means that the paper has no limitation while the answer No means that300

the paper has limitations, but those are not discussed in the paper.301

• The authors are encouraged to create a separate "Limitations" section in their paper.302

• The paper should point out any strong assumptions and how robust the results are to303

violations of these assumptions (e.g., independence assumptions, noiseless settings,304

model well-specification, asymptotic approximations only holding locally). The authors305

should reflect on how these assumptions might be violated in practice and what the306

implications would be.307

• The authors should reflect on the scope of the claims made, e.g., if the approach was308

only tested on a few datasets or with a few runs. In general, empirical results often309

depend on implicit assumptions, which should be articulated.310

• The authors should reflect on the factors that influence the performance of the approach.311

For example, a facial recognition algorithm may perform poorly when image resolution312

is low or images are taken in low lighting. Or a speech-to-text system might not be313

used reliably to provide closed captions for online lectures because it fails to handle314

technical jargon.315

• The authors should discuss the computational efficiency of the proposed algorithms316

and how they scale with dataset size.317

• If applicable, the authors should discuss possible limitations of their approach to318

address problems of privacy and fairness.319

• While the authors might fear that complete honesty about limitations might be used by320

reviewers as grounds for rejection, a worse outcome might be that reviewers discover321

limitations that aren’t acknowledged in the paper. The authors should use their best322

judgment and recognize that individual actions in favor of transparency play an impor-323

tant role in developing norms that preserve the integrity of the community. Reviewers324

will be specifically instructed to not penalize honesty concerning limitations.325

3. Theory assumptions and proofs326

Question: For each theoretical result, does the paper provide the full set of assumptions and327

a complete (and correct) proof?328

Answer: [NA]329
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Justification: [NA]330

Guidelines:331

• The answer NA means that the paper does not include theoretical results.332

• All the theorems, formulas, and proofs in the paper should be numbered and cross-333

referenced.334

• All assumptions should be clearly stated or referenced in the statement of any theorems.335

• The proofs can either appear in the main paper or the supplemental material, but if336

they appear in the supplemental material, the authors are encouraged to provide a short337

proof sketch to provide intuition.338

• Inversely, any informal proof provided in the core of the paper should be complemented339

by formal proofs provided in appendix or supplemental material.340

• Theorems and Lemmas that the proof relies upon should be properly referenced.341

4. Experimental result reproducibility342

Question: Does the paper fully disclose all the information needed to reproduce the main ex-343

perimental results of the paper to the extent that it affects the main claims and/or conclusions344

of the paper (regardless of whether the code and data are provided or not)?345

Answer: [Yes]346

Justification: Code and data are open-sourced.347

Guidelines:348

• The answer NA means that the paper does not include experiments.349

• If the paper includes experiments, a No answer to this question will not be perceived350

well by the reviewers: Making the paper reproducible is important, regardless of351

whether the code and data are provided or not.352

• If the contribution is a dataset and/or model, the authors should describe the steps taken353

to make their results reproducible or verifiable.354

• Depending on the contribution, reproducibility can be accomplished in various ways.355

For example, if the contribution is a novel architecture, describing the architecture fully356

might suffice, or if the contribution is a specific model and empirical evaluation, it may357

be necessary to either make it possible for others to replicate the model with the same358

dataset, or provide access to the model. In general. releasing code and data is often359

one good way to accomplish this, but reproducibility can also be provided via detailed360

instructions for how to replicate the results, access to a hosted model (e.g., in the case361

of a large language model), releasing of a model checkpoint, or other means that are362

appropriate to the research performed.363

• While NeurIPS does not require releasing code, the conference does require all submis-364

sions to provide some reasonable avenue for reproducibility, which may depend on the365

nature of the contribution. For example366

(a) If the contribution is primarily a new algorithm, the paper should make it clear how367

to reproduce that algorithm.368

(b) If the contribution is primarily a new model architecture, the paper should describe369

the architecture clearly and fully.370

(c) If the contribution is a new model (e.g., a large language model), then there should371

either be a way to access this model for reproducing the results or a way to reproduce372

the model (e.g., with an open-source dataset or instructions for how to construct373

the dataset).374

(d) We recognize that reproducibility may be tricky in some cases, in which case375

authors are welcome to describe the particular way they provide for reproducibility.376

In the case of closed-source models, it may be that access to the model is limited in377

some way (e.g., to registered users), but it should be possible for other researchers378

to have some path to reproducing or verifying the results.379

5. Open access to data and code380

Question: Does the paper provide open access to the data and code, with sufficient instruc-381

tions to faithfully reproduce the main experimental results, as described in supplemental382

material?383
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Answer: [Yes]384

Justification: Provided code link.385

Guidelines:386

• The answer NA means that paper does not include experiments requiring code.387

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/388

public/guides/CodeSubmissionPolicy) for more details.389

• While we encourage the release of code and data, we understand that this might not be390

possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for391

not including code, unless this is central to the contribution (e.g., for a new open-source392

benchmark).393

• The instructions should contain the exact command and environment needed to run to394

reproduce the results. See the NeurIPS code and data submission guidelines (https:395

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.396

• The authors should provide instructions on data access and preparation, including how397

to access the raw data, preprocessed data, intermediate data, and generated data, etc.398

• The authors should provide scripts to reproduce all experimental results for the new399

proposed method and baselines. If only a subset of experiments are reproducible, they400

should state which ones are omitted from the script and why.401

• At submission time, to preserve anonymity, the authors should release anonymized402

versions (if applicable).403

• Providing as much information as possible in supplemental material (appended to the404

paper) is recommended, but including URLs to data and code is permitted.405

6. Experimental setting/details406

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-407

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the408

results?409

Answer: [Yes]410

Justification: In main paper and appendix.411

Guidelines:412

• The answer NA means that the paper does not include experiments.413

• The experimental setting should be presented in the core of the paper to a level of detail414

that is necessary to appreciate the results and make sense of them.415

• The full details can be provided either with the code, in appendix, or as supplemental416

material.417

7. Experiment statistical significance418

Question: Does the paper report error bars suitably and correctly defined or other appropriate419

information about the statistical significance of the experiments?420

Answer: [Yes]421

Justification: As in Table 5. Further error bars can be reported.422

Guidelines:423

• The answer NA means that the paper does not include experiments.424

• The authors should answer "Yes" if the results are accompanied by error bars, confi-425

dence intervals, or statistical significance tests, at least for the experiments that support426

the main claims of the paper.427

• The factors of variability that the error bars are capturing should be clearly stated (for428

example, train/test split, initialization, random drawing of some parameter, or overall429

run with given experimental conditions).430

• The method for calculating the error bars should be explained (closed form formula,431

call to a library function, bootstrap, etc.)432

• The assumptions made should be given (e.g., Normally distributed errors).433

• It should be clear whether the error bar is the standard deviation or the standard error434

of the mean.435
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• It is OK to report 1-sigma error bars, but one should state it. The authors should436

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis437

of Normality of errors is not verified.438

• For asymmetric distributions, the authors should be careful not to show in tables or439

figures symmetric error bars that would yield results that are out of range (e.g. negative440

error rates).441

• If error bars are reported in tables or plots, The authors should explain in the text how442

they were calculated and reference the corresponding figures or tables in the text.443

8. Experiments compute resources444

Question: For each experiment, does the paper provide sufficient information on the com-445

puter resources (type of compute workers, memory, time of execution) needed to reproduce446

the experiments?447

Answer: [Yes]448

Justification: As in appendix.449

Guidelines:450

• The answer NA means that the paper does not include experiments.451

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,452

or cloud provider, including relevant memory and storage.453

• The paper should provide the amount of compute required for each of the individual454

experimental runs as well as estimate the total compute.455

• The paper should disclose whether the full research project required more compute456

than the experiments reported in the paper (e.g., preliminary or failed experiments that457

didn’t make it into the paper).458

9. Code of ethics459

Question: Does the research conducted in the paper conform, in every respect, with the460

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?461

Answer: [Yes]462

Justification: Follows the code of ethics.463

Guidelines:464

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.465

• If the authors answer No, they should explain the special circumstances that require a466

deviation from the Code of Ethics.467

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-468

eration due to laws or regulations in their jurisdiction).469

10. Broader impacts470

Question: Does the paper discuss both potential positive societal impacts and negative471

societal impacts of the work performed?472

Answer: [Yes]473

Justification: As in conclusion474

Guidelines:475

• The answer NA means that there is no societal impact of the work performed.476

• If the authors answer NA or No, they should explain why their work has no societal477

impact or why the paper does not address societal impact.478

• Examples of negative societal impacts include potential malicious or unintended uses479

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations480

(e.g., deployment of technologies that could make decisions that unfairly impact specific481

groups), privacy considerations, and security considerations.482

• The conference expects that many papers will be foundational research and not tied483

to particular applications, let alone deployments. However, if there is a direct path to484

any negative applications, the authors should point it out. For example, it is legitimate485

to point out that an improvement in the quality of generative models could be used to486
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generate deepfakes for disinformation. On the other hand, it is not needed to point out487

that a generic algorithm for optimizing neural networks could enable people to train488

models that generate Deepfakes faster.489

• The authors should consider possible harms that could arise when the technology is490

being used as intended and functioning correctly, harms that could arise when the491

technology is being used as intended but gives incorrect results, and harms following492

from (intentional or unintentional) misuse of the technology.493

• If there are negative societal impacts, the authors could also discuss possible mitigation494

strategies (e.g., gated release of models, providing defenses in addition to attacks,495

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from496

feedback over time, improving the efficiency and accessibility of ML).497

11. Safeguards498

Question: Does the paper describe safeguards that have been put in place for responsible499

release of data or models that have a high risk for misuse (e.g., pretrained language models,500

image generators, or scraped datasets)?501

Answer: [NA]502

Justification: [NA]503

Guidelines:504

• The answer NA means that the paper poses no such risks.505

• Released models that have a high risk for misuse or dual-use should be released with506

necessary safeguards to allow for controlled use of the model, for example by requiring507

that users adhere to usage guidelines or restrictions to access the model or implementing508

safety filters.509

• Datasets that have been scraped from the Internet could pose safety risks. The authors510

should describe how they avoided releasing unsafe images.511

• We recognize that providing effective safeguards is challenging, and many papers do512

not require this, but we encourage authors to take this into account and make a best513

faith effort.514

12. Licenses for existing assets515

Question: Are the creators or original owners of assets (e.g., code, data, models), used in516

the paper, properly credited and are the license and terms of use explicitly mentioned and517

properly respected?518

Answer: [Yes]519

Justification: Cited papers.520

Guidelines:521

• The answer NA means that the paper does not use existing assets.522

• The authors should cite the original paper that produced the code package or dataset.523

• The authors should state which version of the asset is used and, if possible, include a524

URL.525

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.526

• For scraped data from a particular source (e.g., website), the copyright and terms of527

service of that source should be provided.528

• If assets are released, the license, copyright information, and terms of use in the529

package should be provided. For popular datasets, paperswithcode.com/datasets530

has curated licenses for some datasets. Their licensing guide can help determine the531

license of a dataset.532

• For existing datasets that are re-packaged, both the original license and the license of533

the derived asset (if it has changed) should be provided.534

• If this information is not available online, the authors are encouraged to reach out to535

the asset’s creators.536

13. New assets537

Question: Are new assets introduced in the paper well documented and is the documentation538

provided alongside the assets?539
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Answer: [Yes]540

Justification: Provided as a Python library.541

Guidelines:542

• The answer NA means that the paper does not release new assets.543

• Researchers should communicate the details of the dataset/code/model as part of their544

submissions via structured templates. This includes details about training, license,545

limitations, etc.546

• The paper should discuss whether and how consent was obtained from people whose547

asset is used.548

• At submission time, remember to anonymize your assets (if applicable). You can either549

create an anonymized URL or include an anonymized zip file.550

14. Crowdsourcing and research with human subjects551

Question: For crowdsourcing experiments and research with human subjects, does the paper552

include the full text of instructions given to participants and screenshots, if applicable, as553

well as details about compensation (if any)?554

Answer: [NA]555

Justification: [NA]556

Guidelines:557

• The answer NA means that the paper does not involve crowdsourcing nor research with558

human subjects.559

• Including this information in the supplemental material is fine, but if the main contribu-560

tion of the paper involves human subjects, then as much detail as possible should be561

included in the main paper.562

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,563

or other labor should be paid at least the minimum wage in the country of the data564

collector.565

15. Institutional review board (IRB) approvals or equivalent for research with human566

subjects567

Question: Does the paper describe potential risks incurred by study participants, whether568

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)569

approvals (or an equivalent approval/review based on the requirements of your country or570

institution) were obtained?571

Answer: [NA]572

Justification: [NA]573

Guidelines:574

• The answer NA means that the paper does not involve crowdsourcing nor research with575

human subjects.576

• Depending on the country in which research is conducted, IRB approval (or equivalent)577

may be required for any human subjects research. If you obtained IRB approval, you578

should clearly state this in the paper.579

• We recognize that the procedures for this may vary significantly between institutions580

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the581

guidelines for their institution.582

• For initial submissions, do not include any information that would break anonymity (if583

applicable), such as the institution conducting the review.584

16. Declaration of LLM usage585

Question: Does the paper describe the usage of LLMs if it is an important, original, or586

non-standard component of the core methods in this research? Note that if the LLM is used587

only for writing, editing, or formatting purposes and does not impact the core methodology,588

scientific rigorousness, or originality of the research, declaration is not required.589

Answer: [NA]590
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Justification: [NA]591

Guidelines:592

• The answer NA means that the core method development in this research does not593

involve LLMs as any important, original, or non-standard components.594

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)595

for what should or should not be described.596
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A Conclusion597

In this paper, we presented FedGraph, a Python library designed for benchmarking federated graph598

learning algorithms. Unlike general federated learning platforms, FedGraph supports a diverse set of599

algorithms and enables systematic comparisons across algorithms, datasets, and system configurations.600

It features fully distributed training, homomorphic encryption for privacy-preserving scenarios, and601

a built-in system profiler to measure communication and computation overhead. The modular602

API allows easy integration of custom datasets and algorithms. Through extensive experiments,603

including low-rank compression and large-scale training on graphs with up to 100 million nodes, we604

demonstrate that FedGraph is a practical and scalable tool for real-world FGL evaluation.605

While this work focuses on enabling privacy-preserving federated graph learning, future efforts are606

needed to explore more robust privacy risk assessments, additional optimization strategies, and the607

inclusion of a broader range of FGL algorithms to expand benchmark coverage and better support608

industrial deployment.609

B Frequently Asked Questions610

B.1 Benchmarking Scalability under Increasing Clients611

We next evaluate the scalability of FedGraph by varying the number of clients in Table 2. As the612

number of clients increases, the overall communication cost grows substantially, eventually becoming613

the primary bottleneck. In contrast, the training time per client decreases since each client processes614

a smaller subgraph.615

Table 2: Training and communication time (seconds) for datasets under varying client numbers.

Clients Cora CiteSeer PubMed OGBN-arXiv

Train Comm Train Comm Train Comm Train Comm

5 1.39 1.69 1.58 2.78 2.08 1.55 127.71 4.48
10 1.36 2.78 1.79 6.55 1.77 2.60 45.82 5.95
15 1.56 3.99 2.40 9.58 1.57 3.84 21.77 7.77
20 1.49 4.87 2.07 13.62 1.83 4.63 17.89 9.24

B.2 Client Selection616

FedGraph supports two client selection methods that randomly or uniformly select clients at each617

round, as in server_class.py. Server-side algorithm components can also be added by modifying the618

server class.619

620
1 assert 0 < sample_ratio <= 1, "Sample ratio must be between 0 and 1"621

2622

3 num_samples = int(self.num_of_trainers *ample_ratio)623

4624

5 if sampling_type == "random":625

6 selected_trainers_indices = random.sample(626

7 range(self.num_of_trainers), num_samples627

8 )628

9 elif sampling_type == "uniform":629

10 selected_trainers_indices = [630

11 (631

12 i632

13 + int(self.num_of_trainers * sample_ratio)633

14 * current_global_epoch634

15 )635

16 % self.num_of_trainers636

17 for i in range(num_samples)637

18 ]638

19639
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20 else:640

21 raise ValueError("sampling_type must be either ’random ’ or ’641

uniform ’")642643

B.3 Easy Integration with New Baselines644

We agree that adding more FGL methods to FedGraph could make it more useful to users. Indeed,645

our main goal is to provide a library for benchmarking the real system performance of federated646

graph learning methods. Though we believe we have covered most state-of-the-art methods, we647

acknowledge that some methods from the literature are missing, so we also make the library easy to648

add new methods for researchers. Researchers can create a new training class based on an existing649

training method in the library (e.g., FedAvg, FedGCN).650

B.4 Communication Overhead after HE with Low Rank651

Homomorphic Encryption (HE) has sometimes significant drawbacks, in particular, high computing652

and communication loads. We include an HE implementation in the FedGraph framework as some653

prior work on federated graph learning has proposed HE as a way to preserve privacy, e.g., Effendi654

and Chattopadhyay (2024); Fu et al. (2022); Ni et al. (2021). Thus, researchers in the field may655

wish to evaluate the effects of HE on various graph learning algorithms, or even evaluate new ways656

to combine HE with federated graph learning. As a benchmark platform, we do not advocate for657

or against such ideas; our goal is simply to facilitate the evaluation of federated graph learning658

algorithms that require HE implementations. For example, researchers may wish to quantitatively659

compare the training and communication time of their algorithms with and without HE in order660

to precisely measure the overhead induced by using HE. We will clarify this point in the revised661

manuscript.662

Our work on low-rank HE is meant to serve as an example case study of the types of research that663

FedGraph enables with HE. We fully agree that it does not reduce the overhead of communication664

during training. However, FedGraph also facilitates implementing low-rank HE schemes for the665

aggregation process, such as FedPara Hyeon-Woo et al. (2021).666

B.5 Comparison with Other Framework667

The FedGraphnn and FederatedScopeGNN libraries have not been maintained since 2023. When668

running FedAvg, due to using the same graph training library, PyG, and the distributed setup,669

FedGraph has a similar run time as FedGraphnn and FederatedScopeGNN. As shown in Table 1,670

the main advantage is supporting new algorithms, homomorphic encryption, system-level profilers,671

and large-scale optimization like low rank, client selection, mini-batch, etc. Given the optimization672

methods (e.g., low rank in Figure 7), FedGraph can run much faster than these frameworks.673

B.6 Support Differential Privacy and Homomorphic Encryption674

FedGraph supports differential privacy(DP) for aggregation as an option in configuration. Our675

implementation of DP achieves comparable performance to both the plaintext version and HE without676

having an accuracy loss. Table 3 provides a comparison of different matrix running FedGCN with677

Cora using plaintext, HE, and DP. Results are averaged over 5 runs. Both HE and DP protect the678

pre-training or training communication without exposing the raw data at the server in different679

approaches. This meets our goal of presenting FedGraph to provide user with the flexibility of using680

and choosing the privacy mechanism that best fits their specific needs.681

Framework Pre-train Communication (MB) Pre-train Time (s) Total Time (s) Accuracy

Plaintext 56.61 4.91 12.08 0.793
HE 1208.87 17.49 40.91 0.791
DP 57.69 5.60 13.09 0.792

Table 3: Comparison of privacy preservation methods in terms of pre-train communication cost,
pre-train time, total time, and accuracy.
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B.7 Why HE Affects Model Accuracy682

HE performance is highly sensitive to hyperparameter settings. For example, in Table 4 and Table 5,683

we vary the Polynomial Modulus Degree to balance security and computational capacity. A higher684

degree supports more complex computations but incurs greater overhead, while a lower degree685

restricts the allowable computation depth before noise dominates, leading to truncated or simplified686

operations that degrade model accuracy. In some cases, decryption itself becomes inaccurate, with the687

error magnitude determined by both the chosen hyperparameters and the encrypted values. Since the688

decrypted outputs are used for graph model training, such errors accumulate and ultimately reduce689

training accuracy.690

B.8 Run on Edge Devices691

In this paper, we focus on AWS cloud experiments as many of our envisioned use cases for federated692

graph learning–including learning on medical record data stored at different hospitals, or user-product693

consumption data stored in different countries–falls into the cross-silo federated learning paradigm,694

where clients are likely large servers or computers (hospitals or countries respectively, in the two695

examples above). FedGraph could also be run on Linux-based mobile or Internet of Things devices,696

e.g., Jetson Nanos, as might be appropriate for mobile applications like wearable health sensing.697

C FedGraph Code Structure698

Fedgraph library can be separated into six modules:699

Data Process Module: data_process.py. This module is responsible for data generation and700

processing. It should be called before calling the runner, so it is only applicable for node classification701

and graph classification in the latest version. (In link prediction, the dataset is generated and processed702

inside the runner.)703

Runner Module: federated_methods.py. Task-based runners are defined in this module. For704

node classification and link prediction, there’s a shared runner that could call inner modules to705

perform federated graph learning. For graph classification, it will further assign the program to an706

algorithm-based runner.707

Server Classes Module: server_class.py. It defines different task-based server classes including708

server_NC, server_GC, and server_LP.709

Trainer Classes Module: trainer_class.py. It defines different task-based trainer(client) classes710

including trainer_NC, trainer_GC, and trainer_LP.711

Backbone Models Module: gnn_models.py. It defines different backbone model classes. Generally,712

it is task-based (i.e., each task corresponds to one backbone model), but for some models, their713

variants are also included, and the user could also switch the backbone model or define a new one714

themselves.715

Utility Functions: utils_nc.py, utils_gc.py, utils_lp.py. In the current version, the utility functions716

for different tasks are located in separate Python modules, which is convenient for development.717

In the later versions, it might be better to use the shared ‘utils.py‘, and use different markers like718

âĂIJNCâĂİ, âĂIJGCâĂİ, and âĂIJLPâĂİ to distinguish them.719

D FedGraph API and Runners720

When calling the FedGraph API, as shown in Figure 11, Users can simply specify the name of the721

dataset and algorithm. The API will then call the corresponding data loader class to generate the722

required data, which is then automatically fed into the appropriate algorithm runner for tasks like723

Node Classification, Graph Classification, or Link Prediction. Additionally, users can seamlessly add724

their own datasets or federated graph learning algorithms if needed, as long as they satisfy the form725

requirements for the specified task.726
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Figure 11: High-level Demonstration of FedGraph API Design

The function run_fedgraph is a general runner that receives the dataset and the configurations. It will727

further assign the program to a task-specified runner run_NC , run_GC , or run_LP based on the728

user’s specification on Task.729

730
1 def run_fedgraph(args , data):731

2 if args.fedgraph_task == "NC":732

3 run_NC(args , data)733

4 elif args.fedgraph_task == "GC":734

5 run_GC(args , data)735

6 elif args.fedgraph_task == "LP":736

7 run_LP(args)737738

E Supported Algorithms and Datasets739

For federated node classification, link prediction, and graph classification, we integrated different740

datasets and algorithms for each task, shown in Table 4 and Table 5. Researchers can also easily741

implement new algorithms and add their datasets.742

Task Dataset

Node Classification Cora, Citeseer, Pubmed,
Ogbn-Arxiv, Ogbn-Products, Ogbn-MAG Hu et al. (2020)

Graph Classification

MUTAG, BZR, COX2, DHFR,
PTC-MR, AIDS, NCI1, ENZYMES,

DD, PROTEINS, COLLAB,
IMDB-BINARY, IMDB-MULTI Xie et al. (2021)

Link Prediction FourSquare Yang et al. (2019), WyzeRule Kamani et al. (2024)

Table 4: Supported datasets of node classification, graph classification, and link prediction in federated
learning.

F Runner Workflow743

F.1 Runner Workflow for Node Classification Task744

For the node classification task, the user specifies the dataset name in the configuration file. The745

dataset is preprocessed and partitioned across clients based on the chosen federated setting. The data746

is accessed directly from local storage or via an API, and then a time window may be generated to747

support temporal learning tasks.748
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Task Algorithm Backbone

Node Classification

FedAvg Li et al. (2019) GCN
Distributed GCN GCN

BNS-GCN Wan et al. (2022) GCN
FedSage+ Zhang et al. (2021) GraphSage

FedGCN Yao et al. (2024) GCN,GraphSage

Graph Classification

SelfTrain GIN
FedAvg Li et al. (2019) GIN
FedProx Li et al. (2020) GIN
GCFL Xie et al. (2021) GIN

GCFL+ Xie et al. (2021) GIN
GCFL+dWs Xie et al. (2021) GIN

Link Prediction

FedAvg Li et al. (2019) GCN
STFL Lou et al. (2021) GCN

FedGNN+ Gürler and Rekik (2022) GCN
FedLink GCN

FedRule Yao et al. (2023) GCN

Table 5: Supported algorithms of node classification, graph classification, and link prediction in
federated learning.

Dataset extraction and preprocessing are managed by the function dataloader_NC in the module749

data_process.py, which handles both temporal and static graph datasets. Each client holds a750

subgraph or node features, and training proceeds in a federated manner.751

The core execution is handled by run_NC, which directs the process to an algorithm-specific runner752

run_NC_{algorithm}. Each algorithm may require different configurations, so separate .yaml files753

are used. In each global round, clients perform local training, exchange model updates with the server,754

and participate in global validation. Results are recorded at the end of each round. The workflow is755

illustrated in Figure 12a.756

F.2 Runner Workflow for Graph Classification Task757

In the graph classification task, the dataset name can be specified by the user, and it could be758

either a single dataset or multiple datasets. For single dataset GC, the graphs will be assigned759

to a designated number of clients; for multiple datasets GC, each dataset will correspond to760

a client. Dataset generation and preparation are controlled by the function dataloader_GC761

in the module data_process.py. It will further assign the data process task to the function762

data_loader_GC_single or data_loader_GC_multiple. All the provided datasets are built-in763

TUDatasets in the Python library torch_geometric.764

For the graph classification task, different algorithms require different sets of arguments. Therefore,765

we divide the configurations into separate .yaml files, each corresponding to one algorithm. In766

run_GC, the program will be further assigned to an algorithm-based runner run_GC_{algorithm}.767

The whole workflow is demonstrated in Figure 12b.768

F.3 Runner Workflow for Link Prediction Task769

For the link prediction task, we provide a common dataset. The user only needs to specify the country770

codes. The original datasets are stored in Google Drive, so the user does not need to prepare the771

dataset by itself. The API will automatically check whether the dataset already exists and download772

the corresponding one if not.773

There are also multiple available algorithms for the link prediction task. However, they share the same774

set of arguments so that we don’t need to create separate .yaml files. The user could conveniently775

select different algorithms by directly changing the algorithm field in the configuration file. All the776

algorithms will share the same runner. The whole workflow is demonstrated in Figure 12c.777
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(a) Node classification. (b) Graph classification. (c) Link prediction.

Figure 12: Federated graph training workflows for (a) node classification, (b) graph classification,
and (c) link prediction tasks.

G Benchmark Homomorphic Encryption778

We provide a comprehensive guide for the configuration of Homomorphic Encryption in FedGraph to779

provide security guarantees corresponding to the graph structure and size.780

G.1 Parameter Configuration781

In Table 6, we present the key parameters for configuring CKKS homomorphic encryption. The782

selection of the parameters is based on the dataset size and desired security level. Different parameter783

combinations create tradeoffs between computational overhead, communication cost, and precision.784

We present the default setting and parameter selection range to guide the user in selecting an785

appropriate combination that achieves the balance between objectives.786

Parameter Default Value Description Range
scheme CKKS Encryption scheme type N/A
polynomial modu-
lus degree

16384 Maximum degree of polynomials used to repre-
sent encrypted data (N ≥ 2× max(nodes, fea-
tures))

4096, 8192, 16384,
32768

coefficient modulus
bit size

[60, 40, 40, 40, 60] Bit size for coefficient modulus that controls pre-
cision

Array of integers in
the range [20, 60]

global scale 240 Global scale factor for encoding precision 230, 240, 250, etc.
security level 128 Bit security level 128, 192, 256

Table 6: TenSEAL Homomorphic Encryption Configuration Parameters. This table shows the key
parameters for configuring the CKKS encryption scheme in the FedGraph library, including their
default values, descriptions, and available ranges.

G.2 Microbenchmark787

We then provide the microbenchmark of HE on federated graph training in Table 7. The experiments788

are conducted on a 2-layer FedGCN for node classification tasks, running 100 global rounds with789

default settings in Cora. For CKKS parameters, we evaluate different polynomial modulus degrees790

(Poly_mod), coefficient modulus sizes (Coeff_mod), and precision levels. Time(s) for the encrypted791

version show pre-train/training/total times, respectively. Communication costs (Comm_cost) include792

both pre-training and training rounds.793

Dynamic Precision: We adjust encryption parameters based on graph sizes and the numerical794

precision needed. For graphs like Cora, a polynomial modulus degree of 16384 with precision 240795

satisfies the ideal accuracy, while an increased value provides more precise security protection.796

Communication Cost Optimization: We employ several strategies to manage the communication797

overhead inherent in HE operation. The selection of coefficient modulus chain, [60,40,40,40,60],798

etc., enables efficient depth management for multiple HE operations. Depending on specific dataset799

characteristics (sparse matrix, larger datasets, etc.), we also employ efficient encryption methods to800

optimize communication cost and balance the performance.801

When comparing among datasets, we observe that HE maintains equivalent accuracy across different802

parameter selections, as long as they satisfy the modulus requirement. If a smaller-than-required803

parameter size is used, the accuracy drops sharply, which indicates invalid encryption.804
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Method Poly
_mod

Coeff_mod Precision Dataset Time(s) Comm_cost
(MB)

Accuracy

FedGCN
(plaintext)

N/A N/A N/A Cora 13.29 59.21 0.783 ± 0.07

FedGCN
(HE)

16384 [60,40,40,40,60] 240 Cora 27.71/23.22/56.05 3279.15 0.779 ± 0.08

FedGCN
(HE)

32768 [60,40,40,40,60] 250 Cora 29.44/36.17/71.76 4434.58 0.781 ± 0.08

FedGCN
(plaintext)

N/A N/A N/A Citeseer 20.39 187.99 0.658 ± 0.06

FedGCN
(HE)

8192 [60,40,40,60] 240 Citeseer 79.35/30.63/113.08 5791.42 0.660 ± 0.07

FedGCN
(HE)

16384 [60,40,40,40,60] 240 Citeseer 123.22/45.8/173.40 8084.50 0.652 ± 0.06

FedGCN
(plaintext)

N/A N/A N/A PubMed 25.78 150.43 0.774± 0.12

FedGCN
(HE)

8192 [60,40,40,60] 240 PubMed 70.28/19.73/93.18 3612.60 0.757 ± 0.19

FedGCN
(HE)

16384 [60,40,40,40,60] 240 PubMed 123.22/45.8/173.40 8084.50 0.769 ± 0.13

Table 7: Microbenchmark of FedGCN under Homomorphic Encryption with different CKKS scheme
parameters. The experiments are conducted on a 2-layer FedGCN for node classification tasks,
running 100 global rounds with default settings across three datasets (Cora, Citeseer, PubMed).
For CKKS parameters, we evaluate different polynomial modulus degree (Poly_mod), coefficient
modulus sizes (Coeff_mod), and precision levels. Time(s) for the encrypted version show pre-
train/training/total times, respectively. Communication costs (Comm_cost) include both pre-training
and training rounds. Plain-text FedGCN serves as the baseline for comparison. Communication costs
are measured for pre-training communication and training rounds separately.

H Additional Experiments805

H.1 Increasing the Number of Clients with Fixed Computation Resources806

Figure 13: Training Time, Communication Cost, Test Accuracy on Ogbn-Arxiv in a Large Number
of Clients. All experiments run on 10 AWS instances. 1000 trainers take a long time since it runs
sequentially on 10 instances.

To better test scalability and fit real-world data, we increase the number of clients to 1000. In Figure807

13, we observe that as the number of clients increases, the overall training time grows significantly808

due to sequential running on 10 instances, added communication overhead, and the need for increased809

synchronization among clients.810

As we scale from 10 to 1000 clients under a fixed IID Beta value, there is a small decline in accuracy,811

likely due to the increased data heterogeneity each client possesses. The communication cost also812

escalates notably with more clients, highlighting the trade-off between parallelism and efficiency in813
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federated settings. This experiment shows the system’s ability to handle large-scale client distributions814

while revealing the resources required to maintain accuracy and efficiency.815
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