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Abstract

The Beluga Challenge, recently organized by the Tuples con-
sortium, offered a track on explainable planning (XAIP), to
the best of our knowledge the first XAIP competition to date.
Within the setting of the Beluga logistics domain, participants
were given a planning task and a plan, and were supposed to
answer a query to explain to a human expert certain choices
made in the plan. The queries ask about particular state atoms
that were achieved and alternatives “why achieve this atom
A instead of that atom B?”, action reordering “can I do A
before B instead?”, or about the consequences of object re-
moval “what happens if we forbid to use object X ?”. In this
work, we propose counterfactual reasoning to come up with
explanations that answer these queries. We design task re-
formulations, modifications that alter the input planning task,
such that the solutions for the modified task allow to explain
the choices made in the initial plan. Our framework general-
izes the queries posed in the Beluga challenge. To obtain tex-
tual explanations, we employ a large language model (LLM)
that allows our system to be used without planning-specific
knowledge. We empirically show that solving the modified
task is similarly hard as finding a plan for the original task,
showing that our approach is efficient for practical usage.

Introduction

The Beluga AI Challenge (Tuples 2025) is a competition
that was hosted by the Tuples' consortium with the goal of
progressing towards trustworthy Al systems. It does so by
bringing Al planning into a real-world scenario, specifically
the logistics at Airbus for the construction of planes and use
of Beluga airplanes. This is modeled as a classical planning
problem where the goal is to construct a set of aircraft from
parts delivered by a sequence of Beluga airplanes. We focus
on the explainability track of the competition, where partici-
pants were asked to explain certain choices made in an input
plan for a given task. Since manually solving the logistics
tasks is very challenging, one of the main goals of the Bel-
uga Challenge is to explore (semi-)automated approaches
that (1) generate plans for Beluga planning tasks and (2) al-
low interaction by domain experts to explain and possibly
modify the solution obtained by an automated planner.

We propose an approach based on counterfactual reason-
ing to come up with good explanations. While we take in-
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spiration from the concrete queries asked in the competition,
we derive a general framework that can be instantiated with
these queries, but allows the same types of queries in arbi-
trary domains. Concretely, our framework supports the fol-
lowing three query types: (1) asking about particular state
atoms that were achieved and alternatives “why achieve this
atom A instead of that atom B?”, (2) action reordering “can
I do A before B instead?”, or (3) about the consequences
of object removal “what happens if we forbid to use ob-
ject X7”’. Many practically relevant questions are covered
by these queries, such as “what happens if one of my trucks
had an accident and cannot be used?” or “is it possible to put
on my right sock before the left one instead?”. We formalize
the task modifications and show how solutions obtained for
the modified problem can be used to give explanations that
answer the query. For practical usability, we connect the rea-
soning to a large language model (LLM) that allows our tool
to be used by lay persons not familiar with the intricacies of
PDDL and classical planning techniques. As an indication
that our approach is efficient and usable in practice, we em-
pirically show that solving the modified tasks is usually no
harder than solving the original one, and a single additional
plan per query suffices to come up with an explanation.

Background

We use a first-order planning formalism, where a planning
task is a pair IT = (D, I), where D is the domain and I is
the problem instance (Corréa et al. 2020).

A domain is a tuple D = (H,C,P,A), where: H is
the type hierarchy; C is a set of constants; P is a set of
predicates, where each one has a name and arity, and
a type of each argument. A is a set of action schemas.
For an n-ary predicate p € P and t = (t1,...,t,), a
tuple of typed constants or typed free variables, p(t) is
an atom, and it is a ground atom if ¢ does not contain
free variables. An action schema a € A is a tuple a =
(name(a), params(a), pre*(a), pre=(a), add(a), del(a),
cost(a)), specifying its name; the action parameters, which
is a set of typed free variables; pre*(a) and pre~(a) are
sets of atoms, defining the positive and negative precondi-
tions for the action, respectively; the add and delete sets
describe what changes after applying the action (added and
deleted atoms). cost(a) is a non-negative cost.

A problem instance I = (O,Z,G) is a tuple, where O



is a set of typed constants, representing the objects of the
problem; Z and G are sets of ground atoms describing the
initial state and the goals, respectively.

Ground actions @ are obtained from action schemas a by
instantiating the free variables in the parameters with con-
stants from the problem instance. A ground action is appli-
cable in a state s if pret(a) C s and pre=(a) N s = . The
successor state s’ resulting from applying @ in s is defined as
s’ = (s\del(a))Uadd(a). Aplan 7 = (ay,...,ay,) is ase-
quence of ground actions such that a; (i = 2...n) is appli-
cable in the state s;_; generated after applying a;,...,a;—1
to Z; a; is applicable in Z; and the consecutive application
of all actions in 7 to Z produces a state s,, such that G C s,,.
The cost for a plan is cost(m) = >, cost(a). A plan is
optimal if no other plan has a lower cost.

The Beluga Logistics Domain

In the Beluga logistics domain, a sequence of Beluga air-
planes transport parts of to-be-constructed planes to an as-
sembly facility. All airplane parts are transported on jigs J
that come in categories of different sizes |.J|. Each Beluga
delivers a possibly empty sequence of jigs that can only be
unloaded in order. The aircraft are assembled in hangars,
each requiring parts of specific types in a fixed and known
order. Since the arrival order of the aircraft parts may differ
from that in which the hangars need them, there exists a stor-
age and reordering system in the form of racks. Each rack R
acts as a double-sided queue for jigs up to a capacity limit
|R;|, which enforces ;. [J| < |R|. The jigs are trans-
ported between the Beluga airplanes, racks, and hangars
with trailers. Each trailer can transport only one jig of any
size at a time and can operate only on one side of the racks:
either the side where the Beluga airplanes are unloaded or
the other side where the jigs are delivered to the hangars;
they are not able to switch sides. Once an aircraft part is de-
livered to a hangar, the empty jig remains behind and must
be managed. Empty jigs need to be transported back to the
Beluga airplanes, to be delivered to another site, which is
specified by a list of empty jigs that need to be loaded before
a Beluga can leave. There can only be one Beluga airplane
on site at a time. Figure 1 illustrates a potential scenario.
Since the number of trailers on each side and the capacity of
each rack is limited and jigs can only be placed and removed
from the ends of each rack, while full jigs need to travel to
the hangars and empty jigs need to travel to the Belugas, jigs
can easily start blocking each other. This makes preventing
a lot of shuffling or even dead ends a challenging planning
problem. Good solutions minimize the number of swaps: op-
erations where jigs are only moved from rack to rack on one
side to gain access to a blocked jig. In the real world, flight
schedules might also change, so keeping one rack empty as
a backup helps to find more robust plans.

The competition features two tracks, one focused on ex-
plainability and the other on scalability. We focus on the ex-
plainability track. In this track, a planning system has been
used to generate a solution for a given task. A human user
then asks questions about this plan. The main objective is to
answers these queries and thereby explain the initial solu-
tion. The possible queries are:
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Figure 1: The Beluga Al Challenge setting.

1. Why is jig X loaded on rack A instead of another rack B?

2. Why load jig B on rack D instead of loading jig C on rack
A?

3. Why not load jig X on rack A before loading jig Y on
rack D?

4. How can I reduce the number of swaps?
5. What is the impact of removing rack A for maintenance?

6. How can I keep one rack empty all the time?

In these queries, X, A, B, C, and D are variables that are re-
placed with specific jigs and racks. Note that a rack removed
for maintenance cannot have anything new jig placed on it,
but the jigs currently on it can still be accessed as normal.
We do not attempt to answer question type 4 (swap reduc-
tions), which boils down to finding optimal plans. Neither
do we tackle the setting where the input task is unsolvable.

Framework Overview

We aim to answer questions such as those posed in the
Beluga challenge by generating counterfactuals, plans that
adhere to additional question-specific constraints, and then
comparing them to the original plan. To accomplish this, we
takes as input a planning task, an initial plan and a query be-
fore performing three steps to come up with an explanation:

1. Reformulation: The original task is modified to create
a new task which, when solved, produces a counterfac-
tual plan. Each question has a specific reformulation, de-
scribed in the next section.

2. Solving: The reformulated task is solved using a plan-
ner. In the competition, the anytime variant of 2011
LAMA (Richter and Westphal 2010; Richter, Westphal,
and Helmert 2011) within the Unified Planning Frame-
work (Micheli et al. 2025) is used, which is implemented
in Fast Downward (Helmert 2006). However, any planner
that can solve the reformulated task can be used, with op-
timal plans being preferred to give the best explanations.

3. Explaining: A large language model (LLM) is used to
generate a natural-language explanation by comparing
the original and counterfactual plan. For details about the
prompt and the LLM, see section “LLM Explanations”.

Reformulations Based on Queries/Questions

Given a user query, we aim to produce a counterfactual plan.
We focus on the specific queries posed in the Beluga chal-
lenge, but they can be easily be generalized to any planning
task. In the following, we briefly outline the reformulations
used for each of the questions.
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Figure 2: Performance of LM-Cut and SymK on the original and reformulated tasks for the Beluga Explainability benchmarks.

Why do this instead of that? In this query, the user is
wondering why, at some point in the plan, a specific ground
atom is reached, when they think a better plan could be
achieved if another specified ground atom were reached at
some point instead. To find this alternate plan, we create
a planning task where we forbid the original ground atom
from ever being true, and we force the alternate ground atom
to be true at some point in every plan.

Formally, given a task II = (D,I), and two ground
atoms p(t) and ¢(r), where p,q € P are predicates, t =

(ti,...,ty) and 7 = (r1,..., 7y, are tuples of typed con-
stants, we create the modified task Hg‘(sf)“ac('l(r) = (D', I'),

D' =(H,C,P A", I' =(0,T',G"), where:
* The type hierarchy H remains unchanged.
* The set of domain constants C remains unchanged.

o P’ := P U {forbidden-p, was-true-q}, where forbidden
and was-true have the same arity and argument types as
p and g, respectively.

o A :={d | a € A}, where there is one action schema a’
for each action schema a in the original task, defined as
a’ = (name(a),params(a),pre*(a),pre”(a) U
a,add(a) U B,del(a),cost(a)), where « =
{forbidden-p(z) | p(z) € add(a)}, while
B := {was-true-q(y) | q(y) € add(a)}.

 The set of typed constants O remains unchanged.

* The initial state forbids the ground atom p(t): Z' := Z U
{forbidden-p(¢)}.

¢ The goal requires the ground atom ¢(r) to be true at some
point in the plan: G’ := G U {was-true-q(r)}.

With this formulation, no plan for H;‘(Sttga‘;(r) will reach the

ground atom p(t) (since any action that achieves it will not
be applicable) and all will contain the ground atom ¢(r) at
some point, thus providing a counterfactual plan.

In the Beluga explainability challenge, this reformulation
corresponds to two different queries: why is jig X loaded on
rack A instead of another rack B?, and why load jig B on
rack D instead of loading jig C on rack A?

Note that Hgl(ss""‘fl(r) can easily be extended to forbid or
enforce sets of atoms, simply by adding the corresponding
forbidden-x and was-true-y predicates. In fact, by forbidding

a set of ground atoms, we solve a different Beluga challenge
query: what is the impact of removing a rack for mainte-
nance? When a rack is on maintenance, it can still be un-
loaded, but no new jigs can be loaded onto it. For this, we
simply forbid all ground atoms that state that a jig is loaded
on that specific rack.

Why this before that? In this query, the user is wondering
why a specific ground atom ¢(r') is reached in the plan before
another specific ground atom p(t). To find a counterfactual
plan in this case, we reformulate the task to guarantee two
things: first, that the ground atom p(t) cannot be reached
before ¢(r), and second, that both ground atoms must be true
at some point in the plan. This enforces the counterfactual
ordering to the question.

For task IT = (D, I'), and two ground atoms p(t) and ¢(r)
for which we want to enforce that p(t) happens before ¢(r),
we create the modified task I = (D', I'), D' =
(H,C, P AN, I' ={(0,T',G’), where:

* H, C and O remain unchanged.

o P’ := PU{was-true-p, was-true-q, forbidden-q, needed-p}.

e A = {d | a € Aq ¢ add(a)} U {a",a" |
a € Aq(z) € add(a)}. We create one ac-
tion schema a’ for each action schema that does
not include predicate ¢ in its add list: o :=
(name(a), params(a), pret(a),pre” (a),add(a) U
B, del(a), cost(a)), with 5 := {was-true-p(z) | p(z) €
add(a)}. Additionally, we create two action schemas for
each action schema that includes ¢ in its add list:

a’ = (name(a),params(a),pre*(a),pre=(a) U

{forbidden-q(z)}, add(a), del(a), cost(a)), with nega-
tive precondition forbidden-q(x) ensuring that the corre-
sponding ground action does not make the ground atom
q(r) true before p(t) was true.

a” = (name(a),params(a) U y,preT(a) U

{forbidden-q(z), needed-p(y), was-true-p(y) }, pre” (a),
add(a) U {was-true-q(z)}, del(a), cost(a)), where
was-true-p(y) ensures that p(t) was true before execut-
ing an action that adds ¢(r), and y are the parameters
of p, that we need to introduce to the action schema to
ensure p(y) matches p(t).



* The initial state forbids ground atom ¢(r) and sets p(t)
as needed: Z' := Z U {forbidden-q(r), needed-p(¢)}.

e The goal requires both p(¢t) and g¢(r) to be
true at some point in the plan: G = G U
{was-true-p(t), was-true-q(r)}.

;r(‘ff)r a(r) is used to answer the Beluga query why (not)

load jig X on rack A before loading jig Y on rack D?

Can you not use that object? Here, the user is wonder-
ing if you can solve the planning task without the use of a
specific object. In this case, to reformulate the task to get a
counterfactual plan, we simply remove said object from the
set of objects, and adapt the initial state accordingly. This
corresponds to the Beluga query how can I keep one rack
empty all the time? For this specific case, we take the small-
est rack that starts empty, and remove it from the task.

LLM Explanations

We use the large language model (LLM) 03-mini? to gener-
ate natural language explanations for planning decisions in
the Beluga planning problem. The LLM is given structured
input describing the objectives, constraints, and trade-offs
involved in the planning process along with one example.
See the appendix for the full prompt.

Together with the static prompt, the model receives spe-
cific scenario information in the form of both the original
and counterfactual plans, together with the costs associated
with both, and the question asked. The model is tasked with
determining the reasoning behind the question-related ac-
tions and highlighting trade-offs between the plans to pro-
vide an explanation for both the question and the effects
caused in the modified plans.

Experimental Evaluation

We experimentally evaluate the performance impact of our
reformulations. Additionally, we showcase and discuss an
example answer generated by our system.

Reformulation Difficulty

To empirically evaluate the impact our task modifications
have, we use the satisfiable benchmark set from the Bel-
uga Explainability Challenge filtered to those with ques-
tions supported by our framework, i.e., the request to reduce
swaps has been excluded. We use regular settings for the in-
ternational planning competition (IPC), i.e., 8 GB memory
limit and 30 minutes time limit, and compare the runtime for
solving the original and reformulated tasks for two state-of-
the-art optimal planners, LM-Cut (Helmert and Domshlak
2009) implemented in Fast Downward (Helmert 2006) and
SymK (Speck, Mattmiiller, and Nebel 2020). The results are
shown in Figure 2 and Table 1.

We see that SymK outperforms LM-Cut across the board,
solving 99 of the 224 original tasks and 115 of the refor-
mulated tasks, while LM-Cut only solves 67 and 81 respec-
tively. Additionally, for SymK, we see that any original task

“https://openai.com/index/openai-03-mini/

How can I keep one rack empty all the time?

The updated plan deliberately avoids using rack00 — the
smallest and initially empty rack — to ensure that it remains
available at all times for unplanned jig movements. Instead,

all operational actions are shifted to rack01, preserving the
free rack as required. This maintains the uncertainty

absorption property of keeping at least one rack free, while

still matching the original plan’s cost and overall sequence.

Figure 3: An example interaction with our system.

that can be solved can also be solved in its reformulated ver-
sion, while LM-Cut fails to solve 4 reformulated tasks that
it can solve in the original version. Conversely, we see that
both planners have cases where they can solve the reformu-
lated task but not the original task, 16 for SymK and 18 for
LM-Cut. As such, we see an average speedup factor of 3.45
for LM-Cut and 2.08 for SymK, highlighting that the refor-
mulated tasks are usually easier to solve.

Looking at the question types, we see that those which
remove racks are notably easier to solve, while those that
consider jig choices instead usually grow marginally harder.
The only tasks proven unsolvable are those where racks are
removed, specifically those which start with only two racks
and retain only a single remaining rack after the removal.

Answer Quality

Figure 3 shows an example interaction with our system for a
Beluga Explainability query. The answer describes both how
the modified plan achieves the goal, re-routing to rackOl,
and the reasoning behind the modification, keeping rack00
empty as it was the smallest initially empty rack. Addition-
ally, it reasons about why one might wish to keep a rack
empty, namely to allow for dealing with real-world uncer-
tainties. However, it also assumes that the user has access
to the modified plan. Analyzing said plan directly might be
difficult for an untrained user, and as such pairing the high-
level explanations and motivations from our system with a
visualisation software or similar tool would be beneficial.

We see similar behaviour for other questions. However,
the fact that most initial plans in the competition were
suboptimal means that our modified plans frequently out-
perform the originals. This, in turn, often highlights origi-
nal suboptimalities rather than identifying difficulties in the
original task, but is nevertheless useful for analyzing, under-
standing and critiquing the original plans.

Related Work

Since counterfactual reasoning or task reformulations for in-
sight and explainability are common in the field of explain-
able Al planning, we can only highlight the most relevant ex-
amples for this work. Gobelbecker et al. (2010) reformulate



Jig to Rack Order Why Not Keep Empty Rack Choice Rack Removal Total
LM-Cut Original 9 4 8 4 42 67
Reformulated 7 3 10 3 58 81
SymK Original 14 6 11 6 62 99
Reformulated 14 6 12 6 77 115
Total 50 33 12 33 96 224

Table 1: Number of problems solved or proven unsolvable for original and reformulated tasks with LM-Cut and SymK.

the task to allow for arbitrary changes to the initial state be-
fore planning, to allow for explanations of unsolvable tasks
with a focus on the initial state. The works of Gragera et al.
(2023) and Gragera and Muise (2024) do task reformula-
tions on the actions to explain unsolvable tasks. The ap-
proach of Cashmore et al. (2019) and Krarup et al. (2019)
is most similar to ours and allows for general, question-
adapted reformulations of the task resulting in contrastive
explanations. Their reformulations are slightly different, al-
lowing for durative actions and temporal constraints.

Adding constraints to an existing planning problem is offi-
cially supported with PDDL 3 (Gerevini and Long 2005) and
would allow for a simpler expression of our reformulations,
but most planners do not support them, so they are usually
compiled away (Edelkamp 2006). Other reformulations are
used for performance reasons, for example, macro-operators
(Botea et al. 2005), bagging (Riddle et al. 2016), and action
schema splitting (Alarnaouti, Baryannis, and Vallati 2023).

Contrastive analysis can be extended to not only compute
one counterfactual plan but explore the family of counter-
factual plans as shown by Eifler et al. (2020).

An alternative approach to come up with explanations is
based on facet reasoning (Gnad et al. 2025).

Conclusion

We propose an approach to explainable Al planning (XAIP)
based on counterfactual reasoning. The key component of
our system are query-specific task reformulations that pro-
vide evidence for the consequences of user-desired alterna-
tives. While the reformulations are inspired by the specific
queries ansked in the Beluga Challenge, we introduce a gen-
eral framework that is applicable to any planning task. Con-
necting the symbolic information obtained by solving the
modified task to a large language model allows our system
to be used by lay persons not familiar with planning tech-
nicalities. We consider complementing our textual explana-
tions with a domain-specific visualization as a promising im-
provement to further increase the value of the system.
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Appendix - LLM Prompt

Setting
Consider the following properties grouped by objective:
Plan Quality Metric:
e Minimum number of swaps: A swap occurs when a jig is moved between two racks, temporarily stored in a trailer, or
placed back on the same rack to gain access to otherwise blocked jigs.
Uncertainty Absorption Properties:

» Keeping at least one rack free.
¢ Placing shorter jigs on shorter racks.
* Maintaining an empty rack allows unplanned jig movements between the Beluga hangar and the factory without prior
rearrangement.
Facilitating Manual Planning:

¢ Placing jigs of the same type on the same rack.
 Storing empty jigs on the Beluga side of the rack system.
» Storing full jigs on the factory side of the rack system.

Since these properties conflict, a trade-off must be achieved.
Cases Considered:
1. Infeasible Problem Instance:

* The human planner needs a clear, concise explanation of why the instance is infeasible.
* Suggestions should be provided on how feasibility could be restored.

2. Solvable Problem Instance:

* If a reference plan exists, alternative solutions proposed by the human planner must be justified.
» Explanations should compare the reference plan with proposed alternatives and outline their trade-offs.

Even when a problem is feasible and a reference plan is provided, explanations are still required. The human planner may
have expected a different approach or a different trade-off. For example, a reference plan may keep one rack empty but require
10 swaps. A planner may then ask: "How can I reduce the number of swaps?”

Expectations for Explanations:

* Determine the feasibility of an alternative solution.
* Provide insight into the consequences of the proposed alternative.
» Compare the chosen plan with alternative scenarios and explain why specific choices were made.

Task

You are an Al system rewriting planner outputs into natural language explanations. Your goal is to maximize explanation
quality based on the above criteria, ensuring the response is useful and understandable to domain experts unfamiliar with Al-
driven planning. One of the key challenges in addressing the Beluga planning problem is ensuring that the techniques used
are explainable. You must demonstrate that their methods provide clear and insightful explanations for how and why decisions
were made.

Provide the explanation directly, using markdown formatting to enhance readability.

Important Considerations:

* The original plan was generated using a suboptimal planner.

* The new plan was generated using an optimization-focused planner.

» The original plan is not necessarily optimal and does not explicitly optimize for factors like swaps.

* The new plan optimizes for plan length while answering the question but does not optimize for other metrics.

* There might be no clear anwser to why a certain action was made, even tho the question asked about this specific action
» Focus on the action in foucs and the surrounding actions when answering the question

* The explanation should be short and concise, one paragraph

Explanation: Provide a clear, structured answer that explains the reasoning behind the plan modifications, trade-offs, and
implications. The explanation should be short and concise, and be focused on the question that is asked.



Example:

Example Input: Original plan: SequentialPlan: pick-up-rack(jig0002, factory-trailer-1, rack00, fside) unload-
beluga(jigD003, belugal, beluga-trailer-1) switch-to-next-beluga() put-down-rack(jigd003, beluga-trailer-1, rack00,
bside) pick-up-rack(jig0003, factory-trailer-2, rackO0, fside) deliver-to-hangar(jig0003, hangarl, factory-trailer-2, pl0O)
deliver-to-hangar(jig0002, hangar2, factory-trailer-1, pll) get-from-hangar(jig0002, hangar2, factory-trailer-1) put-down-
rack(jig0002, factory-trailer-1, rack00, fside) pick-up-rack(jig0001, factory-trailer-2, rackO1, fside) deliver-to-hangar(jig0001,
hangar2, factory-trailer-2, pl2) get-from-hangar(jig0001, hangar2, factory-trailer-2) put-down-rack(jig0001, factory-trailer-
2, rackOl, fside) pick-up-rack(jigd001, beluga-trailer-1, rackOl, bside) load-beluga(jig0001, beluga2, beluga-trailer-1)
switch-to-next-beluga() unload-beluga(jig0004, beluga3, beluga-trailer-1) put-down-rack(jigd004, beluga-trailer-1, rack00,
bside) unload-beluga(jigD005, beluga3, beluga-trailer-1) put-down-rack(jig0005, beluga-trailer-1, rackO1, bside) unload-
beluga(jig0006, beluga3, beluga-trailer-1) put-down-rack(jig0006, beluga-trailer-1, rackOl, bside) pick-up-rack(jig0005,
factory-trailer-1, rackOl1, fside) pick-up-rack(jig0006, factory-trailer-2, rackOl1, fside) deliver-to-hangar(jig0006, hangar2,
factory-trailer-2, pl12) pick-up-rack(jig0002, factory-trailer-2, rack00, fside) put-down-rack(jig0002, factory-trailer-2, rackO1,
fside) pick-up-rack(jig0004, factory-trailer-2, rack00, fside) pick-up-rack(jig0002, beluga-trailer-1, rackOl, bside) load-
beluga(jig0002, beluga3, beluga-trailer-1) put-down-rack(jig0005, factory-trailer-1, rack00, fside) get-from-hangar(jig0003,
hangarl, factory-trailer-1) deliver-to-hangar(jig0004, hangarl, factory-trailer-2, pll) pick-up-rack(jig0005, factory-trailer-2,
rack00, fside) put-down-rack(jig0003, factory-trailer-1, rack00, fside) pick-up-rack(jig0003, beluga-trailer-1, rack00, bside)
load-beluga(jig0003, beluga3, beluga-trailer-1) switch-to-next-beluga() get-from-hangar(jig0004, hangarl, factory-trailer-1)
deliver-to-hangar(jig0005, hangarl, factory-trailer-2, pl0) put-down-rack(jig0004, factory-trailer-1, rack00, fside) pick-
up-rack(jig0004, beluga-trailer-1, rack00, bside) load-beluga(jig0004, beluga4, beluga-trailer-1) get-from-hangar(jig0005,
hangarl, factory-trailer-2) put-down-rack(jig0005, factory-trailer-2, rack00, fside) pick-up-rack(jig0005, beluga-trailer-1,
rack00, bside) load-beluga(jig0005, beluga4, beluga-trailer-1)

Original cost: 47

Question: Why put jig jig0004 in rack rack00 before loading jig jig0006 in rack rack01?

Plan fulfilling the question (i.e. where jig jig0006 is placed on rack rackO1 before jig jig0004 is placed on rack rack00):
SequentialPlan: pick-up-rack(jig0002, factory-trailer-1, rack00, fside, bside, n11, n11, n22) unload-beluga(jig0003, dummy-
jig, beluga-trailer-1, belugal) beluga-complete(belugal, beluga2) put-down-rack-modified(jigD003, beluga-trailer-1, rack00,
bside, nl1, n22, n11) pick-up-rack(jig0003, factory-trailer-2, rack00, fside, bside, n11, nl1, n22) deliver-to-hangar(jig0003,
jig0005, factory-trailer-2, hangarl, plO, nll, n08) deliver-to-hangar(jig0002, jig0004, factory-trailer-1, hangar2, pll, nll,
n08) get-from-hangar(jig002, hangar2, factory-trailer-1) pick-up-rack(jig0001, factory-trailer-2, rackOl1, fside, bside, n32,
n01, n33) put-down-rack-modified(jig0002, factory-trailer-1, rack00, fside, n08, n22, n14) deliver-to-hangar(jig0001, jig0006,
factory-trailer-2, hangar2, pl2, n32, n32) get-from-hangar(jig0001, hangar2, factory-trailer-2) put-down-rack-modified(jig0001,
factory-trailer-2, rack01, fside, n32, n33, n01) pick-up-rack(jig0001, beluga-trailer-1, rack01, bside, fside, n32, n01, n33) load-
beluga(jig0001, typee, dummy-type, beluga2, beluga-trailer-1, slot0, dummy-slot) beluga-complete(beluga2, beluga3) unload-
beluga(jig0004, jigD005, beluga-trailer-1, beluga3) put-down-rack-modified(jig0004, beluga-trailer-1, rackO1, bside, n11, n33,
n22) unload-beluga(jig0005, jig0006, beluga-trailer-1, beluga3) stack-rack-modified(jig0005, jig0004, beluga-trailer-1, rackO1,
bside, fside, nl1, n22, nl1) unload-beluga(jigD006, dummy-jig, beluga-trailer-1, beluga3) stack-rack-jig-b-rack-b(jig0006,
jig0005, beluga-trailer-1, rack01, bside, fside, nl1, n11, n00) unstack-rack(jig0004, jig0005, factory-trailer-1, rackO1, fside,
bside, n11, n00, n11) unstack-rack(jig0005, jig0006, factory-trailer-2, rack01, fside, bside, n11, n11, n22) pick-up-rack(jig0002,
beluga-trailer-1, rack00, bside, fside, n08, n14, n22) deliver-to-hangar(jig0005, dummy-jig, factory-trailer-2, hangar2, pl0, n11,
n08) get-from-hangar(jig0003, hangar1, factory-trailer-2) deliver-to-hangar(jig0004, dummy-jig, factory-trailer-1, hangarl, pll,
nl1, n08) load-beluga(jigD002, typeb, typeb, beluga3, beluga-trailer-1, slot0, slotl) pick-up-rack(jig0006, factory-trailer-1,
rack01, fside, bside, n11, n22, n33) put-down-rack-modified(jig0003, factory-trailer-2, rack00, fside, n08, n22, n14) get-from-
hangar(jig0004, hangarl, factory-trailer-2) deliver-to-hangar(jig0006, dummy-jig, factory-trailer-1, hangarl, pl2, n11, n08)
stack-rack-jig-x-rack-a(jig0004, jig0003, factory-trailer-2, rack00, fside, bside, n08, n14, n06) unstack-rack(jig0003, jig0004,
beluga-trailer-1, rack00, bside, fside, n08, n06, n14) load-beluga(jig0003, typeb, dummy-type, beluga3, beluga-trailer-1, slotl,
dummy-slot) beluga-complete(beluga3, beluga4) pick-up-rack(jig0004, beluga-trailer-1, rack00, bside, fside, n08, n14, n22)
load-beluga(jig0004, typeb, typeb, belugad, beluga-trailer-1, slot0, slotl) get-from-hangar(jig0005, hangar2, factory-trailer-2)
put-down-rack-modified(jig0005, factory-trailer-2, rack00, fside, n08, n22, n14) pick-up-rack(jig0005, beluga-trailer-1, rack00,
bside, fside, n08, n14, n22) load-beluga(jig0005, typeb, dummy-type, beluga4, beluga-trailer-1, slotl, dummy-slot)

Cost for fulfilling plan: 43

Example Output: There is no specific reason to why to put jig jig0004 in rack rackOO before loading jig jig0006 in rack
rackO1. The new plan removes this action and creates a plan with lower cost.

To Explain

{Current task to explain is placed here}



