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Abstract

Spatio-Temporal (ST) Foundation Models (STFMs) promise cross-dataset gen-
eralization, yet joint ST pretraining is computationally costly and struggles with
domain-specific spatial correlations. To address this, we propose FactoST, a factor-
ized STFM that decouples universal temporal pretraining from ST adaptation. The
first stage trains a space-agnostic backbone via multi-task learning to capture multi-
frequency, cross-domain temporal patterns at low cost. The second stage attaches
an lightweight adapter that rapidly adapts the backbone to specific ST domains
via metadata fusion, interaction pruning, domain alignment, and memory replay.
Extensive forecasting experiments show that in few-shot settings, FactoST reduces
MAE by up to 46.4% versus UniST, uses 46.2% fewer parameters, achieves 68%
faster inference than OpenCity, and remains competitive with expert models. This
factorized view offers a practical, scalable path toward truly universal STFMs.

1 Introduction

Spatio–temporal (ST) data capture how signals evolve over time across complex spatial struc-
tures—such as traffic speeds on road networks, air-pollution levels from citywide sensors, or electric-
ity loads at substations. Modeling ST data is fundamental to forecasting and decision support across
science, engineering, and society, enabling proactive anticipation and intervention [77, 13, 58, 73].

In deep learning practice, Spatio-Temporal Graph Neural Networks (STGNNs) are the de facto
workhorse for modeling such data [58, 39, 47, 27, 28], as depicted in Figure 1(a). Given the intricate
nature of jointly learning spatial and temporal dependencies, early attempts decompose the learning
problem into two complementary components: (i) a recurrent [32, 6, 46], convolutional [68, 64, 30],
or attention-based module [34, 72, 18] that extracts temporal dependencies from each location’s
history, and (ii) a Graph Neural Network (GNN) [29] that propagates information along edges to
capture spatial correlations among locations [32, 68, 64, 57, 41]. This design yields strong inductive
bias, parameter efficiency, and state-of-the-art performance on a wide range of benchmarks.

Inspired by the transformative impact of Foundation Models (FMs) in language [44] and vision [5],
researchers have recently begun to explore STFMs [36, 17, 23, 14]. The core idea is simple – Pretrain
a single model on diverse ST corpora (e.g., climate, traffic, energy) and adapt it to unseen datasets
in a zero-shot or few-shot fashion, as shown in Figure 1(b). Such cross-domain pretraining equips
STFMs with broad cross-dataset spatio-temporal knowledge and generalization beyond single-dataset
scopes, often outperforming task-specific STGNNs when labeled data is scarce [40, 69, 33, 70].
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Figure 1: Evolution of ST modeling: (a) Traditional coupled STGNN design; (b) Joint ST pretraining
in STFMs with tokens from different space and time; (c) FactoST’s factorized paradigm.

Nevertheless, training an STFM at scale presents two pronounced obstacles. First, spatial correlations
differ dramatically across domains. For instance, the adjacency structure of a power grid differs
greatly from urban road topology networks, making it difficult for a monolithic model to internalize all
possible patterns; neighbouring air-quality stations in Beijing exhibit short-range diffusion dynamics,
whereas tele-connection effects dominate climate indices across the Pacific Ocean. Second, existing
STFMs [69, 33] mostly rely on the paradigm of jointly learning spatial and temporal dependencies
for hundreds, thousands, or even millions of locations, which is computationally expensive; memory
and time footprints grow quadratically with sequence length or graph size in these architectures.

In this paper, we address these challenges by factorizing STFM learning into two lightweight stages
and introduce FactoST, a new paradigm that decouples universal temporal learning from domain-
specific ST adaptation. Generally, temporal patterns (such as seasonality, trends) share a common
1-D structure across domains, learnable once; spatial correlations hinge on domain-specific graphs
with sizes and semantics, often requiring tailored reasoning. FactoST exploits this asymmetry: it first
distils the simpler temporal dynamics across domains, then attaches a compact adapter that injects
the richer, domain-specific spatial knowledge. Conceptually, FactoST can be seen as an “STGNN” in
the era of FMs, reinstating spatio-temporal factorization at scale (see Figure 1(a)→(c)).

Universal Temporal Pretraining (UTP): The first stage aims to learn general temporal knowledge
(e.g., periodicity) across diverse domains. To achieve this, we pretrain a purely temporal backbone
on large-scale, cross-domain ST data, deliberately omitting any spatial modules. Multi-frequency
augmentation is utilized to encourage the model to align multi-frequency information across scales,
while domain-aware prompts guide it in encoding task-specific context without explicit spatial graphs.
Overall, this stage is graph-agnostic, lightweight, and highly scalable with strong generalizability.

Spatio-Temporal Adaptation (STA): For a target dataset, the second stage freezes or fine-tunes the
UTP backbone and attaches a compact adapter that injects spatial awareness and domain specificity
in one streamlined pass. The adapter first enriches temporal features with learnable spatio-temporal
identifiers, making each token location- and time-aware. It then adaptively modulates these features
by computing three low-rank affinities—quantifying how strongly each token aligns with its static
spatial embedding, temporal calendar embedding, and lagged historical context—and fusing them
into dynamic per-token weights. Finally, hierarchical soft prompts align representations between the
pretraining and target domains at both layer and token levels, while a small replay buffer periodically
resurfaces earlier sequences to stabilize training and prevent catastrophic forgetting. By seamlessly
weaving these components into a single stage, STA endows the universal temporal features learned in
UTP with just enough ST reasoning to excel in new tasks, achieving this with minimal computation
and memory overhead. We summarize our technical contributions as follows:

• We propose a two-stage factorized paradigm for STFMs that decouples Universal Temporal Pre-
training (UTP) from Spatio-Temporal Adaptation (STA), enabling efficient learning and adaptation
while preserving strong temporal capabilities without the need for costly joint ST pretraining.

• We introduce key innovations in both stages: (1) In UTP, we leverage multi-frequency augmentation,
multi-domain prompting, and multi-task pretraining to learn universal temporal patterns; and (2) In
STA, we introduce ST metadata fusion (STMF) for spatial-aware feature alignment; ST filtering
(STF) for sparse interaction modeling; hierarchical domain alignment (HDA) to bridge domain
gaps; and continual memory replay (CMR) to mitigate knowledge forgetting.

• Extensive experiments show that FactoST outperforms existing STFMs by up to 46.4% in MAE
under few-shot settings, while reducing parameter count by 46.2% and inference latency by 68%. It
remains competitive with domain-specific expert models, even without architecture customization.

2



2 Preliminary
2.1 Formulation
Definition of Spatio-Temporal Data. We define Spatio-Temporal (ST) data D = (X , A,M) as a
sequence of multivariate observations recorded regularly at a fixed set of spatial locations. Formally,
let V = {v1, . . . , vN} denote N nodes, e.g., traffic sensors, grid cells, and weather stations. Each
node provides a D-dimensional feature vector at every time step over a horizon of length L, forming
a tensor X ∈ RN×L×D. Spatial interactions are represented by an (often sparse) adjacency matrix
A ∈ RN×N , whose entries encode physical distance, functional similarity, or learned affinity. Many
real-world datasets also carry node metadata M = {mi}Ni=1, such as geo-coordinates or land-use
types that supply auxiliary spatial context. This formulation also subsumes several commonly used
representations, including multivariate time series [79, 80, 12, 56] and ST raster data [74, 69, 4, 19].

Goal of Spatio-Temporal Foundation Models (STFM). Most existing STFMs centre on ST fore-
casting, as accurate future prediction is the cornerstone for a majority of ST applications, from
traffic management to weather early-warning systems [36, 69, 17]. STFMs therefore seeks to learn
a representation function Φ(·) that converts a large, cross-domain corpus of ST datasets into a
general-purpose representation H = Φ(D1, . . . ,Dnd

), where nd is the number of ST datasets. The
key requirements for such a representation are: i) Versatility: It should support a broad spectrum of
downstream forecasting tasks, including both short-term and long-term forecasting across diverse
domains. ii) Efficiency: Adapting to a new task or domain must involve only a lightweight prediction
head and minimal fine-tuning, while still matching or surpassing fully retrained, task-specific models.

2.2 Related Work
Spatio-Temporal Graph Neural Networks (STGNNs). STGNNs are the de-facto backbone for
learning representations from complex ST data, powering tasks that range from ST forecasting
and anomaly detection to classification and imputation [52, 27, 28, 15, 2]. Early STGNNs often
factorize the learning problem into two complementary components: (i) temporal modules (e.g.,
RNNs [32, 24], TCNs [64, 65]) to extract sequential patterns at individual nodes, and (ii) spatial
modules (e.g., GCNs [29, 78], GATs [72, 51]) to propagate information across graph edges. This
factorized design, implemented either in stacked form [68, 76] or as tightly coupled pipelines [32],
has proven effective across diverse domains such as traffic forecasting [6, 26], energy industry [1, 53]
and environmental applications [35, 11]. Building on these foundations, recent work explores self-
supervised objectives (e.g., contrastive or generative pretext tasks) to extract domain-agnostic ST
features without dense labels [38, 25]. Transformer-style STGNNs further extend receptive fields
with a self-attention mechanism while retaining the ST factorization [66, 37]. Despite these advances,
most existing models are still trained from scratch for each dataset, which limits their cross-domain
reuse and falls short of “training once, adapt everywhere”.

Spatio-Temporal Foundation Models. Recent efforts have explored STFMs that learn universal
representations through cross-domain pretraining [36, 17]. Notable examples include UNIST [69]
and OPENCITY [33], which apply transformer-based architectures to large-scale traffic data. As
shown in Figure 1(b), UNIST tokenizes ST data into a sequence of ST tokens for Transformer-based
learning and prompt-based adaptation. OPENCITY integrates Transformers with GNNs for flexible
graph modeling, yet its tightly coupled architecture demands domain-specific pre-processing (e.g.,
road networks) and is prone to overfitting to particular spatial dependencies. Both models rely on
expensive joint ST pretraining, leading to suboptimal performance and high computational cost.
In contrast, time series foundation models like TIMESFM [10] and CHRONOS [3] achieve strong
cross-domain generalization through purely temporal pretraining, but they lack any spatial awareness.

Our factorized framework bridges this gap: it first learns universal temporal patterns in a scalable
manner, then injects lightweight spatial adapters for rapid ST adaptation, achieving both versatility
and efficiency without the heavy cost of joint pertaining on both spatial and temporal dimensions.

Table 1: Qualitative comparison of STGNNs, STFMs, and our factorized STFMs (FactoST).

Aspect STGNNs Existing STFMs FactoST (ours)

Training strategy Train from scratch on each dataset Joint ST pretraining on massive corpora Factorized: UTP + STA
Temporal modeling RNN / TCN / self-attention Transformer on (N × T ) tokens Freq. aug. + domain prompts + Transformer on T tokens
Spatial modeling GCN / GAT tied to one graph Transformer + GNN or grid tokenization Pluggable lightweight adapters, dynamic edge pruning
Computational cost Moderate (per-domain repeat) Very high (joint ST pretraining) Low-to-moderate (no spatial cost in UTP, small adapters in STA)
Cross-domain reuse Minimal (bound to one graph) Partial (tied to graph modeling) High (graph-agnostic backbone)
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Figure 2: Overview of FactoST.
3 Methodology
Figure 2 presents the framework of FactoST for factorized STFM, consisting of two stages:
• Given cross-domain ST data d ∈ RN×L×D with N nodes, L time steps, and D-dimension, we

apply a compact general-purpose temporal backbone T : RL×D → RF×D independently to each
node’s sequence d[i, :, :] to predict the future horizon F . This stage integrates multi-frequency
augmentation, domain prompting, and multi-task to learn universal temporal patterns.

• A lightweight adapter S is designed to rapidly adapt T to specific ST domains. For downstream
input xin ∈ RN×L×D, we reuse the pretrained backbone T to extract node-wise temporal features
z ∈ RN×L×d, where d denotes the model’s hidden dimension. S—parameterized by Φ with
∥Φ∥ ≪ ∥T∥—then refines these features by injecting ST metadata m, pruning redundant ST
interactions, aligning domain gaps, and performing strategic sample mixing for fine-tuning. The
final output yout = S(z;m) ∈ RN×F×D yields forecasts for the F -step future horizon.

3.1 Stage I: Universal Temporal Pretraining (UTP)

To distill transferable temporal dynamics across heterogeneous ST domains, we pretrain a spatially
agnostic temporal backbone on node-wise time series using a Transformer encoder-decoder architec-
ture. This stage deliberately omits any spatial graph structure, enabling scalable and domain-agnostic
learning of universal temporal patterns such as periodicity, trends, and multi-scale fluctuations.

Multi-Frequency Augmentation. Temporal patterns often exhibit both long-term trends and short-
term fluctuations. Drawing on the ideas from [63, 8, 60], we adopt a frequency isolation strategy
to generate diverse temporal views that emphasize distinct spectral components. Given a raw
input sequence x ∈ RL×D, we first apply the Fast Fourier Transform (FFT) to obtain its spectral
representation xf ∈ CF , where F = ⌊L/2⌋ + 1. We then stochastically isolate either low- or
high-frequency bands by sampling Km random cutoff thresholds {τi}Km

i=1 with τi ∼ (0, F ), and
binary selectors {µi}Km

i=1 with µi ∼ {0, 1}. For each pair (τi, µi), we retain only the frequency
components below τi if µi = 0, or above τi if µi = 1, effectively creating a spectrally filtered
version of the signal. The filtered spectra are transformed back to the time domain via inverse FFT,
yielding Km augmented views {x(i)

m }Km
i=1 ∈ RL×D. These views—along with the original input—are

independently patched into non-overlapping segments of length L′ and projected into d-dimensional
tokens. The resulting token sequences form a multi-view temporal tensor xaug ∈ RKm×N ′×L′×d,
where N ′ = L/L′, serving as input to the Transformer encoder. This design encourages the model to
learn representations that are consistent across complementary frequency perspectives.

Multi-Domain Prompting. Drawing inspiration from codebooks in vision [43], we propose a soft
domain prompting mechanism to encode cross-domain contextual cues. Specifically, we construct
a learnable codebook P = {p1, . . . , pKp

} ∈ RKp×d, where each vector represents a prototypical
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temporal context from a specific domain. Given an input x, we first extract a compact embedding
xe ∈ Rd via global pooling and a linear projection. We then compute its similarity with each
prompt vector pj ∈ P using negative squared Euclidean distance. Subsequently, we apply softmax
normalization to derive attention weights, and obtain the final domain-specific prompt xp ∈ Rd via
weighted combination, thereby fusing reusable knowledge across multiple domains. Finally, xp is
expanded into Np tokens and concatenated with the patched input to obtain xctx ∈ R(N ′+Np)×d.

sj = −∥xe − pj∥22, αj =
exp(sj)∑Kp

k=1 exp(sk)
, xp =

Kp∑
j=1

αjpj , j = 1, . . . ,Kp. (1)

where sj is the similarity score, αj is the attention weight, and xp is the domain context prompt.

Multi-Task Pretraining. To simultaneously capture universal temporal structures and enable effective
cross-domain transfer, we jointly optimize two complementary objectives: a self-supervised task that
enforces consistency across multi-frequency views of the input, and a supervised forecasting task that
guides the model to learn predictive, domain-aware representations:

• Self-supervised spectral consistency: The model reconstructs the original time series from the
multi-view augmented input xaug, ensuring learned representations preserve coherent information
across complementary frequency bands. Specifically, xaug is encoded by a Transformer to capture
deep temporal interactions, then decoded via a Transformer decoder and a linear head to regenerate
the original sequence, optimized with mean squared error (MSE) loss.

Lspec =
∥∥x− SpecHead

(
Decoder(Encoder(xaug))

)∥∥2
2
. (2)

• Supervised forecasting with prompt alignment: The model forecasts future values from the domain-
prompted input xctx to evaluate representation quality. xctx passes through the shared Transformer
encoder-decoder, but the decoder output is detached before the prediction head—using the forecast-
ing loss as a non-backpropagated supervisory signal. This ensures only the restoration task updates
shared parameters, preventing negative transfer from task-specific biases.

Lpred =
∥∥y − PredHead

(
detach

(
Decoder(Encoder(xctx))

))∥∥2
2
+ ∥xe − xp∥22, (3)

where y is the ground-truth. The first term minimizes supervised forecasting error, while the second
enforces prompt consistency between the input embedding xe and its soft domain prompt xp, inspired
by the codebook alignment objective in VQ-VAE [54] to stabilize training and enhance representation
fidelity. The pretraining objective combines both losses: L = Lspec + Lpred. During subsequent ST
fine-tuning, domain prompts are frozen, and only the Transformer layers and prediction head are
updated using Lpred, enabling efficient adaptation while preserving pretrained knowledge.

3.2 Stage II: Spatio-Temporal Adaptation

To adapt the pretrained temporal backbone to ST scenarios, we introduce four lightweight modules
that incur minimal parameter overhead while effectively capturing ST dependencies.

Spatio-Temporal Metadata Fusion (STMF). This module injects ST context into the tempo-
ral backbone via learnable identifiers. Given ST input X ∈ RN×L×D, we first get it tem-
poral representations Ht ∈ RN×N ′×d via patch embedding layer, then we define: (1) node-
specific spatial embeddings En ∈ RN×De ; and (2) a calendar-aware temporal embedding bank
{Ec}c∈S , where each calendar type c (e.g., minute-of-hour, hour-of-day, day-of-week, day-of-month,
month-of-year) has an embedding table Ec ∈ RKc×De , with Kc the number of discrete bins for
type c (e.g., 60/24/7/31/12). The active set S is chosen by sampling frequency (e.g., hourly:
{hour-of-day, day-of-week, day-of-month,month-of-year}; minutely: add minute-of-hour).

For each node–patch pair (i, τ), we map the start timestamp to calendar bins via ϕc(τ) ∈ {1, . . . ,Kc}
for each c ∈ S, and form an ST identifier by concatenating the node embedding with the selected
calendar embeddings as hst(i, τ) = Wp

[
E i

n

∥∥∥∥
c∈SE

ϕc(τ)
c

]
+ bp, where ∥ denotes concatenation.

The identifiers’ dimension are projected and expanded to obtain Hst ∈ RN×N ′×d, aligning with Ht.
The encoded input representation and ST identifiers are then fused together by residual addition:
Hfused = Ht +Hst. This enables integration of ST context without retraining the temporal model.
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Spatio-Temporal Filtering (STF). While STMF uses static ST identifiers, STF adapts to scenario-
dependent cue relevance—e.g., local spatial context for incidents vs. global temporal patterns for rush
hours—by dynamically reweighting spatial and temporal interactions via three learnable affinities.
From Hst ∈ RN×N ′×d, we extract spatial (En) and temporal (Et) embeddings and compute:

• Spatial Affinity (Ss): Measures the compatibility between Hst and its spatial component En via
dot-product: Ss = ⟨Hst, En⟩ ∈ RN×N ′

, where higher values indicate stronger spatial relevance
for each (node, patch) pair. This avoids rigid reliance on fixed spatial identifiers.

• Temporal Affinity (St): Quantifies alignment between Hst and its temporal component Et:
St = ⟨Hst, Et⟩ ∈ RN×N ′

, capturing dominant temporal patterns while filtering redundant noise.
• Time-Lagged Affinity (Sd): Models asynchronous causal effects (e.g.,upstream nodes influenc-

ing downstream nodes with delay δ). For lags δ = 1, . . . ,∆, it aggregates historical neighbor
states H(t−δ)

st and computes: Sd =
∑∆

δ=1 γ
(δ) · ⟨Hst, Aggδ(H

(t−δ)
st )⟩ ∈ RN×N ′

, where γ(δ) are
learnable lag weights. Higher values reflect stronger delayed relevance.

To improve scalability, all affinity computations can be performed in a low-rank space. Specifically,
we project both operands into Rr (r ≪ d) via shared or separate learnable matrices, e.g., for spatial
affinity: Ss = ⟨HstW

(s)
q , EnW

(s)
k ⟩, where W

(s)
q ,W

(s)
k ∈ Rd×r. Analogous projections apply to

St and Sd. This reduces complexity from O(d) to O(r) per inner product while preserving semantic
expressiveness. Top-K sparsification may further prune weak interactions.

The three affinities are stacked as S = [Ss,St,Sd] ∈ RN×N ′×3, projected to dimension d via
Watt ∈ R3×d, and normalized with a softmax (temperature τatt) to yield dynamic weights:

Finally, the refined output is obtained by aggregating the three affinity scores into S = [Ss,St,Sd] ∈
RN×L×3, projecting to dimension D via learnable matrix Watt ∈ R3×d, normalizing with softmax
(temperature τatt) to get dynamic weights W, then modulating Hst with W and applying LayerNorm:

W = softmax
(
SWatt

τatt

)
, Hst = LayerNorm (Hst ⊙W) ∈ RN×N ′×d

This design enables adaptive integration of ST context without retraining the temporal backbone,
effectively balancing spatial and temporal semantics while suppressing irrelevant cues.

Hierarchical Domain Alignment (HDA). To bridge the discrepancy across domains and facilitate
effective transfer of domain adaptation knowledge, we propose a hierarchical alignment module using
the pretrained domain prompts p ∈ RKp×D, which operates at two levels:

1. Layer-level alignment: For an input embedding xe ∈ RD, we retrieve its k nearest prompts in p
based on negative Euclidean distance and compute a soft domain prototype via averaging:

K(xe) = Topk
j∈[1,Kp]

(−∥xe − pj∥2) , p̄k =
1

k

∑
j∈K(xe)

pj ∈ Rd. (4)

2. Token-level alignment: To capture dataset-specific patterns beyond the pretrained prompt knowl-
edge, we introduce a low-rank adaptation matrix A = uv⊤, where u ∈ RNp and v ∈ RD. The
domain-aware adjustment is then computed as Xr =

(
1Np

p̄⊤
k

)
⊙A ∈ RNp×d. Where 1Np

is a
column vector of ones and ⊙ denotes element-wise multiplication. The final representation fuses
the layer-level prototype and token-level refinement for enhanced cross-domain generalization.

Continual Memory Replay (CMR). To mitigate knowledge forgetting during few-shot adaptation,
we implement dynamic data mixing, combining current data and historical data. First, we establish a
memory buffer, given training sequences {Xt}Tt=1 of length T , we partition the dataset into:

M = {Xt}Tm
t=1 (memory buffer), C = {Xt}Tt=Tm+1 (current stream), (5)

with Tm = ⌊memory_size · T ⌋ (default: 0.2), where the memory buffer M preserves critical
temporal patterns from initial learning to ensure stability under domain shift.

Each mini-batch B is constructed by strategically mixing samples from both current stream and
memory buffer: B = {Xi}i∈Ic\R ∪ {Xj}j∈Im[:|R|], where Ic and Im denote shuffled indices of
C andM, respectively, and R ⊂ Ic has size ⌊r · |B|⌋, with r = 0.3 by default. This mechanism
effectively preserves implicit historical knowledge during domain adaptation.
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4 Experiments

In our experiments, we aim to address the following research questions (RQ):

• RQ1: Can FactoST outperform prior approaches (including STGNNs, STFMs and other existing
models) under few-shot and zero-shot scenaries? ⇒ Sec. 4.1 & Sec. 4.2.

• RQ2: Which model component is critical to the final performance? ⇒ Sec. 4.3.1.
• RQ3: How is the data and computation efficiency of FactoST?⇒ Sec. 4.3.2 & Sec. 4.3.3.
• RQ4: Can we provide interpretability of the domain adaptation process in FactoST?⇒ Sec. 4.3.4.

• RQ5: Is the STA module architecture-agnostic, or limited to GNN-based backbones? ⇒ Sec. 4.3.5.

Datasets. We pretrain the temporal backbone on diverse ST datasets using Monash [16], covering six
domains (energy, nature, health, transport, web, economics) with 130M observations across multiple
spatial nodes and sampling frequencies from 4 seconds to daily. During pretraining, we extract and
process univariate time series per node independently to prevent data leakage. For evaluation, we use
eight established ST benchmarks—traffic flow (PEMS03/04/07/08), speed (PEMS-BAY, METR-LA),
energy (Electricity), temperature (ETTh2), and climate (Weather)—which vary widely in spatial scale
(21–883 nodes), temporal resolution (5 min–1 h), and sequence length (17k–52k steps), enabling a
comprehensive assessment of cross-domain and multi-scale generalization (see A.1.1 for details).

Baselines. We compare FactoST with 12 competitive models across four categories: 1) STFMs:
OpenCity [33], UniST [69]; 2) TSFMs: TimesFM [10], Moirai [62]; 3) ST expert models: BigST [20],
STAEformer [37], STID [48], D2STGNN [49]; 4) Time series expert models: TimeMixer [59],
PatchTST [42], DLinear [71], Informer [79]. Consistent with previous works [69], we adopted Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) as evaluation metrics. More in A.1.

4.1 Few-shot Prediction

Setting. We evaluate few-shot adaptation using only 10% of labeled training data under two forecast-
ing horizons: short-term (12→ 12) and long-term (96→ 96), following standard protocols [49, 48].

Results. As shown in Tables 2 and 3, FactoST consistently outperforms all baselines across both
short- and long-term horizons under few-shot adaptation. In the short-term setting (12 → 12),
FactoST improves MAE over STFMs—OpenCity and UniST—by 31.4% and 47.2%, respectively,
where UniST suffers from its rigid grid-based design and OpenCity incurs high graph-learning
overhead. Against TSFMs (TimesFM, Moirai), we observe average gains of 18.8%, demonstrating
that our lightweight ST adaptation effectively enriches universal temporal representations. Notably,
FactoST remains competitive with specialized ST expert models despite avoiding domain-specific

Table 2: Few-shot short-term forecasting (12→12) results on 10% training data across multiple ST
datasets. Lower values indicate better performance. Red: the best. Blue: the second best.

Foundation Model Expert Model
Method Type Spatio Temporal Time Series Spatio Temporal Time Series

Method FactoST OpenCity UniST TimesFM Moirai BigST STAEformer STID D2STGNN TimeMixer PatchTST DLinear Informer

PEMS-03 MAE 17.54 17.90 40.39 21.99 21.40 18.41 30.79 22.93 18.55 21.41 21.97 21.94 23.24
RMSE 28.10 28.80 53.44 35.31 32.38 28.45 47.67 34.10 29.21 33.57 35.59 35.30 37.98

PEMS-04 MAE 23.93 24.78 42.76 27.84 33.73 23.97 48.23 26.72 24.86 27.37 28.11 28.37 29.81
RMSE 37.44 40.41 59.07 43.15 54.09 36.88 68.46 40.31 38.43 42.16 44.13 44.57 45.59

PEMS-07 MAE 26.48 44.43 40.77 32.61 35.69 25.72 33.50 31.46 25.51 30.31 31.19 31.89 37.55
RMSE 41.92 65.47 54.86 50.20 51.36 39.72 51.43 46.72 39.81 46.36 48.91 49.65 62.55

PEMS-08 MAE 18.94 32.16 35.70 22.06 38.01 19.40 36.15 23.17 19.55 22.05 22.42 23.10 31.69
RMSE 29.59 48.47 46.74 33.87 53.05 29.96 51.05 34.09 30.51 34.09 35.64 36.35 51.53

PEMS-Bay MAE 1.96 2.77 5.14 2.25 2.26 1.91 2.01 2.00 1.99 2.11 2.15 2.21 2.96
RMSE 4.51 6.08 8.28 5.49 5.49 4.26 4.62 4.57 4.72 4.93 5.23 5.20 6.23

METR-LA MAE 4.77 4.18 8.79 5.56 4.95 3.72 4.61 4.00 4.00 4.23 4.34 4.57 4.93
RMSE 9.88 8.33 14.34 12.87 12.75 7.19 8.91 8.20 8.03 9.20 9.75 9.82 9.20

ETTh2 MAE 0.272 0.513 0.425 0.284 0.135 0.740 1.208 0.756 0.916 0.803 0.721 1.885 2.125
RMSE 0.424 0.710 0.545 0.410 0.307 1.214 1.673 1.224 1.433 1.228 1.211 2.946 2.898

Electricity MAE 0.374 0.412 0.565 0.529 0.837 0.638 0.858 0.575 0.686 0.767 0.840 1.282 1.598
RMSE 0.545 1.740 3.276 0.801 1.036 4.545 8.289 1.085 4.535 4.324 5.097 8.837 15.649

Weather MAE 0.087 0.414 0.239 0.138 0.184 0.375 0.575 0.330 0.587 0.311 0.296 0.383 0.958
RMSE 0.276 0.660 0.381 0.323 0.432 0.951 1.085 0.920 1.269 0.967 1.074 1.046 1.783

Count 1st 9 0 0 2 2 4 0 1 3 0 0 0 0
2nd 4 4 0 4 0 4 0 1 1 0 0 0 0
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Table 3: Few-shot long-term forecasting (96→ 96) results on 10% training data across multiple
spatio-temporal datasets. Lower values indicate better performance. Red: the best, Blue: the second

Foundation Model Expert Model
Method Type Spatio Temporal Time Series Spatio Temporal Time Series

Method FactoST OpenCity UniST TimesFM Moirai BigST STAEformer STID D2STGNN TimeMixer PatchTST DLinear Informer

PEMS-03 MAE 28.57 34.21 67.70 38.47 51.40 51.87 77.42 45.45 OOM 47.86 61.22 76.41 46.27
RMSE 46.78 54.82 94.00 59.77 79.47 75.56 115.67 65.35 OOM 71.52 100.33 113.63 69.41

PEMS-04 MAE 42.04 67.24 85.14 64.43 81.30 52.37 64.12 78.13 OOM 58.44 70.71 85.61 54.26
RMSE 64.89 112.20 112.11 93.44 116.26 80.23 91.95 111.12 OOM 86.67 104.00 125.44 83.42

PEMS-07 MAE 45.60 50.70 101.20 157.10 134.46 54.92 61.45 71.32 OOM 67.75 80.09 106.68 52.82
RMSE 72.47 78.36 134.98 208.36 200.30 82.12 91.06 106.95 OOM 100.45 118.54 147.43 81.78

PEMS-08 MAE 35.69 49.47 73.81 89.93 68.73 58.68 68.45 75.87 OOM 45.10 57.31 76.77 44.25
RMSE 56.15 82.07 96.45 125.27 97.89 86.76 96.14 103.15 OOM 65.53 87.33 109.15 68.43

PEMS-Bay MAE 2.96 7.40 5.17 5.18 5.78 2.93 3.28 3.10 OOM 4.11 4.32 4.62 3.27
RMSE 6.21 12.38 8.27 9.97 10.97 6.20 6.65 6.63 OOM 8.94 9.22 9.52 6.81

METR-LA MAE 6.93 9.71 13.16 14.23 12.17 6.69 6.15 5.94 OOM 7.00 7.20 7.65 6.38
RMSE 13.07 13.62 19.96 22.56 22.39 12.22 11.56 11.91 OOM 13.33 14.17 13.42 12.29

ETTh2 MAE 0.358 0.751 0.488 0.365 0.325 1.164 1.295 1.066 OOM 1.013 0.943 1.069 2.960
RMSE 0.561 1.040 0.622 0.541 0.465 1.797 1.918 1.751 OOM 1.646 1.609 1.781 3.783

Electricity MAE 0.265 0.303 0.494 0.305 0.312 0.481 0.733 0.440 OOM 0.459 0.442 0.558 1.693
RMSE 0.409 1.240 2.512 0.465 0.484 2.843 6.562 2.755 OOM 2.833 2.747 3.262 16.536

Weather MAE 0.226 0.653 0.348 0.270 0.262 0.892 1.171 0.740 OOM 0.720 0.708 0.731 2.249
RMSE 0.426 3.730 0.491 0.484 0.465 1.522 1.804 1.446 OOM 1.401 1.409 1.424 3.403

Count 1st 12 0 0 0 2 2 1 1 0 0 0 0 0
2nd 3 5 0 2 2 0 1 1 0 0 0 0 4

spatial modules like graph networks, and substantially outperforms time series experts that ignore
spatial structure—especially on spatially correlated tasks. The advantage further widens in the
long-term setting (96 → 96): FactoST achieves average MAE reductions of 40.5% over STFMs,
33.8% over TSFMs, and remarkably 44.1% over ST experts, even as models like D2STGNN fail
due to out-of-memory errors under long-range forecasting. This underscores the scalability and
efficiency of our factorized design: by decoupling universal temporal pretraining from plug-and-play
ST adaptation, FactoST captures long-range dependencies without end-to-end joint ST pretraining or
heavy spatial inductive biases—making it particularly effective in low-data, long-horizon scenarios.

Table 4: Zero-shot performance comparison of foundation models on short-term (12 → 12) and
long-term (96→ 96) forecasting across ST datasets. * indicates the dataset was seen in pretraining;
results marked with * are excluded when determining Red (best) and Blue (second-best).

Dataset Horizon FactoST OpenCity UniST TimesFM Moirai
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

METR-LA Short 4.85 10.12 4.30* 8.37* 24.33 29.31 6.59 14.99 5.55 13.79
Long 12.68 18.82 10.85* 17.60* 25.88 30.19 14.16 24.01 12.87 22.19

PEMS-03 Short 30.12 46.92 30.37 47.49 101.87 129.94 29.71 49.21 28.23* 46.36*
Long 113.62 144.80 125.18 159.23 102.87 137.90 108.59 152.74 74.85* 110.78*

PEMS-04 Short 38.65 56.59 39.34* 58.50* 67.91 87.63 35.00 53.27 34.65* 52.13*
Long 142.11 175.99 153.18* 188.95* 115.76 153.58 127.39 171.13 105.95* 141.40*

PEMS-Bay Short 2.02 4.59 3.23* 6.91* 14.89 16.92 6.59 14.99 1.97* 4.69*
Long 6.12 10.47 6.92* 11.79* 9.29 12.72 14.16 24.01 6.51* 11.70*

METR-LA Short 5.98 14.26 4.30* 8.37* 24.33 29.31 6.59 14.99 5.55 13.79
Long 12.47 22.94 10.85* 17.60* 25.88 30.19 14.16 24.01 12.87 22.19

PEMS-07 Short 45.47 66.68 45.18 67.15 104.93 133.65 42.10 64.59 35.64* 50.25*
Long 156.07 190.59 172.20 211.25 144.67 184.62 151.99 205.18 125.91* 169.43*

PEMS-08 Short 32.14 47.27 32.45* 48.42* 73.46 93.14 29.68 45.18 38.23* 53.12*
Long 121.43 151.59 128.48* 161.75* 104.77 136.21 92.72 126.10 119.10* 151.83*

Count 1st 9 5 0 0 3 3 5 4 2 2
2nd 5 7 1 1 2 2 4 2 2 2

4.2 Zero-shot Prediction

Setting. We evaluate zero-shot forecasting for both short- and long-term scenarios without fine-tuning.

Results. As shown in Table 4, explicit joint ST pretraining does not improve zero-shot generalization.
In fact, models without dedicated spatial modeling—such as FactoST (UTP without STA) and
TimesFM—consistently outperform specialized STFMs like OpenCity and UniST. This confirms
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our core insight: spatial structures are highly domain-specific and hinder transfer when baked into
pretraining. UniST’s unstable performance—reasonable on long-term but catastrophic on short-term
tasks—and its need for retraining under topology changes further expose the rigidity of fixed spatial
priors. Even in-domain, OpenCity and Moirai (a multivariate TSFM) underperform, underscoring
that strong zero-shot capability stems from temporal, not spatial, modeling. Remarkably, FactoST
achieves the most top-2 rankings (4 first, 5 second) among all foundation models on unseen domains,
despite using only 13M pretraining points—orders of magnitude fewer than Moirai (27B) or TimesFM
(100B) (Table 6). Nonetheless, errors remain high in long-term scenarios, highlighting the intrinsic
challenge of zero-shot ST prediction. To address this, we apply Test-Time Computing [9], which
reduces zero-shot MAE and RMSE by 7.72% and 8.79% on average; see Appendix A.4.4 for details.

4.3 Model Analysis

Ablation Studies. We evaluate each component’s contribution via ablation on PEMS-03 short-term
forecasting (Figure 3). Removing CMR causes the largest drop (↑35.15% MAE, ↑32.85% RMSE),
underscoring its role in preserving knowledge during few-shot adaptation. Disabling HDA or STMF
degrades MAE by 22%, confirming their importance for domain alignment and metadata fusion.
Among STF variants, omitting the spatial affinity matrix yields the sharpest decline (↑29.01% MAE,
↑33.70% RMSE), highlighting its efficacy in dynamic interaction modeling; temporal and time-delay
matrices also contribute, albeit more moderately. We also find that the spectral consistency loss Lspec
in pretraining provides nontrivial gains, more details are in Appendix A.4.3.

Scaling Analysis. We evaluate FactoST on PEMS-03 across downstream fine-tuning proportions
from zero-shot to full-shot for both short- and long-term forecasting (Figure 4). Remarkably, FactoST
achieves rapid performance gains with minimal data: in the short-term setting, MAE drops from
25.96 (1% data) to 17.54 (10% data)—already approaching full-shot performance (16.59). In the
long-term setting, MAE plummets from 123.57 (zero-shot) to 28.57 with just 10% of the training data,
and further improves to 25.85 under full supervision. This sharp improvement highlights FactoST ’s
exceptional data efficiency and fast adaptation capability. We also analyze scaling with respect to
model size and pretraining data volume, observing diminishing returns beyond moderate capacity but
consistent gains with more pretraining data; more details are in Appendix A.4.1 and A.4.2.

Figure 3: Ablation studies of various components. Figure 4: Data scaling analysis.

Efficiency Analysis. As shown in Figure 5, FactoST achieves a strong MAE of 17.86 on PEMS-03
under the 10% few-shot setting with only 1.3M parameters and 8.1s inference time—outperforming
nearly all baselines in both accuracy and efficiency. In contrast, joint ST models like OpenCity (1.67M
params, 25.3s) incur high computational overhead due to end-to-end graph learning, while large-scale
TSFMs such as Moirai (91.4M params, 22.2s) ignore spatial structure entirely. Even though models
like D2STGNN attain slightly better accuracy, they suffer from severe latency (54.5s). By decoupling
universal temporal pretraining from lightweight, plug-and-play spatial adaptation, FactoST achieves
an exceptional accuracy–efficiency trade-off, making it highly suitable for real-world deployment.

Domain Adaptation Analysis. Figure 6 visualizes ST token embeddings before and after Hier-
archical Domain Adaptation (HDA) via t-SNE: original tokens (blue), adapted tokens (orange),
and learned domain prompts (circled clusters). The adapted embeddings shift clearly toward their
corresponding prompt clusters, demonstrating that HDA effectively steers generic temporal repre-
sentations toward domain-specific semantics. Crucially, the global structure of the embedding space
is preserved—indicating that adaptation is targeted and non-destructive. This provides empirical
evidence that FactoST successfully bridges universal knowledge from pretraining with task-specific
spatio-temporal context, enabling effective cross-domain transfer without catastrophic forgetting.
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Architecture Generality of STA. The STA module is architecture-agnostic, operating solely on
feature embeddings without relying on GNN-specific inductive biases. To verify this, we integrate
STA into PatchTST—a non-GNN, Transformer-based time series model—and observe consistent
few-shot improvements across all datasets ( Figure 7). This confirms STA’s ability to inject ST
context into diverse backbones. FactoST remains superior, benefiting from large-scale pretraining;
this highlights that temporal knowledge learned from diverse domains generalizes effectively, and
when combined with lightweight spatial adaptation, enables strong cross-domain performance.

Figure 5: Efficiency comparison with baselines. Figure 6: Domain adaptation visualization.

Figure 7: Few-shot long-term forecasting comparison of FactoST, PatchTST, and PatchTST with STA.
Results confirm that STA is architecture-agnostic and consistently improves non-GNN backbones.

5 Conclusion and Future Work

We introduce FactoST, a two-stage spatio-temporal foundation model (STFM) that decouples uni-
versal temporal pretraining from lightweight spatio-temporal adaptation. This factorized design
avoids the computational cost and poor generalization of joint ST pretraining in existing STFMs.
Empirically, FactoST outperforms current STFMs in few-shot settings—reducing MAE by up to
46.4% over UniST—while using 46.2% fewer parameters and achieving 68% faster inference than
OpenCity. Notably, it matches or surpasses domain-specific models without architectural customiza-
tion, demonstrating the power of factorized pretraining as a scalable path toward universal STFMs.

We identify two key directions for future work. First, spatial generalization remains a bottleneck:
limited zero-shot performance across STFMs—including our temporal-only backbone—suggests
that rigid spatial priors impede cross-domain transfer, calling for more adaptive, semantics-aware
representations. Second, the fine-tuning protocol can be improved: uniform parameter updates
underutilize pretrained knowledge; parameter-efficient strategies (e.g., prompt tuning or selective
retraining) could enhance transfer efficiency and mitigate catastrophic forgetting.
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We have provided detailed experimental settings in Appendix A.1 to facilitate
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• The answer NA means that the paper does not include experiments.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: In spatio-temporal forecasting tasks, it is common not to provide error bars but
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We provide our detailed experimental setup and complexity analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We follow the NeurIPS Code of Ethics in this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We provide a discussion of the broad implications in Appendix B.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The datasets chosen in this paper are commonly used benchmark datasets for
spatio-temporal forecasting tasks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: Yes, we have.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: This paper follows CC 4.0, and the code is in an anonymized URL.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Large language models were used only for minor tasks such as grammar
checking and formatting improvements.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices

A.1 Implementation Details

This section provides a comprehensive overview of the implementation setup, including datasets,
evaluation metrics, hyperparameters, implementation details, and training configurations.

A.1.1 Datasets

Pretraining Datasets: As shown in Table 5, we use cross-domain large-scale ST datasets, including
energy, nature, transportation, and web, to train our temporal backbone. From these datasets, we
extract node-wise temporal sequences across different locations over time. These sequences span
multiple frequencies (from seconds to daily) and exhibit various temporal patterns, ensuring that the
learned representations are robust and transferable across different forecasting tasks. We also add a
data volume comparison in Table 6, where FactoST is much lower than other foundation models.

Table 5: List of pretraining spatio-temporal datasets.

Dataset Domain Frequency # Time Points Source

Aus. Electricity Demand Energy Half Hourly 1155264 Monash[16]

Wind Energy 4 Seconds 7397147 Monash[16]

Wind Farms Energy Minutely 172178060 Monash[16]

Solar Energy 10 Minutes 7200720 Monash[16]

Solar Power Energy 4 Seconds 7397222 Monash[16]

London Smart Meters Energy Half Hourly 166527216 Monash[16]

Temperature Rain Nature Daily 23252200 Monash[16]

Saugeen River Flow Nature Daily 23741 Monash[16]

Sunspot Nature Daily 73924 Monash[16]

Weather Nature Daily 43032000 Monash[16]

KDD Cup 2018 Nature Daily 2942364 Monash[16]

US Births Nature Daily 7305 Monash[16]

Pedestrian_Counts Transport Hourly 3132346 Monash[16]

Web Traffic Web Daily 116485589 Monash[16]

Bitcoin Economic Daily 75364 Monash[16]

Table 6: Pretraining corpora and scale of STFMs and TSFMs used in this study.

Model Pretraining Corpus Scale
FactoST Monash (5 domains, 15 datasets) 13M time points
OpenCity 21 heterogeneous traffic datasets (10,110 regions) 151.1M observations
UniST 21 multi-source grid datasets —
TimesFM Large-scale real-world and synthetic time series 100B time points
Moirai LOTSA dataset 27B time points

Evaluation Datasets: For downstream ST forecasting, we select real-world benchmarks covering
traffic flow, speed, electricity consumption, and meteorological data, as detailed in Table 7. These
datasets exhibit substantial heterogeneity in spatial granularity (e.g., city regions vs. sensors),
temporal resolution (e.g., 5-minute vs. hourly intervals), and prediction targets (e.g., speed vs.
volume), posing a challenging testbed for cross-task generalization. This diversity enables a rigorous
evaluation of FactoST ’s adaptability under both short-term and long-term forecasting settings.
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Table 7: List of evaluation spatio-temporal datasets.

Dataset Category # Features Sample rate Time span (Y/M/D) # Time Points

PEMS03 Traffic flow 358 5 minutes 2018/09/01 – 2018/11/30 26208

PEMS04 Traffic flow 307 5 minutes 2018/01/01 – 2018/02/28 16992

PEMS07 Traffic flow 883 5 minutes 2017/05/01 – 2017/08/31 28224

PEMS08 Traffic flow 170 5 minutes 2016/07/01 – 2016/08/31 17856

PEMS-BAY Traffic speed 325 5 minutes 2017/01/01 – 2017/06/30 52116

METR-LA Traffic speed 207 5 minutes 2012/03/01 – 2012/06/27 34272

ETTh2 Transformer temperature 7 1 hour 2016/07/01 – 2018/06/26 14400

Electricity Electricity consumption 321 1 hour 2012/01/01 – 2014/12/31 26304

Weather Meteorological data 21 10 minutes 2020/01/01 – 2021/01/01 52696

A.1.2 Model Architecture and Hyperparameters

We implement FactoST using PyTorch, and all experiments are conducted on four NVIDIA A800
80GB GPUs. The architecture consists of three encoder layers and three decoder layers, with 16
attention heads and a latent dimension d = 128. Input sequences are processed using a patching
mechanism with a patch size of 12, and the dropout rate is set to 0.2 to prevent overfitting. The
feed-forward network within each Transformer layer has a hidden dimension of 512.

Pretraining. During pretraining, we use the Adam optimizer with an initial learning rate of 5 ×
10−4, and apply StepLR to decay the learning rate by a fixed factor every few epochs, improving
convergence. The model is equipped with Np = 8 domain prompt learning vectors, each of dimension
128, and in supervised prediction tasks, both the input length and target forecasting horizon are fixed
at 96 (The length can be set to any value, which is the maximum supported step length, here we
set 96 for downstream comparison). For spectral consistency modeling, the number of augmented
patches is set to Kf = 4. Pretraining is performed with a large batch size of 16,384 to ensure stable
optimization.

Fine-tuning. During fine-tuning, we adopt a learning rate of 1 × 10−3. The lookback window is
set to 12 (short-term) or 96 (long-term), with matching prediction horizons. The number of domain
prompt tokens (Np = 3) and patching configuration remain unchanged from pretraining. A top-k
selection (k = 3) is applied during domain prompt matching to enhance generalization. Additional
configuration includes memory replacement ratio of 0.3; memory size of 0.2 relative to total capacity;
spatio-temporal identifier embedding dimension of 32; maximum delay step ∆ = 3.

A.2 Evaluation Metrics

We use commonly used regression metrics, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), to measure the prediction performance. Suppose Y = Y1, ..., YM are ground truth for
real spatio-temporal data, Ŷ = Ŷ1, ..., ŶN are the predicted values by the model, and N is the number
of total testing samples, These two metrics can be formulated as follows:

RMSE(Y, Ŷ) =

√√√√ 1

N

N∑
i

(
Yi − Ŷi

)2

,MAE(Y, Ŷ) =
1

N

N∑
i

∣∣∣Yi − Ŷi

∣∣∣ , (6)

A.3 Baselines and Implementation

All baseline models are evaluated within a unified framework to ensure fair comparisons. All models
are assessed using standardized metrics (MAE and RMSE). Hyperparameters are either set to default
values reported in the original papers or tuned via grid search on the validation set. Below, we detail
the implementation strategies for each category of baselines.
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A.3.1 Time Series (TS) Expert Models

The following TS expert models are implemented using the BasicTS framework (https://github.
com/GestaltCogTeam/BasicTS) to ensure consistency in preprocessing, training, and evaluation:

• TimeMixer [59]: A MLP-based model with past-decomposable mixing and future multi-predictor
mixing, enabling multiscale information fusion from both microscopic and macroscopic views.

• PatchTST [42]: A Transformer-based model that treats time series as a sequence of patches,
enabling effective long-term forecasting by capturing local and global patterns.

• DLinear [71]: A simple yet effective linear model that decomposes time series into trend and resid-
ual components, followed by independent modeling of each component for accurate forecasting.

• Informer [79]: An efficient Transformer variant with self-attention compression and generative
decoder design, tailored for long sequence time series forecasting.

A.3.2 Spatio-Temporal (ST) Expert Models

The following ST expert models are also integrated into the BasicTS framework, Graph structures
follow original designs, utilizing distance-based or learned adjacency matrices where applicable.

• BigST [20]: Proposes a linear STGNN, first extracts long sequence input into a low representation,
then uses a global GCN to capture spatial features, effective for large sensor node scenarios.

• STAEformer [37]: Utilizes spatial-temporal adaptive embeddings to enhance the representation
learning capability of Transformers for traffic forecasting tasks.

• STID [48]: Introduces spatial-temporal identity vectors into the Transformer architecture to capture
node-specific temporal dynamics and spatial dependencies.

• D2STGNN [49]: Decouples spatial and temporal dependencies using separate graph convolution
and recurrent modules for improved modeling of complex spatio-temporal interactions.

A.3.3 Time Series Foundation Models (TSFMs)

For TSFMs, we adapt the official implementations to align with our benchmarking protocol:

• TimesFM [10]: A large-scale pretrained decoder-only time series foundation model developed
by Google Research, capable of high-accuracy univariate forecasting across diverse domains
and frequencies. The implementation is obtained from the official repository (https://github.
com/google-research/timesfm), and we fine-tune them using context lengths and forecast
horizons consistent with our experimental setup. The checkpoint of the model we use comes from
https://huggingface.co/google/timesfm-1.0-200m.

• Moirai [62]: A large-scale pretrained encoder-only time series foundation model developed
by Salesforce AI Research, designed to deliver universal forecasting capabilities across diverse
domains, frequencies, and variable types. The implementation is obtained from the official
repository https://github.com/SalesforceAIResearch/uni2ts. The checkpoint of the
model we use comes from https://huggingface.co/Salesforce/moirai-1.0-R-base.

A.3.4 Spatio-Temporal Foundation Models (STFMs)

We evaluate two recent STFMs:

• UniST [69]: A universal STFM empowered by prompt learning, pretrained on multiple ur-
ban scenarios to achieve strong generalization. Official codebase (https://github.com/
tsinghua-fib-lab/UniST) supports fixed horizon configurations only 6-step prediction. We
retrain it on 13 datasets from the original release to support 12 and 96-step forecasting scenarios.

• OpenCity [33]: A versatile STFM that supports zero-shot and few-shot forecasting across diverse
city-level applications. Integrated into our pipeline using the checkpoint Opencity-plus.pth,
with adapter layers introduced to enable efficient few-shot adaptation to new datasets.
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A.4 More Results

A.4.1 Model Size Analysis

As shown in Figure 9, we investigate the effect of model capacity by varying the number of Trans-
former layers in FactoST’s temporal backbone (3.0M → 4.3M parameters) on ETTh2 long-term
forecasting. Zero-shot performance improves steadily from 1 to 3 layers and then plateaus, indicating
diminishing returns from deeper architectures. In the 10p few-shot setting, performance peaks at 3
layers and slightly degrades with 5–7 layers, with training logs revealing signs of overfitting—likely
due to increased depth without proportional increases in regularization or hidden dimensionality.
These results suggest that moderate model capacity is optimal under data-limited conditions, aligning
with the principle of Occam’s razor in transfer learning.

A.4.2 Pretraining Data Scalability

Figure 8 shows the impact of pretraining corpus size on generalization. We train FactoST on 20%
to 100% of Monash dataset and evaluate on ETTh2 long-term forecasting. Performance improves
monotonically with more pretraining data, confirming that FactoST effectively leverages larger and
more diverse temporal corpora. Notably, even at 100% data (13M points), FactoST remains far below
the scale of leading foundation models (e.g., TimesFM: 100B), suggesting substantial headroom for
improvement with access to richer and high quality pretraining sources.

Figure 8: Pretraning data scaling analysis. Figure 9: Model size analysis.

A.4.3 Pretraining Objective Ablation

Our pretraining objective combines future prediction loss and spectral consistency loss with equal
weighting: Lpretrain = Lpred +Lspec. While Lpred captures temporal dynamics through supervised fore-
casting, Lspec enables self-supervised modeling of multi-frequency patterns via spectral consistency
learning across frequency-isolated views. As shown in Table 8, removing Lspec degrades zero-shot
MAE/RMSE by 3.54%/5.27%, but only slightly affects few-shot performance (↑0.78%/0.87%). This
indicates that multi-frequency spectral consistency provides complementary, non-redundant signals
that are especially crucial when no target-domain supervision is available. In zero-shot transfer,
Lspec endows the model with robust spectral inductive biases that generalize across domains. During
few-shot fine-tuning, limited labels allow the model to partially recover domain-specific patterns,
reducing reliance on Lspec. The modest few-shot gain likely reflects the moderate domain shift in
our benchmarks; we expect Lspec to yield larger benefits under stronger distributional shifts (e.g.,
cross-city or cross-modality transfer).

Table 8: Ablation study on the pretraining objective (Lspec) using ETTh2 long-term forecasting.
Removing the spectral consistency loss degrades both zero-shot and few-shot performance.

Model Variants Zero-shot (MAE / RMSE) Few-shot (MAE / RMSE)

FactoST 0.395 / 0.588 0.383 / 0.578
FactoST w/o Lspec 0.409 / 0.619 0.386 / 0.583

∆ (%) MAE / RMSE +3.54% / +5.27% +0.78% / +0.87%
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Table 9: Impact of Test-Time Computing (TTC) on long-term forecasting performance. FactoST with
TTC consistently improves over the base model across all datasets.

Dataset FactoST FactoST w/ TTC ∆ (%)
MAE RMSE MAE RMSE MAE RMSE

PEMS-03 123.60 159.38 113.62 144.80 -8.07% -9.15%
PEMS-04 152.27 189.35 143.11 175.99 -6.01% -7.05%
PEMS-07 172.99 214.00 156.07 190.59 -9.78% -10.94%
PEMS-08 129.57 163.62 121.43 151.59 -6.28% -7.35%
PEMS-Bay 7.10 12.01 6.12 10.47 -13.80% -12.82%

Average 117.11 147.67 108.07 134.69 -7.72% -8.79%

A.4.4 Zero-Shot Enhancement

To address the inherent limitations of zero-shot forecasting, we integrate Test-Time Computing
(TTC) [9] into FactoST—a lightweight online adaptation mechanism that refines predictions during
inference without retraining. TTC maintains a FIFO memory queue of recent inputs, predictions, and
(pseudo) labels, constructs a frequency-domain calibrator using FFT-based amplitude/phase offsets,
and updates the calibrator using only historical predictions to avoid temporal leakage. As shown
in Table 9, TTC consistently improves long-term zero-shot performance across datasets, reducing
MAE and RMSE by 7.72% and 8.79% on average. Future work includes: (1) spatial meta-learning
to capture universal topological priors (e.g., distance decay) [22]; (2) semantic-enhanced spatial
embeddings via external knowledge (e.g., LLM-derived geolocation representations) [21]; and (3)
cross-domain latent alignment to bridge spatial representation gaps [55].

A.4.5 Temporal Feature Granularity Analysis

FactoST supports flexible multi-scale periodicity modeling through its spatio-temporal metadata
fusion (STMF) module. While our main experiments use time_of_day (24) and day_of_week (7)
identifiers—reflecting the dominant daily/weekly cycles in high-frequency traffic datasets like PEMS-
03—the architecture readily accommodates longer-term patterns (e.g., monthly, yearly) by simply
extending the temporal feature set, without any architectural changes. To validate this flexibility and
assess the impact of temporal granularity, we replace daily/weekly features with month_of_year (12)
in a few-shot setting on PEMS-03. As shown in Table 10, performance degrades significantly: short-
term MAE increases by 12.94% and long-term MAE by 15.20%. This confirms that temporal feature
design must align with the intrinsic frequency of the data—a principle our framework inherently
supports through plug-and-play metadata injection.

Table 10: Impact of temporal feature granularity on PEMS-03 few-shot forecasting. Using coarse-
grained monthly features harms performance due to mismatch with high-frequency data dynamics.

Temporal Features Short-term (MAE / RMSE) Long-term (MAE / RMSE)

time_of_day & day_of_week 17.54 / 28.10 28.57 / 46.78
month_of_year 19.81 / 31.37 32.91 / 52.01

∆ (%) MAE / RMSE +12.94% / +11.64% +15.20% / +11.18%

B Broader Impacts

Our work introduces a factorized framework for spatio-temporal foundation models that enhances
efficiency, generalization, and cross-domain adaptability. By decoupling universal temporal pretrain-
ing from lightweight spatio-temporal adaptation, our approach significantly reduces computational
cost and enables rapid few-shot deployment—making it well-suited for real-world applications with
limited labeled data or constrained resources. The proposed method has the potential to benefit high-
impact domains such as urban planning, traffic optimization, climate modeling, energy forecasting,
and public health surveillance—areas where accurate, scalable, and transferable spatio-temporal
prediction is crucial. Furthermore, the modular design promotes sustainable AI development by
minimizing redundant large-scale pretraining and reducing overall energy consumption.
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As this work primarily focuses on scientific research and technical innovation in spatio-temporal
modeling, it does not present clear negative societal impacts. Instead, it contributes to the development
of more accessible, efficient, and environmentally responsible foundation models for real world urban
dynamics with both spatio and temporal characteristics.

B.1 Limitations

Our work focuses on separating temporal pretraining from spatial adaptation to enable efficient
and generalizable spatio-temporal modeling. While this factorized design offers strong empirical
performance and flexibility, several limitations point to important directions for future research:

• Spatial modeling impedes zero-shot generalization. Our results reveal a key insight: explicit
spatial modeling—especially when baked into pretraining—hurts cross-domain transfer because
spatial structures (e.g., graph topology, sensor layout) are highly domain-specific. In contrast,
temporal-only pretraining (as in FactoST ’s UTP stage or TimesFM) achieves superior zero-shot
performance, confirming that universal temporal patterns, not spatial priors, drive generalization.
This explains why specialized STFMs (e.g., UniST, OpenCity) underperform or even fail catas-
trophically on unseen domains. While our factorized design avoids this pitfall by deferring spatial
adaptation to the lightweight adapter, zero-shot spatio-temporal forecasting remains inherently
challenging—particularly for long horizons—highlighting the need for complementary techniques
(e.g., test-time computing [9]) to further bridge the domain gap.

• Challenges with dynamic and open-world spatial structures. The current framework assumes
fixed node sets and static spatial topologies (e.g., traffic sensors or weather stations). It is not
designed to handle scenarios where spatial units are added, removed, or reconfigured over time
(e.g., mobile sensors, evolving infrastructure, or ad-hoc networks). Extending FactoST to support
zero-shot spatial generalization—such as generating embeddings for unseen nodes or adapting to
changing graph structures [31, 81]—remains an open challenge.

• Dependency on pretraining corpus diversity. Although our adapter-based design reduces compu-
tational overhead, the universal temporal backbone still relies on the breadth and representativeness
of the pretraining data [75, 75]. In domains with strong physical laws or complex spatial couplings
(e.g., power grids), the model may lack necessary inductive biases, limiting transferability.

• Limited integration of exogenous variables. Our current framework does not explicitly model
external factors such as weather, events, or policy interventions—critical covariates in many
real-world forecasting tasks [61, 67]. Developing mechanisms to incorporate and adapt to such
exogenous signals in a few-shot manner is an important direction for enhancing practical utility.

• Static adapter composition. The adapter S currently applies a fixed set of modules (STMF, STF,
HDA, CMR) regardless of input characteristics. A more intelligent system could enable adaptive
model composition: by analyzing temporal stability, spatial heterogeneity, or domain shift, it could
dynamically choose between full spatio-temporal modeling, temporal-only inference, or specialized
lightweight modules—improving both robustness and efficiency [50].

• Suboptimal fine-tuning protocols. Current adaptation uses uniform gradient updates on the
adapter, which may underutilize pretrained knowledge and risk catastrophic forgetting. Parameter-
efficient strategies—such as prompt tuning, selective layer retraining, or regularization-aware
updates—could better preserve temporal priors while enabling efficient spatial adaptation [45, 7].

These limitations point to several promising directions for future work: (1) rethinking spatial modeling
to avoid domain-specific biases in pretraining, (2) enabling adaptation to dynamic or unseen spatial
configurations, (3) enriching temporal foundations with exogenous context, (4) leveraging more
efficient and stable fine-tuning strategies, and (5) developing hybrid inference mechanisms (e.g.,
test-time adaptation) to bridge the zero-shot performance gap. Addressing these challenges will be
key to building truly robust, scalable, and practical spatio-temporal foundation models.

B.2 Pseudocode of FactoST

For reproducibility, we present the detailed pseudocode of FactoST in Algorithm 1, which concisely
summarizes the two-stage learning paradigm: universal temporal pretraining (UTP) followed by
lightweight spatio-temporal adaptation (STA).

28



Algorithm 1 FACTOST: Factorized Spatio-Temporal Foundation Model

Require: Cross-domain ST datasets D = {(X(j),Y(j),m(j))}j , where X(j) ∈ RNj×L×D, Y(j) ∈
RNj×F×D, and m(j) denotes ST metadata.

1: // Stage I: Universal Temporal Pretraining (UTP)
2: Initialize temporal backbone T and domain prompts p ∈ RKp×d

3: for each node-wise sequence x ∈ RL×D sampled from D do
4: // Multi-frequency augmentation
5: xf ← FFT(x)
6: for i = 1 to Km do
7: Sample τi ∼ Uniform(0, ⌊L/2⌋+ 1), µi ∼ Bernoulli(p)

8: Mask x
(i)
f ←

{
xf [τi :] = 0 if µi = 0

xf [: τi] = 0 if µi = 1

9: x
(i)
m ← iFFT(x

(i)
f )

10: end for
11: xaug ← [x, {x(i)

m }Km
i=1 ]; apply patching→ RKm×N ′×L′×d

12: // Multi-domain prompting
13: xe ← Linear(Patch(x)) ∈ RNp×d

14: Compute attention: sj = −∥xe − pj∥22, αj = softmax(sj)

15: xp ←
∑Kp

j=1 αjpj ; form xctx = [Patch(x),xp]
16: // Multi-task pretraining
17: Lrecon ← ∥x− ReconHead(Tdec(Tenc(xaug)))∥22
18: ŷ← PredHead(Tdec(Tenc(xctx)))
19: Lpred ← ∥y − ŷ∥22 + ∥xe − xp∥22
20: Update T and p with L = Lrecon + Lpred
21: end for
22: // Stage II: Spatio-Temporal Adaptation (STA)
23: Initialize lightweight adapter S with modules: STMF, STF, HDA, CMR
24: Freeze T ; initialize memory bufferM← ∅
25: for each mini-batch {(X,Y,m)} ⊂ D do
26: // Temporal feature extraction
27: z← T (X) ∈ RN×N ′×d {via patching and encoder}
28: // STMF: inject ST metadata
29: Hst ← Proj

(
[Ei

n ∥ {E
ϕc(τ)
c }c∈S ]

)
∈ RN×N ′×d

30: Hfused ← z+Hst

31: // STF: adaptive filtering
32: Compute low-rank affinities: Ss = ⟨HstW

(s)
q ,EnW

(s)
k ⟩, St = ⟨HstW

(t)
q ,EtW

(t)
k ⟩

33: Sd ←
∑∆

δ=1 γ
(δ) · ⟨Hfused,Aggδ(H

(t−δ)
fused )⟩

34: W← softmax
(
[Ss,St,Sd]Watt/τatt

)
35: Hrefined ← LayerNorm(Hfused ⊙W)
36: // HDA: hierarchical alignment
37: K ← Topkj(−∥xe − pj∥2), p̄k ← 1

k

∑
j∈K pj

38: A← uv⊤, Xr ← (1Np
p̄⊤
k )⊙A

39: Haligned ← Hrefined + Proj(Xr)
40: // CMR: continual replay
41: Update memory bufferM (e.g., FIFO or reservoir sampling)
42: Sample replay batch Br ⊂M, mix with current batch Bc
43: B ← Bc ∪ Br
44: // Adapter update
45: Yout ← S(Haligned;m)
46: Update S with ∥Y −Yout∥22 on B
47: end for
48: return Final model: F(X;m) = S(T (X);m)
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