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Abstract

Transformers, with their self-attention mechanisms for modeling long-range dependencies,
have become a dominant paradigm in image restoration tasks. However, the high com-
putational cost of self-attention limits scalability to high-resolution images, making effi-
ciency–quality trade-offs a key research focus. To address this, Restormer employs channel-
wise self-attention, which computes attention across channels instead of spatial dimensions.
While effective, this approach may overlook localized artifacts that are crucial for high-
quality image restoration. To bridge this gap, we explore Dilated Neighborhood Attention
(DiNA) as a promising alternative, inspired by its success in high-level vision tasks. DiNA
balances global context and local precision by integrating sliding-window attention with
mixed dilation factors, effectively expanding the receptive field without excessive overhead.
However, our preliminary experiments indicate that directly applying this global-local design
to the classic deblurring task hinders accurate visual restoration, primarily due to the con-
strained global context understanding within local attention. To address this, we introduces
a channel-aware module that complements local attention, effectively integrating global con-
text without sacrificing pixel-level precision. The proposed DiNAT-IR, a Transformer-based
architecture specifically designed for image restoration, achieves competitive results across
multiple benchmarks, offering a high-quality solution for diverse low-level computer vision
problems. Our codes will be released soon.

1 Introduction

Image restoration is a fundamental task in computer vision, with wide-ranging applications in fields such as
autonomous driving, medical imaging, and satellite remote sensing (Ding et al., 2021; Zhang & Dong, 2020;
Rasti et al., 2021). It aims to recover high-quality images from degraded inputs, addressing challenges like
blur, noise, and the other types of artifacts (Banham & Katsaggelos, 1997).

In recent years, Transformers have emerged as powerful models for image restoration. Unlike traditional con-
volutional neural networks (CNNs) that rely on staked convolutional layers (Zhang et al., 2017b; Zamir et al.,
2021; Chen et al., 2022), Transformers utilize self-attention to model long-range pixel relationships (Liang
et al., 2021; Wang et al., 2022; Zamir et al., 2022), making them particularly effective for low-level computer
vision tasks like deblurring, denoising, deraining, and super-resolution.

Despite their effectiveness, balancing the computational cost of self-attention with restoration quality remains
a key challenge, especially for high-resolution images. Restormer (Zamir et al., 2022) addresses this by
computing self-attention along the channel dimension instead of the spatial domain, achieving a strong
trade-off between efficiency and performance. However, recent studies report that this design misses local
details, as shown in Figure 1, which are critical in dynamic scenes (Jang et al., 2023; Chen et al., 2024).

To bridge this gap, we explore Dilated Neighborhood Attention (DiNA) as a promising alternative, inspired
by its recent success in detection and segmentation (Hassani & Shi, 2022). Unlike previous self-attention
mechanisms, which either aggregate global context entirely or focus solely on local patches, DiNA integrates
sliding-window attention with mixed dilation factors, effectively expanding the receptive field without in-
curring excessive computational overhead. The original DiNAT (Hua et al., 2019) reports that a hybrid
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Figure 1: Visual comparisons between Restormer (Zamir et al., 2022) and our proposed DiNAT-IR on the
motion deblurring datasets (Nah et al., 2017; Shen et al., 2019). DiNAT-IR produces cleaner restoration of
numbers and characters on car license plates and hand-held bags. Zoom in to see details.

design, using local neighborhood attention (NA) with a dilation factor δ = 1 alongside global DiNA, im-
proves performance in high-level computer vision tasks.. However, our preliminary experiments reveal that
directly applying this hybrid design to motion deblurring results in a notable performance drop compared
to global-DiNA-only methods. We attribute this to the limited global context understanding of local NA,
which restricts its ability to recover clean structures in full-resolution images.

To address this challenge, we introduce a channel-aware module that complements local attention by effi-
ciently integrating global context without sacrificing pixel-level precision. This design effectively addresses
the aforementioned bottleneck, allowing for more comprehensive feature interactions across the entire im-
age. Furthermore, the proposed architecture, DiNAT-IR, has achieved competitive results across multiple
benchmarks, demonstrating its potential as a high-fidelity solution for diverse image restoration challenges.

Our main contributions are threefold:

• We investigate the application of dilated neighborhood attention for image deblurring and identify
key limitations of its hybrid attention design in this context.

• We introduce a simple while effective channel-aware module that complements local neighborhood
attention and restores global context without sacrificing pixel-level detail.

• We propose DiNAT-IR, a Transformer-based architecture that achieves competitive performance not
only on deblurring benchmarks but also on other restoration tasks.

2 Related Work

CNNs for Image Restoration. Convolutional neural networks (CNNs) consistently demonstrate strong
performance across low-level computer vision tasks. DnCNN (Zhang et al., 2017b) pioneers the use of
residual learning for image denoising, laying the groundwork for deeper and more effective architectures.
MPRNet (Zamir et al., 2021) adopts a multi-stage framework that processes image features at multiple spa-
tial scales, achieving state-of-the-art results in image restoration. In the era of Transformer-based models,
NAFNet (Chen et al., 2022) stands out by showing that, with proper optimization, compact and purely con-
volutional architectures can still rival more complex Transformer designs in both efficiency and performance.
Nevertheless, a key limitation of CNN-based approaches lies in their reliance on deeply stacked convolutional
layers to enlarge the receptive field, which restricts their ability to model long-range dependencies effectively.

Transformers for Image Restoration. In contrast, Transformer-based architectures inherently model
global context through self-attention mechanisms. While applying vanilla Transformers (Vaswani, 2017) to
high-resolution images faced challenges due to the quadratic computational complexity of self-attention with
respect to spatial dimensions, subsequent architectural innovations have significantly mitigated this issue in
low-level computer vision tasks. For example, SwinIR (Liang et al., 2021) combines convolutional layers for
shallow feature extraction with shifted window-based Transformer blocks to capture deeper representations,
achieving strong performance in tasks such as super-resolution and denoising. Uformer (Wang et al., 2022) in-
tegrates Locally-enhanced Window (LeWin) attention within a U-Net structure, effectively preserving spatial
detail for deblurring and deraining tasks. Different from window-based methods, Restormer (Zamir et al.,
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Figure 2: Structures of (a) the Dual Transformer block with the alternating NA-DiNA attention scheme,
(b) the channel-aware DiNA module, (c) local DiNA (NA) and global DiNA (DiNA) blocks, and (d) the
channel-aware module. Note: GAP denotes global average pooling, and Conv1D indicates 1D convolution.

2022) improves computational efficiency by computing self-attention along the channel dimension rather
than spatial dimensions. However, follow-up studies (Jang et al., 2023; Chen et al., 2024) observe that such
designs may overlook fine-grained local details that are critical for restoration in real-world environments.

Dilated Neighborhood Attention. Recent advancements in vision Transformers have prioritized im-
proving the efficiency of self-attention mechanisms while preserving their ability to capture long-range de-
pendencies. Hierarchical models such as the Swin Transformer (Liu et al., 2021) and the Neighborhood
Attention Transformer (Hassani et al., 2023) reduce computational costs by restricting self-attention to local
windows. However, this often comes at the expense of the global receptive field, an essential attribute for
high-level visual understanding. To address this limitation, Dilated Neighborhood Attention (DiNA) (Hassani
& Shi, 2022) extends neighborhood attention (NA) by sparsifying it across dilated local regions. This design
enables an exponential increase in the receptive field without incurring additional computational overhead.
Their resulting model, the Dilated Neighborhood Attention Transformer, with dense local NA and sparse
global DiNA (abbreviated as NA-DiNA), achieving strong performance in high-level computer vision tasks
such as object detection, instance segmentation, and semantic segmentation. Despite these strengths, we
observe that directly applying the original NA-DiNA method to low-level computer vision tasks like motion
deblurring results in a noticeable performance drop compared to the DiNA-only attention design. This may
be attributed to the inherently limited global context understanding of local NA, which struggles to fully
capture the spatial extent and complexity of image degradation patterns common in motion blur scenarios.

3 Method

The overall pipeline of DiNAT-IR is based on Restormer (Zamir et al., 2022). It adopts a multi-level U-
Net structure that efficiently captures degradation patterns through hierarchical feature processing. The
encoder gradually downsamples the input to extract deep features, while the decoder upsamples and refines
the output using skip connections that preserve spatial resolution. We build upon this framework and
integrate an improved attention mechanism, which is detailed in the following sections.

3.1 Alternating NA-DiNA Attention Scheme

To effectively model both fine-grained structures and large-scale degradation patterns, DiNAT-IR integrates
an alternating NA-DiNA strategy within its Transformer blocks, drawing inspiration from the Dilated Neigh-
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borhood Attention Transformer (DiNAT) (Hassani & Shi, 2022). By setting the dilation factor δ to 1, DiNA
effectively reduces to standard Neighborhood Attention (NA) (Hassani et al., 2023). At each level of DiNAT-
IR, the self-attention blocks alternate between two dilation factors to vary the attention window size. Specif-
ically, setting the dilation factor δ = 1 yields local NA, while larger values of δ expand the receptive field to
capture broader context. The dilation pairs are defined as δ ∈ {1, 36}, {1, 18}, {1, 9}, and {1, 4} across the
four stages of the network, corresponding to progressively finer spatial resolutions. This alternating pattern
allows DiNAT-IR to adaptively integrate both local details and global contextual information, improving its
capacity to model spatially extensive degradations without introducing significant computational overhead.

While the original NA-DiNA architecture was developed for high-level vision tasks, its hybrid attention design
can also be intuitively extended to image restoration problems. In this context, the local NA is expected to
model short-range, pixel-level dependencies, while the sparse DiNA captures broader degradation patterns.
However, our preliminary experiments reveal that directly applying the vanilla NA-DiNA configuration to
the low-level tasks such as motion deblurring leads to a noticeable performance drop compared to a DiNA-
only baseline. We attribute it to the significantly reduced global context understanding introduced by the
frequent use of local NA. To address this limitation, we propose a lightweight channel-aware module designed
to preserve global context modeling while mitigating the drawbacks of overly localized attention.

3.2 Channel Aware Self Attention

Figure 2 (a) shows that channel-aware self-attention contains two parallel units, the self-attention layers
(SA) and a channel-aware module (CAM). DiNAT-IR uses alternating neighborhood attention (NA) and
dilated neighborhood attention (DiNA) as the basic component of SA. Furthermore, CAM is proposed to
solve the issue of limited receptive filed caused by NA. As illustrated in Figure 2 (c), a CAM first transforms
the normalized 2-D features into 1-D data by global average pooling (GAP) (Lin et al., 2013; Chu et al.,
2022); then, it applies a 1-D convolution to the intermediate features along the channel dimension; finally,
a sigmoid function is adopted to compute attention scores. The outputs of the CAM and DiNA are merged
by element-wise multiplications.

Given a layer normalized input tensor X ∈ RĤ×Ŵ ×Ĉ . The output of CASA is computed as,

X̂ = SA(X) ⊙ CAM(X),
CAM(X) = f−1(Conv1d(f(GAP1×1

2d (X)))),
(1)

where ⊙ denotes element-wise multiplication; f is a tensor manipulation function which squeezes and trans-
poses a C × 1 × 1 matrix, resulting in a 1 × C matrix; Conv1d denotes a 1D convolution with a kernel size of
3; GAP1×1

2d indicates global average pooling, outputting a tensor of size 1 × 1. We employed the GAP design
proposed by Chu et al., and the CAM idea draws inspiration from ECA-Net (Wang et al., 2020).

4 Experiments and Analysis

We evaluate the performance of DiNAT-IR across four distinct image restoration tasks: (a) single-image
motion deblurring, (b) defocus deblurring with dual inputs and single images, (c) single image deraining,
and (d) single image denoising. In the result tables, the best-performing and second-best methods are
indicated using bold and underline formatting respectively. We primarily compare against multi-task image
restoration networks, supplemented by task-specific methods for completeness.

Implementation Details. DiNAT-IR adopts the four-stage U-Net architecture of Restormer (Zamir et al.,
2022) as its backbone. All experiments are conducted using a batch size of 16 across 8 NVIDIA A100 GPUs.
Task-specific training configurations vary depending on the particular restoration task and dataset.

GoPro (Nah et al., 2017). For the motion deblurring task, we train DiNAT-IR with image patches of size
256 × 256 and a batch size of 16 for 600K iterations using PSNR loss. The initial learning rate is set to
3 × 10−4 and gradually reduced to 1 × 10−6 following a cosine annealing schedule. We use AdamW as the
optimizer with betas set to [0.9, 0.999] (Loshchilov & Hutter, 2017). We further fine-tune the network with
an image size of 384×384 and a batch size of 8 for an additional 200K iterations, inspired by the progressive

4



Under review as submission to TMLR

training strategy employed in Restormer (Zamir et al., 2022) and Stripformer (Tsai et al., 2022). During
fine-tuning, the initial learning rate is set to 1 × 10−4. We observe that DiNAT-IR may not fully converge
to an optimal solution, suggesting that improved training strategies could further enhance performance on
the GoPro dataset. The final model used for evaluation is obtained from the last training iteration.

DPDD (Abuolaim & Brown, 2020). For the dual-pixel defocus deblurring task, the dual-input variant of
DiNAT-IR is trained with an image size of 256 × 256 and a batch size of 16 for 300K iterations using PSNR
loss. The optimizer and learning rate schedule are consistent with those used for motion deblurring. The
model at the 290K iteration is selected as our dual-pixel defocus deblurring model. For the single-image
defocus deblurring task, we re-train DiNAT-IR with single images as inputs and adopt the model checkpoint
at the 140K iteration as the final version.

Rain13K (Jiang et al., 2020). For the single image deraining task, DiNAT-IR is trained with an image size of
256 × 256 and a batch size of 16 for 300K iterations using L1 loss. The optimizer and learning rate schedule
follow the same settings as in motion deblurring. We further fine-tune the network with an image size of
384 × 384 and a batch size of 8 for an additional 100K iterations, selecting the model at the 40K fine-tuning
iteration for our deraining experiments.

SIDD (Abdelhamed et al., 2018). For the real-world image denoising task, DiNAT-IR is trained with an
image size of 256 × 256 and a batch size of 16 for 300K iterations using PSNR loss. The optimizer and
learning rate schedule are identical to those in the motion deblurring task. We choose the model at the 220K
iteration as our final denoising model.

Table 1: Comparisons of image restoration models on GoPro (Nah et al., 2017) and HIDE (Shen et al.,
2019) datasets. We follow MaIR (Li et al., 2025) and report PSNR, SSIM, Params (M), and FLOPs (G).The
proposed DiNAT-IR has achieved competitive performance compared to recent restoration networks.

Method GoPro HIDE Model Complexity
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ Params (M) ↓ FLOPs (G) ↓

SRN 2018 30.26 0.934 28.36 0.904 3.76 35.87
DBGAN 2020 31.10 - 28.94 - 11.59 379.92
MT-RNN 2020 31.15 - 29.15 - 2.64 13.72
DMPHN 2022 31.20 - 29.09 - 86.80 -
CODE 2023 31.94 - 29.67 - 12.18 22.52
MIMO 2021 32.45 0.956 29.99 0.930 16.10 38.64
MPRNet 2021 32.66 0.958 30.96 0.939 20.13 194.42
Restormer 2022 32.92 0.961 31.22 0.942 26.13 35.31
Uformer 2022 33.06 0.967 30.90 0.953 50.88 22.36
CU-Mamba 2024 33.53 - 31.47 - 19.70 -
NAFNet 2022 33.69 0.966 31.32 0.942 67.89 15.85
MaIR 2025 33.69 0.969 31.57 0.946 26.29 49.29
DiNAT-IR 33.80 0.967 31.57 0.945 25.90 45.62

4.1 Motion Deblurring Results

We conduct a thorough evaluation of various image restoration models on the GoPro (Nah et al., 2017)
and HIDE (Shen et al., 2019)) datasets. As summarized in Table 1, our proposed DiNAT-IR consistently
achieves strong results across the board. Specifically, it reaches a PSNR of 33.80 dB on GoPro and 31.57
dB on HIDE, matching or surpassing all compared methods, including the recent high-performing MaIR (Li
et al., 2025) and NAFNet(Chen et al., 2022). While MaIR reports a comparable PSNR on both datasets,
DiNAT-IR achieves this with slightly fewer parameters and competitive FLOPs. Compared to traditional
convolution-based models like MPRNet (Zamir et al., 2021) and attention-based method Restormer (Zamir
et al., 2022), DiNAT-IR maintains similar or superior accuracy while preserving efficiency. Furthermore,
despite being trained solely on GoPro, DiNAT-IR demonstrates excellent generalization to HIDE, under-
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Figure 3: Deblurring results on the GoPro dataset (Nah et al., 2017). Zoom in to see details.
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Figure 4: Deblurring results on the HIDE dataset (Shen et al., 2019). Zoom in to see details.

scoring its robustness in human-centric scenarios. These results highlight DiNAT-IR’s effective trade-off
between model complexity and restoration quality, as well as its potential as a strong alternative in dynamic
scenes. Qualitative comparisons in Figure 3 and Figure 4 clearly demonstrate that the image deblurred by
our method is more visually closer to the ground-truth than those of the other algorithms.

4.2 Defocus Deblurring Results

Table 2 presents a comprehensive comparison of single-image and dual-pixel defocus deblurring methods on
the DPDD dataset (Abuolaim & Brown, 2020). For single-image defocus deblurring, DiNAT-IRS delivers
competitive results, achieving strong performance across all metrics. It obtains the second-highest PSNR
and MAE on outdoor scenes and ranks closely behind GRL-BS (Li et al., 2023) and CSformerS (Duan et al.,
2023) overall. Notably, while GRL-BS slightly surpasses DiNAT-IRS in combined PSNR (26.18 dB vs. 26.14
dB), DiNAT-IRS demonstrates comparable or better PSNR and SSIM on the outdoor scene.

In the dual-pixel setting, DiNAT-IRD shows excellent performance, either outperforming or closely matching
state-of-the-art methods. It achieves the highest PSNR on outdoor scenes (24.47 dB) and the best combined
PSNR (27.05 dB), while maintaining competitive SSIM and lowest MAE scores. Compared to RestormerD,
which performs strongly indoors, DiNAT-IRD offers superior outdoor performance and better balance across
scenes. These results highlight DiNAT-IR’s capability to handle both single-image and dual-pixel defocus
deblurring tasks effectively, achieving state-of-the-art performance on the DPDD benchmark.

4.3 Deraining Results

Table 3 summarizes the performance of several image deraining models across five benchmark datasets.
DiNAT-IR demonstrates excellent results, achieving SSIM scores nearly identical to those of Restormer (Za-
mir et al., 2022) across all five datasets, indicating strong perceptual quality and effective detail preservation.
Although DiNAT-IR’s PSNR is slightly lower than Restormer’s, the differences are minor, for example, on the
Rain100L test set, DiNAT-IR attains 38.93 dB compared to Restormer’s 38.99 dB, a negligible gap consid-
ering the task complexity. Compared to earlier methods such as SEMI (Wei et al., 2019), DIDMDN (Zhang
& Patel, 2018), and UMRL (Yasarla & Patel, 2019), DiNAT-IR delivers significant improvements in both
PSNR and SSIM. It also performs competitively against recent models like MPRNet (Zamir et al., 2021) and
SPAIR (Purohit et al., 2021), surpassing them in several metrics. Overall, these results highlight DiNAT-IR
as a highly effective deraining model, delivering competitive perceptual quality and achieving performance
close to that of Restormer in pixel-level restoration accuracy.
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Table 2: Dual-Pixel Defocus Deblurring comparisons on the DPDD dataset (Abuolaim & Brown,
2020), which includes 37 indoor and 39 outdoor scenes. D indicates network variants using dual-image
inputs; S denotes the single-image task. DiNAT-IR demonstrates performance comparable to GRL-B (Li
et al., 2023) across both single-image and dual-pixel settings.

Method Indoor Scenes Outdoor Scenes Combined
PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓

EBDBS 2017 25.77 0.772 0.040 21.25 0.599 0.058 23.45 0.683 0.049
DMENetS 2019 25.50 0.788 0.038 21.43 0.644 0.063 23.41 0.714 0.051
JNBS 2015 26.73 0.828 0.031 21.10 0.608 0.064 23.84 0.715 0.048
DPDNetS 2020 26.54 0.816 0.031 22.25 0.682 0.056 24.34 0.747 0.044
KPACS 2021 27.97 0.852 0.026 22.62 0.701 0.053 25.22 0.774 0.040
IFANS 2021 28.11 0.861 0.026 22.76 0.720 0.052 25.37 0.789 0.039
RestormerS 2022 28.87 0.882 0.025 23.24 0.743 0.050 25.98 0.811 0.038
CSformerS 2023 29.01 0.883 0.023 23.63 0.759 0.047 26.25 0.819 0.036
GRL-BS 2023 29.06 0.886 0.024 23.45 0.761 0.049 26.18 0.822 0.037
DiNAT-IRS 28.94 0.881 0.025 23.48 0.751 0.049 26.14 0.814 0.037
DPDNetD 2020 27.48 0.849 0.029 22.90 0.726 0.052 25.13 0.786 0.041
RDPDD 2021 28.10 0.843 0.027 22.82 0.704 0.053 25.39 0.772 0.040
UformerD 2022 28.23 0.860 0.026 23.10 0.728 0.051 25.65 0.795 0.039
IFAND 2021 28.66 0.868 0.025 23.46 0.743 0.049 25.99 0.804 0.037
RestormerD 2022 29.48 0.895 0.023 23.97 0.773 0.047 26.66 0.833 0.035
CSformerD 2023 29.54 0.896 0.023 24.38 0.788 0.045 26.89 0.841 0.034
GRL-BD 2023 29.83 0.903 0.022 24.39 0.795 0.045 27.04 0.847 0.034
DiNAT-IRD 29.76 0.901 0.023 24.47 0.795 0.045 27.05 0.846 0.034

Table 3: Image deraining results. DiNAT-IR achieves performance very close to that of Restormer (Zamir
et al., 2022), with SSIM scores nearly matching those of Restormer across multiple datasets. However, we
acknowledge noticeably lower PSNR scores for DiNAT-IR on these datasets.

Method Rain100H Rain100L Test2800 Test1200 Test100
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SEMI 2019 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.35 0.788
DIDMDN 2018 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 22.56 0.818
UMRL 2019 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 24.41 0.829
RESCAN 2018 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 25.00 0.835
PreNet 2019 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 24.81 0.851
MSPFN 2020 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 27.50 0.876
MPRNet 2021 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 30.27 0.897
SPAIR 2021 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 30.35 0.909
Restormer 2022 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 32.00 0.923
DiNAT-IR 31.26 0.903 38.93 0.977 33.91 0.943 32.31 0.923 31.22 0.920

4.4 Denoising Results

Table 4 compares several real-image denoising methods based on PSNR and SSIM metrics. Early approaches
like DnCNN (Zhang et al., 2017a) and BM3D (Dabov et al., 2007) achieve substantially lower performance,
with PSNRs below 26 dB and SSIM under 0.70, reflecting limited effectiveness on challenging real-world noise.
Modern deep networks such as VDN (Yue et al., 2019), MIRNet (Zamir et al., 2020), MPRNet (Zamir et al.,
2021), DAGL (Mou et al., 2021), and Uformer (Wang et al., 2022) demonstrate significant improvements,
achieving PSNR values around 39–40 dB and SSIM above 0.95, highlighting the advances brought by learning-
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Table 4: Real image denoising results. All methods are trained and tested on the SIDD dataset (Abdelhamed
et al., 2018). DiNAT-IR achieves performance comparable to Restormer (Zamir et al., 2022).

Method DnCNN BM3D VDN MIRNet MPRNet DAGL Uformer Restormer MambaIR DiNAT-IR
2017a 2007 2019 2020 2021 2021 2022 2022 2024 (Ours)

PSNR ↑ 23.66 25.65 39.28 39.72 39.71 38.94 39.89 40.02 39.89 39.89
SSIM ↑ 0.583 0.685 0.956 0.959 0.958 0.953 0.960 0.960 0.960 0.960

Table 5: Ablation study on dilation factor configurations and the proposed channel-aware self-attention on
the GoPro (Nah et al., 2017) dataset. The baseline is Restormer (Zamir et al., 2022) with 16 hidden channels.
NA denotes local neighborhood attention while DiNA represents sparse dilated neighborhood attention; with
and without are abbreviated as w/ and w/o respectively; CAM is the proposed channel-aware module. The
adopted NA-DiNA with CAM method shows the strongest or competitive quantitative visual results as rated
by both distortion and perception metrics.

Networks Distortion Perception Params MACs
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ (M) ↓ (G) ↓

Restormer (baseline) 30.32 0.934 15.16 0.137 3.0 17.30
NA w/o CAM 31.56 0.948 11.12 0.111 3.0 16.64
NA w/ CAM 31.97 0.952 10.86 0.105 3.0 16.71
DiNA w/o CAM 32.03 0.953 10.17 0.103 3.0 16.64
DiNA w/ CAM 32.06 0.952 10.14 0.103 3.0 16.71
NA-DiNA w/o CAM 31.87 0.951 10.08 0.107 3.0 16.64
NA-DiNA w/ CAM 32.06 0.953 9.53 0.103 3.0 16.71

based architectures. Among these methods, Restormer (Zamir et al., 2022) achieves the highest performance,
with a PSNR of 40.02 dB and an SSIM of 0.960, establishing a strong benchmark. MambaIR (Guo et al.,
2024) achieves a PSNR of 39.89 dB and an SSIM of 0.960, closely following Restormer. Our method, DiNAT-
IR, also achieves highly competitive results, matching the highest SSIM score of 0.960 and attaining a PSNR
of 39.89 dB. Overall, DiNAT-IR performs at the same level as MambaIR, demonstrating strong capabilities
in preserving fine details and delivering perceptually pleasing restorations in real-world scenarios.

5 Ablation Study

In this section, we use Restormer (Zamir et al., 2022) with 16 hidden channels as the baseline model. We
maintain the overall architecture, including the total number of Transformer blocks, feed-forward networks
(FFNs), and feature fusion strategy, as well as consistent training settings on 4 NVIDIA A100 GPUs. All
networks are trained and evaluated on the GoPro dataset (Nah et al., 2017), chosen for its ability to ensure
stable training across models. We assess restoration quality using both distortion-based metrics (PSNR and
SSIM) and perception-based metrics, FID (Heusel et al., 2017; Parmar et al., 2022), LPIPS (Zhang et al.,
2018) and NIQE, for comprehensive comparisons. Additionally, we report the total number of parameters
and MACs to indicate model complexity.

As shown in Table 5, the local-attention-only network already outperforms the Restormer baseline (Zamir
et al., 2022) by 1.24 dB in PSNR, despite being the weakest among the proposed configurations. Introducing
our channel-aware module further improves the local variant by 0.41 dB, and also enhances the global-only
and hybrid variants by 0.02 dB and 0.19 dB, respectively. The hybrid configuration with the channel-
aware module achieves the best overall performance across all metrics. These results validate our finding
that the original DiNA design (Hassani & Shi, 2022) with hybrid-attention is suboptimal for deblurring,
and demonstrate that the proposed channel-aware module effectively addresses this limitation. Moreover,
DiNAT-IR retains a similar parameter count while reducing MACs by 0.59G compared to the baseline model.
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Blur Clean

DiNA-only NA-DiNA

Blur Clean

DiNA-only NA-DiNA

Figure 5: Visual comparisons between DiNAT-IR with global dilated neighborhood attention (DiNA) only
and DiNAT-IR with both global DiNA and local neighborhood attention (NA). Both networks are trained
and tested on the GoPro dataset (Nah et al., 2017) with the same training settings.

Overall, it achieves a notable 1.74 dB PSNR improvement over the Restormer baseline, offering a superior
trade-off between performance and efficiency.

Importantly, although Table 5 shows that the PSNR, SSIM and LPIPS differences between DiNA with CAM
and NA-DiNA with CAM are minimal, our observations reveal that incorporating local neighborhood atten-
tion (NA) improves the visual quality of the restored images. As illustrated in Figure 5, the method relying
solely on global dilated neighborhood attention produces distorted text on the board, whereas including NA
results in sharper and more accurate restoration. Therefore, we select DiNAT-IR with NA-DiNA and CAM
as our final architecture for the image restoration tasks.

6 Conclusion

In this work, we propose DiNAT-IR, a novel Transformer-based architecture for image restoration that
effectively balances global context modeling and local detail preservation. Building upon the strengths
of Dilated Neighborhood Attention (DiNA), DiNAT-IR introduces a channel-aware module that enhances
global context integration while maintaining pixel-level precision of local Neighborhood Attention (NA). Our
experiments demonstrate that, although DiNAT-IR does not consistently surpass Restormer (Zamir et al.,
2022) in all metrics, for instance, achieving slightly lower PSNR on certain deraining benchmarks, it delivers
comparable or superior restoration performance, particularly in challenging tasks like motion deblurring and
defocus deblurring. Furthermore, DiNAT-IR achieves this high-quality restoration with similar or reduced
computational costs, offering a favorable trade-off between restoration quality and efficiency. These findings
highlight DiNAT-IR as a promising and versatile solution for diverse low-level vision tasks.

7 Limitation

Our ablation studies were conducted primarily on the GoPro dataset (Nah et al., 2017) to ensure consistent
training strategies across all models and enable fair comparison. However, this might limit the generaliz-
ability of our results to other datasets. Extending the analysis to broader tasks is non-trivial, as it requires
substantial effort to adapt training strategies to different data distributions. Since architectural components
may yield varied gains across tasks and dataset bias exists, a universally optimal design remains challenging.
Future work will explore task-specific architectures to improve generalization and robustness.

Broader Impact Statement

The proposed DiNAT-IR framework advances the field of image restoration by improving the quality and
efficiency of deblurring, deraining, and denoising tasks. Positive societal impacts include potential applica-
tions in photography, surveillance, autonomous driving, medical imaging, and digital archiving, where clearer
images can enhance safety, usability, and analysis. However, as with many image enhancement techniques,
there are potential risks if such technologies are misused to manipulate images, obscure evidence, or produce
deceptive visual content. Additionally, improvements in image clarity might inadvertently reveal personal
information or sensitive details in images that were previously obscured by poor quality, raising privacy
concerns. We encourage future research to consider these ethical implications and to develop safeguards

9
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or detection mechanisms to identify manipulated or restored images. Our experiments focus on publicly
available datasets, and we do not anticipate direct privacy risks from our work.
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