
BatchTopK Sparse Autoencoders

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparse autoencoders (SAEs) have emerged as a powerful tool for interpreting1

language model activations by decomposing them into sparse, interpretable features.2

A popular approach is the TopK SAE, that uses a fixed number of the most active3

latents per sample to reconstruct the model activations. We introduce BatchTopK4

SAEs, a training method that improves upon TopK SAEs by relaxing the top-5

k constraint to the batch-level, allowing for a variable number of latents to be6

active per sample. BatchTopK SAEs consistently outperform TopK SAEs at7

reconstructing activations from GPT-2 Small and Gemma 2 2B. BatchTopK SAEs8

achieve comparable reconstruction performance to the state-of-the-art JumpReLU9

SAE, but have the advantage that the average number of latents can be directly10

specified, rather than approximately tuned through a costly hyperparameter sweep.11

We provide code for training and evaluating these BatchTopK SAEs at [redacted].12

1 Introduction13

Sparse autoencoders (SAEs) have been proven effective for finding interpretable directions in the14

activation space of language models [1, 2, 9, 6]. SAEs find approximate, sparse, linear decompositions15

of language model activations by learning a dictionary of interpretable latents from which the16

activations are reconstructed.17

The objective used in training SAEs [1] has both a sparsity and a reconstruction term. These are18

naturally in tension as, for an optimal dictionary of a given size, improving the reconstruction19

performance requires decreasing sparsity and vice versa. Recently, new architectures have been20

proposed to address this issue, and achieve better reconstruction performance at a given sparsity level,21

such as Gated SAEs [6], JumpReLU SAEs [7], and TopK SAEs [3].22

In this paper, we introduce BatchTopK SAEs, a novel variant that extends TopK SAEs by relaxing23

the top-k constraint to a batch-level constraint. This modification allows the SAE to represent each24

sample with a variable number of latents, rather than assuming that all model activations consist25

of the same number of units of analysis. By selecting the top activations across the entire batch,26

BatchTopK SAEs enable more flexible and efficient use of the latent dictionary, leading to improved27

reconstruction without sacrificing average sparsity. During inference we remove the batch dependency28

by estimating a single global threshold parameter.29

Through experiments on the residual streams of GPT-2 Small [5] and Gemma 2 2B [8], we show that30

BatchTopK SAEs consistently outperform both TopK and JumpReLU SAEs in terms of reconstruction31

performance across various dictionary sizes and sparsity levels, although JumpReLU SAEs have less32

downstream CE degradation in large models with a high number of active latents. Moreover, unlike33

JumpReLU SAEs, BatchTopK SAEs allow direct specification of the sparsity level without the need34

for tuning additional hyperparameters.35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: On GPT-2 Small activations, BatchTopK largely achieves a better NMSE and CE compared
to standard TopK across different dictionary sizes, for a fixed number of active latents of 32 (Left).
JumpReLU SAEs are omitted from this comparison as their L0 cannot be fixed to a value. For fixed
dictionary size (12288) and different levels of k, BatchTopK outperforms TopK and JumpReLU
SAES, both in terms of NMSE and CE (Right).

2 Background: Sparse Autoencoder Architectures36

Sparse autoencoders aim to learn efficient representation of data by reconstruction inputs while37

enforcing sparsity in the latent space. In the context of large language models, SAEs decompose38

model activations x ∈ Rn into sparse linear combinations of learned directions, which are often39

interpretable and monosemantic.40

An SAE consists of an encoder and a decoder:41

f(x) := σ(Wencx+ benc), (1)

x̂(f) := Wdecf + bdec. (2)

where f(x) ∈ Rm is the sparse latent representation, and x̂(f) ∈ Rn is the reconstructed input. The42

activation function σ enforces non-negativity and sparsity in f(x).43

SAEs are trained on the activations of a language model at a particular site, such as the residual44

stream, on a large text corpus, using a loss function of the form45

L(x) := ∥x− x̂(f(x))∥22︸ ︷︷ ︸
Lreconstruct

+λS(f(x))︸ ︷︷ ︸
Lsparsity

+αLaux (3)

2

where S is a function of the latent coefficients that penalizes non-sparse decompositions, and λ is a46

sparsity coefficient, where higher values of λ encourage sparsity at the cost of higher reconstruction47

error. Some architectures also require the use of an auxiliary loss Laux, for example to recycle inactive48

latents in TopK SAEs.49

ReLU SAEs [1] use the L1-norm S(f) := ||f ||1 as an approximation to the L0-norm for the sparsity50

penalty. This provides a gradient for training unlike the L0-norm, but suppresses latent activations51

harming reconstruction performance [6]. Furthermore, the L1 penalty can be arbitrarily reduced52

through reparameterization by scaling the decoder parameters, which is resolved in [1] by constraining53

the decoder directions to the unit norm. Resolving this tension between activation sparsity and value54

is the motivation behind the newer architecture variants.55

TopK SAEs [3, 4] enforce sparsity by retaining only the top k activations per sample. The encoder is56

defined as:57

f(x) := TopK(Wencx+ benc) (4)

where TopK zeroes out all but the k largest activations in each sample. This approach eliminates the58

need for an explicit sparsity penalty but imposes a rigid constraint on the number of active latents59

per sample. An auxiliary loss Laux = ||e− ê||2 is used to avoid dead latents, where ê = Wdecz is60

the reconstruction using only the top-kaux dead latents (usually 512), this loss is scaled by a small61

coefficient α (usually 1/32).62

JumpReLU SAEs [7] replace the standard ReLU activation function with the JumpReLU activation,63

defined as64

JumpReLUθ(z) := zH(z − θ) (5)

where H is the Heaviside step function, and θ is a learned parameter for each SAE latent, below65

which the activation is set to zero. JumpReLU SAEs are trained using a loss function that combines66

L2 reconstruction error with an L0 sparsity penalty, using straight-through estimators to train despite67

the discontinuous activation function. A major drawback of the sparsity penalty used in JumpReLU68

SAEs compared to (Batch)TopK SAEs is that it is not possible to set an explicit sparsity and targeting69

a specific sparsity involves costly hyperparameter tuning. While evaluating JumpReLU SAEs, [7]70

chose the SAEs from their sweep that were closest to the desired sparsity level, however this resulted71

in SAEs with significantly different sparsity levels being directly compared. JumpReLU SAEs use no72

auxiliary loss function.73

3 BatchTopK Sparse Autoencoders74

We introduce BatchTopK SAEs as an improvement over standard TopK SAEs. In BatchTopK, we75

replace the sample-level TopK operation with a batch-level BatchTopK function. Instead of selecting76

the top k activations for each individual sample, we select the top n× k activations across the entire77

batch of n samples, setting all other activations to zero. This allows for a more flexible allocation of78

active latents, where some samples may use more than k latents while others use fewer, potentially79

leading to better reconstructions of the activations that are more faithful to the model.80

The training objective for BatchTopK SAEs is defined as:81

L(X) = ∥X− BatchTopK(WencX+ benc)Wdec + bdec)∥22 + αLaux (6)

Here, X is the input data batch; Wenc and benc are the encoder weights and biases, respectively;82

Wdec and bdec are the decoder weights and biases. The function BatchTopK selects the top n × k83

activations across the batch to enforce sparsity. The term Laux is an auxiliary loss scaled by the84

coefficient α, used to prevent dead latents, and is the same as in TopK SAEs.85

BatchTopK introduces a dependency between the activations for the samples in a batch. We alleviate86

this during inference by using a threshold θ that is estimated as the average of the minimum positive87

activation values across a number of batches:88

3

Figure 2: On Gemma 2 2B activations, BatchTopK outperforms TopK SAEs across different values
of k. Although BatchTopK has a better reconstruction performance (left), it only outperforms
JumpReLU in terms of downstream CE degradation in the setting where k=16 (right).

θ = EX[min{zi,j(X)|zi,j(X) > 0}] (7)

where zi,j(X) is the jth latent activation of the ith sample in a batch X. With this threshold, we use89

the JumpReLU activation function during inference instead of the BatchTopK activation function,90

zeroing out all activations under the threshold θ.91

4 Experiments92

We evaluate the performance of BatchTopK on the activations of two LLMs: GPT-2 Small (residual93

stream layer 8) and Gemma 2 2B (residual stream layer 12). We use a range of dictionary sizes and94

values for k, and compare our results to TopK and JumpReLU SAEs in terms of normalized mean95

squared error (NMSE) and cross-entropy degradation. For the experimental details, see Appendix96

A.2.97

We find that for a fixed number of active latents (L0=32) the BatchTopK SAE has a lower normalized98

MSE and less cross-entropy degradation than TopK SAEs on both GPT-2 activations (Figure 1) and99

Gemma 2 2B (Figure 2). Furthermore, we find that for a fixed dictionary size (12288) BatchTopK100

outperforms TopK for different values of k on both models.101

In addition, BatchTopK outperforms JumpReLU SAEs on both measures on GPT-2 Small model102

activations at all levels of sparsity. On Gemma 2 2B model activations the results are more mixed:103

although BatchTopK achieves better reconstruction than JumpReLU for all values of k, BatchTopK104

only outperforms JumpReLU in terms of CE degradation in the lowest sparsity setting (k=16).105

Figure 3 shows a histogram of the number of active BatchTopK SAE latents per sample, corroborating106

our hypothesis that the fixed TopK in [3] is too restrictive and that samples may require a variable107

number of active dictionary latents for reconstruction.108

5 Conclusion109

In this work, we have introduced BatchTopK Sparse Autoencoders, a novel extension of TopK SAEs110

that relaxes the fixed per-sample sparsity constraint to a batch-level constraint. By selecting the top111

activations across the entire batch rather than enforcing a strict limit per sample, BatchTopK allows112

for a variable number of active latents per sample. This flexibility enables the model to allocate more113

latents to complex samples and fewer to simpler ones, improving overall reconstruction performance114

without sacrificing average sparsity. We evaluated BatchTopK SAEs using the standard metrics of115

reconstruction loss and sparsity, and due to the architectural similarity to TopK SAEs we anticipate116

the interpretability of latents to be similar but did not evaluate human interpretability.117

4

References118

[1] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,119

Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity:120

Decomposing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.121

[2] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-122

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,123

2023.124

[3] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya125

Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024.126

[4] Alireza Makhzani and Brendan Frey. k-sparse autoencoders, 2014.127

[5] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.128

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.129

[6] Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János130

Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-131

coders, 2024.132

[7] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,133

János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu134

sparse autoencoders, 2024.135

[8] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya136

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.137

Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,138

2024.139

[9] Adly Templeton, Tom Conerly, and et al. Scaling monosemanticity: Extracting interpretable140

features from claude 3 sonnet. Anthropic, 2024.141

A Supplemental Material142

A.1 Experimental Details143

In this appendix, we provide details about the datasets used, model configurations, and hyperparame-144

ters for our experiments.145

We trained our sparse autoencoders (SAEs) on the OpenWebText dataset1, which was processed into146

sequences of a maximum of 128 tokens for input into the language models.147

All models were trained using the Adam optimizer with a learning rate of 3× 10−4, β1 = 0.9, and148

β2 = 0.99. The batch size was 4096, and training continued until a total of 1 × 109 tokens were149

processed.150

We experimented with dictionary sizes of 3072, 6144, 12288, and 24576 for the GPT-2 Small model,151

and used a dictionary size of 16384 for the experiment on Gemma 2 2B. In both experiments, we152

varied the number of active latents k among 16, 32, and 64.153

For the JumpReLU SAEs, we varied the sparsity coefficient such that the resulting sparsity would154

match the active latents k of the BatchTopK and TopK models. The sparsity penalties in the155

experiments on GPT-2 Small were 0.004, 0.0018, and 0.0008. For the Gemma 2 2B model we used156

sparsity penalties of 0.02, 0.005, and 0.001. In both experiments, we set the bandwidth parameter to157

0.001.158

1https://huggingface.co/datasets/openwebtext

5

https://huggingface.co/datasets/openwebtext

A.2 Active latents per sample159

To confirm that BatchTopK SAEs make use of the enabled flexibility to activate a variable number of160

latents per sample, we plot the distribution of the number of active latents per sample in Figure 3. We161

observe that BatchTopK indeed uses a wide range of active latents, activating only a single latent162

on some samples and activating more than 80 on others. The peak on the left of the distribution are163

model activations on the <BOS>-token. This serves as an example of the advantage of BatchTopK:164

when the model activations do not contain much information, BatchTopK does not activate many165

latents, whereas TopK would use the same number of latents regardless of the input.166

Figure 3: Distribution of the number of active latents per sample for a BatchTopK model. The peak
on the left likely corresponds to BOS tokens, demonstrating BatchTopK’s adaptive sparsity.

6

	Introduction
	Background: Sparse Autoencoder Architectures
	BatchTopK Sparse Autoencoders
	Experiments
	Conclusion
	Supplemental Material
	Experimental Details
	Active latents per sample

