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Abstract001

Reference-free metrics like CLIPScore and002
PAC-S are widely used in vision-language003
tasks, yet their behavior under linguistic, vi-004
sual, and cultural variation remains poorly un-005
derstood. We present a systematic audit of006
these metrics using an eight-factor diagnos-007
tic framework applied to 5,000 expert-curated008
MS-COCO validation images. Across dimen-009
sions such as object size, content category, syn-010
tax, named entities, spatial relations, and cul-011
tural context, we uncover consistent failure012
modes. Both metrics penalize captions ref-013
erencing African (5.5%, 4.8%) and Arabian014
(4.9%, 5.3%) cultures, favor large-object and015
animal-centric scenes (plus 20 to 30 percent),016
and show limited sensitivity to spatial negation017
and word order. These findings reveal cultural018
and content bias, poor semantic robustness, and019
weak compositional understanding. We con-020
clude with design recommendations to promote021
cultural fairness, scale invariance, and seman-022
tic grounding in future evaluation metrics for023
multimodal AI.024

1 Introduction025

Rise of multimodal large language models026

(MLLMs) (Liu et al., 2023) has enabled significant027

advances in vision-language tasks, including image028

captioning, text-to-image generation, and visual029

question answering. As these systems generate in-030

creasingly fluent & contextually grounded outputs,031

the need for reliable evaluation becomes more crit-032

ical. Evaluation metrics play a central role in this033

ecosystem: they benchmark model performance,034

shape training objectives, and inform deployment035

decisions. Task integrating vision and language,036

such as image captioning (Vinyals et al., 2015) and037

text-to-image (Rombach et al., 2022; Saharia et al.,038

2022; Ramesh et al., 2021) generation, automatic039

metrics are often used as standins for human judg-040

ment, tasked with assessing the semantic alignment041

between visual content & text descriptions.042

Figure 1: Reference-Free Metrics Evaluation Frame-
work

Historically, reference-based metrics such as 043

BLEU (Papineni et al., 2002), METEOR (Baner- 044

jee and Lavie, 2005), CIDEr (Vedantam et al., 045

2015) and SPICE (Anderson et al., 2016) have 046

dominated image and text evaluation. These met- 047

rics compare generated outputs to a fixed set 048

of human-written references and provide inter- 049

pretable, reproducible scores. However, their re- 050

liance on limited reference sets makes them brittle 051

in open-ended generation settings, where linguis- 052

tic diversity is a feature rather than a flaw. They 053

frequently penalize factually correct yet stylisti- 054

cally novel captions, limiting their usefulness in 055

evaluating flexible or creative generation. In this 056

work, we present a comprehensive audit of CLIP- 057

Score (Hessel et al., 2021)and PAC-S (Sarto et al., 058

2023a) focusing on their equitability and semantic 059

sensitivity. We use a multidimensional framework 060

combining correlation analysis and subgroup com- 061

parisons on the MS-COCO dataset to assess metric 062

responses to scene complexity, syntax, spatial re- 063

lations, and cultural cues.This reveals consistent 064

biases and misalignments, informing the design of 065

future evaluation tools that are both efficient and 066

fair. 067

Our main contributions are as follows: 068

• Audit of reference-free metrics: We evaluate 069

popular metrics with a focus on fairness and 070

semantic reliability. 071

1



• Diagnostic framework: We introduce a072

multi-dimensional evaluation setup (Fig. 1)073

spanning linguistic and visual factors.074

• Failure mode insights: Metrics show bias075

against African modifiers, human-centric076

scenes, subtle visuals, and simple syntax.077

• Recommendations: We propose guidelines078

to improve future metric development.079

2 Related Work080

Emergence of reference-free evaluation metrics081

has significantly reshaped the landscape of vision-082

language evaluation. Among the most widely083

adopted is CLIPScore, which estimates image-text084

similarity using CLIP embeddings and has demon-085

strated superior performance over reference based086

metrics. Železný (2023) established its robustness087

across MS-COCO, while Cho et al. (2023) em-088

ployed CLIPScore to reward semantic specificity089

during caption generation. Barraco et al. (2022)090

further solidified CLIP’s role as a powerful visual091

encoder, helping establish CLIPScore as a de facto092

semantic metric. This established utility, however,093

leaves open questions around its sensitivity to spa-094

tial structure, compositionality, & cultural nuance.095

To address some of these limitations, contrastive096

learning-based metrics have gained traction. PAC-097

S, proposed by Sarto et al. (2023a), employs098

augmented-positive contrastive learning to improve099

alignment with human preferences and detect hallu-100

cinations more effectively. Its successor, PAC-S++,101

offers improved sensitivity to syntactic noise and102

redundant phrasing. Complementary approaches103

such as HICE-S (Zeng et al., 2024) and compar-104

ative analyses by González-Chávez et al. (2023)105

underscore the growing interest in contrastive and106

multi-scale evaluation strategies. As a result, PAC-107

S represents a valuable counterpoint to CLIPScore108

in our comparative analysis.109

Building on core paradigms, several recent110

works have explored architectural strategies for111

improving evaluation reliability. Fusion-based112

methods such as ECO (Jeong et al., 2024) &113

BRIDGE (Sarto et al., 2023b) aggregate multiple114

metric signals to improve caption ranking and hal-115

lucination detection. Ross et al. (2024) argue that116

current T2I metrics over-rely on surface-level tex-117

tual overlap, while Wu et al. (2018), through their118

work on visual change detection, highlight the chal-119

lenge of evaluating object relationships and spa-120

tial directionality challenges we explore through121

prompt perturbation. These innovations inform our 122

methodological choice to apply structural interven- 123

tions & test metrics. 124

Parallel to architectural advances, optimization- 125

based efforts have focused on tuning metric behav- 126

ior. ReCap, by Paischer et al. (2025), demonstrates 127

that fine-tuning alignment layers can enhance se- 128

mantic fidelity in vision-language models, while 129

Kornblith et al. (2023) show that classifier-free 130

guidance can yield more expressive and stable gen- 131

erations, highlighting the importance of embedding 132

calibration in metric performance. These insights 133

guide our use of controlled test conditions to isolate 134

metric behavior under shared embeddings. 135

While these developments have advanced the 136

field, a growing body of work has drawn attention 137

to the limitations and blind spots of reference-free 138

metrics. Ahmadi and Agrawal (2024) and Ka- 139

sai et al. (2022) question whether popular metrics 140

like CLIPScore and PAC-S adequately reflect hu- 141

man preferences or linguistic complexity. Zur 142

et al. (2024) surface accessibility concerns, espe- 143

cially for blind and low-vision users, showing that 144

CLIP-based metrics poorly assess utility-driven 145

captioning. In response, Lee et al. (2024) propose 146

FLEUR, a rationale-aligned and explainable eval- 147

uation framework. These critiques underscore the 148

importance of interrogating biases, fairness, and 149

cultural representation in metric behavior dimen- 150

sions that we place at the center of our analysis. 151

Together, these contributions form the founda- 152

tion for our study. They reveal that while metrics 153

like CLIPScore and PAC-S perform well on av- 154

erage correlation benchmarks, they may fail un- 155

der structured stressors, cultural shifts, or com- 156

positional transformations. Our work builds on 157

these insights by systematically auditing these met- 158

rics across multiple controlled axes such as object 159

count, syntax, spatial relations, and cultural cues 160

using MS-COCO as a testbed for fine-grained di- 161

agnostic evaluation. 162

3 Methodology 163

3.1 Auditing Reference-Free Metrics 164

To critically assess the reliability and fairness of 165

reference-free evaluation metrics, we propose a sys- 166

tematic evaluation framework that treats the met- 167

rics themselves as systems under test. Rather than 168

assuming these metrics to be reliable surrogates for 169

human judgment, we audit them across a diverse 170

set of diagnostic axes designed to reveal hidden bi- 171
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ases, robustness gaps, and semantic insensitivities.172

Our analysis focuses on two widely-used173

reference-free metrics: CLIPScore and PAC-S. We174

exclude other methods such as UMIC, TIFA, VPE-175

val, and DSG for several reasons. First UMIC176

metric relies on UNITER a multimodal pretrained177

model that processes images and text through sep-178

arate encoding pipelines. This decoupled process-179

ing introduces potential alignment issues between180

modalities and increases complexity in evaluat-181

ing semantic grounding. Additionally, UMIC’s182

reliance on a pretrained model architecture makes183

it less transparent and harder to isolate the source of184

evaluation behavior, which is central to our diagnos-185

tic goals. Second, metrics like TIFA, VPEval, and186

DSG are VQA-based and uses a language models,187

which introduce additional confounding factors in-188

cluding latency, hardware requirements. More im-189

portantly, these methods are ill-suited to our fixed190

format setup, which centers on single-object scenes.191

In such cases, only one visually grounded question192

can typically be formulated, limiting the ability193

of VQA-based metrics to evaluate fine-grained se-194

mantic variation. Consequently, including these195

methods would distort the scope and validity of our196

targeted evaluation.197

We design our evaluation around a core question:198

How well do these metrics satisfy key desiderata199

of a good evaluator? Specifically, we assess:200

• Scene understanding: Can metrics handle201

dense, complex, or compositional inputs?202

• Linguistic alignment: Do metrics reward rel-203

evance over verbosity or complexity?204

• Fairness: Are scores invariant to cultural or205

contextual variation?206

• Semantic sensitivity: Do scores reflect cor-207

rect vs. incorrect text?208

3.2 Dataset209

We employ the MS-COCO 2017 validation210

set Lin et al. (2015) as our test ground. MS-COCO211

(Common Objects in Context) is an open bench-212

mark extensively utilized in vision-language re-213

search with images having bounding box annota-214

tions and several human-written captions.215

To facilitate controlled evaluation, we used the216

validation set of MS COCO comprising ∼5,000217

images. Images were filtered to contain single218

dominant objects, identified through bounding box219

size and category labels. This allowed unambigu-220

ous semantic alignment on our diagnostic axes,221

like spatial relationships, object scale, and cultural222

modifiers. We constrained the scale intentionally 223

to guarantee: 224

• Controlled caption-image pairing across sev- 225

eral perturbation types, and 226

• Computational tractability, considering the 227

∼25,000 instances needed for evaluation. 228

Captions were drawn from two sources: 229

• 5 Natural MS-COCO captions, exhibiting nat- 230

ural linguistic variation. 231

• Fixed-format captions, synthesized through 232

human-authored templates (e.g., “There is 233

a/an [object]”, “There is a/an Object A 234

left of Object B” and “There is a/an [cul- 235

tural_modifier] [object]”). These were used 236

programmatically in order to preserve syntac- 237

tic coherence & remove semantic change. A 238

This hybrid setup enabled us to reconcile real- 239

world linguistic variation with controlled exper- 240

iment, while maintaining reproducibility of the 241

setup and comparability with previous studies 242

based on similarly sized MS-COCO subsets (e.g., 243

González-Chávez et al. (2023), Wu et al. (2018), 244

Kasai et al. (2022)). See Appendix 8 for a visual 245

overview of the dataset construction pipeline. 246

3.3 Baseline Metric Agreement and 247

Divergence 248

As a sanity check and to establish baseline behav- 249

ior, we compute score distributions (Figure 2) and 250

conduct statistical comparisons (Table 1) between 251

CLIPScore and PAC-S over all image-text pairs. 252

Using paired t-tests (Student, 1908) and Pearson 253

correlation (Spearman, 2015), we quantify both 254

agreement and divergence, setting the stage for 255

deeper diagnostic evaluation. And this suggests 256

that CLIPScore & PAC-S exhibit complementary. 257

• T-test: Reveals statistically significant differ- 258

ences in mean scores. 259

• Pearson correlation (r = 0.533): Indicates 260

moderate alignment, suggesting complemen- 261

tary rather than interchangeable behavior. 262

Table 1: Statistical comparison between CLIPScore and
PAC-S

Test Statistic P-value

T-test -1266.19 0.0000
Pearson correlation 0.5326 0.0000

Distributions of metric scores are visualized in 263

Figure 2, showing that CLIPScore is more tightly 264

clustered around central values and scores lower as 265
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compare to PAC-S that exhibits a broader dispersed266

distribution. This motivates need to evaluate each267

metric’s unique strengths & limitations in detail.268

Figure 2: Score distribution comparison between CLIP-
Score and PAC-S.

3.4 Evaluation Protocol269

We use two strategies to analyze metric behavior:270

Correlation Analysis: Spearman & Pearson cor-271

relations are computed between metric scores &272

visual/textual properties (e.g., object count, color273

variance, caption complexity). Strong correlations274

in unintended directions reveal potential biases.275

Subgroup Comparison: We compare average276

scores across controlled subgroups (e.g., “Ameri-277

can” vs. “African”, or “small” vs. “large”) to assess278

fairness and semantic consistency.279

Both metrics are evaluated across eight diagnos-280

tic dimensions (Table 2).281

4 Results282

4.1 Textual Property - Evaluating Sensitivity283

to Linguistic Structure284

An ideal evaluation metric should focus on how285

well a caption matches the meaning of the image,286

rather than on things like sentence length or how287

complex the wording is. In the section shown in288

Figure 3, we check whether CLIPScore and PAC-S289

rely too heavily on surface-level language features.290

To do this, we measure how strongly each of fol-291

lowing attributes is related to scores assigned by292

each metrics:293

1. Text Length: Measured as total number of294

non stopword tokens295

2. Sentence Complexity: Defined as a ratio of296

tokens and noun phrases to the number of297

clauses, approximating syntactic density.298

3. Flesch–Kincaid Grade Level: Indicating299

U.S. school grade level required to understand300

a text.301

4. Named Entity Count: Captures the number302

of named entities (e.g., people, places, organi-303

zations) identified in the caption.304

Figure 3: Spearman (ρ) between textual features and
evaluation scores.
Observation: CLIPScore exhibits a notable bias 305

toward longer captions (r = 0.211), suggesting a 306

preference for verbosity over semantic precision; 307

PAC-S also shows a positive but weaker correlation 308

(r = 0.149). Additionally, CLIPScore correlates 309

positively with syntactic complexity and readability 310

grade, indicating sensitivity to caption structure, 311

while PAC-S appears less affected. Interestingly, 312

PAC-S shows slightly greater responsiveness to the 313

presence of named entities (r = 0.106), reflecting 314

a modest entity preference. 315

Metric Expectation: Metrics should score cap- 316

tions based on semantic relevance. 317

Failure Mode: CLIPScore favors complex sen- 318

tences, often penalizing concise but accurate ones, 319

while PAC-S prefers simpler language but is biased 320

toward named entities. 321

4.2 Visual Property-Testing Robustness to 322

Low-Level Image Attributes 323

A reliable evaluation metric should remain invari- 324

ant to superficial visual variations that do not alter 325

semantic meaning. In Figure 4, we assess whether 326

CLIPScore and PAC-S are unintentionally influ- 327

enced by low-level visual properties of images. To 328

do this, we analyze how each of the following im- 329

age attributes correlates with the scores they assign: 330

Figure 4: Spearman ρ between image properties and
evaluation scores.
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Table 2: Evaluation framework across key diagnostic dimensions for metric auditing.

Axis Description Caption Type Eval Protocol

Text Properties Caption length, syntax complexity, passivity Original Corr. Analysis
Visual Properties Entropy, sharpness, color, edge complexity Original Corr. Analysis
Object Count Number of distinct objects in image Original Corr. Analysis
Cultural Context 7 Fixed Cultural references Fixed Format Subgroup Eval.
Content Category MSCOCO Category references Fixed Format Subgroup Eval.
Object Size Percent of image area covered by object Fixed Format Subgroup Eval.
Spatial Awareness Absolute and relative object positioning Fixed Format Subgroup Eval.
Perturbations Grayscale, negation, word order changes Original Subgroup Eval.

1. Color Variance: Measures the average vari-331

ance across RGB channels higher values indi-332

cate richer color diversity.333

2. Energy and Homogeneity: Derived from the334

Gray Level Co-occurrence Matrix (GLCM),335

these texture features capture local pixel rela-336

tionships without affecting image semantics.337

3. Edge Density: Calculated using the Canny338

edge detector as the ratio of edge pixels to339

total image pixels, indicating visual detail.340

By correlating these measures with CLIPScore341

and PAC-S, we assess whether the metrics remain342

robust to superficial visual variability.343

Observation: CLIPScore shows a weak nega-344

tive correlation with color variance (r = −0.078),345

indicating a mild penalty for visually diverse im-346

ages, while PAC-S remains largely unaffected (r =347

0.019). Both metrics also exhibit weak negative348

correlations with texture-based features such as en-349

ergy and homogeneity, suggesting slight penalties350

for highly textured or uniform images irrespective351

of semantic accuracy. Additionally, PAC-S shows352

a slight preference for images with higher edge353

density (r = 0.062), reflecting a bias toward more354

detailed or structured visuals, whereas CLIPScore355

remains mostly invariant.356

Metric Expectation: Scores should remain sta-357

ble across variations in color, texture, or edge struc-358

ture unless they impact the caption’s correctness.359

Failure Mode: Both CLIPScore and PAC-S ex-360

hibit minor but systematic visual sensitivity, sug-361

gesting that they partially conflate stylistic or per-362

ceptual features with semantic quality.363

4.3 Object Count – Assessing Compositional364

Generalization365

A reliable evaluation metric should handle complex366

scenes with multiple objects, as commonly found367

in real-world settings like surveillance or robotics. 368

Captions for such images should not be penalized 369

due to scene complexity. 370

Table 3 examines whether CLIPScore and PAC- 371

S are sensitive to object count by correlating their 372

scores with the number of distinct object classes 373

per image, computed from MS-COCO annotations. 374

Table 3: Spearman (ρ) between object count and evalua-
tion scores.

Feature CLIPScore PAC-S

Object Count -0.084 -0.080

Observation-Negative Correlation with Com- 375

plexity: Both metrics exhibit a small but con- 376

sistent negative correlation with object count, sug- 377

gesting that as the number of objects in a scene 378

increases, evaluation scores tend to decrease. 379

Metric Expectation: Metrics should treat cor- 380

rectly grounded, multi-entity captions fairly across 381

all salient objects. 382

Failure Mode: Both CLIPScore and PAC-S pe- 383

nalize complex images with multiple entities, re- 384

vealing a limited capacity. 385

4.4 Cultural Context – Auditing Cultural 386

Fairness in Evaluation 387

A good evaluation score should be culturally 388

agnostic-giving similar scores to semantically iden- 389

tical captions, irrespective of geographical or cul- 390

tural modifiers. To check for this, we experimented 391

with how CLIPScore and PAC-S react to captions 392

which only vary by cultural adjectives, while the 393

object identity and syntax are kept constant. 394

For every image with a single object 395

(e.g., “chair”, “car”), we created fixed- 396

syntax captions like: “There is a/an [Ameri- 397

can/African/Asian/European/Russian/Arabian 398
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/Oceania] [Object_name]” We present the average399

scores given by each metric in Figure. 5400

Figure 5: Cultural bias analysis using a radar plot show-
ing evaluation scores (on a 0-100 scale) across various
cultural regions.

Observation: Both CLIPScore and PAC-S con-401

sistently assign lower scores to culturally modi-402

fied captions compared to the default, indicating403

a uniform drop in performance across modifiers.404

CLIPScore shows the strongest bias against African405

(-5.5%) and Arabian (-4.9%) descriptors, while406

PAC-S registers similarly steep declines for Ara-407

bian (-5.3%), Oceania (-5.2%), and African (-4.8%)408

modifiers. In contrast, American and European409

references receive scores closest to the baseline,410

revealing a clear Western bias present in both eval-411

uation measures.412

Metric Expectation: Scores should reflect only413

the correctness and grounding of visual-text align-414

ment, not the cultural identity or geographic de-415

scriptor of an object.416

Failure Mode: CLIPScore and PAC-S both417

demonstrate systematic Western cultural descriptor418

bias, even with identical syntactic templates.419

4.5 Object Category – Evaluating420

Content-Type Sensitivity421

A fair evaluation metric must look at semantic cor-422

rectness irrespective of the nature of the content423

illustrated whether it’s an animal, a human, an ob-424

ject, or an element of the scene. Systematic scoring425

bias in favor of some content types, without seman-426

tic grounds, reflects domain-level bias.427

To evaluate this, we considered average metric428

scores over 12 MS-COCO supercategories, em-429

ploying fixed-formatted captions to images with a430

single dominant object from each supercategory. 431

CLIPScore mean and PAC-S mean are depicted in 432

Figure. 6. 433

Observation: Animal-related content consis- 434

tently receives the highest scores from both met- 435

rics (CLIPScore: 0.2508; PAC-S: 0.7341), aligning 436

with prior reports of animal bias. Appliance and 437

sports categories also score relatively high, while 438

person, kitchen, and accessory categories receive 439

the lowest scores. Notably, person-class objects 440

show the greatest negative deviation, with CLIP- 441

Score 16.2% and PAC-S 11.6% below the mean, 442

highlighting a substantial undervaluation in both 443

metrics. 444

Figure 6: Dumbbell plot showing Object Category bias,
indicating metric sensitivity to semantic content.

Metric Expectation: Metrics should evaluate 445

captions consistently across content types when 446

the semantic match is equivalent. 447

Failure Mode These findings indicate content- 448

type bias, with person-centric and indoor scenes 449

undervalued, while animals, appliances, and sports 450

items are consistently over-scored likely reflecting 451

pretraining data biases. 452

4.6 Object Size – Evaluating Scale Sensitivity 453

and Visual Prominence Bias 454

An effective evaluation metric should be scale- 455

invariant assigning similar scores to correct cap- 456

tions regardless of object size. Otherwise, it may 457

undervalue small-object recognition or penalize 458

captions in cluttered or zoomed-out scenes. 459

In Figure 7 We group captions by the object’s 460

image area percentage & compute average scores 461

using fixed-form captions, isolating impact of ob- 462

ject size while keeping caption structure constant. 463

Observation: Evaluation scores increase with ob- 464

ject size, showing a clear sensitivity to scale. Both 465
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metrics peak in the 60–80% size range, favoring466

medium-to-large, clearly visible objects. However,467

performance drops at both extremes: very small468

objects (0–10%) receive lower scores, likely due469

to difficulties in grounding captions to fine details,470

while extremely large objects (90–100%) also per-471

form poorly, possibly due to loss of contextual472

grounding in overly cropped or zoomed-in images.473

Figure 7: Evaluation metrics (CLIP and PAC-S) peak
within the 50-80% object coverage range, indicating a
bias toward medium-sized objects.
Metric Expectation: Correct captions should re-474

ceive consistent scores on object scales, semantic475

correctness should not be penalized by prominence.476

Failure Mode: Both metrics favor mid-sized ob-477

jects and undervalue captions about very small or478

large ones, limiting their reliability in tasks requir-479

ing fine-grained visual grounding.480

4.7 Spatial Awareness – Testing Positional481

Sensitivity and Object Relations482

Evaluation metrics should be invariant to absolute483

object placement and treat equivalent spatial re-484

lationships equally. For instance, “object1 is to485

the left of object2” and “object2 is to the right of486

object1” should receive similar scores.487

Table 4 assesses whether CLIPScore and PAC-S488

meet this standard, examining their sensitivity to489

both absolute and relative spatial positioning.490

We use a fixed format based captioning approach491

to systematically isolate spatial variables, as de-492

scribed below:493

1. Absolute Positioning: To evaluate positional494

bias, we compare scores for identical cap-495

tions describing objects on different sides of496

the image. For left-side scores, we use the497

original image (if the object is on the left)498

or horizontally flip it (if the object is on the499

right). The process is reversed to compute500

right-side scores, ensuring that only object501

position changes while caption remains fixed.502

Table 4: Mean scores for absolute vs. relative position-
ing; % differences are relative to baseline. * indicates
baseline, Abs.-Absolute, Rel.-Relative, L-Left and R-
Right)

Positioning
Type

CLIPScore PAC-S

Abs.: Left* 0.2281 0.6805
Abs.: Right 0.2281

(0.0%)
0.6803
(-0.02%)

Rel.: L to R* 0.2301 0.667
Rel.: R to L 0.2337

(+1.5%)
0.6620
(-0.07%)

2. Relative Positioning: We create pairs of cap- 503

tions describing the same spatial relation in 504

different orders. For an object pair appearing 505

in the sequence (object_i, object_j), we 506

generate the following captions: 507

• There is a/an [object_i] left to [object_j] 508

• There is a/an [object_j] right to [object_i] 509

Observation: Both metrics demonstrate robust- 510

ness to absolute positioning, showing nearly iden- 511

tical scores for objects placed on the left or right 512

side of the image. However, in relative positioning 513

scenarios, CLIPScore shows a slight preference for 514

“right of” relations, revealing minor inconsistencies 515

in handling directional spatial descriptions. 516

Metric Expectation: Evaluation metrics should 517

be invariant to absolute positioning, assigning sim- 518

ilar scores whether an object appears on the left 519

or right. They should also treat equivalent relative 520

expressions (e.g., “A is left of B” vs. “B is right of 521

A”) as semantically identical. 522

Failure Mode: Minor asymmetries in CLIP- 523

Score assignment for relative spatial descriptions 524

suggest potential model biases or sensitivity to lan- 525

guage formulation. 526

4.8 Perturbations & Negations 527

Robust evaluation metrics should distinguish be- 528

tween captions that are spatially and semantically 529

correct and those that contain errors. In Table 5, 530

we test whether CLIPScore and PAC-S can: penal- 531

ize spatially incorrect captions, remain unaffected 532

by irrelevant visual changes, and detect syntactic 533

degradation in text. We evaluate the metrics using 534

the following types of perturbations and negations: 535

Spatial Negation Sensitivity: We evaluate met- 536

ric sensitivity to spatial errors using two types: 537
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Table 5: Evaluation scores for spatial negation and multimodal perturbations.

Perturbation Category Condition CLIPScore PAC-S

Absolute Position
Correct placement 0.2356 0.6594
Incorrect placement 0.2354 (-0.08 %) 0.6591 (-0.04 %)

Relative Position
Correct referenced 0.2301 0.6670
Incorrect referenced 0.2340 (+0.5 %) 0.6626 (-0.7 %)

Multimodal Augmentation

Original image and caption 0.3077 0.8204
Black & white image 0.2996 (-2.63 %) 0.8110 (-1.15 %)
Reverse word order 0.2836 (-8.70 %) 0.8015 (-2.38 %)
Random word order 0.2769 (-10.28 %) 0.7937 (-3.29 %)

1. Relative Spatial Negation: We switch ob-538

ject positions in captions to create mismatches539

(e.g., “There is a [object A] left of [object B]”540

vs. incorrect “right of” when A is actually on541

the left).542

2. Absolute Spatial Negation: We flip spatial543

terms like “left” and “right” in captions (e.g.,544

“There is a [object A] on the left side” vs.545

incorrect “right side” when A is on the left).546

Multimodal Input Perturbations: We apply the547

following transformations to assess metric robust-548

ness: Convert images to grayscale, Shuffle caption549

word order and Reverse caption word order.550

Observation: CLIPScore often fails to penal-551

ize spatially incorrect captions, sometimes scoring552

them higher than correct ones. PAC-S performs553

slightly better but with minimal margin. Both met-554

rics show resilience to visual changes like grayscale555

conversion, and limited sensitivity to syntactic dis-556

ruptions maintaining relatively high scores even557

with shuffled or reversed captions, indicating a bag-558

of-words behavior.559

Metric Expectation: Penalize semantically in-560

correct captions. Maintain robustness to irrelevant561

visual changes. Reflect decreased alignment when562

sentence structure is syntactically degraded.563

Failure Mode: CLIPScore and PAC-S show low564

sensitivity to semantic corruption, relying more565

on keyword overlap than true meaning, even with566

negated or disordered captions.567

5 Summary of Metric Behavior568

We provide a summary of the diagnostic behavior569

of CLIPScore and PAC-S on all axes of evaluation570

in Table 6 in Appendix B. Both provide scalable,571

reference-free evaluation, but our analysis demon-572

strates a number of reliable shortcomings: Visual573

and Textual Bias, Cultural Bias, Content-Type Bias, 574

Scale & Object Count Sensitivity, Spatial Robust- 575

ness and Perturbation Weakness 576

In sum, existing reference-free measures are 577

lacking in fairness, semantic sensitivity, and ro- 578

bustness preventing their use for assessing varied, 579

real-world captioning outputs. 580

6 Conclusion 581

Reference-free metrics like CLIPScore & PAC-S 582

are gaining traction in vision-language research 583

due to their scalability and independence from an- 584

notated references. However, our analysis shows 585

they often fail to align with human judgment across 586

diverse contexts. 587

We identify key limitations, including over re- 588

liance on surface features, low robustness to syntac- 589

tic variation, and cultural biases e.g., consistently 590

lower scores for modifiers like “African” & “Ara- 591

bian.” These findings raise concerns about their 592

equitability and generalizability. 593

To address these gaps, we recommend: (1) pri- 594

oritizing semantic grounding over shallow cues; 595

(2) ensuring fairness across cultures, geographies, 596

and object categories; (3) maintaining robustness 597

in complex, multi-entity scenes; (4) penalizing syn- 598

tactic or factual errors; (5) improving transparency 599

through interpretable diagnostics; and (6) expand- 600

ing fairness evaluation to underrepresented group. 601

We hope these guidelines inform the develop- 602

ment of reference-free metrics that are equitable, 603

interpretable, and reliable. As multimodal systems 604

advance, robust evaluation standards will be essen- 605

tial to ensure meaningful progress. 606

7 Limitations 607

Although our work offers a thorough review of 608

reference-free measures, it is limited by the fol- 609

lowing methodological decisions. We used single- 610

8



object images to facilitate controlled experimenta-611

tion, precluding direct applicability to real-world,612

multi-object scenes. The dataset size (≈ 5,000613

images) was also kept small for computational614

tractability (≈ 25,000 evaluations), consistent with615

previous works but restricting generalizability to616

larger or more heterogeneous datasets. Moreover,617

we only tested two metrics CLIPScore and PAC-618

S leaving other new methods like VQA-based or619

LLM-based scoring out of consideration because620

of compatibility limitations.621

Our cultural fairness audit, although more en-622

compassing than in prior work, was restricted to623

seven modifiers and only seven global regions (e.g.,624

Latin America, Indigenous populations). Further,625

the employment of fixed-format captions, which is626

convenient for discounting semantic change, does627

not capture the richness of naturally occurring writ-628

ing. These approximations can affect how metrics629

handle more representative variation in language.630

Future research should remedy these limitations to631

enable more thorough, inclusive, and ecologically632

valid assessments.633
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A Supplementary Details on Dataset758

Construction759

Figure 8 provides a visual overview of our dataset760

construction pipeline, illustrating the filtering of761

MS-COCO images, object class extraction, and the762

generation of both natural and fixed form captions763

used in our experiments.764

B Qualitative Summary of Metric 765

Behavior 766

We present in Table 6 a qualitative comparison 767

of CLIPScore and PAC-S across diagnostic axes, 768

highlighting observed biases and deviations from 769

ideal metric behavior. 770
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Figure 8: Overview of dataset composition

Table 6: Qualitative summary of CLIPScore and PAC-S behavior across diagnostic axes.

Axis CLIPScore / PAC-S Behavior Ideal Metric Behavior

Visual Properties Mild penalty on texture/color (CLIP-
Score more so)

Invariant to superficial visual changes
unless semantically meaningful

Text Properties CLIPScore favors length, complexity /
PAC-S favors NEs

Reward informativeness and clarity;
avoid verbosity bias

Object Count Scores slightly decrease with more ob-
jects

Fair to complex scenes when captions
are accurate

Cultural Context Default (Culture Neutral) > Cultural
modifiers

Culturally neutral scoring for equivalent
semantics

Content Category Domain preference for specific cate-
gories like Animal/Appliances over in-
door scenes

No unfair preference for content types

Object Size Scores peak at mid-size (60–80%) ob-
jects

Consistent scoring across scales if se-
mantically correct

Spatial Awareness Slight scoring inconsistency for reversed
phrases (CLIPScore)

Equal scoring for equivalent spatial rela-
tions

Perturbations Scores stay high despite incorrect spatial
& word order

Strong semantic sensitivity; penalize cor-
rupted captions
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