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Abstract

Reference-free metrics like CLIPScore and
PAC-S are widely used in vision-language
tasks, yet their behavior under linguistic, vi-
sual, and cultural variation remains poorly un-
derstood. We present a systematic audit of
these metrics using an eight-factor diagnos-
tic framework applied to 5,000 expert-curated
MS-COCO validation images. Across dimen-
sions such as object size, content category, syn-
tax, named entities, spatial relations, and cul-
tural context, we uncover consistent failure
modes. Both metrics penalize captions ref-
erencing African (5.5%, 4.8%) and Arabian
(4.9%, 5.3%) cultures, favor large-object and
animal-centric scenes (plus 20 to 30 percent),
and show limited sensitivity to spatial negation
and word order. These findings reveal cultural
and content bias, poor semantic robustness, and
weak compositional understanding. We con-
clude with design recommendations to promote
cultural fairness, scale invariance, and seman-
tic grounding in future evaluation metrics for
multimodal Al

1 Introduction

Rise of multimodal large language models
(MLLMs) (Liu et al., 2023) has enabled significant
advances in vision-language tasks, including image
captioning, text-to-image generation, and visual
question answering. As these systems generate in-
creasingly fluent & contextually grounded outputs,
the need for reliable evaluation becomes more crit-
ical. Evaluation metrics play a central role in this
ecosystem: they benchmark model performance,
shape training objectives, and inform deployment
decisions. Task integrating vision and language,
such as image captioning (Vinyals et al., 2015) and
text-to-image (Rombach et al., 2022; Saharia et al.,
2022; Ramesh et al., 2021) generation, automatic
metrics are often used as standins for human judg-
ment, tasked with assessing the semantic alignment
between visual content & text descriptions.
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Figure 1: Reference-Free Metrics Evaluation Frame-
work

Historically, reference-based metrics such as
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016) have
dominated image and text evaluation. These met-
rics compare generated outputs to a fixed set
of human-written references and provide inter-
pretable, reproducible scores. However, their re-
liance on limited reference sets makes them brittle
in open-ended generation settings, where linguis-
tic diversity is a feature rather than a flaw. They
frequently penalize factually correct yet stylisti-
cally novel captions, limiting their usefulness in
evaluating flexible or creative generation. In this
work, we present a comprehensive audit of CLIP-
Score (Hessel et al., 2021)and PAC-S (Sarto et al.,
2023a) focusing on their equitability and semantic
sensitivity. We use a multidimensional framework
combining correlation analysis and subgroup com-
parisons on the MS-COCO dataset to assess metric
responses to scene complexity, syntax, spatial re-
lations, and cultural cues.This reveals consistent
biases and misalignments, informing the design of
future evaluation tools that are both efficient and
fair.

Our main contributions are as follows:
* Audit of reference-free metrics: We evaluate
popular metrics with a focus on fairness and
semantic reliability.



* Diagnostic framework: We introduce a
multi-dimensional evaluation setup (Fig. 1)
spanning linguistic and visual factors.

* Failure mode insights: Metrics show bias
against African modifiers, human-centric
scenes, subtle visuals, and simple syntax.

* Recommendations: We propose guidelines
to improve future metric development.

2 Related Work

Emergence of reference-free evaluation metrics
has significantly reshaped the landscape of vision-
language evaluation. Among the most widely
adopted is CLIPScore, which estimates image-text
similarity using CLIP embeddings and has demon-
strated superior performance over reference based
metrics. Zelezn}’/ (2023) established its robustness
across MS-COCO, while Cho et al. (2023) em-
ployed CLIPScore to reward semantic specificity
during caption generation. Barraco et al. (2022)
further solidified CLIP’s role as a powerful visual
encoder, helping establish CLIPScore as a de facto
semantic metric. This established utility, however,
leaves open questions around its sensitivity to spa-
tial structure, compositionality, & cultural nuance.

To address some of these limitations, contrastive
learning-based metrics have gained traction. PAC-
S, proposed by Sarto et al. (2023a), employs
augmented-positive contrastive learning to improve
alignment with human preferences and detect hallu-
cinations more effectively. Its successor, PAC-S++,
offers improved sensitivity to syntactic noise and
redundant phrasing. Complementary approaches
such as HICE-S (Zeng et al., 2024) and compar-
ative analyses by Gonzdlez-Chavez et al. (2023)
underscore the growing interest in contrastive and
multi-scale evaluation strategies. As a result, PAC-
S represents a valuable counterpoint to CLIPScore
in our comparative analysis.

Building on core paradigms, several recent
works have explored architectural strategies for
improving evaluation reliability. Fusion-based
methods such as ECO (Jeong et al., 2024) &
BRIDGE (Sarto et al., 2023b) aggregate multiple
metric signals to improve caption ranking and hal-
lucination detection. Ross et al. (2024) argue that
current T2I metrics over-rely on surface-level tex-
tual overlap, while Wu et al. (2018), through their
work on visual change detection, highlight the chal-
lenge of evaluating object relationships and spa-
tial directionality challenges we explore through

prompt perturbation. These innovations inform our
methodological choice to apply structural interven-
tions & test metrics.

Parallel to architectural advances, optimization-
based efforts have focused on tuning metric behav-
ior. ReCap, by Paischer et al. (2025), demonstrates
that fine-tuning alignment layers can enhance se-
mantic fidelity in vision-language models, while
Kornblith et al. (2023) show that classifier-free
guidance can yield more expressive and stable gen-
erations, highlighting the importance of embedding
calibration in metric performance. These insights
guide our use of controlled test conditions to isolate
metric behavior under shared embeddings.

While these developments have advanced the
field, a growing body of work has drawn attention
to the limitations and blind spots of reference-free
metrics. Ahmadi and Agrawal (2024) and Ka-
sai et al. (2022) question whether popular metrics
like CLIPScore and PAC-S adequately reflect hu-
man preferences or linguistic complexity. Zur
et al. (2024) surface accessibility concerns, espe-
cially for blind and low-vision users, showing that
CLIP-based metrics poorly assess utility-driven
captioning. In response, Lee et al. (2024) propose
FLEUR, a rationale-aligned and explainable eval-
uation framework. These critiques underscore the
importance of interrogating biases, fairness, and
cultural representation in metric behavior dimen-
sions that we place at the center of our analysis.

Together, these contributions form the founda-
tion for our study. They reveal that while metrics
like CLIPScore and PAC-S perform well on av-
erage correlation benchmarks, they may fail un-
der structured stressors, cultural shifts, or com-
positional transformations. Our work builds on
these insights by systematically auditing these met-
rics across multiple controlled axes such as object
count, syntax, spatial relations, and cultural cues
using MS-COCO as a testbed for fine-grained di-
agnostic evaluation.

3 Methodology

3.1 Auditing Reference-Free Metrics

To critically assess the reliability and fairness of
reference-free evaluation metrics, we propose a sys-
tematic evaluation framework that treats the met-
rics themselves as systems under test. Rather than
assuming these metrics to be reliable surrogates for
human judgment, we audit them across a diverse
set of diagnostic axes designed to reveal hidden bi-



ases, robustness gaps, and semantic insensitivities.

Our analysis focuses on two widely-used
reference-free metrics: CLIPScore and PAC-S. We
exclude other methods such as UMIC, TIFA, VPE-
val, and DSG for several reasons. First UMIC
metric relies on UNITER a multimodal pretrained
model that processes images and text through sep-
arate encoding pipelines. This decoupled process-
ing introduces potential alignment issues between
modalities and increases complexity in evaluat-
ing semantic grounding. Additionally, UMIC’s
reliance on a pretrained model architecture makes
it less transparent and harder to isolate the source of
evaluation behavior, which is central to our diagnos-
tic goals. Second, metrics like TIFA, VPEval, and
DSG are VQA-based and uses a language models,
which introduce additional confounding factors in-
cluding latency, hardware requirements. More im-
portantly, these methods are ill-suited to our fixed
format setup, which centers on single-object scenes.
In such cases, only one visually grounded question
can typically be formulated, limiting the ability
of VQA-based metrics to evaluate fine-grained se-
mantic variation. Consequently, including these
methods would distort the scope and validity of our
targeted evaluation.

We design our evaluation around a core question:
How well do these metrics satisfy key desiderata
of a good evaluator? Specifically, we assess:

* Scene understanding: Can metrics handle

dense, complex, or compositional inputs?

* Linguistic alignment: Do metrics reward rel-

evance over verbosity or complexity?

* Fairness: Are scores invariant to cultural or

contextual variation?

* Semantic sensitivity: Do scores reflect cor-

rect vs. incorrect text?

3.2 Dataset

We employ the MS-COCO 2017 validation
set Lin et al. (2015) as our test ground. MS-COCO
(Common Objects in Context) is an open bench-
mark extensively utilized in vision-language re-
search with images having bounding box annota-
tions and several human-written captions.

To facilitate controlled evaluation, we used the
validation set of MS COCO comprising ~5,000
images. Images were filtered to contain single
dominant objects, identified through bounding box
size and category labels. This allowed unambigu-
ous semantic alignment on our diagnostic axes,
like spatial relationships, object scale, and cultural

modifiers. We constrained the scale intentionally
to guarantee:

* Controlled caption-image pairing across sev-
eral perturbation types, and

* Computational tractability, considering the
~25,000 instances needed for evaluation.

Captions were drawn from two sources:

* 5 Natural MS-COCO captions, exhibiting nat-
ural linguistic variation.

* Fixed-format captions, synthesized through
human-authored templates (e.g., “There is
a/an [object]”, “There is a/an Object A
left of Object B” and “There is a/an [cul-
tural_modifier] [object]”). These were used
programmatically in order to preserve syntac-
tic coherence & remove semantic change. A

This hybrid setup enabled us to reconcile real-

world linguistic variation with controlled exper-
iment, while maintaining reproducibility of the
setup and comparability with previous studies
based on similarly sized MS-COCO subsets (e.g.,
Gonzalez-Chavez et al. (2023), Wu et al. (2018),
Kasai et al. (2022)). See Appendix 8 for a visual
overview of the dataset construction pipeline.

3.3 Baseline Metric Agreement and
Divergence

As a sanity check and to establish baseline behav-
ior, we compute score distributions (Figure 2) and
conduct statistical comparisons (Table 1) between
CLIPScore and PAC-S over all image-text pairs.
Using paired t-tests (Student, 1908) and Pearson
correlation (Spearman, 2015), we quantify both
agreement and divergence, setting the stage for
deeper diagnostic evaluation. And this suggests
that CLIPScore & PAC-S exhibit complementary.
» T-test: Reveals statistically significant differ-
ences in mean scores.
¢ Pearson correlation (r = 0.533): Indicates
moderate alignment, suggesting complemen-
tary rather than interchangeable behavior.

Table 1: Statistical comparison between CLIPScore and
PAC-S

Test Statistic P-value
T-test -1266.19  0.0000
Pearson correlation 0.5326  0.0000

Distributions of metric scores are visualized in
Figure 2, showing that CLIPScore is more tightly
clustered around central values and scores lower as



compare to PAC-S that exhibits a broader dispersed
distribution. This motivates need to evaluate each
metric’s unique strengths & limitations in detail.
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Figure 2: Score distribution comparison between CLIP-
Score and PAC-S.

3.4 Evaluation Protocol

We use two strategies to analyze metric behavior:

Correlation Analysis: Spearman & Pearson cor-
relations are computed between metric scores &
visual/textual properties (e.g., object count, color
variance, caption complexity). Strong correlations
in unintended directions reveal potential biases.

Subgroup Comparison: We compare average
scores across controlled subgroups (e.g., “Ameri-
can” vs. “African”, or “small” vs. “large”) to assess
fairness and semantic consistency.

Both metrics are evaluated across eight diagnos-
tic dimensions (Table 2).

4 Results

4.1 Textual Property - Evaluating Sensitivity
to Linguistic Structure

An ideal evaluation metric should focus on how
well a caption matches the meaning of the image,
rather than on things like sentence length or how
complex the wording is. In the section shown in
Figure 3, we check whether CLIPScore and PAC-S
rely too heavily on surface-level language features.
To do this, we measure how strongly each of fol-
lowing attributes is related to scores assigned by
each metrics:
1. Text Length: Measured as total number of
non stopword tokens
2. Sentence Complexity: Defined as a ratio of
tokens and noun phrases to the number of
clauses, approximating syntactic density.
3. Flesch—-Kincaid Grade Level: Indicating
U.S. school grade level required to understand
a text.
4. Named Entity Count: Captures the number
of named entities (e.g., people, places, organi-
zations) identified in the caption.
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Figure 3: Spearman (p) between textual features and
evaluation scores.

Observation: CLIPScore exhibits a notable bias
toward longer captions (r = 0.211), suggesting a
preference for verbosity over semantic precision;
PAC-S also shows a positive but weaker correlation
(r = 0.149). Additionally, CLIPScore correlates
positively with syntactic complexity and readability
grade, indicating sensitivity to caption structure,
while PAC-S appears less affected. Interestingly,
PAC-S shows slightly greater responsiveness to the
presence of named entities (r = 0.106), reflecting
a modest entity preference.

Metric Expectation: Metrics should score cap-
tions based on semantic relevance.

Failure Mode: CLIPScore favors complex sen-
tences, often penalizing concise but accurate ones,
while PAC-S prefers simpler language but is biased
toward named entities.

4.2 Visual Property-Testing Robustness to
Low-Level Image Attributes

A reliable evaluation metric should remain invari-
ant to superficial visual variations that do not alter
semantic meaning. In Figure 4, we assess whether
CLIPScore and PAC-S are unintentionally influ-
enced by low-level visual properties of images. To
do this, we analyze how each of the following im-
age attributes correlates with the scores they assign:

Spearman p between image properties and evaluation scores

= CLIPScore
PAC-S

Spearman Correlation (p)
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Figure 4: Spearman p between image properties and
evaluation scores.



Table 2: Evaluation framework across key diagnostic dimensions for metric auditing.

Axis Description Caption Type Eval Protocol
Text Properties Caption length, syntax complexity, passivity Original Corr. Analysis
Visual Properties  Entropy, sharpness, color, edge complexity = Original Corr. Analysis
Object Count Number of distinct objects in image Original Corr. Analysis
Cultural Context 7 Fixed Cultural references Fixed Format =~ Subgroup Eval.
Content Category MSCOCO Category references Fixed Format  Subgroup Eval.
Object Size Percent of image area covered by object Fixed Format  Subgroup Eval.
Spatial Awareness Absolute and relative object positioning Fixed Format ~ Subgroup Eval.
Perturbations Grayscale, negation, word order changes Original Subgroup Eval.

1. Color Variance: Measures the average vari-
ance across RGB channels higher values indi-
cate richer color diversity.

2. Energy and Homogeneity: Derived from the
Gray Level Co-occurrence Matrix (GLCM),
these texture features capture local pixel rela-
tionships without affecting image semantics.

3. Edge Density: Calculated using the Canny
edge detector as the ratio of edge pixels to
total image pixels, indicating visual detail.

By correlating these measures with CLIPScore

and PAC-S, we assess whether the metrics remain
robust to superficial visual variability.

Observation: CLIPScore shows a weak nega-
tive correlation with color variance (r = —0.078),
indicating a mild penalty for visually diverse im-
ages, while PAC-S remains largely unaffected (r =
0.019). Both metrics also exhibit weak negative
correlations with texture-based features such as en-
ergy and homogeneity, suggesting slight penalties
for highly textured or uniform images irrespective
of semantic accuracy. Additionally, PAC-S shows
a slight preference for images with higher edge
density (r = 0.062), reflecting a bias toward more
detailed or structured visuals, whereas CLIPScore
remains mostly invariant.

Metric Expectation: Scores should remain sta-
ble across variations in color, texture, or edge struc-
ture unless they impact the caption’s correctness.

Failure Mode: Both CLIPScore and PAC-S ex-
hibit minor but systematic visual sensitivity, sug-
gesting that they partially conflate stylistic or per-
ceptual features with semantic quality.

4.3 Object Count — Assessing Compositional
Generalization

A reliable evaluation metric should handle complex
scenes with multiple objects, as commonly found

in real-world settings like surveillance or robotics.
Captions for such images should not be penalized
due to scene complexity.

Table 3 examines whether CLIPScore and PAC-
S are sensitive to object count by correlating their
scores with the number of distinct object classes
per image, computed from MS-COCO annotations.

Table 3: Spearman (p) between object count and evalua-
tion scores.

CLIPScore
-0.084

PAC-S
-0.080

Feature

Object Count

Observation-Negative Correlation with Com-
plexity: Both metrics exhibit a small but con-
sistent negative correlation with object count, sug-
gesting that as the number of objects in a scene
increases, evaluation scores tend to decrease.

Metric Expectation: Metrics should treat cor-
rectly grounded, multi-entity captions fairly across
all salient objects.

Failure Mode: Both CLIPScore and PAC-S pe-
nalize complex images with multiple entities, re-
vealing a limited capacity.

4.4 Cultural Context — Auditing Cultural
Fairness in Evaluation

A good evaluation score should be culturally
agnostic-giving similar scores to semantically iden-
tical captions, irrespective of geographical or cul-
tural modifiers. To check for this, we experimented
with how CLIPScore and PAC-S react to captions
which only vary by cultural adjectives, while the
object identity and syntax are kept constant.

For every image with a single object
(e.g., “chair”, “car”), we created fixed-
syntax captions like: “There is a/an [Ameri-
can/African/Asian/European/Russian/Arabian



/Oceania] [Object_name]” We present the average
scores given by each metric in Figure. 5
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Figure 5: Cultural bias analysis using a radar plot show-
ing evaluation scores (on a 0-100 scale) across various
cultural regions.

Observation: Both CLIPScore and PAC-S con-
sistently assign lower scores to culturally modi-
fied captions compared to the default, indicating
a uniform drop in performance across modifiers.
CLIPScore shows the strongest bias against African
(-5.5%) and Arabian (-4.9%) descriptors, while
PAC-S registers similarly steep declines for Ara-
bian (-5.3%), Oceania (-5.2%), and African (-4.8%)
modifiers. In contrast, American and European
references receive scores closest to the baseline,
revealing a clear Western bias present in both eval-
uation measures.

Metric Expectation: Scores should reflect only
the correctness and grounding of visual-text align-
ment, not the cultural identity or geographic de-
scriptor of an object.

Failure Mode: CLIPScore and PAC-S both
demonstrate systematic Western cultural descriptor
bias, even with identical syntactic templates.

4.5 Object Category — Evaluating
Content-Type Sensitivity

A fair evaluation metric must look at semantic cor-
rectness irrespective of the nature of the content
illustrated whether it’s an animal, a human, an ob-
ject, or an element of the scene. Systematic scoring
bias in favor of some content types, without seman-
tic grounds, reflects domain-level bias.

To evaluate this, we considered average metric
scores over 12 MS-COCO supercategories, em-
ploying fixed-formatted captions to images with a

single dominant object from each supercategory.
CLIPScore mean and PAC-S mean are depicted in
Figure. 6.

Observation: Animal-related content consis-
tently receives the highest scores from both met-
rics (CLIPScore: 0.2508; PAC-S: 0.7341), aligning
with prior reports of animal bias. Appliance and
sports categories also score relatively high, while
person, kitchen, and accessory categories receive
the lowest scores. Notably, person-class objects
show the greatest negative deviation, with CLIP-
Score 16.2% and PAC-S 11.6% below the mean,
highlighting a substantial undervaluation in both
metrics.
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Figure 6: Dumbbell plot showing Object Category bias,
indicating metric sensitivity to semantic content.
Metric Expectation: Metrics should evaluate
captions consistently across content types when
the semantic match is equivalent.

Failure Mode These findings indicate content-
type bias, with person-centric and indoor scenes
undervalued, while animals, appliances, and sports
items are consistently over-scored likely reflecting
pretraining data biases.

4.6 Object Size — Evaluating Scale Sensitivity
and Visual Prominence Bias

An effective evaluation metric should be scale-
invariant assigning similar scores to correct cap-
tions regardless of object size. Otherwise, it may
undervalue small-object recognition or penalize
captions in cluttered or zoomed-out scenes.

In Figure 7 We group captions by the object’s
image area percentage & compute average scores
using fixed-form captions, isolating impact of ob-
ject size while keeping caption structure constant.

Observation: Evaluation scores increase with ob-
ject size, showing a clear sensitivity to scale. Both



metrics peak in the 60-80% size range, favoring
medium-to-large, clearly visible objects. However,
performance drops at both extremes: very small
objects (0—10%) receive lower scores, likely due
to difficulties in grounding captions to fine details,
while extremely large objects (90-100%) also per-
form poorly, possibly due to loss of contextual
grounding in overly cropped or zoomed-in images.

Obiject Size Bias in Evaluation Metrics
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Figure 7: Evaluation metrics (CLIP and PAC-S) peak
within the 50-80% object coverage range, indicating a
bias toward medium-sized objects.

Metric Expectation: Correct captions should re-
ceive consistent scores on object scales, semantic
correctness should not be penalized by prominence.

Failure Mode: Both metrics favor mid-sized ob-
jects and undervalue captions about very small or
large ones, limiting their reliability in tasks requir-
ing fine-grained visual grounding.

4.7 Spatial Awareness — Testing Positional
Sensitivity and Object Relations

Evaluation metrics should be invariant to absolute
object placement and treat equivalent spatial re-
lationships equally. For instance, “objectl is to
the left of object2” and “object?2 is to the right of
objectl” should receive similar scores.

Table 4 assesses whether CLIPScore and PAC-S
meet this standard, examining their sensitivity to
both absolute and relative spatial positioning.

We use a fixed format based captioning approach
to systematically isolate spatial variables, as de-
scribed below:

1. Absolute Positioning: To evaluate positional
bias, we compare scores for identical cap-
tions describing objects on different sides of
the image. For left-side scores, we use the
original image (if the object is on the left)
or horizontally flip it (if the object is on the
right). The process is reversed to compute
right-side scores, ensuring that only object
position changes while caption remains fixed.

Table 4: Mean scores for absolute vs. relative position-
ing; % differences are relative to baseline. * indicates
baseline, Abs.-Absolute, Rel.-Relative, L-Left and R-
Right)

Positioning CLIPScore PAC-S

Type

Abs.: Left* 0.2281 0.6805

Abs.: Right 0.2281 0.6803
0.0%) (-0.02%)

Rel.: LtoR*  0.2301 0.667

Rel.: Rto L 0.2337 0.6620
+1.5%) (-0.07%)

2. Relative Positioning: We create pairs of cap-
tions describing the same spatial relation in
different orders. For an object pair appearing
in the sequence (object_i, object_j), we
generate the following captions:

* There is a/an [object_i] left to [object_j]
* There is a/an [object_j] right to [object_i]

Observation: Both metrics demonstrate robust-
ness to absolute positioning, showing nearly iden-
tical scores for objects placed on the left or right
side of the image. However, in relative positioning
scenarios, CLIPScore shows a slight preference for
“right of” relations, revealing minor inconsistencies
in handling directional spatial descriptions.

Metric Expectation: Evaluation metrics should
be invariant to absolute positioning, assigning sim-
ilar scores whether an object appears on the left
or right. They should also treat equivalent relative
expressions (e.g., “A is left of B” vs. “B is right of
A”) as semantically identical.

Failure Mode: Minor asymmetries in CLIP-
Score assignment for relative spatial descriptions
suggest potential model biases or sensitivity to lan-
guage formulation.

4.8 Perturbations & Negations

Robust evaluation metrics should distinguish be-
tween captions that are spatially and semantically
correct and those that contain errors. In Table 5,
we test whether CLIPScore and PAC-S can: penal-
ize spatially incorrect captions, remain unaffected
by irrelevant visual changes, and detect syntactic
degradation in text. We evaluate the metrics using
the following types of perturbations and negations:

Spatial Negation Sensitivity: We evaluate met-
ric sensitivity to spatial errors using two types:



Table 5: Evaluation scores for spatial negation and multimodal perturbations.

Perturbation Category Condition CLIPScore PAC-S
Absolute Position Correct placement 0.2356 0.6594
Incorrect placement 0.2354 (-0.08 %) 0.6591 (-0.04 %)
Relative Position Correct referenced 0.2301 0.6670
Incorrect referenced 0.2340 (+0.5 %)  0.6626 (-0.7 %)
Original image and caption 0.3077 0.8204

Multimodal Augmentation

Black & white image
Reverse word order
Random word order

0.2996 (-2.63 %)
0.2836 (-8.70 %)
0.2769 (-10.28 %)

0.8110 (-1.15 %)
0.8015 (-2.38 %)
0.7937 (-3.29 %)

1. Relative Spatial Negation: We switch ob-
ject positions in captions to create mismatches
(e.g., “There is a [object A] left of [object B]”
vs. incorrect “right of” when A is actually on
the left).

2. Absolute Spatial Negation: We flip spatial
terms like “left” and “right” in captions (e.g.,
“There is a [object A] on the left side” vs.
incorrect “right side” when A is on the left).

Multimodal Input Perturbations: We apply the

following transformations to assess metric robust-
ness: Convert images to grayscale, Shuffle caption
word order and Reverse caption word order.

Observation: CLIPScore often fails to penal-
ize spatially incorrect captions, sometimes scoring
them higher than correct ones. PAC-S performs
slightly better but with minimal margin. Both met-
rics show resilience to visual changes like grayscale
conversion, and limited sensitivity to syntactic dis-
ruptions maintaining relatively high scores even
with shuffled or reversed captions, indicating a bag-
of-words behavior.

Metric Expectation: Penalize semantically in-
correct captions. Maintain robustness to irrelevant
visual changes. Reflect decreased alignment when
sentence structure is syntactically degraded.

Failure Mode: CLIPScore and PAC-S show low
sensitivity to semantic corruption, relying more
on keyword overlap than true meaning, even with
negated or disordered captions.

5 Summary of Metric Behavior

We provide a summary of the diagnostic behavior
of CLIPScore and PAC-S on all axes of evaluation
in Table 6 in Appendix B. Both provide scalable,
reference-free evaluation, but our analysis demon-
strates a number of reliable shortcomings: Visual

and Textual Bias, Cultural Bias, Content-Type Bias,
Scale & Object Count Sensitivity, Spatial Robust-
ness and Perturbation Weakness

In sum, existing reference-free measures are
lacking in fairness, semantic sensitivity, and ro-
bustness preventing their use for assessing varied,
real-world captioning outputs.

6 Conclusion

Reference-free metrics like CLIPScore & PAC-S
are gaining traction in vision-language research
due to their scalability and independence from an-
notated references. However, our analysis shows
they often fail to align with human judgment across
diverse contexts.

We identify key limitations, including over re-
liance on surface features, low robustness to syntac-
tic variation, and cultural biases e.g., consistently
lower scores for modifiers like “African” & “Ara-
bian.” These findings raise concerns about their
equitability and generalizability.

To address these gaps, we recommend: (1) pri-
oritizing semantic grounding over shallow cues;
(2) ensuring fairness across cultures, geographies,
and object categories; (3) maintaining robustness
in complex, multi-entity scenes; (4) penalizing syn-
tactic or factual errors; (5) improving transparency
through interpretable diagnostics; and (6) expand-
ing fairness evaluation to underrepresented group.

We hope these guidelines inform the develop-
ment of reference-free metrics that are equitable,
interpretable, and reliable. As multimodal systems
advance, robust evaluation standards will be essen-
tial to ensure meaningful progress.

7 Limitations

Although our work offers a thorough review of
reference-free measures, it is limited by the fol-
lowing methodological decisions. We used single-



object images to facilitate controlled experimenta-
tion, precluding direct applicability to real-world,
multi-object scenes. The dataset size (=~ 5,000
images) was also kept small for computational
tractability (= 25,000 evaluations), consistent with
previous works but restricting generalizability to
larger or more heterogeneous datasets. Moreover,
we only tested two metrics CLIPScore and PAC-
S leaving other new methods like VQA-based or
LLM-based scoring out of consideration because
of compatibility limitations.

Our cultural fairness audit, although more en-
compassing than in prior work, was restricted to
seven modifiers and only seven global regions (e.g.,
Latin America, Indigenous populations). Further,
the employment of fixed-format captions, which is
convenient for discounting semantic change, does
not capture the richness of naturally occurring writ-
ing. These approximations can affect how metrics
handle more representative variation in language.
Future research should remedy these limitations to
enable more thorough, inclusive, and ecologically
valid assessments.
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A Supplementary Details on Dataset
Construction

Figure 8 provides a visual overview of our dataset
construction pipeline, illustrating the filtering of
MS-COCO images, object class extraction, and the
generation of both natural and fixed form captions
used in our experiments.

B Qualitative Summary of Metric
Behavior

We present in Table 6 a qualitative comparison
of CLIPScore and PAC-S across diagnostic axes,
highlighting observed biases and deviations from
ideal metric behavior.
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Figure 8: Overview of dataset composition

Table 6: Qualitative summary of CLIPScore and PAC-S behavior across diagnostic axes.

Axis

CLIPScore / PAC-S Behavior

Ideal Metric Behavior

Visual Properties
Text Properties
Object Count
Cultural Context

Content Category

Object Size
Spatial Awareness

Perturbations

Mild penalty on texture/color (CLIP-
Score more so)

CLIPScore favors length, complexity /
PAC-S favors NEs

Scores slightly decrease with more ob-
jects

Default (Culture Neutral) > Cultural
modifiers

Domain preference for specific cate-
gories like Animal/Appliances over in-
door scenes

Scores peak at mid-size (60—80%) ob-
jects

Slight scoring inconsistency for reversed
phrases (CLIPScore)

Scores stay high despite incorrect spatial
& word order

Invariant to superficial visual changes
unless semantically meaningful
Reward informativeness and clarity;
avoid verbosity bias

Fair to complex scenes when captions
are accurate

Culturally neutral scoring for equivalent
semantics

No unfair preference for content types

Consistent scoring across scales if se-
mantically correct

Equal scoring for equivalent spatial rela-
tions

Strong semantic sensitivity; penalize cor-
rupted captions
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