
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMREASONER: A MEMORY-AUGMENTED LLM AR-
CHITECTURE FOR MULTI-HOP REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent benchmarks suggest that there remains significant room to improve large
language models’ ability to robustly reason across facts distributed in extremely
long documents. In this work, we propose MemReasoner, a new memory-
augmented LLM architecture that is equipped to perform temporal reasoning,
along with multiple computational steps, over the context stored in the latent mem-
ory, and is trained with supervision on intermediate steps and final outcome. Ex-
periments show that MemReasoner trained on the core reasoning facts generalizes
better, compared to the off-the-shelf large language models as well as fine-tuned
recurrent models, on an unseen test distribution where the required facts are scat-
tered across long natural text up to 128k tokens. Further, MemReasoner demon-
strates robust reasoning performance relative to the baselines, when the answer
distribution or number of hops in test samples differs from that in the training set.

1 INTRODUCTION

Transformer-based large language models (LLMs) have recently shown impressive performance in
many natural language processing (NLP) tasks, including machine translation, question answering,
and reading comprehension, demonstrating signature of general reasoning abilities. However, when
restricted to individual NLP reasoning benchmarks, particularly those that require logical reasoning,
current LLMs typically perform poorly despite efforts to improve accuracy through prompt engi-
neering (Wei et al., 2022; Min et al., 2022). As such, more evidence seems to support the hypothesis
that powerful LLMs often learn statistical features and correlations to simulate reasoning rather than
performing true reasoning (Ruder, 2021).

The recently introduced BABILong benchmark further establishes this point, as it is designed to
test LLM’s ability to reason across facts distributed in extremely long documents (Kuratov et al.,
2024). BABILong is developed based on the bAbi benchmark (Weston et al., 2015), which is com-
posed of 20 reasoning tasks. These include fact chaining, simple induction, deduction, counting,
and handling lists/sets (Weston et al., 2015). This set of tasks was designed as prerequisites for any
system that aims to having a conversation with a human. BABILong further introduces irrelevant
natural text from the PG19 book corpus (Rae et al., 2019) into the original context to make it artifi-
cially longer and include distracting text, while the underlying reasoning task remains the same. For
examples of the task samples in BABILong, see Figure 1. Experiments with popular transformer-
based LLMs shows that present days’ transformer-based language models effectively utilize only
10-20% of the context and their performance declines sharply with increased reasoning complexity.
Retrieval-augmented generation with LLMs at best can provide 60% accuracy for a simple QA task
that requires extracting single evidence from the context. Interestingly, a memory-augmented trans-
former architecture, namely Recurrent Memory Transformers (RMT) (Bulatov et al., 2022) shows
the highest performance on BABILong benchmark; suggesting that the long-term recurrent memory
of the context helps. RMT in that case is trained on longer BABILong samples with supervision
on final answer. However, as we will demonstrate in this work, RMT when trained on bAbi sam-
ples with supervision on final answer reconstruction, does not generalize well on BABILong test
set. This observation suggests that memory-augmented LLMs can further benefit from additional
supervision, when available. Additionally, enabling multiple hops over the memory per final answer
reconstruction can help the model perform well, when the task demands so.

In this work, we provide an alternative language model architecture that is designed to naturally
handle recurrent processing over long context that is not seen by the model during training. Our
goal is to provide a more effective and robust solution for handling multi-hop generative QA tasks,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Examples of BABILong tasks.

which require the model to gather, relate, and reason over disjoint pieces of information from the
unseen long context to generate an answer. Towards this goal, we propose a memory-augmented
LLM architecture enhanced with two basic operations: (i) explicit learning of temporal orders of
facts/events present within the context, and (ii) mechanism for iteratively reading from the context
and updating the query accordingly. We refer to this new architecture as MemReasoner.

The backbone memory-augmented LLM used in this study is Larimar (Das et al., 2024), which is
trained such that the latent encodings of a set of facts, referred as an episode, are written to a memory
module. For a given query, the readout from this episodic memory module conditions the generation
of the decoder, which is achieved by learning a differentiated attention to the readout during training.
During inference, memory is dynamically updated by solving a linear system of equations, which
is efficiently done via computing matrix pseudoinverse rather than gradient backpropagation. The
memory mechanisms in Larimar assume order invariance of samples within an episode and support
only single time read over the episode, which are insufficient for the architecture to handle more
complicated tasks like multi-hop question-answering (QA). We note that our approach could in
principle be used in conjunction with other LLMs augmented with an (episodic) memory module
beyond Larimar.

Here, we extend the basic episodic memory module to act as a reasoning module by introducing
a recurrent network, such as a GRU, which is tasked to capture the sequence of events/facts in
the context written to the memory. This step prepares the inputs to the reasoning module with a
structured understanding of their temporal relationships, which is critical for reasoning over time-
varying information. For example, in the sample shown in Fig 1 (right), understanding that “Sandra
moved to the hallway” happens before “Sandra discarded the football” is crucial to answer the
question “Where is the football?” (Answer: hallway). Around the reasoning module, we further
enable iterative reads from the memory to “hop” between supporting facts and update the query
accordingly. This operation allows the model to dynamically retrieve and refine information across
multiple computational steps performed over the context episode. These two operations around the
latent memory allows in-depth deliberation over the context, which is then used by the decoder for
generation. Our main contributions are:

• A novel memory-augmented LLM architecture, namely MemReasoner, which is equipped
with temporal processing and iterative read over the context written to an episodic memory
module and is trained with supervision on both intermediate and final reasoning steps.

• Evaluation of MemReasoner on the single-hop (Task 1) and two-hop (Task 2) QA tasks
(see Figure 1) using the challenging BABILong benchmark, establishing that the proposed
architecture can generalize to long context that is unseen during training, whereas off-the-
shelf vanilla transformer-based LLMs struggle and alternative recurrent models trained to
output final answer fail to generalize.

• Experiments showing that the proposed MemReasoner architecture indeed learns multi-
step processing over the context to solve the QA task, as evident by its robust performance
when the answers in the training data differ from those in the test samples within the same
task, and when the model trained on bABi task 2 is tested on longer BABILong task 1
samples.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

LLM Reasoning Logical reasoning, a critical aspect for advancing many scientific fields, involves
deducing new conclusions from existing facts and rules. To derive the final answer, such reasoning
challenges often require multiple steps to be executed effectively and in the right order. For instance,
with facts like “John picked up the football” and “John went to the bedroom”, a logical process will
be to deduce that the football’s current location is bedroom. Despite showing advanced ability
to learn from instructions and in-context demonstrations to answer questions (Brown et al., 2020;
Min et al., 2022), LLMs struggle with complex logical reasoning, especially multi-step reasoning
(Liu et al., 2023a). This failure has been attributed to the autoregressive nature of LLMs (Stechly
et al., 2024), which can be characterized by “System 1” (Kahneman, 2011), a mode of thought that
is fast, instinctive but less accurate. To address this limitation, recent work proposes prompting
LLMs to mimic generating intermediate chain of thought (CoT) reasoning steps (Wei et al., 2022),
providing access to external tools/verifiers (Schick et al., 2023), or a combination of both (Paranjape
et al., 2023), to mimic the process of generating deliberative and logical thinking steps, i.e., the
“System 2” mode. Another direction currently being explored is to train reward models to rank
the candidate solutions or rank the intermediate steps (Khalifa et al., 2023; Wang et al., 2024).
Different from these works, MemReasoner does not rely on deliberate prompt engineering or access
to external tools, neither does it require feedback from an external reward model. Instead, inspired
by the distinction between System 1 and System 2-like thinking, MemReasoner utilizes the decoder
for fast generation and the memory module for slow reasoning, which are two components tightly
integrated via training. In that sense, MemReasoner is closer to the line of works that use (generated)
rationales for supervised finetuning or for preference tuning of LLMs to enhance their reasoning
abilities (Zelikman et al., 2022; Pang et al., 2024). However, it remains unexplored how those
approaches perform on iterative reasoning tasks over lengthy context that is unseen during training.

Long-context Modeling The scope of the present study encompasses two distinct challenges around
multi-step reasoning tasks, namely (1) processing very long context and (2) “hopping” over that con-
text in a temporally-aware manner to link disjoint pieces of information and generate answers based
on that. On the first challenge, vanilla transformer-based models struggle due to quadratic time and
space complexity of self-attention and the increasing memory requirement of the key-value cache
during generation. Recently, there has been significant progress in long-context modeling with
transformers by using a mix of local and global attention (Munkhdalai et al., 2024), by continued
pretraining on longer sequences (Xiong et al., 2023; Ding et al., 2024), by context window sliding
and segmentation (Ratner et al., 2023), and by applying position extrapolation or interpolation to
extend input length beyond the training phase (Press et al., 2022; Su et al., 2023). Promising alter-
native directions include the development of novel recurrent architectures (Bulatov et al., 2022) and
state-space-models (Gu & Dao, 2023). Nevertheless, many of these techniques require training on
longer sequences. Additionally, a number of studies and benchmarks suggest that the long-context
LLMs may not be able to fully utilize their context window, and therefore performance degrades on
simple retrieval and complicated reasoning tasks as the input length grows and/or the position of the
answer varies within the context (Hsieh et al., 2024; Yuan et al., 2024; Liu et al., 2023b; Levy et al.,
2024).

Status Check on LLM Reasoning Consequently, in parallel to impressive advances in LLMs abil-
ities, caution has been raised on the discrepancy between claimed reasoning abilities as per stan-
dardized benchmarks and true reasoning skills. The scientific community has advocated for careful
investigations of issues such as data contamination, performance robustness and generalization, and
flawed reasoning benchmark that supports “shortcut learning” (Mitchell, 2023; Wu et al., 2024). For
example, the presence of reasoning shortcuts in the task samples themselves has been reported in the
HotPotQA dataset, which does not ensure language models are actually being required to perform
multi-hop processing over the context (Jiang & Bansal, 2019). Recently, a number of tasks and
benchmarks have been developed to address these issues (Valmeekam et al., 2022; Kuratov et al.,
2024; Nezhurina et al., 2024). Along this line, we here show the generalization robustness of Mem-
Reasoner across (i) “unseen” context that consists of varying length of irrelevant natural text and (ii)
answer distribution that is different from the training distribution.

3 MULTI-STEP REASONING WITH MEMREASONER

The key components of MemReasoner involve an LM encoder, an episodic memory module, and
an LM decoder (see Figure 2a). The role of the episodic memory module is to enable write of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

context encodings in the memory, to allow performing search over the context encodings and read
from them, in order to feed the decoder to execute the task. Given a logical reasoning task for which
the supporting facts (reasoning process) and the final answer (reasoning outcome) are available, the
MemReasoner architecture is trained to recover the supporting facts and the final answer. A search
in the latent memory space is performed during training in order to correctly output the final answer
and the supporting facts. An additional point worth mentioning is that, MemReasoner also is trained
to learn the relative order of the supporting facts in the context, which is crucial for reconstructing
an agent’s or object’s most recent location, as required by the bAbi reasoning tasks. Details are
provided below.

3.1 PRELIMINARY

Let X be the LM input space, Z be the latent space, and Y be the LM output space. Larimar
(Das et al., 2024) features an encoder e that maps an input to an embedding z ∈ Z ⊆ RD, and
a memory moduleM. The memory M is adaptable in the sense, that it allows “write” and “read”
operations as episodes (aka, contexts C, where each context is comprised of E sentences) arrive, i.e.,
M̂ = write(M, z), zread = read(M̂, z), wherein M̂ is the updated memory after an write. And, a
decoder d that performs generations conditioned on the memory readout zread.

3.2 LARIMAR FRAMEWORK

Now, suppose one is given an input context C = {c1, ..., cE} with E denoting the length of the
context, and the target task is to answer a question q conditioned on the given context C. To approach
the task within the Larimar framework, the input, both context C and query q, are encoded to their
latents (z1, . . . , zE and zq) via the encoder e. Next, let M0 be the initial memory, write the context to
the memory via a write operation. To do so, Larimar follows the earlier works on Kanerva Machine
(Wu et al., 2018), which is inspired by Kanerva’s sparse distributed memory model (Kanerva, 1988),
where the memory is viewed as a global latent variable in a generative model. In this framework,
the goal is to learn a memory dependent data prior and learnable addresses, where the memory
update and read/write are considered as Bayesian inference, i.e., the posterior parameters are updated
as new data arrives. Later, (Pham et al., 2022) reformulated the encoding of new memories and
decoding data from memories from Bayesian updates to an equivalent minimization problem, which
essentially amounts to solving a linear system of equations, efficiently done via computing matrix
pseudo inverses indicated by † hereafter. Therefore, memory is updated via the write operation such
that, M̂ = (ZξM

†
0)

†Zξ, where Zξ = [z1 + ξ1, z2 + ξ2, . . . , zE + ξE] and ξi ∼ N (0, σ2
ξI).

Then, the read operation translates the query embedding from the lens of the encoded memory to a
query readout zr via zr = (zqM̂

† + η)M̂ , where η ∼ N (0, σ2
ηI). Lastly, the decoder d decodes the

query q conditioned on the readout by using a learnable broadcasting parameter WM that casts zr
to each decoder layer and obtains hm

k that serves as the past key values for k = 1, . . . , L, where L
is the number of layers in the decoder.

We use this memory-augmented LLM architecture of Larimar and the operations as backbone for
MemReasoner, due to its memory and space-efficient read/write abilities and demonstrated gener-
alizability at test-time. It is worth mentioning the earlier works on memory-augmented neural nets,
which use a recurrent neural net together with an external memory, have investigated ideas like
temporal feature learning and iterative hops over context, for example, see (Weston et al., 2014;
Sukhbaatar et al., 2015). However, to our knowledge, this is the first study to enable those opera-
tions around the explicit episodic memory of a transformer-based LLM during training and test the
resulting model’s generalizability on a long-context reasoning benchmark like BABILong.

3.3 MEMORY WITH TEMPORAL ORDER

Recall, the latent encoding of facts {z1, ..., zE}within a context episode C are written in the memory
M in an order-invariant manner. However, many multi-step reasoning tasks require some notion of
temporal context. For example, when answering “where is John?” in the context of “. . . John is
in the bathroom. . . . John goes to the garden.” (“. . .” denotes irrelevant facts), there should be a
mechanism in place to guarantee that the memory encodes the correct temporal order of the facts,
and the readout should reflect “John goes to the garden.” as the supporting fact instead of “John is
in the bathroom.”.

To introduce some temporal notion within the context, in MemReasoner we introduce a temporal
encoding module P that transforms un-ordered fact latents {z1, ..., zE} within a context episode to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: A diagram of the pipeline for reasoning with MemReasoner. (a) Conceptual overview
of the framework. (b) Detailed architecture. q denotes the query, c1, ..., cE denotes the context for
answering the query. zq denotes the encoding of the query while {z1, ..., zE} denote encodings of
each line of the context. We use z̃ to denote temporally encoded latents.

their ordered counterparts {z̃1, ..., z̃E}. The temporal encoding module is generic and allows any
structure featuring sequentiality within context. In practice, we investigate two general types of
encoding methods, un-parameterized methods such as Sinusoidal Positional Encoding and parame-
terized methods such as GRUs.

Positional Encoding. We compute positional encodings for each line of context within the episode
by using sine and cosine functions similar to (Vaswani et al., 2017). Additionally, we experiment
with positional encoding which assigns encodings starting from the last element of the episode.
The structure ensures that for contexts of different length, the last lines of the contexts are encoded
similarly, which is useful for QA tasks in which the most recent information is more relevant for
answering the question.

Finally, to convert {z1, ..., zE} to {z̃1, ..., z̃E} with positional encodings, we add the computed
positional encodings to the input.

GRU. We also investigate learnable encodings via a bidirectional GRU unit. For these, we treat
{z1, ..., zE} as the sequence passed as input into the GRU and simply let {z̃1, ..., z̃E} be the sequen-
tial outputs of the GRU.

These ordered context embeddings {z̃1, ..., z̃E} are then written to memory via Larimar’s write
operation.

3.4 ITERATIVE READ AND QUERY UPDATE

A typical multi-step reasoning task often inherently requires “hops” between facts until the final
solution is found. Additionally, the query embedding can be updated accordingly to reflect the most
recent hop.

In order to perform hopping between facts, we first recall the three key components interacting with
the memory module M, the fact embeddings ({z1, . . . , zE}) within a context episode, the query
embedding zq , and the memory readout zr. Let us further consider M stores facts that have been
ordered temporally {z̃1, ..., z̃E}.

To enable iterative read, we pass zq through a linear layer to obtain ẑq=Wqzq before the read
operation from the memory, where Wq ∈ RD×D is a learnable parameter that absorbs the scale
changes introduced by the position encoding in the memory. Specifically, different from Section 3.1,
here we have zr = (ẑqM̂

† + η)M̂ .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To update the query, we first update the query latent and let zq ← zq + α · zr, where α ∈ R is a
hyperparameter to balance the load from the previous readout. The updated query is then fed into
the memory module for another read operation to obtain a new z̃r. The query update procedure is
repeated until the readout converges (i.e. ||z̃tr − z̃t+1

r ||2 < τ where z̃tr denotes the readout at time t
and τ is a hyperparameter) or until it reaches a fixed number of maximum iterations.

3.5 FULL WORKFLOW

Now that we have discussed all components of MemReasoner, we elaborate the full pipeline in the
following and provide a visualization in Figure 2b.

Consider an input context C = {c1, ..., cE}, a question q, an encoder e, a temporal encoding mod-
ule P , an initial memory module M, and a decoder d. We first encode the context C and query
q to their latents, z1, . . . , zE and zq , via encoder e. Then, we follow Section 3.3 and transform
z1, . . . , zE to z̃1, ..., z̃E . Next, we write the ordered context z̃1, ..., z̃E to the memory and obtain M̂ .
Subsequently, we read using the query latent from the memory and perform query and read updates
according to Section 3.4. After we have obtained a z̃r as a final readout which does not undergo
update anymore, we map z̃r to the corresponding unordered encoding in M . This is because we
only want the additional position information to be used when locating the most relevant contexts,
but not during the decoding - if being fed to the decoder, the decoder may overfit to the ordering
information in the latents. We do this by first finding the index of the most similar ordered latent
encoding i = argminj∈{1,...,E} ||z̃r − z̃j ||2 and then obtaining the corresponding encoding zi from
the unordered encodings (prior to undergoing temporal encoding in Figure 2) {z1...zE}. Lastly, the
decoder d decodes the prompt Pa given for answer generation conditioned on zi. We provide the
full pseudocode in Algorithm 1.

3.6 TRAINING OBJECTIVES

Let Dreason denote the reasoning data distribution while Dpretrain denotes the pretraining data distri-
bution. Each sample from Dreason is of the form (q, C, S, a) where q is the query, C = {c1, ..., cE}
are the facts in the context, S is a set of indices corresponding to supporting facts (we will use Si

to denote the ith supporting fact index in S), and a is the answer. Meanwhile the pretraining dis-
tribution corresponds to a generic corpus, e.g. Wikipedia. Let e denote the encoder, d denote the
decoder, t denote temporal encoding, z̃ir denote the ith temporally encoded readout from iterative
reading with z̃0r = q, zir represent the unordered encoding corresponding to the ith ordered readout,
and Pa and Ps denote the prompts for generating the answer and supporting fact respectively. To
train the model, we utilize the following loss function in Equation 1.

L = E(q,C,S,a)∼Dfinetune

Ez
|S|
r ∼p(z

|S|
r |q,M,z̃0

r ...z̃
|S|−1
r)

ln p(a|z|S|
r , Pa)︸ ︷︷ ︸

reconstruction of answer

+α

|S|∑
i=1

Ezi
r∼p(zi

r|M,z̃0
r ...z̃

i−1
r) ln p(cSi

|zir, Ps)︸ ︷︷ ︸
reconstruction of supporting facts

+β
∑
s∈S

ln p(d(e(cs)))︸ ︷︷ ︸
autoencoding of supporting fact

+δ

|S|∑
i=1

Ez̃i
r∼p(z̃i

r|q,M,z̃0
r ...z̃

i−1
r)ℓorder(z̃

i
r, Si)︸ ︷︷ ︸

ordering loss

+ ρ Ex∼Dpretrain ln p(d(e(x)))︸ ︷︷ ︸
autoencoding of pretraining dataset

(1)

α, β, δ and ρ are hyperparameters controlling regularization strength and ℓorder is given by

v(zr) = softmax([−||t(e(c1))− zr||2, ...,−||t(e(cE))− zr||2]⊺)
ℓorder(zr, s) = − ln v(zr)s

(2)

The first and second terms correspond to the reconstruction loss of the answer and the supporting
fact(s) with respect to the corresponding prompt for obtaining the answer Pa and final readout, the
third and the fifth terms correspond to the autoencoding loss of the supporting fact(s) and pretraining

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1:
1] Function IterativeRead(q, {c1, ..., cE}, α, τ):

// q denotes the query tokens while {c1, ..., cE} denote the E
lines of context tokens, α is a hyperparameter for the
query update, τ is a threshold hyperparameter for
terminating iterations, Pa is the prompt given to the
decoder for answer generation

// encode query and context lines with encoder
2 zq ← encode(q) for i← 1 to E do
3 zi ← encode(ci)
4 end

// apply temporal encoding over the sequence of context lines
and write to memory

5 z̃1, ..., z̃E ← temporalEncoding(z1, ..., zE)

6 M̂ ←write(z̃1, ..., z̃E)
// iterative read and query update

7 z̃r ← queryUpdate(zq, α, τ)
// Map to latent prior to performing temporal encoding

8 i∗ ← argmini∈{1...E} ||ẑi − ẑr||2
9 return decode(zi∗ , WM , Pa) // generate the answer with the

decoder, WM is a learnable parameter which interfaces the
zi∗ with the decoder

10

11

12 Function temporalEncoding({z1, ..., zE}, method):
// temporally encode the sequence {z1, ..., zE}

13 if method = PE then
14 return {zi + PE(i)| ∀i ∈ {1, ..., E}}
15 else if method = GRU then
16 return GRU({z1, ..., zE})
17

18 Function queryUpdate(zq, α, τ):
// given the query encoding zq and threshold τ, perform

iterative reading and update query
19 z̃r ← read (Wqzq,M) // Wq is learned parameter
20 zq = zq + αz̃r // query update
21 z̃r,next ← read (Wqzq,M)
22 do
23 z̃r ← z̃r,next
24 zq = zq + γz̃r
25 z̃r,next ← read (Wqzq,M)
26 while ||z̃r,next − z̃r||2 > τ
27 return z̃r
28

data. The fourth term is a loss for encouraging the index of the most similar entry (by l2 distance)
to the ordered readout at each iteration to match the index of the supporting fact through computing
the cross entropy.

4 EXPERIMENTAL DETAILS AND RESULTS

4.1 DATASETS AND DATA PRE-PROCESSING

In the main paper, we utilize tasks 1 and 2 from the synthetic bAbi benchmark as our testbed. We
also report results on Variable Tracking task from the RULER benchmark (Hsieh et al., 2024) in
appendix. The bAbi datasets were prepared by synthesizing relations among characters and objects
across various locations, each represented as a fact, such as “Mary traveled to the garden”. Task 1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

requires performing a single hop to find answer, whereas task 2 requires gathering two supporting
facts in the right order (see Fig 1). These single to multi-hop QA tasks from BABILong benchmark
together provide a controlled setting for evaluating LLMs’ ability to reason over long context, where
the difficulty of the task can be varied by changing the length of irrelevant text. The nature of this
benchmark, where the synthetic sentences corresponding to the actual reasoning task are hidden
inside irrelevant but lengthy naturally occurring text, keeps it at a low risk of data contamination to
training sets of todays’ LLMs. And finally, BABILong leaderboard shows tasks 1 and 2, while being
simple enough, are challenging enough for off-the-shelf LLMs to solve.

We finetune MemReasoner separately on original bAbi task 1 and task 2 training split, each con-
sisting of 10k samples (Weston et al., 2015). We then evaluate on the test set of the corresponding
task from bAbi as well as from BABILong (Kuratov et al., 2024), in which the core reasoning facts
from bAbi is distributed over arbitrarily long documents. Here we benchmark MemReasoner on
BABILong test samples of up to 128k tokens.

For preprocessing bAbi data, we treat each training sample comprised of multiple facts as a single
context episode, and individual sentence within that context as an instance within that episode. Each
fact within an episode contains up to 64 tokens.For BABILong and for Wikipedia, if sentences are
longer than 64 tokens, we split the sentences at multiples of 64 tokens.

We initiate MemReasoner finetuning from Larimar checkpoint pretrained on Wikitext (obtained
by following the training protocol described in (Das et al., 2024)), which uses a Bert-large as the
encoder and a GPT2-large as the decoder (For extension to MemReasoner with GPTJ-6B, see ap-
pendix). The number of parameters in MemReasoner is 1.4B. The slot size in the memory is 512.
During finetuning, we randomly sample a batch of pretraining data (Wikipedia) of the same size as
the batch of finetuning data (bAbi) for computing the autoencoding loss on the pretrain dataset of
2M samples. We generate the answer to the question by passing a prompt to the decoder (i.e. in the
case of bAbi Task1-2, the prompt has the from “<BOS> X is in the” where X denotes subject of
the query).

We train MemReasoner models for 200 epochs using Adam optimizer with learning rate 5e-6. We
set batch size to be 10. Additionally, we set query update parameter α = 1. The maximum episode
length varies from 14 (bAbi Task 1) to 72 (bAbi Task 2). Which means that MemReasoner has been
exposed to a maximum of 90 and 573 tokens during finetuning on task 1 and task 2, respectively,
whereas at test-time the model is exposed to contexts that are up to 128k tokens long. Since bAbi
Task 1 is a single hop task, we do not perform query update during either training or inference. When
fine-tuning on bAbi Task 2, we perform a fix number of 2 hop (equivalent to 1 query update) during
the training. With bAbi Task 2 fine-tuned MemReasoner, we re-use the “2 hop” setting at inference
on all tasks, including bAbi Task 2 and BABILong Task1/2. We consistently use query update
parameter α=8 throughout our experiments and include an ablation study on α in the appendix.
Due to the page limit, we also defer ablation studies on the episodic memory, temporal encoding
schemes, level of supervision, and the number of training epochs to the appendix.

4.2 BASELINE METHODS

Off-the-shelf Baselines. We show published results from (Yang et al., 2023) obtained using GPT-3
(175 B parameters) as an off-the-shelf baseline, with few-shot and chain-of-thought prompting, for
comparison with MemReasoner on original bAbi test set. We also report performances of a recurrent
memory transformer-0.77B and of a Mamba-1.4B model, which we fine-tune on bAbi samples, on
bAbi test set. For BABILong benchmarking, we include the following models from BABILong
leaderboard: (1) Meta-Llama-3-8B-Instruct with an 8K context window size, (2) Phi3-mini-128k-
instruct – a long-context LLM consisting of 3.8B parameters and a 128k token long context window,
and (3) Llama3-ChatQA-1.5-8B with a nvidia/dragon-multiturn-query-encoder – a RAG framework.

Fine-tuned Baselines. We add RMT-137M and Mamba-130M performances from BABILong
leaderboard, which has been finetuned on a set of samples that belong to the same distribution
as BABILong (with PG19 padding) but is not included in BABILong benchmarking test set. These
models were finetuned by using a curriculum schedule that progressively increases sequence lengths:
1, 2, 4, 6, 8, 16 and 32 segments (Kuratov et al., 2024).

We further benchmark RMT and Mamba models finetuned on bAbi on BABILong test samples. The
goal is to figure out if those alternative recurrent models perform well on BABILong leaderboard due

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to their true learning ability of the underlying task or due to their exposure to BABILong samples
during finetuning. We fine-tune off-the-shelf RMT(0.14b/0.77b) and Mamba (0.13b/1.4b) models
using the next token prediction loss on final answer reconstruction on bAbi Task 1 and 2 separately
till the testing accuracy on the task is sufficiently high (near 100%). In practice, we use 5 epochs
to reach above 99% accuracy on RMT and 20 epochs for the accuracy to plateau on Mamba, all
using Adam optimizer with learning rate 1e − 5. RMT training was done with multiple segments
using a curriculum learning procedure. In order to train with more segments while exposing the
model to only bAbi data, we reduce the segment size to 64 for task 1 and 128 for task 2. This leads
to 2 segments in training for task 1 and 2-4 segments in training for task 2. In order to mimic the
curriculum learning process, we filter the data so that we train with inputs with token length up to
the segment size for 10 epochs, up to 2 times segment size for another 10 epochs, and so on.

We also add a Larimar-1.3B baseline, which is finetuned on bAbi and Wikipedia samples with first
and fifth terms from eqn. 1. The purpose of comparing MemReasoner with respect to Larimar is
to disambiguate the benefits of temporal feature learning and iterative query and read updates on
top of the episodic memory. Larimar fine-tuning shares the same training setups as MemReasoner.
We further add experiments with Qwen2.5-0.5B (https://huggingface.co/Qwen/Qwen2.5-0.5B) and
Qwen2.5-1.5B (https://huggingface.co/Qwen/Qwen2.5-1.5B) models (both of which support long
context windows up to 128k tokens), as well as a memory network (Sukhbaatar et al., 2015) that is
not coupled to transformer-based LLMs. See appendix for results.

It should be mentioned that all baselines used in this study are trained with supervision on final an-
swer, whereas MemReasoner uses both supporting fact and final answer supervision. As mentioned
earlier, the goal is to check if this additional supervision, when tied to the operations around the
latent memory, enables better reasoning generalization. In that sense, MemReasoner offers a princi-
pled, model-agnostic approach for augmenting memory-based LLMs with robust reasoning, which
can be complimentary or used together with continual training. Throughout the paper, we report
task accuracy as the performance metric, so higher the better.

4.3 RESULTS

4.3.1 PERFORMANCE ON BABI TEST SET

Table 1 reports the performance of MemReasoner, which is independently finetuned on original
bAbi task 1 and task 2, along with the baselines on the corresponding bAbi test set of 1k sam-
ples. Results show that, while prompting techniques such as few-shot learning and chain-of-thought
prompting (Yang et al., 2023) work well on task 1 which requires a single hop to find the entity
location, those baselines perform much poorly on task 2 that requires learning temporal dependence
and performing multiple hops across facts to generate the final answer of object location. MemRea-
soner, as well as RMT, Mamba and Larimar, all finetuned on bAbi achieves near-perfect accuracy
on both tasks. Importantly, Larimar baseline falls behind MemReasoner on both tasks, while the gap
being bigger on more complicated task 2, implying that read/write to episodic memory alone is not
sufficient.

4.3.2 PERFORMANCE ON BABILONG TEST SET

Table 2 and Table 3 report accuracy of MemReasoner, together with baseline methods, on BABI-
Long task 1 and task 2 samples, respectively. ‘-’ means unavailable due to out of memory errors
or maximal input length constraints. For task 1, the following observations can be made: (i) at
half of model’s context window, the accuracy of Llama-3-8B-Instruct drops to 80% and Phi-3-mini-
128k drops to 63% of the corresponding model’s performance at 0k samples, indicating LLMs are
not good at utilizing their full context window. With RAG, the performance stays at a flat ≈ 60%
all throughout. Interestingly, while RMT and Mamba, when finetuned on BABILong samples of
up to 16k tokens, are the best models reported on BABILong leaderboard, they perform poorly on
BABILong samples beyond 0k as we finetune them on bAbi samples. This suggests exposure to
BABILong during training helps RMT and Mamba, as the models have seen facts embedded in-
side the background distractor text from PG19. Larimar finetuned on bAbi, while performing much
poorly on bAbi test set and BABILong 0k set to begin with, the accuracy on longer BABILong
samples is higher than bAbi-tuned RMT and Mamba baselines. In contrast, MemReasoner trained
on bAbi with supervision on supporting fact(s) and final answer generalizes well on BABILong for
task 1, providing an average accuracy of 84.6% and 68.5% on ≤ 8k and ≥ 16k BABILong samples,
respectively. These results suggest, that models can benefit on long-context reasoning from having
access to longer similar sequences or to reasoning processes during training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model type Task 1 Task 2
CoT - GPT-3 97.3 72.2

Few-shot - GPT-3 98.4 60.8
RMT-.77B (bAbi) 97.7 97.5

Mamba-1.4B (bAbi) 100 95
Larimar-1.3B (bAbi) 60.6 44.9

MemReasoner-1.4B (bAbi) 100 100

Table 1: Performance on bAbi tasks. Best model is highlighted in bold. GPT-3 (=text-davinci-003)
baselines are from (Yang et al., 2023). Finetuning data, if any, seen by a model is specified within
parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 100 97 100 100 100 100 100 100 99 96 94
Mamba-.13B (BABILong)* 100 100 100 100 100 100 100 100 100 100 100

Few-shot - Meta-Llama-3-8B-Instruct* 84.4 - 98 93 90 79 62 - - - -
Few-shot - Phi-3-mini-128k-instruct* 78.4 38 97 84 72 69 70 60 53 38 1

RAG - Llama3-ChatQA-1.5-8B* 59.6 60 60 62 60 58 58 60 60 56 64
RMT-.14B (bAbi) 32.8 15.5 96 4 26 19 19 12 22 12 16
RMT-.77B (bAbi) 37.2 16.7 99 27 21 25 14 14 19 16 18

Mamba-.13B (bAbi) 20.4 - 85 11 5 0 1 0 0 0 -
Mamba-1.4B (bAbi) 44.2 - 100 60 42 19 0 0 0 0 -
Larimar-1.3B (bAbi) 44.8 14.3 63 59 55 28 19 14 16 13 14

MemReasoner-1.4B (bAbi) 84.6 68.5 99 91 83 76 74 71 68 70 65

Table 2: BABILong Task 1 Results. Baseline results marked with “*” are cited from (Kuratov et al.,
2024). The finetuning data, if any, seen by each model is specified within parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 98.8 68.5 100 100 99 98 97 94 82 59 39
Mamba-.13B (BABILong)* 98.0 94.5 98 98 98 98 98 98 98 95 87

Few-shot - Meta-Llama-3-8B-Instruct* 40.2 - 47 46 49 39 20 - - - -
Few-shot - Phi-3-mini-128k-instruct* 40.6 15.5 57 38 38 36 34 23 22 15 2

RAG - Llama3-ChatQA-1.5-8B* 21.6 8.75 28 25 22 19 14 13 9 7 6
RMT-.14B (bAbi) 36.6 12 97 31 19 16 20 12 12 14 10
RMT-.77B (bAbi) 41.2 17.5 100 36 21 27 22 18 23 13 16

Mamba-.13B (bAbi) 16.2 - 64 10 3 3 1 0 0 0 -
Mamba-1.4B (bAbi) 31.6 - 94 44 15 5 0 0 0 0 -
Larimar-1.3B (bAbi) 31 20.3 42 41 29 22 21 19 16 22 24

MemReasoner-1.4B (bAbi) 60.6 18.5 100 73 61 46 23 20 19 17 20

Table 3: BABILong Task 2 Results. Baseline results marked with “*” are cited from (Kuratov et al.,
2024).

For more complicated task 2, which requires learning temporal dependence between the facts and
finding and using two supporting facts in correct order for generation, both few-shot prompting
and RAG with different base LLM show poor performance to begin with, and sharply degrade
with context length increase of test samples. Again, RMT and Mamba, when fitted to BABILong,
perform well on test samples, both struggle to generalize from bAbi to BABILong. For example, the
accuracy drops from near 100% at 0k to 18% for RMT and to 36% for Mamba at 1k. Poor results
at short context length for Larimar also indicates model’s failure to learn the task. MemReasoner,
in comparison, provides an accuracy of 100% at 0k, 73% at 1k, and 46% at 4k, while performance
degrades to≈ 18.5% beyond 16k. The modest (≈ 18.5%) performance of bAbi-tuned MemReasoner
at 16k or longer context suggests that there remains significant room for MemReasoner to improve,
which will be investigated in future. One possible direction is to train MemReasoner on longer
sequences and/or with different levels of supervision.

4.3.3 GENERALIZATION TO OUT-OF-DISTRIBUTION TEST SETS

To test if the models have indeed learned to solve the tasks, we create a new testbed where the
construct of the tasks remains the same, but the answer changes from training to test set. Specifically,
we change the location information present in the answer set of bAbi training → test as follows:

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Model type Task 1 Task 2
RMT-.77B (bAbi) 44.7 0.6

Mamba-1.4B (bAbi) 67 44
Larimar-1.3B (bAbi) 24.9 7.8

MemReasoner-1.4B (bAbi) 87.2 52.7

Table 4: Robustness to location changes in bAbi test set.

Model type 0k 1k 2k 4k
RMT-.77B (bAbi) 100 19 20 12

Mamba-1.4B (bAbi) 81 8 0 0
Larimar-1.3B (bAbi) 45 19 20 11

MemReasoner-1.4B (bAbi) 83 58 50 45

Table 5: Performance on bAbi task 2 → BABILong task 1 generalization.

office → library, garden→ garage, kitchen→ cafe, bathroom → attic, bedroom→ basement, hallway
→ gym. This now becomes a more stringent test, to which we subject all alternative architectures
including MemReasoner. As shown in Table 4, RMT struggles in this setting across both tasks. On
task 1, MemReasoner shows≈ 20% higher accuracy than Mamba, whereas on task 2 MemReasoner
wins by ≈ 8%.

Finally, we also check if the models trained on 2-hop bAbi task 2 can solve the simpler 1-hop task 1
but on the corresponding BABILong samples. Results are shown in Table 5, indicating that the best
performing model on 0k BABILong task 1 samples is RMT, while MemReasoner being a second.
However, both RMT and Mamba perform very poorly on longer (1-4k tokens) BABILong samples,
whereas MemReasoner’s accuracy remains strong.

4.4 CONCLUSION

In this work, we introduce a new memory-augmented LLM architecture that comes with two essen-
tial abilities required to perform robust multi-step reasoning, i.e., learning temporal relations and to
hop meaningfully between facts within a context. Our formulation and implementation of the multi-
step reasoning mechanisms around the episodic memory, textcolortogether with supervised training
using reasoning steps and final answer, is generic and in principle model-agnostic, and therefore
can be leveraged to enhance other memory-augmented LLMs, including the ones used in this study
as baselines. We examine MemReasoner on BABILong, a benchmark purposed to test models’
reasoning ability when relevant facts are distributed in background of very large textual corpora.
This deceptively lengthy nature of BABILong samples, along with the presence of distracting text
that is naturally occurring, makes the underlying reasoning task more challenging on which even
bigger LLMs that have seen samples with long context during training fails. We show here that,
MemReasoner trained on bAbi samples provides strong performance on BABILong, compared to
the off-the-shelf powerful LLM baselines and alternative recurrent architectures that are also fine-
tuned on bAbi data, though only with final answer supervision.. We further show that MemReasoner
generalizes better in the setting where answers in training set differs from those in the test within
the same task. MemReasoner also shows good adaptation from two-hop to single-hop QA task,
whereas the test samples are much longer and mixed with natural irrelevant text. Additional ex-
periments show generality of MemReasoner approach across decoder scale (GPT2-l to GPTJ-6B)
and across different multi-hop tasks. Results indicate, supervision on both supporting facts and final
outcome, together with multi-hop search over the context in latent memory space, enables more
robust reasoning generalization of LLMs. Taken together, designing alternative architectures with
new loss objectives that encourage the model to learn the underlying reasoning skills is a potential
path toward more robust reasoners.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai, Aurélie
Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jiřı́, Navrátil, Soham Dan, and Pin-Yu Chen.
Larimar: Large language models with episodic memory control, 2024. URL https://arxiv.
org/abs/2403.11901.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024.
URL https://arxiv.org/abs/2402.13753.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Yichen Jiang and Mohit Bansal. Avoiding reasoning shortcuts: Adversarial evaluation, training,
and model development for multi-hop qa, 2019. URL https://arxiv.org/abs/1906.
07132.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York,
2011. ISBN 9780374275631 0374275637. URL https://www.amazon.de/
Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_
pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang. Grace:
Discriminator-guided chain-of-thought reasoning, 2023. URL https://arxiv.org/abs/
2305.14934.

Georgios Kollias, Payel Das, and Subhajit Chaudhury. Generation constraint scaling can mitigate
hallucination, 2024. URL https://arxiv.org/abs/2407.16908.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models, 2024. URL https://arxiv.org/
abs/2402.14848.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the log-
ical reasoning ability of chatgpt and gpt-4, 2023a. URL https://arxiv.org/abs/2304.
03439.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts, 2023b.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?,
2022. URL https://arxiv.org/abs/2202.12837.

Melanie Mitchell. How do we know how smart ai systems are?, 2023.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

12

https://arxiv.org/abs/2403.11901
https://arxiv.org/abs/2403.11901
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/1906.07132
https://arxiv.org/abs/1906.07132
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://arxiv.org/abs/2305.14934
https://arxiv.org/abs/2305.14934
https://arxiv.org/abs/2407.16908
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2304.03439
https://arxiv.org/abs/2304.03439
https://arxiv.org/abs/2202.12837

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models,
2024. URL https://arxiv.org/abs/2406.02061.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024. URL https://arxiv.org/
abs/2404.19733.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models,
2023. URL https://arxiv.org/abs/2303.09014.

Kha Pham, Hung Le, Man Ngo, Truyen Tran, Bao Ho, and Svetha Venkatesh. Generative pseudo-
inverse memory. In International Conference on Learning Representations, 2022.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas,
Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large
language models, 2023. URL https://arxiv.org/abs/2212.10947.

Sebastian Ruder. Challenges and opportunities in nlp benchmarking, 2021.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an
analysis of cot in planning, 2024. URL https://arxiv.org/abs/2405.04776.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks,
2015. URL https://arxiv.org/abs/1503.08895.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for LLMs on planning and reasoning about change).
In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. URL https:
//openreview.net/forum?id=wUU-7XTL5XO.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*:
Improving multi-step reasoning for llms with deliberative planning, 2024. URL https://
arxiv.org/abs/2406.14283.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

13

https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2303.09014
https://openreview.net/forum?id=R8sQPpGCv0
https://arxiv.org/abs/2212.10947
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2405.04776
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1503.08895
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jian Wu, Linyi Yang, Zhen Wang, Manabu Okumura, and Yue Zhang. Cofca: A step-wise counter-
factual multi-hop qa benchmark, 2024. URL https://arxiv.org/abs/2402.11924.

Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. The kanerva machine: A generative
distributed memory, 2018.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis,
Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models, 2023. URL
https://arxiv.org/abs/2309.16039.

Zhun Yang, Adam Ishay, and Joohyung Lee. Coupling large language models with logic program-
ming for robust and general reasoning from text. In The 61st Annual Meeting Of The Association
For Computational Linguistics, 2023.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, Guohao Dai, Shengen Yan, and Yu Wang. Lv-eval: A balanced long-
context benchmark with 5 length levels up to 256k, 2024. URL https://arxiv.org/abs/
2402.05136.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

14

https://arxiv.org/abs/2402.11924
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2402.05136
https://arxiv.org/abs/2402.05136
https://arxiv.org/abs/2203.14465

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 WHY NOT FINETUNE ON LONGER SEQUENCES?

The goal of this work is to propose an LLM-based architecture that learns to reason over unseen
long-context in an efficient, robust, and generalizable manner. As such, the evaluation framework
corresponds to a set-up where the core reasoning facts are diluted in the presence of irrelevant
natural text distractors distributed over the context. This setup allows one to test how consistently
language model can solve the same reasoning task across different input lengths. This is inspired
by the recent research showing that current LLMs’ reasoning performance degrade at much shorter
input lengths than their technical maximum (Levy et al., 2024). At the same time, finetuning on
longer sequences presents several practical challenges: (i) The longer sequences with proper (human
or machine) annotation should be available during training – which is typically expensive and is
difficult to scale in real-world. (ii) Expanding the context window usually incurs a quadratic increase
in computational and memory cost for transformer-based LLMs. For example, the training setup
used in (Fu et al., 2024) shows that extending the Llama-2 7B model’s context window from 4k
to 80k requires 8 A100 GPUs (80G each) for five days. The costs of resources and time further
increase significantly for larger models, for longer context length, and for more extended training
period. (iii) The test distribution is still expected to match to longer sequences seen during training
(e.g. mixture of bAbi with text from PG-19 in the case of BABILong) – which may not be always
possible. As a result, straightforward continual pre-training or fine-tuning on longer sequences may
still not fully solve the fundamental problem of learning to reason over (long) context in a robust
and generalizable manner, and such approaches can benefit from using additional supervision (when
available) and training-time search in the latent memory space.

While MemReasoner is not trained on longer samples that are similar to the test distribution (whereas
RMT-BABILong and MAMBA-BABILong models in Tables 2 and 3 are), we train the model with
additional supervision on supporting facts. In that sense, our MemReasoner approach with reasoning
process and outcome supervision is complementary to the continual pre-training only with outcome
supervision.

A.2 ADDITIONAL DATASET PREPROCESSING DETAILS

In the unprocessed bAbi data, a single data instance consists of a sequence of lines representing
facts to reason over with questions interspersed throughout the facts. We preprocess the bAbi data
such that after pre-processing, a single training sample consists of a single question with facts for
reasoning being the lines before it, with previous questions replaced by an empty line. On average,
this leads to about 2 empty lines per training sample. For batches containing training samples with
different lengths of context episodes, we pad shorter episodes with rows of the encoder padding
token at the beginning.

A.3 COMPARISON OF INFERENCE-TIME COMPLEXITY

Let H1, H2 and d1, d2 be the number of transformer layers and hidden state dimension in the
encoder and decoder, respectively. Let E denote the number of context lines in a sample, L be
the max context length, L1 be the max query length, D be the latent space dimension, and m be
the memory size. The inference-time computational complexity for MemReasonr can be estimated
by the encoder complexity O(H1((EL2 +L2

1)d1 + (EL+L1)d
2
1)), temporal encoding complexity

O(Ed2), memory operation complexityO(Edm2), decoding complexityO(H2(|Pa|2d2+|Pa|d22)),
and broadcasting complexity O(d1dE) and O(d2dH2). For a typical GPT decoding, the inference-
time computational complexity is O(H2((EL+ L1)

2d2 + (EL+ L1)d
2
2)).

To provide a more direct comparison, we give in Table 6 the inference cost measured in seconds per
input for evaluating with BABILong in comparison to the base decoder (gpt2-large). We note that
gpt2-large does not support context lengths longer than 1024 tokens. Overall, we observe that the
increase in inference time for MemReasoner is very small for 0k and MemReasoner is more efficient
for 1k context length. This is because of utilizing the latent encodings of context, performing one-
shot write to the memory, and executing multiple hops over that memory in latent space.

A.4 COMPARISON TO DECODER-ONLY LMS THAT SUPPORT LONG CONTEXTS

We experiment with Qwen2.5-0.5B and Qwen2.5-1.5B models both of which are decoder-only LMs
that support long context windows (up to 128k tokens). The performance of Qwen models on bAbi

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Model type 0k 1k 2k 4k 8k 16k 32k 64k 128k
gpt2-large 0.28 1.13 - - - - - - -

MemReasoner 0.30 0.33 0.40 0.61 0.98 1.94 3.26 11.25 13.77

Table 6: The inference cost measured in seconds per input on BABILong.

Model type Task 1 Task 2
Qwen2.5-0.5B (bAbi) 100 96
Qwen2.5-1.5B (bAbi) 99.9 98.9

MemReasoner-1.4B (bAbi) 100 100

Table 7: Performance on bAbi tasks. Best model is highlighted in bold. GPT-3 (=text-davinci-003)
baselines are from (Yang et al., 2023). Finetuning data, if any, seen by a model is specified within
parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

Qwen2.5-0.5B (bAbi) 45.4 - 94 66 34 23 10 3 1 - -
Qwen2.5-1.5B (bAbi) 61.6 - 100 81 57 42 28 32 18 - -

MemReasoner-1.4B (bAbi) 84.6 68.5 99 91 83 76 74 71 68 70 65

Table 8: BABILong Task 1 Results - Qwen family models.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

Qwen2.5-0.5B (bAbi) 57.8 - 96 76 59 39 19 11 3 - -
Qwen2.5-1.5B (bAbi) 46.6 - 99 67 32 25 10 6 2 - -

MemReasoner-1.4B (bAbi) 60.6 18.5 100 73 61 46 23 20 19 17 20

Table 9: BABILong Task 2 Results - Qwen family models.

Task 1 and Task 2 is similar to the best in MemReasoner (Table 7).Overall, we find that MemRea-
soner is able to achieve better length generalization to long contexts compared to Qwen2.5 (Tables 8
and 9). For location changes, we find that MemReasoner outperforms both Qwen2.5-0.5B and
Qwen2.5-1.5B for Task 1, but for Task 2 Qwen2.5-1.5B outperforms MemReasoner (Table10). For
task generalization (Table 11), Qwen models perform best at shorter BABILong samples, however
MemReasoner excels for demanding ≥ 2k BABILong lengths.

A.5 EXTENSION TO GPTJ-6B
MemReasoner is a model-agnostic way to augment current decoder-only LLMs with dynamically
updatable memory. Via end-to-end training, the architecture learns to write the latent encodings in
a fixed-size memory, order them in their order of appearance in the context, and perform multiple
hop over that context and update the latent query accordingly. The decoder learns a differentiated
attention mechanism to the readout from the memory, to accurately generate the final answer and
supporting facts (intermediate hops). Below, we provide the results when we train a GPTJ-6B de-
coder with MemReasoner training protocol, suggesting more or less similar performance compared
to MemReasoner-1.3B.

A.6 BEYOND BABI DATASET

In this section, we explore the generalization of MemReasoner on another dataset, variable tracking
(VT) from RULER (Hsieh et al., 2024). In the VT task, the model is given context with lines with
information about variable value assignment such as “VAR AAAAA = 16438” or “VAR BBBBB =
AAAAA” and the model is prompted to obtain all variables with a specific value. Variable names
have the format of 5 repeating letters randomly sampled from the alphabet. We train and evaluate
with chains of length 2, 4, 6, 8 , and 10 and return the average accuracy over all chain lengths for
the 1 hop and 2 hop VT tasks. In order to pad the context for lengths 1k, 4k, and 16k, we follow the
approach taken from RULER of padding with the sentence “The grass is green. The sky is blue. The
sun is yellow. Here we go. There and back again.\n” until the context reaches the desired length.
This noise is not present during training and the 0k data follow the same distribution as the training
data.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Model type Task 1 Task 2
Qwen2.5-0.5B (bAbi) 44.2 14.5
Qwen2.5-1.5B (bAbi) 75.2 63.5

MemReasoner-1.4B (bAbi) 87.2 52.7

Table 10: Robustness to location changes in bAbi test set.

Model type 0k 1k 2k 4k
Qwen2.5-0.5B (bAbi) 97 71 47 32
Qwen2.5-1.5B (bAbi) 100 58 36 18

MemReasoner-1.4B (bAbi) 83 58 50 45

Table 11: Performance on bAbi task 2 → BABILong task 1 generalization.

Since VT asks for all variables with a specific value, for MemReasoner, we take all unordered
readouts of the model and pass them individually to the decoder to get the variables from each
reasoning hop, and then concatenate these variables in order to obtain the final answer. For RMT,
we train with 2 segments, with segment size set to the median length on the train dataset. From
Table 13 and Table 14, we observed that it is difficult to train RMT with 2 segments for the 2-hop
VT task, RMT can easily learn a shortcut and have high accuracy on the training set, but does not
generalize well to the test set at 0k length and performance degrades further at longer context length.
Larimar also learned short cuts on 2-hop VT tasks and could not perform well on test sets.

A.7 COMPARISON WITH TRADITIONAL NON-LLM MEMORY NETWORKS

We have performed additional experiments to evaluate the performance of MemN2N (Sukhbaatar
et al., 2015), which we trained on bAbi task 1 and task 2 data with final answer supervision and
achieved 100% test accuracy on both. The results are summarized in the following tables and
demonstrate the lack of generalization ability of MemN2N compared to MemReasoner.

A.8 ABLATION STUDIES

A.8.1 MEMORY

In Table 16, we conduct the ablation study on the episodic memory module in MemReasoner on
bAbi and BABILong, task 1 and 2. Specifically, MemReasoner w/o memory module uses the same
architecture of encoder and decoder (BERT-Large and GPT2-Large respectively) but does not use
the memory module for encoding the context. Instead, the MemReasoner w/o memory uses the
encoder to encode only the question and this is passed in to the decoder as kv-cache. Additionally,
the context and question are passed to the decoder as part of the prompt with the format:

Context:
{context}
Question:
{question}
Answer:

where {context} and {question} represent the context and the question for the datapoint. We train
the model with reconstruction loss to ensure that the model is able to fill in the answer given this
prompt and with autoencoding loss on the pretraining dataset (see last term of Equation 1) in order
to reduce overfitting on bAbi data. We train MemReasoner w/o memory module for 5 epochs.

MemReasoner w/o memory module trained on bAbi task 1 obtains almost perfect accuracy on bAbi
task 1 and BABILong task 1 0k. However, its generalization ability to long context (BABILong 1k
and 2k) is much inferior to MemReasoner (MemReasoner\memory 0% vs. MemReasoner 91% on
BABILong 1k). Similar trends can also be seen from bAbi task 2 trained MemReasoner\memory,
implying the significance of the episodic memory module and the operations around it in MemRea-
soner.

A.8.2 TEMPORAL ENCODING

In Table 17, we experiment with different temporal encoding schemes, including non-parametric
method (Positional Encoding) and parametric method (GRU). In the table, we show MemRea-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model type 0k 1k 2k 4k 8k 16k 32k 64k 128k
Task 1 98 82 77 65 60 68 70 65 67
Task 2 98 65 50 34 35 32 22 27 30

Table 12: Performance of MemReasoner with a GPTJ-6B decoder on BABILong.

Model type 0k 1k 4k 16k
RMT-.77B (VT) 100 5.7 5.0 4.5

Larimar-1.3B (VT) 92.5 92.5 94.0 93.6
MemReasoner-1.4B (VT) 99.9 100.0 99.9 99.9

Table 13: Single hop variable tracking results.

soner’s accuracy on BABILong Task 1. It can be seen that GRU encoding has significant advantage
over Positional Encoding, with much slower decay in the accuracy as the context length increases.
Additionally, though showing higher accuracy compared with Positional Encoding, uni-directional
GRU’s accuracy decreases faster than bi-directional GRUs. Since 1-layer bi-directional GRU has
similar performance with 2-layer bi-directional GRU, we choose the lighter model and use 1-layer
bi-directional GRU throughout the experiments in this paper.

A.8.3 QUERY UPDATE α

In Table 18, we exploit test-time inference hyper-parameter α and its effect in reasoning tasks’
performance. We draw inspiration from (Kollias et al., 2024), where authors investigated the effect
of scaling readout vectors to improve generation quality. In Line 20 of Algorithm 1, when using an
α > 1, we equivalently scale up the readout vectors which greatly help our generalization to Task 1
BABILong according to Table 18 (e.g. from 14% to 45% on 4k context token task).

A.9 EFFECT OF ARBITRARY NUMBER OF HOPS WITH WEAKER SUPERVISION

Table 19 shows performance of MemReasoner that is trained with weaker supervision on bAbi task
2, and is tested on BABILong task 2 test set. In this case, during training an arbitrary number (5)
of hops was used, together with supervision only on the final supporting fact and the final answer.
While performance on longer samples drops compared to the model trained with full supervision,
the model generalizes well on 1k tokens long BABILong samples compared to other baselines (see
Table 3. This direction will be further explored in future work.

A.9.1 TRAINING EPOCHS

In Table 20, we evaluate MemReasoner’s performance when fine-tuned on bAbi task 2 as a func-
tion of the number of training epochs. Specifically, with fewer epochs, MemReasoner demonstrates
stronger robustness to location change, reaching an accuracy of 79% at the 66th epoch, which de-
creases to around 50% as the training continues (at 100/200th epoch). On the other side, MemRea-
soner’s accuracy on shorter context tasks in BABILong Task 1 and 2 (i.e. 0-4k) improves as the
training continues.

A.10 LIMITATIONS AND FUTURE WORK

The current work is limited to testing the MemReasoner framework on synthetic reasoning tasks
only. Future work will extend the framework to evaluating reasoning generalization on natural
language datasets. Another potential direction is extending MemReasoner to scenarios with weaker
and noisy supervision.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Model type 0k 1k 4k 16k
RMT-.77B (VT) 74.6 5.7 1.3 0.2

Larimar-1.3B (VT) 0.1 0 0.1 0
MemReasoner-1.4B (VT) 98.4 97.6 97.0 98.0

Table 14: Two hop variable tracking results.

Model type 0k 1k 2k
BABILong Task 1 100 36 15
BABILong Task 2 100 54 21

bAbi task 2 → BABILong task 1 53 26 19

Table 15: Performance of MemN2N.

Model type Task 1 0k 1k 2k Task 2 0k 1k 2k
MemReasoner\memory 100 100 0 - 99.3 100 29 -

MemReasoner 100 99 91 83 100 100 73 61

Table 16: Ablation study on the episodic memory

Encoding scheme 0k 1k 2k
Positional Encoding 100 27 20

2-layer bi-directional GRU 100 90 80
2-layer uni-directional GRU 94 75 61
1-layer bi-directional GRU 99 91 83

Table 17: Ablation study on the temporal encoding schemes.

Query update Task 2 bAbi Task 2 BABILong Task 1 BABILong
α location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k
1 52.6 100 46 25 18 18 13 16 12 13 78 21 17 14
4 54.2 100 73 61 46 26 22 19 19 27 83 47 44 40
8 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 18: Ablation study on the query update parameter α.

Model type 0k 1k 2k 4k
RMT-.14B (bAbi) 97 31 19 16
RMT-.77B (bAbi) 100 36 21 27

Mamba-.13B (bAbi) 64 10 3 3
Mamba-1.4B (bAbi) 94 44 15 5
Larimar-1.3B (bAbi) 42 41 29 22
MemReasoner (full) 100 73 61 46

MemReasoner (weak) 100 58 31 22

Table 19: Comparison of MemReasoner trained with full supervision with MemReasoner(weak) on
BABILong task 2 samples, where the weak supervision considers an arbitrary five hops and only
supervision on final supporting fact and final answer.

Task 2 bAbi Task 2 BABILong Task 1 BABILong
#epochs location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k

66 78.0 99 70 54 30 27 23 17 18 17 58 51 45 37
100 47.3 100 70 57 38 28 31 25 12 19 82 58 50 46
200 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 20: Ablation study on the number of training epochs

19

	Introduction
	Related Work
	Multi-step Reasoning with MemReasoner
	Preliminary
	Larimar Framework
	Memory with Temporal Order
	Iterative Read And Query Update
	Full Workflow
	Training Objectives

	Experimental Details and Results
	Datasets and Data Pre-processing
	Baseline Methods
	Results
	Performance on bAbi Test Set
	Performance on BABILong Test Set
	Generalization to Out-of-distribution Test Sets

	Conclusion

	Appendix
	Why not finetune on longer sequences?
	Additional dataset preprocessing details
	Comparison of inference-time complexity
	Comparison to decoder-only LMs that support long contexts
	Extension to GPTJ-6B
	Beyond bAbi dataset
	Comparison with traditional non-LLM memory networks
	Ablation Studies
	Memory
	Temporal Encoding
	Query Update

	Effect of arbitrary number of hops with weaker supervision
	Training epochs

	Limitations and Future Work

