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ABSTRACT

Recent benchmarks suggest that there remains significant room to improve large
language models’ ability to robustly reason across facts distributed in extremely
long documents. In this work, we propose MemReasoner, a new memory-
augmented LLM architecture that is equipped to perform temporal reasoning,
along with multiple computational steps, over the context stored in the latent mem-
ory, and is trained with supervision on intermediate steps and final outcome. Ex-
periments show that MemReasoner trained on the core reasoning facts generalizes
better, compared to the off-the-shelf large language models as well as fine-tuned
recurrent models, on an unseen test distribution where the required facts are scat-
tered across long natural text up to 128k tokens. Further, MemReasoner demon-
strates robust reasoning performance relative to the baselines, when the answer
distribution or number of hops in test samples differs from that in the training set.

1 INTRODUCTION

Transformer-based large language models (LLMs) have recently shown impressive performance in
many natural language processing (NLP) tasks, including machine translation, question answering,
and reading comprehension, demonstrating signature of general reasoning abilities. However, when
restricted to individual NLP reasoning benchmarks, particularly those that require logical reasoning,
current LLMs typically perform poorly despite efforts to improve accuracy through prompt engi-
neering (Wei et al., 2022; Min et al., 2022). As such, more evidence seems to support the hypothesis
that powerful LLMs often learn statistical features and correlations to simulate reasoning rather than
performing true reasoning (Ruder, 2021).

The recently introduced BABILong benchmark further establishes this point, as it is designed to
test LLM’s ability to reason across facts distributed in extremely long documents (Kuratov et al.,
2024). BABILong is developed based on the bAbi benchmark (Weston et al., 2015), which is com-
posed of 20 reasoning tasks. These include fact chaining, simple induction, deduction, counting,
and handling lists/sets (Weston et al., 2015). This set of tasks was designed as prerequisites for any
system that aims to having a conversation with a human. BABILong further introduces irrelevant
natural text from the PG19 book corpus (Rae et al., 2019) into the original context to make it artifi-
cially longer and include distracting text, while the underlying reasoning task remains the same. For
examples of the task samples in BABILong, see Figure 1. Experiments with popular transformer-
based LLMs shows that present days’ transformer-based language models effectively utilize only
10-20% of the context and their performance declines sharply with increased reasoning complexity.
Retrieval-augmented generation with LLMs at best can provide 60% accuracy for a simple QA task
that requires extracting single evidence from the context. Interestingly, a memory-augmented trans-
former architecture, namely Recurrent Memory Transformers (RMT) (Bulatov et al., 2022) shows
the highest performance on BABILong benchmark; suggesting that the long-term recurrent memory
of the context helps. RMT in that case is trained on longer BABILong samples with supervision
on final answer. However, as we will demonstrate in this work, RMT when trained on bAbi sam-
ples with supervision on final answer reconstruction, does not generalize well on BABILong test
set. This observation suggests that memory-augmented LLMs can further benefit from additional
supervision, when available. Additionally, enabling multiple hops over the memory per final answer
reconstruction can help the model perform well, when the task demands so.

In this work, we provide an alternative language model architecture that is designed to naturally
handle recurrent processing over long context that is not seen by the model during training. Our
goal is to provide a more effective and robust solution for handling multi-hop generative QA tasks,
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Figure 1: Examples of BABILong tasks.

which require the model to gather, relate, and reason over disjoint pieces of information from the
unseen long context to generate an answer. Towards this goal, we propose a memory-augmented
LLM architecture enhanced with two basic operations: (i) explicit learning of temporal orders of
facts/events present within the context, and (ii) mechanism for iteratively reading from the context
and updating the query accordingly. We refer to this new architecture as MemReasoner.

The backbone memory-augmented LLM used in this study is Larimar (Das et al., 2024), which is
trained such that the latent encodings of a set of facts, referred as an episode, are written to a memory
module. For a given query, the readout from this episodic memory module conditions the generation
of the decoder, which is achieved by learning a differentiated attention to the readout during training.
During inference, memory is dynamically updated by solving a linear system of equations, which
is efficiently done via computing matrix pseudoinverse rather than gradient backpropagation. The
memory mechanisms in Larimar assume order invariance of samples within an episode and support
only single time read over the episode, which are insufficient for the architecture to handle more
complicated tasks like multi-hop question-answering (QA). We note that our approach could in
principle be used in conjunction with other LLMs augmented with an (episodic) memory module
beyond Larimar.

Here, we extend the basic episodic memory module to act as a reasoning module by introducing
a recurrent network, such as a GRU, which is tasked to capture the sequence of events/facts in
the context written to the memory. This step prepares the inputs to the reasoning module with a
structured understanding of their temporal relationships, which is critical for reasoning over time-
varying information. For example, in the sample shown in Fig 1 (right), understanding that “Sandra
moved to the hallway” happens before “Sandra discarded the football” is crucial to answer the
question “Where is the football?” (Answer: hallway). Around the reasoning module, we further
enable iterative reads from the memory to “hop” between supporting facts and update the query
accordingly. This operation allows the model to dynamically retrieve and refine information across
multiple computational steps performed over the context episode. These two operations around the
latent memory allows in-depth deliberation over the context, which is then used by the decoder for
generation. Our main contributions are:

• A novel memory-augmented LLM architecture, namely MemReasoner, which is equipped
with temporal processing and iterative read over the context written to an episodic memory
module and is trained with supervision on both intermediate and final reasoning steps.

• Evaluation of MemReasoner on the single-hop (Task 1) and two-hop (Task 2) QA tasks
(see Figure 1) using the challenging BABILong benchmark, establishing that the proposed
architecture can generalize to long context that is unseen during training, whereas off-the-
shelf vanilla transformer-based LLMs struggle and alternative recurrent models trained to
output final answer fail to generalize.

• Experiments showing that the proposed MemReasoner architecture indeed learns multi-
step processing over the context to solve the QA task, as evident by its robust performance
when the answers in the training data differ from those in the test samples within the same
task, and when the model trained on bABi task 2 is tested on longer BABILong task 1
samples.
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2 RELATED WORK

LLM Reasoning Logical reasoning, a critical aspect for advancing many scientific fields, involves
deducing new conclusions from existing facts and rules. To derive the final answer, such reasoning
challenges often require multiple steps to be executed effectively and in the right order. For instance,
with facts like “John picked up the football” and “John went to the bedroom”, a logical process will
be to deduce that the football’s current location is bedroom. Despite showing advanced ability
to learn from instructions and in-context demonstrations to answer questions (Brown et al., 2020;
Min et al., 2022), LLMs struggle with complex logical reasoning, especially multi-step reasoning
(Liu et al., 2023a). This failure has been attributed to the autoregressive nature of LLMs (Stechly
et al., 2024), which can be characterized by “System 1” (Kahneman, 2011), a mode of thought that
is fast, instinctive but less accurate. To address this limitation, recent work proposes prompting
LLMs to mimic generating intermediate chain of thought (CoT) reasoning steps (Wei et al., 2022),
providing access to external tools/verifiers (Schick et al., 2023), or a combination of both (Paranjape
et al., 2023), to mimic the process of generating deliberative and logical thinking steps, i.e., the
“System 2” mode. Another direction currently being explored is to train reward models to rank
the candidate solutions or rank the intermediate steps (Khalifa et al., 2023; Wang et al., 2024).
Different from these works, MemReasoner does not rely on deliberate prompt engineering or access
to external tools, neither does it require feedback from an external reward model. Instead, inspired
by the distinction between System 1 and System 2-like thinking, MemReasoner utilizes the decoder
for fast generation and the memory module for slow reasoning, which are two components tightly
integrated via training. In that sense, MemReasoner is closer to the line of works that use (generated)
rationales for supervised finetuning or for preference tuning of LLMs to enhance their reasoning
abilities (Zelikman et al., 2022; Pang et al., 2024). However, it remains unexplored how those
approaches perform on iterative reasoning tasks over lengthy context that is unseen during training.

Long-context Modeling The scope of the present study encompasses two distinct challenges around
multi-step reasoning tasks, namely (1) processing very long context and (2) “hopping” over that con-
text in a temporally-aware manner to link disjoint pieces of information and generate answers based
on that. On the first challenge, vanilla transformer-based models struggle due to quadratic time and
space complexity of self-attention and the increasing memory requirement of the key-value cache
during generation. Recently, there has been significant progress in long-context modeling with
transformers by using a mix of local and global attention (Munkhdalai et al., 2024), by continued
pretraining on longer sequences (Xiong et al., 2023; Ding et al., 2024), by context window sliding
and segmentation (Ratner et al., 2023), and by applying position extrapolation or interpolation to
extend input length beyond the training phase (Press et al., 2022; Su et al., 2023). Promising alter-
native directions include the development of novel recurrent architectures (Bulatov et al., 2022) and
state-space-models (Gu & Dao, 2023). Nevertheless, many of these techniques require training on
longer sequences. Additionally, a number of studies and benchmarks suggest that the long-context
LLMs may not be able to fully utilize their context window, and therefore performance degrades on
simple retrieval and complicated reasoning tasks as the input length grows and/or the position of the
answer varies within the context (Hsieh et al., 2024; Yuan et al., 2024; Liu et al., 2023b; Levy et al.,
2024).

Status Check on LLM Reasoning Consequently, in parallel to impressive advances in LLMs abil-
ities, caution has been raised on the discrepancy between claimed reasoning abilities as per stan-
dardized benchmarks and true reasoning skills. The scientific community has advocated for careful
investigations of issues such as data contamination, performance robustness and generalization, and
flawed reasoning benchmark that supports “shortcut learning” (Mitchell, 2023; Wu et al., 2024). For
example, the presence of reasoning shortcuts in the task samples themselves has been reported in the
HotPotQA dataset, which does not ensure language models are actually being required to perform
multi-hop processing over the context (Jiang & Bansal, 2019). Recently, a number of tasks and
benchmarks have been developed to address these issues (Valmeekam et al., 2022; Kuratov et al.,
2024; Nezhurina et al., 2024). Along this line, we here show the generalization robustness of Mem-
Reasoner across (i) “unseen” context that consists of varying length of irrelevant natural text and (ii)
answer distribution that is different from the training distribution.

3 MULTI-STEP REASONING WITH MEMREASONER

The key components of MemReasoner involve an LM encoder, an episodic memory module, and
an LM decoder (see Figure 2a). The role of the episodic memory module is to enable write of the
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context encodings in the memory, to allow performing search over the context encodings and read
from them, in order to feed the decoder to execute the task. Given a logical reasoning task for which
the supporting facts (reasoning process) and the final answer (reasoning outcome) are available, the
MemReasoner architecture is trained to recover the supporting facts and the final answer. A search
in the latent memory space is performed during training in order to correctly output the final answer
and the supporting facts. An additional point worth mentioning is that, MemReasoner also is trained
to learn the relative order of the supporting facts in the context, which is crucial for reconstructing
an agent’s or object’s most recent location, as required by the bAbi reasoning tasks. Details are
provided below.

3.1 PRELIMINARY

Let X be the LM input space, Z be the latent space, and Y be the LM output space. Larimar
(Das et al., 2024) features an encoder e that maps an input to an embedding z ∈ Z ⊆ RD, and
a memory moduleM. The memory M is adaptable in the sense, that it allows “write” and “read”
operations as episodes (aka, contexts C, where each context is comprised of E sentences) arrive, i.e.,
M̂ = write(M, z), zread = read(M̂, z), wherein M̂ is the updated memory after an write. And, a
decoder d that performs generations conditioned on the memory readout zread.

3.2 LARIMAR FRAMEWORK

Now, suppose one is given an input context C = {c1, ..., cE} with E denoting the length of the
context, and the target task is to answer a question q conditioned on the given context C. To approach
the task within the Larimar framework, the input, both context C and query q, are encoded to their
latents (z1, . . . , zE and zq) via the encoder e. Next, let M0 be the initial memory, write the context to
the memory via a write operation. To do so, Larimar follows the earlier works on Kanerva Machine
(Wu et al., 2018), which is inspired by Kanerva’s sparse distributed memory model (Kanerva, 1988),
where the memory is viewed as a global latent variable in a generative model. In this framework,
the goal is to learn a memory dependent data prior and learnable addresses, where the memory
update and read/write are considered as Bayesian inference, i.e., the posterior parameters are updated
as new data arrives. Later, (Pham et al., 2022) reformulated the encoding of new memories and
decoding data from memories from Bayesian updates to an equivalent minimization problem, which
essentially amounts to solving a linear system of equations, efficiently done via computing matrix
pseudo inverses indicated by † hereafter. Therefore, memory is updated via the write operation such
that, M̂ = (ZξM

†
0 )

†Zξ, where Zξ = [z1 + ξ1, z2 + ξ2, . . . , zE + ξE ] and ξi ∼ N (0, σ2
ξI).

Then, the read operation translates the query embedding from the lens of the encoded memory to a
query readout zr via zr = (zqM̂

† + η)M̂ , where η ∼ N (0, σ2
ηI). Lastly, the decoder d decodes the

query q conditioned on the readout by using a learnable broadcasting parameter WM that casts zr
to each decoder layer and obtains hm

k that serves as the past key values for k = 1, . . . , L, where L
is the number of layers in the decoder.

We use this memory-augmented LLM architecture of Larimar and the operations as backbone for
MemReasoner, due to its memory and space-efficient read/write abilities and demonstrated gener-
alizability at test-time. It is worth mentioning the earlier works on memory-augmented neural nets,
which use a recurrent neural net together with an external memory, have investigated ideas like
temporal feature learning and iterative hops over context, for example, see (Weston et al., 2014;
Sukhbaatar et al., 2015). However, to our knowledge, this is the first study to enable those opera-
tions around the explicit episodic memory of a transformer-based LLM during training and test the
resulting model’s generalizability on a long-context reasoning benchmark like BABILong.

3.3 MEMORY WITH TEMPORAL ORDER

Recall, the latent encoding of facts {z1, ..., zE}within a context episode C are written in the memory
M in an order-invariant manner. However, many multi-step reasoning tasks require some notion of
temporal context. For example, when answering “where is John?” in the context of “. . . John is
in the bathroom. . . . John goes to the garden.” (“. . .” denotes irrelevant facts), there should be a
mechanism in place to guarantee that the memory encodes the correct temporal order of the facts,
and the readout should reflect “John goes to the garden.” as the supporting fact instead of “John is
in the bathroom.”.

To introduce some temporal notion within the context, in MemReasoner we introduce a temporal
encoding module P that transforms un-ordered fact latents {z1, ..., zE} within a context episode to
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Figure 2: A diagram of the pipeline for reasoning with MemReasoner. (a) Conceptual overview
of the framework. (b) Detailed architecture. q denotes the query, c1, ..., cE denotes the context for
answering the query. zq denotes the encoding of the query while {z1, ..., zE} denote encodings of
each line of the context. We use z̃ to denote temporally encoded latents.

their ordered counterparts {z̃1, ..., z̃E}. The temporal encoding module is generic and allows any
structure featuring sequentiality within context. In practice, we investigate two general types of
encoding methods, un-parameterized methods such as Sinusoidal Positional Encoding and parame-
terized methods such as GRUs.

Positional Encoding. We compute positional encodings for each line of context within the episode
by using sine and cosine functions similar to (Vaswani et al., 2017). Additionally, we experiment
with positional encoding which assigns encodings starting from the last element of the episode.
The structure ensures that for contexts of different length, the last lines of the contexts are encoded
similarly, which is useful for QA tasks in which the most recent information is more relevant for
answering the question.

Finally, to convert {z1, ..., zE} to {z̃1, ..., z̃E} with positional encodings, we add the computed
positional encodings to the input.

GRU. We also investigate learnable encodings via a bidirectional GRU unit. For these, we treat
{z1, ..., zE} as the sequence passed as input into the GRU and simply let {z̃1, ..., z̃E} be the sequen-
tial outputs of the GRU.

These ordered context embeddings {z̃1, ..., z̃E} are then written to memory via Larimar’s write
operation.

3.4 ITERATIVE READ AND QUERY UPDATE

A typical multi-step reasoning task often inherently requires “hops” between facts until the final
solution is found. Additionally, the query embedding can be updated accordingly to reflect the most
recent hop.

In order to perform hopping between facts, we first recall the three key components interacting with
the memory module M, the fact embeddings ({z1, . . . , zE}) within a context episode, the query
embedding zq , and the memory readout zr. Let us further consider M stores facts that have been
ordered temporally {z̃1, ..., z̃E}.

To enable iterative read, we pass zq through a linear layer to obtain ẑq=Wqzq before the read
operation from the memory, where Wq ∈ RD×D is a learnable parameter that absorbs the scale
changes introduced by the position encoding in the memory. Specifically, different from Section 3.1,
here we have zr = (ẑqM̂

† + η)M̂ .
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To update the query, we first update the query latent and let zq ← zq + α · zr, where α ∈ R is a
hyperparameter to balance the load from the previous readout. The updated query is then fed into
the memory module for another read operation to obtain a new z̃r. The query update procedure is
repeated until the readout converges (i.e. ||z̃tr − z̃t+1

r ||2 < τ where z̃tr denotes the readout at time t
and τ is a hyperparameter) or until it reaches a fixed number of maximum iterations.

3.5 FULL WORKFLOW

Now that we have discussed all components of MemReasoner, we elaborate the full pipeline in the
following and provide a visualization in Figure 2b.

Consider an input context C = {c1, ..., cE}, a question q, an encoder e, a temporal encoding mod-
ule P , an initial memory module M, and a decoder d. We first encode the context C and query
q to their latents, z1, . . . , zE and zq , via encoder e. Then, we follow Section 3.3 and transform
z1, . . . , zE to z̃1, ..., z̃E . Next, we write the ordered context z̃1, ..., z̃E to the memory and obtain M̂ .
Subsequently, we read using the query latent from the memory and perform query and read updates
according to Section 3.4. After we have obtained a z̃r as a final readout which does not undergo
update anymore, we map z̃r to the corresponding unordered encoding in M . This is because we
only want the additional position information to be used when locating the most relevant contexts,
but not during the decoding - if being fed to the decoder, the decoder may overfit to the ordering
information in the latents. We do this by first finding the index of the most similar ordered latent
encoding i = argminj∈{1,...,E} ||z̃r − z̃j ||2 and then obtaining the corresponding encoding zi from
the unordered encodings (prior to undergoing temporal encoding in Figure 2) {z1...zE}. Lastly, the
decoder d decodes the prompt Pa given for answer generation conditioned on zi. We provide the
full pseudocode in Algorithm 1.

3.6 TRAINING OBJECTIVES

Let Dreason denote the reasoning data distribution while Dpretrain denotes the pretraining data distri-
bution. Each sample from Dreason is of the form (q, C, S, a) where q is the query, C = {c1, ..., cE}
are the facts in the context, S is a set of indices corresponding to supporting facts (we will use Si

to denote the ith supporting fact index in S), and a is the answer. Meanwhile the pretraining dis-
tribution corresponds to a generic corpus, e.g. Wikipedia. Let e denote the encoder, d denote the
decoder, t denote temporal encoding, z̃ir denote the ith temporally encoded readout from iterative
reading with z̃0r = q, zir represent the unordered encoding corresponding to the ith ordered readout,
and Pa and Ps denote the prompts for generating the answer and supporting fact respectively. To
train the model, we utilize the following loss function in Equation 1.

L = E(q,C,S,a)∼Dfinetune

Ez
|S|
r ∼p(z

|S|
r |q,M,z̃0

r ...z̃
|S|−1
r )

ln p(a|z|S|
r , Pa)︸ ︷︷ ︸

reconstruction of answer

+α

|S|∑
i=1

Ezi
r∼p(zi

r|M,z̃0
r ...z̃

i−1
r ) ln p(cSi

|zir, Ps)︸ ︷︷ ︸
reconstruction of supporting facts

+β
∑
s∈S

ln p(d(e(cs)))︸ ︷︷ ︸
autoencoding of supporting fact

+δ

|S|∑
i=1

Ez̃i
r∼p(z̃i

r|q,M,z̃0
r ...z̃

i−1
r )ℓorder(z̃

i
r, Si)︸ ︷︷ ︸

ordering loss

+ ρ Ex∼Dpretrain ln p(d(e(x)))︸ ︷︷ ︸
autoencoding of pretraining dataset

(1)

α, β, δ and ρ are hyperparameters controlling regularization strength and ℓorder is given by

v(zr) = softmax([−||t(e(c1))− zr||2, ...,−||t(e(cE))− zr||2]⊺)
ℓorder(zr, s) = − ln v(zr)s

(2)

The first and second terms correspond to the reconstruction loss of the answer and the supporting
fact(s) with respect to the corresponding prompt for obtaining the answer Pa and final readout, the
third and the fifth terms correspond to the autoencoding loss of the supporting fact(s) and pretraining
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Algorithm 1:
1 ] Function IterativeRead( q, {c1, ..., cE}, α, τ):

// q denotes the query tokens while {c1, ..., cE} denote the E
lines of context tokens, α is a hyperparameter for the
query update, τ is a threshold hyperparameter for
terminating iterations, Pa is the prompt given to the
decoder for answer generation

// encode query and context lines with encoder
2 zq ← encode(q) for i← 1 to E do
3 zi ← encode(ci)
4 end

// apply temporal encoding over the sequence of context lines
and write to memory

5 z̃1, ..., z̃E ← temporalEncoding(z1, ..., zE)

6 M̂ ←write(z̃1, ..., z̃E)
// iterative read and query update

7 z̃r ← queryUpdate(zq, α, τ)
// Map to latent prior to performing temporal encoding

8 i∗ ← argmini∈{1...E} ||ẑi − ẑr||2
9 return decode(zi∗ , WM , Pa) // generate the answer with the

decoder, WM is a learnable parameter which interfaces the
zi∗ with the decoder

10

11

12 Function temporalEncoding({z1, ..., zE}, method):
// temporally encode the sequence {z1, ..., zE}

13 if method = PE then
14 return {zi + PE(i)| ∀i ∈ {1, ..., E}}
15 else if method = GRU then
16 return GRU({z1, ..., zE})
17

18 Function queryUpdate(zq, α, τ):
// given the query encoding zq and threshold τ, perform

iterative reading and update query
19 z̃r ← read (Wqzq,M ) // Wq is learned parameter
20 zq = zq + αz̃r // query update
21 z̃r,next ← read (Wqzq,M )
22 do
23 z̃r ← z̃r,next
24 zq = zq + γz̃r
25 z̃r,next ← read (Wqzq,M )
26 while ||z̃r,next − z̃r||2 > τ
27 return z̃r
28

data. The fourth term is a loss for encouraging the index of the most similar entry (by l2 distance)
to the ordered readout at each iteration to match the index of the supporting fact through computing
the cross entropy.

4 EXPERIMENTAL DETAILS AND RESULTS

4.1 DATASETS AND DATA PRE-PROCESSING

In the main paper, we utilize tasks 1 and 2 from the synthetic bAbi benchmark as our testbed. We
also report results on Variable Tracking task from the RULER benchmark (Hsieh et al., 2024) in
appendix. The bAbi datasets were prepared by synthesizing relations among characters and objects
across various locations, each represented as a fact, such as “Mary traveled to the garden”. Task 1
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requires performing a single hop to find answer, whereas task 2 requires gathering two supporting
facts in the right order (see Fig 1). These single to multi-hop QA tasks from BABILong benchmark
together provide a controlled setting for evaluating LLMs’ ability to reason over long context, where
the difficulty of the task can be varied by changing the length of irrelevant text. The nature of this
benchmark, where the synthetic sentences corresponding to the actual reasoning task are hidden
inside irrelevant but lengthy naturally occurring text, keeps it at a low risk of data contamination to
training sets of todays’ LLMs. And finally, BABILong leaderboard shows tasks 1 and 2, while being
simple enough, are challenging enough for off-the-shelf LLMs to solve.

We finetune MemReasoner separately on original bAbi task 1 and task 2 training split, each con-
sisting of 10k samples (Weston et al., 2015). We then evaluate on the test set of the corresponding
task from bAbi as well as from BABILong (Kuratov et al., 2024), in which the core reasoning facts
from bAbi is distributed over arbitrarily long documents. Here we benchmark MemReasoner on
BABILong test samples of up to 128k tokens.

For preprocessing bAbi data, we treat each training sample comprised of multiple facts as a single
context episode, and individual sentence within that context as an instance within that episode. Each
fact within an episode contains up to 64 tokens.For BABILong and for Wikipedia, if sentences are
longer than 64 tokens, we split the sentences at multiples of 64 tokens.

We initiate MemReasoner finetuning from Larimar checkpoint pretrained on Wikitext (obtained
by following the training protocol described in (Das et al., 2024)), which uses a Bert-large as the
encoder and a GPT2-large as the decoder (For extension to MemReasoner with GPTJ-6B, see ap-
pendix). The number of parameters in MemReasoner is 1.4B. The slot size in the memory is 512.
During finetuning, we randomly sample a batch of pretraining data (Wikipedia) of the same size as
the batch of finetuning data (bAbi) for computing the autoencoding loss on the pretrain dataset of
2M samples. We generate the answer to the question by passing a prompt to the decoder (i.e. in the
case of bAbi Task1-2, the prompt has the from “<BOS> X is in the” where X denotes subject of
the query).

We train MemReasoner models for 200 epochs using Adam optimizer with learning rate 5e-6. We
set batch size to be 10. Additionally, we set query update parameter α = 1. The maximum episode
length varies from 14 (bAbi Task 1) to 72 (bAbi Task 2). Which means that MemReasoner has been
exposed to a maximum of 90 and 573 tokens during finetuning on task 1 and task 2, respectively,
whereas at test-time the model is exposed to contexts that are up to 128k tokens long. Since bAbi
Task 1 is a single hop task, we do not perform query update during either training or inference. When
fine-tuning on bAbi Task 2, we perform a fix number of 2 hop (equivalent to 1 query update) during
the training. With bAbi Task 2 fine-tuned MemReasoner, we re-use the “2 hop” setting at inference
on all tasks, including bAbi Task 2 and BABILong Task1/2. We consistently use query update
parameter α=8 throughout our experiments and include an ablation study on α in the appendix.
Due to the page limit, we also defer ablation studies on the episodic memory, temporal encoding
schemes, level of supervision, and the number of training epochs to the appendix.

4.2 BASELINE METHODS

Off-the-shelf Baselines. We show published results from (Yang et al., 2023) obtained using GPT-3
(175 B parameters) as an off-the-shelf baseline, with few-shot and chain-of-thought prompting, for
comparison with MemReasoner on original bAbi test set. We also report performances of a recurrent
memory transformer-0.77B and of a Mamba-1.4B model, which we fine-tune on bAbi samples, on
bAbi test set. For BABILong benchmarking, we include the following models from BABILong
leaderboard: (1) Meta-Llama-3-8B-Instruct with an 8K context window size, (2) Phi3-mini-128k-
instruct – a long-context LLM consisting of 3.8B parameters and a 128k token long context window,
and (3) Llama3-ChatQA-1.5-8B with a nvidia/dragon-multiturn-query-encoder – a RAG framework.

Fine-tuned Baselines. We add RMT-137M and Mamba-130M performances from BABILong
leaderboard, which has been finetuned on a set of samples that belong to the same distribution
as BABILong (with PG19 padding) but is not included in BABILong benchmarking test set. These
models were finetuned by using a curriculum schedule that progressively increases sequence lengths:
1, 2, 4, 6, 8, 16 and 32 segments (Kuratov et al., 2024).

We further benchmark RMT and Mamba models finetuned on bAbi on BABILong test samples. The
goal is to figure out if those alternative recurrent models perform well on BABILong leaderboard due

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to their true learning ability of the underlying task or due to their exposure to BABILong samples
during finetuning. We fine-tune off-the-shelf RMT(0.14b/0.77b) and Mamba (0.13b/1.4b) models
using the next token prediction loss on final answer reconstruction on bAbi Task 1 and 2 separately
till the testing accuracy on the task is sufficiently high (near 100%). In practice, we use 5 epochs
to reach above 99% accuracy on RMT and 20 epochs for the accuracy to plateau on Mamba, all
using Adam optimizer with learning rate 1e − 5. RMT training was done with multiple segments
using a curriculum learning procedure. In order to train with more segments while exposing the
model to only bAbi data, we reduce the segment size to 64 for task 1 and 128 for task 2. This leads
to 2 segments in training for task 1 and 2-4 segments in training for task 2. In order to mimic the
curriculum learning process, we filter the data so that we train with inputs with token length up to
the segment size for 10 epochs, up to 2 times segment size for another 10 epochs, and so on.

We also add a Larimar-1.3B baseline, which is finetuned on bAbi and Wikipedia samples with first
and fifth terms from eqn. 1. The purpose of comparing MemReasoner with respect to Larimar is
to disambiguate the benefits of temporal feature learning and iterative query and read updates on
top of the episodic memory. Larimar fine-tuning shares the same training setups as MemReasoner.
We further add experiments with Qwen2.5-0.5B (https://huggingface.co/Qwen/Qwen2.5-0.5B) and
Qwen2.5-1.5B (https://huggingface.co/Qwen/Qwen2.5-1.5B) models (both of which support long
context windows up to 128k tokens), as well as a memory network (Sukhbaatar et al., 2015) that is
not coupled to transformer-based LLMs. See appendix for results.

It should be mentioned that all baselines used in this study are trained with supervision on final an-
swer, whereas MemReasoner uses both supporting fact and final answer supervision. As mentioned
earlier, the goal is to check if this additional supervision, when tied to the operations around the
latent memory, enables better reasoning generalization. In that sense, MemReasoner offers a princi-
pled, model-agnostic approach for augmenting memory-based LLMs with robust reasoning, which
can be complimentary or used together with continual training. Throughout the paper, we report
task accuracy as the performance metric, so higher the better.

4.3 RESULTS

4.3.1 PERFORMANCE ON BABI TEST SET

Table 1 reports the performance of MemReasoner, which is independently finetuned on original
bAbi task 1 and task 2, along with the baselines on the corresponding bAbi test set of 1k sam-
ples. Results show that, while prompting techniques such as few-shot learning and chain-of-thought
prompting (Yang et al., 2023) work well on task 1 which requires a single hop to find the entity
location, those baselines perform much poorly on task 2 that requires learning temporal dependence
and performing multiple hops across facts to generate the final answer of object location. MemRea-
soner, as well as RMT, Mamba and Larimar, all finetuned on bAbi achieves near-perfect accuracy
on both tasks. Importantly, Larimar baseline falls behind MemReasoner on both tasks, while the gap
being bigger on more complicated task 2, implying that read/write to episodic memory alone is not
sufficient.

4.3.2 PERFORMANCE ON BABILONG TEST SET

Table 2 and Table 3 report accuracy of MemReasoner, together with baseline methods, on BABI-
Long task 1 and task 2 samples, respectively. ‘-’ means unavailable due to out of memory errors
or maximal input length constraints. For task 1, the following observations can be made: (i) at
half of model’s context window, the accuracy of Llama-3-8B-Instruct drops to 80% and Phi-3-mini-
128k drops to 63% of the corresponding model’s performance at 0k samples, indicating LLMs are
not good at utilizing their full context window. With RAG, the performance stays at a flat ≈ 60%
all throughout. Interestingly, while RMT and Mamba, when finetuned on BABILong samples of
up to 16k tokens, are the best models reported on BABILong leaderboard, they perform poorly on
BABILong samples beyond 0k as we finetune them on bAbi samples. This suggests exposure to
BABILong during training helps RMT and Mamba, as the models have seen facts embedded in-
side the background distractor text from PG19. Larimar finetuned on bAbi, while performing much
poorly on bAbi test set and BABILong 0k set to begin with, the accuracy on longer BABILong
samples is higher than bAbi-tuned RMT and Mamba baselines. In contrast, MemReasoner trained
on bAbi with supervision on supporting fact(s) and final answer generalizes well on BABILong for
task 1, providing an average accuracy of 84.6% and 68.5% on ≤ 8k and ≥ 16k BABILong samples,
respectively. These results suggest, that models can benefit on long-context reasoning from having
access to longer similar sequences or to reasoning processes during training.
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Model type Task 1 Task 2
CoT - GPT-3 97.3 72.2

Few-shot - GPT-3 98.4 60.8
RMT-.77B (bAbi) 97.7 97.5

Mamba-1.4B (bAbi) 100 95
Larimar-1.3B (bAbi) 60.6 44.9

MemReasoner-1.4B (bAbi) 100 100

Table 1: Performance on bAbi tasks. Best model is highlighted in bold. GPT-3 (=text-davinci-003)
baselines are from (Yang et al., 2023). Finetuning data, if any, seen by a model is specified within
parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 100 97 100 100 100 100 100 100 99 96 94
Mamba-.13B (BABILong)* 100 100 100 100 100 100 100 100 100 100 100

Few-shot - Meta-Llama-3-8B-Instruct* 84.4 - 98 93 90 79 62 - - - -
Few-shot - Phi-3-mini-128k-instruct* 78.4 38 97 84 72 69 70 60 53 38 1

RAG - Llama3-ChatQA-1.5-8B* 59.6 60 60 62 60 58 58 60 60 56 64
RMT-.14B (bAbi) 32.8 15.5 96 4 26 19 19 12 22 12 16
RMT-.77B (bAbi) 37.2 16.7 99 27 21 25 14 14 19 16 18

Mamba-.13B (bAbi) 20.4 - 85 11 5 0 1 0 0 0 -
Mamba-1.4B (bAbi) 44.2 - 100 60 42 19 0 0 0 0 -
Larimar-1.3B (bAbi) 44.8 14.3 63 59 55 28 19 14 16 13 14

MemReasoner-1.4B (bAbi) 84.6 68.5 99 91 83 76 74 71 68 70 65

Table 2: BABILong Task 1 Results. Baseline results marked with “*” are cited from (Kuratov et al.,
2024). The finetuning data, if any, seen by each model is specified within parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 98.8 68.5 100 100 99 98 97 94 82 59 39
Mamba-.13B (BABILong)* 98.0 94.5 98 98 98 98 98 98 98 95 87

Few-shot - Meta-Llama-3-8B-Instruct* 40.2 - 47 46 49 39 20 - - - -
Few-shot - Phi-3-mini-128k-instruct* 40.6 15.5 57 38 38 36 34 23 22 15 2

RAG - Llama3-ChatQA-1.5-8B* 21.6 8.75 28 25 22 19 14 13 9 7 6
RMT-.14B (bAbi) 36.6 12 97 31 19 16 20 12 12 14 10
RMT-.77B (bAbi) 41.2 17.5 100 36 21 27 22 18 23 13 16

Mamba-.13B (bAbi) 16.2 - 64 10 3 3 1 0 0 0 -
Mamba-1.4B (bAbi) 31.6 - 94 44 15 5 0 0 0 0 -
Larimar-1.3B (bAbi) 31 20.3 42 41 29 22 21 19 16 22 24

MemReasoner-1.4B (bAbi) 60.6 18.5 100 73 61 46 23 20 19 17 20

Table 3: BABILong Task 2 Results. Baseline results marked with “*” are cited from (Kuratov et al.,
2024).

For more complicated task 2, which requires learning temporal dependence between the facts and
finding and using two supporting facts in correct order for generation, both few-shot prompting
and RAG with different base LLM show poor performance to begin with, and sharply degrade
with context length increase of test samples. Again, RMT and Mamba, when fitted to BABILong,
perform well on test samples, both struggle to generalize from bAbi to BABILong. For example, the
accuracy drops from near 100% at 0k to 18% for RMT and to 36% for Mamba at 1k. Poor results
at short context length for Larimar also indicates model’s failure to learn the task. MemReasoner,
in comparison, provides an accuracy of 100% at 0k, 73% at 1k, and 46% at 4k, while performance
degrades to≈ 18.5% beyond 16k. The modest (≈ 18.5%) performance of bAbi-tuned MemReasoner
at 16k or longer context suggests that there remains significant room for MemReasoner to improve,
which will be investigated in future. One possible direction is to train MemReasoner on longer
sequences and/or with different levels of supervision.

4.3.3 GENERALIZATION TO OUT-OF-DISTRIBUTION TEST SETS

To test if the models have indeed learned to solve the tasks, we create a new testbed where the
construct of the tasks remains the same, but the answer changes from training to test set. Specifically,
we change the location information present in the answer set of bAbi training → test as follows:
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Model type Task 1 Task 2
RMT-.77B (bAbi) 44.7 0.6

Mamba-1.4B (bAbi) 67 44
Larimar-1.3B (bAbi) 24.9 7.8

MemReasoner-1.4B (bAbi) 87.2 52.7

Table 4: Robustness to location changes in bAbi test set.

Model type 0k 1k 2k 4k
RMT-.77B (bAbi) 100 19 20 12

Mamba-1.4B (bAbi) 81 8 0 0
Larimar-1.3B (bAbi) 45 19 20 11

MemReasoner-1.4B (bAbi) 83 58 50 45

Table 5: Performance on bAbi task 2 → BABILong task 1 generalization.

office → library, garden→ garage, kitchen→ cafe, bathroom → attic, bedroom→ basement, hallway
→ gym. This now becomes a more stringent test, to which we subject all alternative architectures
including MemReasoner. As shown in Table 4, RMT struggles in this setting across both tasks. On
task 1, MemReasoner shows≈ 20% higher accuracy than Mamba, whereas on task 2 MemReasoner
wins by ≈ 8%.

Finally, we also check if the models trained on 2-hop bAbi task 2 can solve the simpler 1-hop task 1
but on the corresponding BABILong samples. Results are shown in Table 5, indicating that the best
performing model on 0k BABILong task 1 samples is RMT, while MemReasoner being a second.
However, both RMT and Mamba perform very poorly on longer (1-4k tokens) BABILong samples,
whereas MemReasoner’s accuracy remains strong.

4.4 CONCLUSION

In this work, we introduce a new memory-augmented LLM architecture that comes with two essen-
tial abilities required to perform robust multi-step reasoning, i.e., learning temporal relations and to
hop meaningfully between facts within a context. Our formulation and implementation of the multi-
step reasoning mechanisms around the episodic memory, textcolortogether with supervised training
using reasoning steps and final answer, is generic and in principle model-agnostic, and therefore
can be leveraged to enhance other memory-augmented LLMs, including the ones used in this study
as baselines. We examine MemReasoner on BABILong, a benchmark purposed to test models’
reasoning ability when relevant facts are distributed in background of very large textual corpora.
This deceptively lengthy nature of BABILong samples, along with the presence of distracting text
that is naturally occurring, makes the underlying reasoning task more challenging on which even
bigger LLMs that have seen samples with long context during training fails. We show here that,
MemReasoner trained on bAbi samples provides strong performance on BABILong, compared to
the off-the-shelf powerful LLM baselines and alternative recurrent architectures that are also fine-
tuned on bAbi data, though only with final answer supervision.. We further show that MemReasoner
generalizes better in the setting where answers in training set differs from those in the test within
the same task. MemReasoner also shows good adaptation from two-hop to single-hop QA task,
whereas the test samples are much longer and mixed with natural irrelevant text. Additional ex-
periments show generality of MemReasoner approach across decoder scale (GPT2-l to GPTJ-6B)
and across different multi-hop tasks. Results indicate, supervision on both supporting facts and final
outcome, together with multi-hop search over the context in latent memory space, enables more
robust reasoning generalization of LLMs. Taken together, designing alternative architectures with
new loss objectives that encourage the model to learn the underlying reasoning skills is a potential
path toward more robust reasoners.
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A APPENDIX

A.1 WHY NOT FINETUNE ON LONGER SEQUENCES?

The goal of this work is to propose an LLM-based architecture that learns to reason over unseen
long-context in an efficient, robust, and generalizable manner. As such, the evaluation framework
corresponds to a set-up where the core reasoning facts are diluted in the presence of irrelevant
natural text distractors distributed over the context. This setup allows one to test how consistently
language model can solve the same reasoning task across different input lengths. This is inspired
by the recent research showing that current LLMs’ reasoning performance degrade at much shorter
input lengths than their technical maximum (Levy et al., 2024). At the same time, finetuning on
longer sequences presents several practical challenges: (i) The longer sequences with proper (human
or machine) annotation should be available during training – which is typically expensive and is
difficult to scale in real-world. (ii) Expanding the context window usually incurs a quadratic increase
in computational and memory cost for transformer-based LLMs. For example, the training setup
used in (Fu et al., 2024) shows that extending the Llama-2 7B model’s context window from 4k
to 80k requires 8 A100 GPUs (80G each) for five days. The costs of resources and time further
increase significantly for larger models, for longer context length, and for more extended training
period. (iii) The test distribution is still expected to match to longer sequences seen during training
(e.g. mixture of bAbi with text from PG-19 in the case of BABILong) – which may not be always
possible. As a result, straightforward continual pre-training or fine-tuning on longer sequences may
still not fully solve the fundamental problem of learning to reason over (long) context in a robust
and generalizable manner, and such approaches can benefit from using additional supervision (when
available) and training-time search in the latent memory space.

While MemReasoner is not trained on longer samples that are similar to the test distribution (whereas
RMT-BABILong and MAMBA-BABILong models in Tables 2 and 3 are), we train the model with
additional supervision on supporting facts. In that sense, our MemReasoner approach with reasoning
process and outcome supervision is complementary to the continual pre-training only with outcome
supervision.

A.2 ADDITIONAL DATASET PREPROCESSING DETAILS

In the unprocessed bAbi data, a single data instance consists of a sequence of lines representing
facts to reason over with questions interspersed throughout the facts. We preprocess the bAbi data
such that after pre-processing, a single training sample consists of a single question with facts for
reasoning being the lines before it, with previous questions replaced by an empty line. On average,
this leads to about 2 empty lines per training sample. For batches containing training samples with
different lengths of context episodes, we pad shorter episodes with rows of the encoder padding
token at the beginning.

A.3 COMPARISON OF INFERENCE-TIME COMPLEXITY

Let H1, H2 and d1, d2 be the number of transformer layers and hidden state dimension in the
encoder and decoder, respectively. Let E denote the number of context lines in a sample, L be
the max context length, L1 be the max query length, D be the latent space dimension, and m be
the memory size. The inference-time computational complexity for MemReasonr can be estimated
by the encoder complexity O(H1((EL2 +L2

1)d1 + (EL+L1)d
2
1)), temporal encoding complexity

O(Ed2), memory operation complexityO(Edm2), decoding complexityO(H2(|Pa|2d2+|Pa|d22)),
and broadcasting complexity O(d1dE) and O(d2dH2). For a typical GPT decoding, the inference-
time computational complexity is O(H2((EL+ L1)

2d2 + (EL+ L1)d
2
2)).

To provide a more direct comparison, we give in Table 6 the inference cost measured in seconds per
input for evaluating with BABILong in comparison to the base decoder (gpt2-large). We note that
gpt2-large does not support context lengths longer than 1024 tokens. Overall, we observe that the
increase in inference time for MemReasoner is very small for 0k and MemReasoner is more efficient
for 1k context length. This is because of utilizing the latent encodings of context, performing one-
shot write to the memory, and executing multiple hops over that memory in latent space.

A.4 COMPARISON TO DECODER-ONLY LMS THAT SUPPORT LONG CONTEXTS

We experiment with Qwen2.5-0.5B and Qwen2.5-1.5B models both of which are decoder-only LMs
that support long context windows (up to 128k tokens). The performance of Qwen models on bAbi
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Model type 0k 1k 2k 4k 8k 16k 32k 64k 128k
gpt2-large 0.28 1.13 - - - - - - -

MemReasoner 0.30 0.33 0.40 0.61 0.98 1.94 3.26 11.25 13.77

Table 6: The inference cost measured in seconds per input on BABILong.

Model type Task 1 Task 2
Qwen2.5-0.5B (bAbi) 100 96
Qwen2.5-1.5B (bAbi) 99.9 98.9

MemReasoner-1.4B (bAbi) 100 100

Table 7: Performance on bAbi tasks. Best model is highlighted in bold. GPT-3 (=text-davinci-003)
baselines are from (Yang et al., 2023). Finetuning data, if any, seen by a model is specified within
parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

Qwen2.5-0.5B (bAbi) 45.4 - 94 66 34 23 10 3 1 - -
Qwen2.5-1.5B (bAbi) 61.6 - 100 81 57 42 28 32 18 - -

MemReasoner-1.4B (bAbi) 84.6 68.5 99 91 83 76 74 71 68 70 65

Table 8: BABILong Task 1 Results - Qwen family models.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

Qwen2.5-0.5B (bAbi) 57.8 - 96 76 59 39 19 11 3 - -
Qwen2.5-1.5B (bAbi) 46.6 - 99 67 32 25 10 6 2 - -

MemReasoner-1.4B (bAbi) 60.6 18.5 100 73 61 46 23 20 19 17 20

Table 9: BABILong Task 2 Results - Qwen family models.

Task 1 and Task 2 is similar to the best in MemReasoner (Table 7).Overall, we find that MemRea-
soner is able to achieve better length generalization to long contexts compared to Qwen2.5 (Tables 8
and 9). For location changes, we find that MemReasoner outperforms both Qwen2.5-0.5B and
Qwen2.5-1.5B for Task 1, but for Task 2 Qwen2.5-1.5B outperforms MemReasoner (Table10). For
task generalization (Table 11), Qwen models perform best at shorter BABILong samples, however
MemReasoner excels for demanding ≥ 2k BABILong lengths.

A.5 EXTENSION TO GPTJ-6B
MemReasoner is a model-agnostic way to augment current decoder-only LLMs with dynamically
updatable memory. Via end-to-end training, the architecture learns to write the latent encodings in
a fixed-size memory, order them in their order of appearance in the context, and perform multiple
hop over that context and update the latent query accordingly. The decoder learns a differentiated
attention mechanism to the readout from the memory, to accurately generate the final answer and
supporting facts (intermediate hops). Below, we provide the results when we train a GPTJ-6B de-
coder with MemReasoner training protocol, suggesting more or less similar performance compared
to MemReasoner-1.3B.

A.6 BEYOND BABI DATASET

In this section, we explore the generalization of MemReasoner on another dataset, variable tracking
(VT) from RULER (Hsieh et al., 2024). In the VT task, the model is given context with lines with
information about variable value assignment such as “VAR AAAAA = 16438” or “VAR BBBBB =
AAAAA” and the model is prompted to obtain all variables with a specific value. Variable names
have the format of 5 repeating letters randomly sampled from the alphabet. We train and evaluate
with chains of length 2, 4, 6, 8 , and 10 and return the average accuracy over all chain lengths for
the 1 hop and 2 hop VT tasks. In order to pad the context for lengths 1k, 4k, and 16k, we follow the
approach taken from RULER of padding with the sentence “The grass is green. The sky is blue. The
sun is yellow. Here we go. There and back again.\n” until the context reaches the desired length.
This noise is not present during training and the 0k data follow the same distribution as the training
data.
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Model type Task 1 Task 2
Qwen2.5-0.5B (bAbi) 44.2 14.5
Qwen2.5-1.5B (bAbi) 75.2 63.5

MemReasoner-1.4B (bAbi) 87.2 52.7

Table 10: Robustness to location changes in bAbi test set.

Model type 0k 1k 2k 4k
Qwen2.5-0.5B (bAbi) 97 71 47 32
Qwen2.5-1.5B (bAbi) 100 58 36 18

MemReasoner-1.4B (bAbi) 83 58 50 45

Table 11: Performance on bAbi task 2 → BABILong task 1 generalization.

Since VT asks for all variables with a specific value, for MemReasoner, we take all unordered
readouts of the model and pass them individually to the decoder to get the variables from each
reasoning hop, and then concatenate these variables in order to obtain the final answer. For RMT,
we train with 2 segments, with segment size set to the median length on the train dataset. From
Table 13 and Table 14, we observed that it is difficult to train RMT with 2 segments for the 2-hop
VT task, RMT can easily learn a shortcut and have high accuracy on the training set, but does not
generalize well to the test set at 0k length and performance degrades further at longer context length.
Larimar also learned short cuts on 2-hop VT tasks and could not perform well on test sets.

A.7 COMPARISON WITH TRADITIONAL NON-LLM MEMORY NETWORKS

We have performed additional experiments to evaluate the performance of MemN2N (Sukhbaatar
et al., 2015), which we trained on bAbi task 1 and task 2 data with final answer supervision and
achieved 100% test accuracy on both. The results are summarized in the following tables and
demonstrate the lack of generalization ability of MemN2N compared to MemReasoner.

A.8 ABLATION STUDIES

A.8.1 MEMORY

In Table 16, we conduct the ablation study on the episodic memory module in MemReasoner on
bAbi and BABILong, task 1 and 2. Specifically, MemReasoner w/o memory module uses the same
architecture of encoder and decoder (BERT-Large and GPT2-Large respectively) but does not use
the memory module for encoding the context. Instead, the MemReasoner w/o memory uses the
encoder to encode only the question and this is passed in to the decoder as kv-cache. Additionally,
the context and question are passed to the decoder as part of the prompt with the format:

Context:
{context}
Question:
{question}
Answer:

where {context} and {question} represent the context and the question for the datapoint. We train
the model with reconstruction loss to ensure that the model is able to fill in the answer given this
prompt and with autoencoding loss on the pretraining dataset (see last term of Equation 1) in order
to reduce overfitting on bAbi data. We train MemReasoner w/o memory module for 5 epochs.

MemReasoner w/o memory module trained on bAbi task 1 obtains almost perfect accuracy on bAbi
task 1 and BABILong task 1 0k. However, its generalization ability to long context (BABILong 1k
and 2k) is much inferior to MemReasoner (MemReasoner\memory 0% vs. MemReasoner 91% on
BABILong 1k). Similar trends can also be seen from bAbi task 2 trained MemReasoner\memory,
implying the significance of the episodic memory module and the operations around it in MemRea-
soner.

A.8.2 TEMPORAL ENCODING

In Table 17, we experiment with different temporal encoding schemes, including non-parametric
method (Positional Encoding) and parametric method (GRU). In the table, we show MemRea-
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Model type 0k 1k 2k 4k 8k 16k 32k 64k 128k
Task 1 98 82 77 65 60 68 70 65 67
Task 2 98 65 50 34 35 32 22 27 30

Table 12: Performance of MemReasoner with a GPTJ-6B decoder on BABILong.

Model type 0k 1k 4k 16k
RMT-.77B (VT) 100 5.7 5.0 4.5

Larimar-1.3B (VT) 92.5 92.5 94.0 93.6
MemReasoner-1.4B (VT) 99.9 100.0 99.9 99.9

Table 13: Single hop variable tracking results.

soner’s accuracy on BABILong Task 1. It can be seen that GRU encoding has significant advantage
over Positional Encoding, with much slower decay in the accuracy as the context length increases.
Additionally, though showing higher accuracy compared with Positional Encoding, uni-directional
GRU’s accuracy decreases faster than bi-directional GRUs. Since 1-layer bi-directional GRU has
similar performance with 2-layer bi-directional GRU, we choose the lighter model and use 1-layer
bi-directional GRU throughout the experiments in this paper.

A.8.3 QUERY UPDATE α

In Table 18, we exploit test-time inference hyper-parameter α and its effect in reasoning tasks’
performance. We draw inspiration from (Kollias et al., 2024), where authors investigated the effect
of scaling readout vectors to improve generation quality. In Line 20 of Algorithm 1, when using an
α > 1, we equivalently scale up the readout vectors which greatly help our generalization to Task 1
BABILong according to Table 18 (e.g. from 14% to 45% on 4k context token task).

A.9 EFFECT OF ARBITRARY NUMBER OF HOPS WITH WEAKER SUPERVISION

Table 19 shows performance of MemReasoner that is trained with weaker supervision on bAbi task
2, and is tested on BABILong task 2 test set. In this case, during training an arbitrary number (5)
of hops was used, together with supervision only on the final supporting fact and the final answer.
While performance on longer samples drops compared to the model trained with full supervision,
the model generalizes well on 1k tokens long BABILong samples compared to other baselines (see
Table 3. This direction will be further explored in future work.

A.9.1 TRAINING EPOCHS

In Table 20, we evaluate MemReasoner’s performance when fine-tuned on bAbi task 2 as a func-
tion of the number of training epochs. Specifically, with fewer epochs, MemReasoner demonstrates
stronger robustness to location change, reaching an accuracy of 79% at the 66th epoch, which de-
creases to around 50% as the training continues (at 100/200th epoch). On the other side, MemRea-
soner’s accuracy on shorter context tasks in BABILong Task 1 and 2 (i.e. 0-4k) improves as the
training continues.

A.10 LIMITATIONS AND FUTURE WORK

The current work is limited to testing the MemReasoner framework on synthetic reasoning tasks
only. Future work will extend the framework to evaluating reasoning generalization on natural
language datasets. Another potential direction is extending MemReasoner to scenarios with weaker
and noisy supervision.
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Model type 0k 1k 4k 16k
RMT-.77B (VT) 74.6 5.7 1.3 0.2

Larimar-1.3B (VT) 0.1 0 0.1 0
MemReasoner-1.4B (VT) 98.4 97.6 97.0 98.0

Table 14: Two hop variable tracking results.

Model type 0k 1k 2k
BABILong Task 1 100 36 15
BABILong Task 2 100 54 21

bAbi task 2 → BABILong task 1 53 26 19

Table 15: Performance of MemN2N.

Model type Task 1 0k 1k 2k Task 2 0k 1k 2k
MemReasoner\memory 100 100 0 - 99.3 100 29 -

MemReasoner 100 99 91 83 100 100 73 61

Table 16: Ablation study on the episodic memory

Encoding scheme 0k 1k 2k
Positional Encoding 100 27 20

2-layer bi-directional GRU 100 90 80
2-layer uni-directional GRU 94 75 61
1-layer bi-directional GRU 99 91 83

Table 17: Ablation study on the temporal encoding schemes.

Query update Task 2 bAbi Task 2 BABILong Task 1 BABILong
α location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k
1 52.6 100 46 25 18 18 13 16 12 13 78 21 17 14
4 54.2 100 73 61 46 26 22 19 19 27 83 47 44 40
8 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 18: Ablation study on the query update parameter α.

Model type 0k 1k 2k 4k
RMT-.14B (bAbi) 97 31 19 16
RMT-.77B (bAbi) 100 36 21 27

Mamba-.13B (bAbi) 64 10 3 3
Mamba-1.4B (bAbi) 94 44 15 5
Larimar-1.3B (bAbi) 42 41 29 22
MemReasoner (full) 100 73 61 46

MemReasoner (weak) 100 58 31 22

Table 19: Comparison of MemReasoner trained with full supervision with MemReasoner(weak) on
BABILong task 2 samples, where the weak supervision considers an arbitrary five hops and only
supervision on final supporting fact and final answer.

Task 2 bAbi Task 2 BABILong Task 1 BABILong
#epochs location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k

66 78.0 99 70 54 30 27 23 17 18 17 58 51 45 37
100 47.3 100 70 57 38 28 31 25 12 19 82 58 50 46
200 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 20: Ablation study on the number of training epochs
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