
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A TWO-PHASE DEEP LEARNING FRAMEWORK FOR
ADAPTIVE TIME-STEPPING IN HIGH-SPEED FLOW
MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of modeling high-speed flows using machine learning
methods. While most prior studies focus on low-speed fluid flows in which uni-
form time-stepping is practical, flows approaching and exceeding the speed of
sound exhibit sudden changes such as shock waves. In such cases, it is essential
to use adaptive time-stepping methods to allow a temporal resolution sufficient
to resolve these phenomena while simultaneously balancing computational costs.
Here, we propose a two-phase machine learning method, known as ShockCast,
to model high-speed flows with adaptive time-stepping. In the first phase, we
propose to employ a machine learning model to predict the timestep size. In the
second phase, the predicted timestep is used as an input along with the current
fluid fields to advance the system state by the predicted timestep. We explore
several physically-motivated components for timestep prediction and introduce
timestep conditioning strategies inspired by neural ODE and Mixture of Experts.
As ShockCast is the first framework for learning high-speed flows, we evaluate
our methods by generating two supersonic flow datasets.

1 INTRODUCTION

Learning fluid dynamics aims to accelerate fluid modeling using machine learning models (Li et al.,
2021; Zhang et al., 2023). Because this is an emerging area of research, most current works fo-
cus on low-speed scenarios in which flows are assumed to be incompressible. In such cases, the
time scale of dynamics is relatively stable, enabling the use of time-stepping schemes with uniform
step sizes without substantially affecting solution quality or the required computational effort. In
contrast, time scales vary greatly for high-speed flows such that uniform time-stepping is no longer
a tractable strategy. For example, supersonic flow occurs when a fluid moves faster than the lo-
cal speed of sound (Anderson, 2023; 2020). The speed of such flows is typically characterized by
the Mach number M , defined as the ratio of the flow velocity v to the local speed of sound a as
M = v/a. Flows in the supersonic regime (commonly 1 < M < 5) exhibit distinct phenomena
with small time scales, including shock waves, expansion fans, and significant compressibility ef-
fects (Anderson, 2020). Hypersonic flow refers to extremely high-speed fluid flows, conventionally
defined by Mach numbers greater than 5. In the hypersonic regime, encountered in the design of
spacecraft, missiles, and atmospheric reentry vehicles, flows exhibit unique and complex behaviors
such as heating, strong shock wave interactions, and chemical reactions.

For both supersonic and hypersonic flows, the time scale required to accurately resolve these phe-
nomena is much smaller than other parts of the dynamics. Therefore, uniform time-stepping is no
longer practical, as it would require the use of the smallest time scale for all steps, inflating the
required computation prohibitively. Instead, high-speed flow solvers employ adaptive time-stepping
schemes which dynamically adjust the timestep size such that smaller steps are taken in the presence
of sharp gradients. Adaptive time-stepping can also benefit neural solvers through more balanced
objectives. When using a uniform step size, the amount of evolution the model is required to learn
can vary greatly between states with sharp gradients and smoother states, which is an especially

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pertinent consideration for high-speed flows. By instead inversely scaling the step size according to
the rate of change, the difficulties of different training pairs are more evenly distributed.

However, because neural solvers achieve speedup through use of coarsened space-time meshes,
classical approaches for determining the timestep size are not applicable. We therefore develop
ShockCast, the first machine learning framework (to the best of our knowledge) for temporally-
adaptive modeling of high-speed flows. ShockCast consists of two phases: a neural CFL phase,
where the timestep is predicted, and a neural solver phase, where the flow field is evolved forward in
time by the predicted timestep size. We investigate the effect of physically-motivated components
in our neural CFL model, and develop several novel timestep conditioning strategies for neural
solvers inspired by neural ODE (Chen et al., 2018) and Mixture of Experts (Shazeer et al., 2017).
To evaluate our framework, we generate two new high-speed flow datasets modeling a circular blast
(maximum Mach numbers vary from 0.49 to 2.97 across cases) and a multiphase coal dust explosion
(Mach numbers of the initial shock vary from 1.2 to 2.1). Our work represents the first steps towards
developing machine learning models for high-speed flows, where there is great potential for neural
acceleration due to the immense computational requirements of classical methods.

2 BACKGROUND

In Section 2.1, we briefly introduce how PDEs are solved numerically before describing the role that
the CFL condition plays in this task in Section 2.2. We then overview several prominent machine
learning approaches for solving PDEs in Section 2.3.

2.1 SOLVING TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Time-dependent PDEs are common in engineering, with some of the most prominent applications
arising in fluid dynamics. In two spatial dimensions, they typically equate a first derivative in time
to some operator H of spatial derivatives for an unknown solution function u(x, y, t) ∈ RD as

∂tu = H(u, ∂xu, ∂xxu, ∂yu, ∂yyu, ∂xyu, . . .), (1)

with boundary conditions and initial conditions imposing additional constraints on u. To solve a
PDE, we need to identify a function u satisfying these constraints. In most real-world applications
of PDE modeling, including fluid dynamics, an analytical form of this solution is intractable to
obtain, and so we instead rely on producing u in numerical form, that is, obtaining point-wise
evaluations on a discrete set of collocation points in space-time. This is done by evolving the PDE
forward in time by first approximating the spatial derivatives on the right-hand side of Equation (1)
using finite difference methods, finite volume methods, finite element methods (Reddy et al., 2022),
or spectral methods (Gottlieb & Orszag, 1977; Gottlieb & Hesthaven, 2001; Canuto et al., 2007;
Kopriva, 2009). Plugging these quantities into H gives ∂tu(t), which is then time-integrated to
advance the solution in time by a step size of ∆t.

2.2 THE COURANT–FRIEDRICHS–LEWY CONDITION

Numerical time integrators are very sensitive to the timestep size ∆t. When u(t) is changing rapidly,
or more formally, when ∥∂tu(t)∥ grows large, too large ∆t can lead to divergence of the numerical
solution (Anderson, 2023). In low-speed flows, the time scale does not vary drastically, which is
to say that the magnitudes of temporal derivatives do not fluctuate substantially. In such cases, ∆t
can be chosen as a fixed value to match the smallest time scale, simplifying the numerical solution
process. On the other hand, time scales vary greatly in high-speed flows. For example, shock wave
interactions in supersonic and hypersonic flows produce extremely sharp spatial gradients that can
only be resolved with small timestep sizes. Following the dissipation of these phenomena, the so-
lution can become smoother such that the time scale is substantially larger. Uniform time-stepping
schemes, which must maintain a timestep small enough to resolve sharp gradients even in smooth re-
gions, therefore impose greater computational burden compared to adaptive time-stepping methods,
where timestep sizes are dynamically adjusted according to the rate of change of the solution.

Adaptive time-stepping methods employ the Courant–Friedrichs–Lewy (CFL) Condition (Courant
et al., 1967) to determine the timestep size. The CFL condition is a necessary condition on the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Neural CFL

Neural Solver

ShockCast

<latexit sha1_base64="gnu/VVIlqetq7b2WFkXzIjaSR4U=">AAACq3icbZHLbtNAFIYnLtASbi0s2VhESGyIbIQKy6qwYNmqpK2IrerM+CQZZW6aOW4bWXkAXqBbeC3ehkniBU450ki/vvOPzo07JQNl2Z9esvPg4aPdvcf9J0+fPX+xf/DyPNjaCxwJq6y/5BBQSYMjkqTw0nkEzRVe8PmXVf7iGn2Q1nynhcNSw9TIiRRAERXFDKj4ioogpav9QTbM1pHeF3krBqyNk6uD3s+isqLWaEgoCGGcZ47KBjxJoXDZL+qADsQcpjiO0oDGUDbrppfp20iqdGJ9fIbSNf33RwM6hIXm0amBZmE7t4L/y41rmnwuG2lcTWjEptCkVinZdLWBtJIeBalFFCC8jL2mYgYeBMU9dapw3Z2hupYutFPcbsbo+Fe9kLUqdPHUg5tJcdul3No5Ad/y6lqR9PamS8F7WERk8EZYrcFUTcFVjctxXjaDfNnvx+Pl26e6L84/DPPD4eHpx8HRcXvGPfaavWHvWM4+sSP2jZ2wERPMsTv2i/1O3idnyY+k2FiTXvvnFetEgn8B3xDYUQ==</latexit>

!̂t

Inputs Targets

<latexit sha1_base64="4C4Bhr5D0JRVOn6bs5thmiERJ4c=">AAACs3icbZHLattAFIbHSi+pe4mTLrsRNYWUgpFKk2YZ0i66TKFOApIwZ0Zje/BcxMyZxEboAfIS3bav1Lfp2Naicnpg4Oc7/3ButJLCYZL86UV7jx4/ebr/rP/8xctXB4PDoytnvGV8zIw09oaC41JoPkaBkt9UloOikl/TxZd1/vqWWyeM/oGrihcKZlpMBQMMaDI4yqmqfXOMH/KvXCLE+H4yGCajZBPxQ5G2YkjauJwc9u7z0jCvuEYmwbksTSosarAomORNP/eOV8AWMONZkBoUd0W9ab6J3wVSxlNjw9MYb+i/P2pQzq0UDU4FOHe7uTX8Xy7zOD0raqErj1yzbaGplzGaeL2JuBSWM5SrIIBZEXqN2RwsMAz76lShqjtDeSsq106x3I7R8a97QWOk6+KZhWou2LJLqTELBLrjVV6isOauS8FaWAWk+R0zSoEu65xKz5ssLeph2vT74Xjp7qkeiquPo/R0dPr90/D8oj3jPnlD3pJjkpLP5Jx8I5dkTBhZkp/kF/kdnURZRKNya4167Z/XpBOR+gvCyNqt</latexit>

u(t + !t)

time

Training Autoregressive Rollout

Neural CFL

Neural Solver

Neural CFL

Neural Solver

<latexit sha1_base64="nnp43waAGqRSpwp6arMhe9qIrIE=">AAACsHicbZHLThsxFIadaWkhpSWUJZtRo0p0E80gBCyRumiXIBGIlIyiY4+TuPFlZB8D0WgeoM/Alj4Ub4OTzIIJPZKlX9/5rXOjhRQOk+S5Fb17v/Xh4/ZO+9Pu5y97nf2vN854y3ifGWnsgILjUmjeR4GSDwrLQVHJb+n85zJ/e8etE0Zf46LgmYKpFhPBAAMad/ZGM8ByRFXpq+oIf4w73aSXrCJ+K9JadEkdl+P91t9RbphXXCOT4NwwTQrMSrAomORVe+QdL4DNYcqHQWpQ3GXlqvMq/h5IHk+MDU9jvKKvf5SgnFsoGpwKcOY2c0v4v9zQ4+Q8K4UuPHLN1oUmXsZo4uUa4lxYzlAuggBmReg1ZjOwwDAsq1GFquYM+Z0oXD3Fw3qMhn/ZCxojXRNPLRQzwR6alBozR6AbXuUlCmvumxSshUVAmt8zoxToPNxNel4N06zsplW7HY6Xbp7qrbg57qWnvdOrk+7Fr/qM2+SQfCNHJCVn5IL8JpekTxjx5JE8kX/RcTSIxhGsrVGr/nNAGhH9eQFBANog</latexit>

û(t)

<latexit sha1_base64="XN+oBRE4Bmd/J9u9KglAu/g6fp0=">AAACo3icbZHPTttAEMY3BloaSgvl2ItFhNRTZFcV7RGJA5V6gYoAUmKh2fUkWWX/WLtjILLyAL1whVfr23Sd+FAHRlrp029mNfPN8EJJT0nytxNtbG69ebv9rrvzfvfDx739T1felk7gQFhl3Q0Hj0oaHJAkhTeFQ9Bc4TWfndb56zt0XlpzSfMCMw0TI8dSANVoVEzl7V4v6SfLiF+KtBE91sT57X7nzyi3otRoSCjwfpgmBWUVOJJC4aI7Kj0WIGYwwWGQBjT6rFoOu4iPAsnjsXXhGYqX9P8fFWjv55qHSg009eu5Gr6WG5Y0/pFV0hQloRGrRuNSxWTj2nmcS4eC1DwIEE6GWWMxBQeCwn5aXbhue8jvZOEbFw8rG636ehayVvk2njgI6xUPbcqtnRHwtVpdKpLO3rcpOAfzgAzeC6s1mLwacVXiYphmVS9ddLvheOn6qV6Kq6/99Lh/fPGtd3LWnHGbfWaH7AtL2Xd2wn6yczZggk3ZI3tiz9FR9Cv6HV2uSqNO8+eAtSLK/gFGBNUw</latexit>

ω

<latexit sha1_base64="1hjFbFdlvjqYYFSjdwQY5XKlPi8=">AAACoHicbZHPTttAEMY3LrQ0lALtsReLCKmnyK4q4IjUA9xKpAYQiYVm15Nklf1j7Y6ByMoDIK704XgbNokPdehIK336zTeamR1eKOkpSV5a0buNzfcftj62tz/tfN7d2/9y6W3pBPaFVdZdc/CopME+SVJ4XTgEzRVe8emvRf7qDp2X1vyhWYGZhrGRIymAAurR7V4n6SbLiN+KtBYdVsfF7X7rcZhbUWo0JBR4P0iTgrIKHEmhcN4elh4LEFMY4yBIAxp9Vi0nnceHgeTxyLrwDMVL+m9FBdr7mebBqYEmfj23gP/LDUoanWSVNEVJaMSq0ahUMdl4sXacS4eC1CwIEE6GWWMxAQeCwuc0unDd3CG/k4Wvt3hYrdHwL2Yha5Vv4rGDYiLFQ5Nya6cEfM2rS0XS2fsmBedgFpDBe2G1BpNXQ65KnA/SrOqk83Y7HC9dP9Vbcfmjmx51j3o/O6dn9Rm32Dd2wL6zlB2zU3bOLlifCYbsiT2zv9FBdB79jnora9Sqa76yRkQ3rzsF0+k=</latexit>

t
<latexit sha1_base64="t1PNNBmY+lXzrA+FV+gsZJEoojk=">AAACvXicbVFNa9tAEF0r/UjdLyc9NgdRU0gpGCmUtLcGWmiPCdRJwBJmtBrbi/dD7I7iGKFLb/0nvbb/pv+mK1uHyunAwts3M8y8eVkhhaMo+tML9u7df/Bw/1H/8ZOnz54PDg4vnSktxzE30tjrDBxKoXFMgiReFxZBZRKvsuWnJn91g9YJo7/RusBUwVyLmeBAnpoOjpIFUJVkqirr+pjeNt/kM0qCkN5MB8NoFG0ivAviFgxZG+fTg96PJDe8VKiJS3BuEkcFpRVYElxi3U9KhwXwJcxx4qEGhS6tNjLq8LVn8nBmrH+awg37b0cFyrm1ynylAlq43VxD/i83KWn2Ia2ELkpCzbeDZqUMyYTNTcJcWOQk1x4At8LvGvIFWODkL9eZkqmuhvxGFK5VcbuV0alvdiFjpOvScwvFQvDbLpsZsyTIdmpVKUlYs+qyYC2sPaVxxY1SoHNvoiyxnsRpNYzrft+bF+9adRdcnozi09Hpxbvh2ZfWxn32kr1ixyxm79kZ+8rO2Zhx9p39ZL/Y7+BjgIEM9LY06LU9L1gngtVf6fbfQA==</latexit>

û(t + !̂t)
<latexit sha1_base64="rcJTgstS05K8fbSD+Jgqq+lb52w=">AAAC03icbVFNa9tAEF2rX6n75bTHXpaaQkrASKGkOQZSaI8p1EnAUs1otbYX7xe7oyRG6FJ66aH3/ppe27/Qf9OVrUPkdGDhzZsZZt6+3ErhMY7/9qI7d+/df7DzsP/o8ZOnzwa7z8+8KR3jY2akcRc5eC6F5mMUKPmFdRxULvl5vjxp6ueX3Hlh9GdcWZ4pmGsxEwwwUNPBQboArNJcVWVd7+F+k6bvuUSgSPfpzfRLap1Q/M10MIxH8TrobZC0YEjaOJ3u9r6nhWGl4hqZBO8nSWwxq8ChYJLX/bT03AJbwpxPAtSguM+qtbiavg5MQWfGhaeRrtmbExUo71cqD50KcOG3aw35v9qkxNlRVgltS+SabRbNSknR0OanaCEcZyhXAQBzItxK2QIcMAz/2dmSq66G4lJY36q43sjo9De3oDHSd+m5A7sQ7LrL5sYsEfKtXlVKFM5cdVlwDlaB0vyKGaVAF8FaWfJ6kmTVMKn7/WBesm3VbXB2MEoOR4ef3g6PP7Q27pCX5BXZIwl5R47JR3JKxoSRn+QX+U3+ROOoir5G3zatUa+deUE6Ef34B51N59E=</latexit>

û(t + !̂t + !̂t→)

<latexit sha1_base64="tHFl/2KQk5U+8aj21OrG8KUSFIE=">AAACtHicbZHLattAFIbH6i1xb06z7EbUFLoyUilOl6HNossU6iRgqeZodGwPnhszR0mE8AP0KbJtH6lv07GtReT0wMDPd/7h3Aorhack+duLHj1+8vTZwWH/+YuXr14Pjt5ceFM5jhNupHFXBXiUQuOEBEm8sg5BFRIvi9XXTf7yGp0XRv+g2mKuYKHFXHCggGaD42wJlJ2hJIjpZ2adUDgbDJNRso34oUhbMWRtnM+Oer+y0vBKoSYuwftpmljKG3AkuMR1P6s8WuArWOA0SA0Kfd5su1/H7wMp47lx4WmKt/T+jwaU97UqglMBLf1+bgP/l5tWNP+cN0LbilDzXaF5JWMy8WYVcSkccpJ1EMCdCL3GfAkOOIWFdaoUqjtDeS2sb6e43Y3R8W96IWOk7+KFA7sU/LZLC2NWBMWeV1WShDM3XQrOQR2QxhtulAJdNlkhK1xP07wZput+Pxwv3T/VQ3HxcZSOR+Pvn4anX9ozHrC37B37wFJ2wk7ZN3bOJoyzmt2x3+xPNI6yiEe4s0a99s8x60Sk/wH159uf</latexit>

!̂t→

Adaptive Time-Stepping

Ground Truth
<latexit sha1_base64="MUpXhdD36QGxt43E9Hiebv2I8YY=">AAACp3icbZFNaxsxEIblTT9S9ytJj72ImkJ7MbslpD2GJIfemkLtGOwljLRjW1gfizSbxCz+Ab32mv6x/pvK9h66TgcEL8+8w8xoRKlVoDT900n2Hj1+8nT/Wff5i5evXh8cHg2Dq7zEgXTa+ZGAgFpZHJAijaPSIxih8Uosztf5qxv0QTn7g5Yl5gZmVk2VBIpoNLlATcDp+qCX9tNN8Icia0SPNXF5fdj5OSmcrAxakhpCGGdpSXkNnpTUuOpOqoAlyAXMcBylBYMhrzcDr/j7SAo+dT4+S3xD/62owYSwNCI6DdA87ObW8H+5cUXTL3mtbFkRWrltNK00J8fX2/NCeZSkl1GA9CrOyuUcPEiKf9TqIkx7h+JGlaHZ4m67Rsu/noWc06GNZx7KuZJ3bSqcWxCIHa+pNCnvbtsUvIdlRBZvpTMGbFFPhK5wNc7yupetut14vGz3VA/F8FM/O+mffD/unZ41Z9xnb9k79oFl7DM7ZV/ZJRswyTT7xe7Z7+Rj8i0ZJqOtNek0NW9YKxL4C6c31pA=</latexit>

!t

<latexit sha1_base64="o66OxnxBTfVX2Ta8+jGF96wRic8=">AAACqHicbZFNbxMxEIad5auErxaOXFZESIVDtFuhwrGCC8cgkaZVsqrG3klixR8re9w2Wu0P4MwVfhj/BifZA5sykqVXz7yjmfHwSklPWfanl9y7/+Dho4PH/SdPnz1/cXj08tzb4ASOhVXWXXDwqKTBMUlSeFE5BM0VTvjqyyY/uUbnpTXfaV1hoWFh5FwKoIguZ1zXoTmmd1eHg2yYbSO9K/JWDFgbo6uj3o9ZaUXQaEgo8H6aZxUVNTiSQmHTnwWPFYgVLHAapQGNvqi3Ezfp20jKdG5dfIbSLf23ogbt/Vrz6NRAS7+f28D/5aaB5p+KWpoqEBqxazQPKiWbbtZPS+lQkFpHAcLJOGsqluBAUPykTheuuzuU17Ly7Ra3uzU6/s0sZK3yXbxwUC2luO1Sbu2KgO95dVAknb3pUnAO1hEZvBFWazBlPeMqYDPNi3qQN/1+PF6+f6q74vxkmJ8OT799GJx9bs94wF6zN+yY5ewjO2Nf2YiNmWCa/WS/2O/kfTJKJsnlzpr02ppXrBMJ/wv2M9cd</latexit>

u(t)Ground Truth
<latexit sha1_base64="MUpXhdD36QGxt43E9Hiebv2I8YY=">AAACp3icbZFNaxsxEIblTT9S9ytJj72ImkJ7MbslpD2GJIfemkLtGOwljLRjW1gfizSbxCz+Ab32mv6x/pvK9h66TgcEL8+8w8xoRKlVoDT900n2Hj1+8nT/Wff5i5evXh8cHg2Dq7zEgXTa+ZGAgFpZHJAijaPSIxih8Uosztf5qxv0QTn7g5Yl5gZmVk2VBIpoNLlATcDp+qCX9tNN8Icia0SPNXF5fdj5OSmcrAxakhpCGGdpSXkNnpTUuOpOqoAlyAXMcBylBYMhrzcDr/j7SAo+dT4+S3xD/62owYSwNCI6DdA87ObW8H+5cUXTL3mtbFkRWrltNK00J8fX2/NCeZSkl1GA9CrOyuUcPEiKf9TqIkx7h+JGlaHZ4m67Rsu/noWc06GNZx7KuZJ3bSqcWxCIHa+pNCnvbtsUvIdlRBZvpTMGbFFPhK5wNc7yupetut14vGz3VA/F8FM/O+mffD/unZ41Z9xnb9k79oFl7DM7ZV/ZJRswyTT7xe7Z7+Rj8i0ZJqOtNek0NW9YKxL4C6c31pA=</latexit>

!tTarget<latexit sha1_base64="6miS/OdhgrTJ6np1DTUEbVybFwQ=">AAACo3icbZFNa9tAEIbXSj9S9ytpj72ImkBPRiol7TGQQwq9pCVOArYIs6uxvXi/2B0lMcI/oJdck7/Wf9OVrUPldGDh5Zl3mJkd7pQMlGV/esnOk6fPnu++6L989frN2739d+fBVl7gSFhl/SWHgEoaHJEkhZfOI2iu8IIvjpv8xTX6IK05o6XDQsPMyKkUQA2auCCv9gbZMFtH+ljkrRiwNk6v9nu/J6UVlUZDQkEI4zxzVNTgSQqFq/6kCuhALGCG4ygNaAxFvR52lR5EUqZT6+MzlK7pvxU16BCWmkenBpqH7VwD/5cbVzT9VtTSuIrQiE2jaaVSsmmzeVpKj4LUMgoQXsZZUzEHD4Li/3S6cN3dobyWLrRb3G7W6PibWchaFbp45sHNpbjtUm7tgoBveXWlSHp706XgPSwjMngjrNZgynrCVYWrcV7Ug3zV78fj5duneizOPw/zw+Hhzy+Do5P2jLvsA/vIPrGcfWVH7Ds7ZSMm2JzdsXv2kBwkP5JfydnGmvTamvesE0nxF16j1Ts=</latexit>

ω

Figure 1: Overview of the ShockCast framework for time-adaptive modeling of high-speed flows.
Left: Training pipeline. The neural CFL model and time-conditioned neural solver are conditioned
on the current flow state and predict the corresponding timestep size ∆t and flow state ∆t ahead,
respectively. Right: Inference pipeline. ShockCast autoregressively alternates between predicting
the timestep size given the current flow state using the neural CFL model and evolving the flow state
forward in time by the predicted timestep size using the neural solver model. Note that the example
data are from the circular blast dataset we generated in this work.

timestep size to attain convergence of the numerical solution (Bartels, 2016). For a single-phase
flow in two spatial dimensions and a target Courant number C ∈ (0, 1), the condition requires that

∆t ≤ C

λmax
min
x,y

(∆x,∆y), (2)

where minx,y(∆x,∆y) is the minimum cell height and width in the spatial discretization and the
maximum wave speed λmax is defined as

λmax := max
x,y

λ(x, y) λ(x, y) := max (|u(x, y)|+ a(x, y), |v(x, y)|+ a(x, y)) , (3)

where u and v denote the x and y components of the velocity, and a(x, y) :=
√
γRT (x, y) is the

local sound speed defined by the ratio of specific heats γ, the specific gas constantR and the temper-
ature T . Intuitively, the CFL condition restricts information flow for stability such that information
propagates no more than one cell in any direction per timestep, which can be seen from the scaling
by the minimum cell size and inverse scaling by the wave speed in Equation (2).

2.3 NEURAL SOLVERS

As previously discussed, numerically solving PDEs is a computationally intensive process. Deep
surrogate models which can accelerate the solution of PDEs are therefore of great interest. Various
approaches have emerged over the last decade, including Physics-Informed Neural Networks (Raissi
et al., 2019) and operator learning (Kovachki et al., 2023). Speedups over classical methods are
primarily achieved by the ability of neural solvers to learn solution mappings on coarsened grids in
space-time (Stachenfeld et al., 2021; Kochkov et al., 2021). To maintain stability, classical methods
require computational grids to be sufficiently fine in time, as specified by the CFL condition, as well
as in space. On the other hand, neural methods can learn to map between solutions spaced hundreds
of classical solver steps apart on much lower-dimensional spatial discretizations, thereby realizing
substantial speedups. Additionally, classical methods require that all D flow variables comprising
the PDE be evolved, whereas neural solvers can learn to explicitly model only a subset of variables
of interest while implicitly learning to incorporate the effect of the omitted variables.

3 METHODS

3.1 LEARNING HIGH-SPEED FLOWS

High-speed flows are one of the most resource-intensive applications of PDE modeling and therefore
stand to benefit greatly from the speedup offered by neural solvers. In such settings, time-adaptive
meshes present a more balanced one-step objective for neural solvers. When using a uniform step

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

size ∆t, the difference between inputs and targets ∥u(t +∆t) − u(t)∥ tends to grow with the rate
of change of inputs with respect to time ∥∂tu(t)∥, which follows from the definition of a derivative
∂tu(t) := limh→0(u(t+ h)− u(t))/h. This implies that inputs with sharp gradients are less corre-
lated with targets such that the mapping for sharp-gradient inputs is more difficult to learn compared
to smoother ones. By instead following an adaptive scheme to inversely scale ∆t according to the
rate of change of u(t), the difference ∥u(t)−u(t+∆t)∥ is more uniformly distributed across inputs
with varying degrees of sharpness in gradients, thereby reducing variance in the training objective.
This is a particularly relevant consideration for high-speed flows, where the sharpness of gradients
varies greatly throughout time due to phenomena such as shock waves. Furthermore, the ability
to train neural solvers on time-adaptive meshes allows direct use of solutions produced from high-
speed flow solvers without introducing error by interpolating to a uniform grid or modifying solver
codes to save solutions at uniform timesteps.

Although well-motivated, the use of adaptive temporal meshes presents several challenges for neural
solvers. Because the step size is determined by the solution, it is not known ahead of time and must
instead be computed on-the-fly during autoregressive rollout. Importantly, the ∆t at inference time
must be aligned with those from training to avoid a test-time distribution shift. While the CFL condi-
tion is used to determine the step size for classical solvers during data generation, it cannot produce
∆t matching those in the training data due to the use of coarsened computational meshes and only
modeling a subset of the variables comprising the PDE. Specifically, while neural solvers are trained
to advance time by hundreds of classical solver steps with a single forward pass, the CFL condition
is used to compute the size of a single solver step, and will therefore suggest a step size orders of
magnitude smaller than the neural solver encountered during training. Furthermore, because neural
solvers learn on coarsened spatial meshes, the cell sizes ∆x and ∆y appearing in Equation (2) will
not match those used to compute ∆t in the training data. Finally, Equation (2) is the condition for a
single phase flow, whereas a multiphase setting that features, for example, a solid phase interacting
with a liquid phase has a much more complicated form involving a large number of field variables.
Direct use of this form would require the neural solver to learn to evolve all of these variables,
thereby reducing the model’s capacity to capture fields of interest accurately.

These challenges motivate us to develop ShockCast, a two-phase framework consisting of a
timestep-conditioned neural solver and a neural CFL model which can emulate the timestep sizes in
the training data on a coarsened space-time mesh using only a subset of the field variables. At infer-
ence time, each unrolling step utilizes each of the phases in turn. In the first phase, the neural CFL
model predicts the timestep size which is used by the neural solver in the second phase to evolve
the current flow field forward in time by the predicted timestep. We investigate approaches for bet-
ter aligning the neural CFL model with the CFL condition, and introduce several novel timestep
conditioning strategies for the neural solver.

3.2 A TWO-PHASE FRAMEWORK

Our datasets D := {Ui}Ni consist of N numerical solutions to the compressible Navier-Stokes
equations produced by a classical high-speed flow solver. Each solution U := {uj}nj consists of
a series of n snapshots on a temporal grid T := {tj}nj , where uj := u(tj) ∈ RD×M denotes
the solution at time point tj sampled on a spatial discretization with M mesh points and D fields.
Notably, T is coarsened relative to the grid used by the classical solver by selecting every J-th
solution from the solver for a coarsening factor J ≥ 100

For the first phase of our framework, we train a neural CFL model ψ to minimize
Ej∼T ,U∼D [Lc (ψ(uj),∆j)] for the loss Lc, where we take Lc to be the MAE. In the sec-
ond phase, we train a neural solver ϕ to map the solution at the current timestep uj and the
timestep size ∆j to the subsequent solution uj+1 by optimizing the one-step objective given by
Ej∼T ,U∼D [Ls (ϕ(uj ,∆j),uj+1)] , where we take Ls to be the relative error averaged over fields.
While the neural solver is trained to emulate the behavior of the classical solver used to generate the
data, the neural CFL model is trained to emulate the process by which the timestep sizes are chosen
while generating data. It is important to again emphasize that due to the use of a coarsened computa-
tional mesh and a reduced number of states being modeled, it is not possible to directly use the CFL
condition to deterministically predict the timestep size. At inference time, ShockCast predicts the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

full solution given the initial condition u0 by alternating between the two phases autoregressively as

∆̂t := ψ(û) û(t+ ∆̂t) = ϕ
(
û(t), ∆̂t

)
,

where û(t) denotes the predicted state up until time t. This process, shown in Figure 1, is repeated
until a pre-specified stopping time is reached.

3.3 NEURAL CFL

Inspired by the classical CFL condition, we experiment with several modifications to the input fea-
tures and internal structure of our neural CFL model. As adaptive time-stepping schemes adjust ∆t
according to the sharpness of the gradients of u(t), we include the spatial gradients ∇u computed
using finite differences for all fields in u as inputs. From Equation (2), we furthermore observe the
dependence of the CFL condition on the max wave speed, computed by taking the maximum over
the local wave speed λ(x, y) in all computational cells. This operation can be viewed as a functional
mapping λ to the scalar value λmax via max pooling. This motivates us to employ max pooling as
our spatial downsampling function. Finally, as previously discussed, the classical CFL condition is
not directly applicable due to the use of mesh coarsening and modeling only a subset of the field
variables. However, it is possible that the functions comprising the condition can be used to learn a
surrogate condition. We therefore add CFL features to inputs as the local wave speed λ(x, y), the
velocity magnitudes |u(x, y)| and |v(x, y)|, and the local sound speed a(x, y).

3.4 TIMESTEP CONDITIONING FOR NEURAL SOLVERS

We now discuss our approaches for timestep conditioning for the neural solver phase.

Time-Conditioned Layer Norm. Several prior works have considered training models to advance
time by multiples of a uniform step size (Gupta & Brandstetter, 2023; Herde et al., 2024). These
models have utilized time-conditioned layer norm, a technique originally introduced for condition-
ing diffusion models on the diffusion time (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021).
Prior to each layer, the timestep size ∆t is embedded into two vectors a and b with sizes match-
ing the hidden dimension dmodel of the feature map z. These are then applied as a scale and shift
following each normalization layer as LN(z)(1 + a) + b.

Spatial-Spectral Conditioning. Many neural solvers perform convolutions in Fourier space and
may not use normalization layers by default (Li et al., 2021; Tran et al., 2023). For these models,
the Spatial-Spectral conditioning strategy introduced by Gupta & Brandstetter (2023) can be used to
perform timestep conditioning in the frequency domain. Under this scheme, the Fourier transform
of the feature map is point-wise multiplied with a complex-valued embedding ξ of ∆t as F(z)ξ. ξ
has different entries for each frequency of F(z), and so to maintain parameter-efficiency, Gupta &
Brandstetter (2023) share ξ across all channels of z.

Euler Residuals. Neural solvers often employ residual connections (He et al., 2016) as zl+1 =
zl+Fl(zl), where the l-th solver layer Fl includes spatial integration operations such as convolution
or attention. Many works have studied the relationship between residual connections and Euler
integration (Lu et al., 2018; Haber & Ruthotto, 2017; Ruthotto & Haber, 2020), and even extended
it to more general classes of integrators (Chen et al., 2018; Kidger, 2022). For a function of time v,
Euler integrators approximate time integration as

v(t+∆t) = v(t) +

∫ t+∆t

t

∂tv(τ)dτ ≈ v(t) + ∆t∂tv(t).

When viewing the evolution of the latent features zl 7→ zl+1 from layer-to-layer as the evolution
of some latent map z(t) ∈ Rdmodel×M in time, the time integration of z carried out numerically by
the Euler integrator corresponds exactly to residual connections. In our scenario, we interpret the
l-th layer representation zl corresponding to the input field u(t) and timestep size ∆t as the latent
form of some intermediate state u(t + α∆t), where α ∈ [0, 1] increases monotonically with depth
in the network. This interpretation leads to Euler Residuals, in which the period of time integration
executed by Fl is related to the timestep size ∆t as zl+1 = zl + aFl(zl), where a is an affine
transformation of ∆t as a = W∆t+ c for W , c ∈ Rdmodel .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Mixture of Experts. Mixture of Experts (Shazeer et al., 2017; Jacobs et al., 1991; Fedus et al.,
2022) has emerged as an effective approach to scaling up models and has been applied in PDE
modeling tasks (Hao et al., 2023). The Mixture of Experts (MoE) layer consists of a gating network
Gl and K experts Fl,1, . . . , Fl,k. The gating network is often a simple MLP, while the experts can
have more complex architectures. Based on layer inputs zl, the gating network weighs the outputs
of the experts according to the gate Gl(zl) ∈ RK as zl+1 = zl +

∑K
k Gl(zl)kFl,k(zl). The gating

network can then learn to partition the latent space such that each expert specializes in a particular
area. As our task involves learning to evolve dynamics by variable time lengths, we gate experts
according to the timestep ∆t as

zl+1 = zl +

K∑
k

Gl(∆t)k (akFl,k(zl)) ,

where ak is an affine transformation of ∆t for the k-th expert, and plays the same role as for
the Euler residuals. This enables each layer to have experts specializing in short time integration
periods where u(t) contains sharp gradients, as well as experts for handling longer timesteps where
the dynamics behave more smoothly.

4 RELATED WORK

Learnable spatial re-meshing for PDEs has been an active area of research, with advances made in
supervised Pfaff et al. (2021); Song et al. (2022); Zhang et al. (2024a) and reinforcement learning Wu
et al. (2022a); Freymuth et al. (2023); Yang et al. (2023) frameworks. However, to the best of
our knowledge, we are the first to consider learning to temporally re-mesh and utilize data with
adaptable temporal resolution, which are both vital for developing models for high-speed flows.
Works in this direction have instead developed various schemes using temporally uniform data. Wu
et al. (2025) recently introduced a pipeline wherein a timestep prediction model is trained using an
unsupervised loss designed to avoid timesteps that are too small. A second module then predicts
temporal derivatives of various orders such that the solution can be queried using a Taylor expansion
at any point up until the predicted timestep, enabling supervision using the temporally-uniform
ground truth data. Following a similar continuous-time strategy, Janny et al. (2024) propose to
learn an interpolator such that arbitrary time points between temporally uniform training data can be
queried. Hagnberger et al. (2024) employ a conditional neural field to map from initial conditions to
arbitrary query times. Other works learn to map forward in time by various multiples of a uniform
step size, with Liu et al. (2022a); Hamid et al. (2024) training different models for each step size and
Gupta & Brandstetter (2023); Herde et al. (2024) training one model to be shared across step sizes
using time-conditioned layer norm. Importantly, Gupta & Brandstetter (2023); Herde et al. (2024)
consider the timestep size to be known a priori, with Gupta & Brandstetter (2023) treating this as a
benchmark for probing the ability of neural solvers to respond to timestep conditioning and Herde
et al. (2024) using it as a pre-training task. As detailed in Section 3.1, this assumption is not realistic
in the setting we consider here.

5 EXPERIMENTS

5.1 DATASETS

We consider two settings of high-speed flows in the supersonic regime. We discuss the generation
of these cases in Appendix A and visualize solutions in Appendix E.

Coal Dust Explosion. The first setting we consider is a multiphase problem containing both
gaseous air and granular coal particles. The simulation begins with a thin, uniform layer of coal
dust settled on the bottom of a channel. Near the left boundary, we initialize a normal shock. We
vary the initial strength of the shock between Mach 1.2 and 2.1 along with the particle diameter
from case to case for a total of 100 cases, with 90 for training and 10 for evaluation. Once the
simulation starts, the normal shock travels to the right as shown in Figure 7, where it interacts with
the dust layer, first compressing it and later generating instabilities at the gas-dust layer interface.
These instabilities further grow with time into turbulent vortical structures, which raise the dust in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Base ∇u+CFL ∇u ∇u+Max ∇u+Max+CFL
0.50

0.55

0.60

0.65

Coal Dust Explosion

∇u+CFL ∇u ∇u+Max ∇u+Max+CFL Base
0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

Circular Blast

Neural CFL One-Step Test Errors

Figure 2: One-step MAE of Neural CFL models on ∆t averaged over 3 training runs, where ∆t is
normalized to have standard deviation 1. Error bars are ± 2 standard errors.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
t

4.75

5.00

5.25

∆
t

×10−5
Coal Dust Explosion, Shock Mach Number 1.85

0.000 0.001 0.002 0.003 0.004 0.005
t

8

9

10

11

∆
t

×10−5
Circular Blast, Max Mach Number 2.68

ShockCast: Unrolled ∆t

Predicted TruePredicted True

Figure 3: ∆t predicted by autoregressive unrolling of ShockCast with F-FNO+Euler conditioning
neural solver backbone for a selected solution.

the channel and mix them with the air. The amount of mixing depends both on the initial shock
strength and the particle diameter. We train our models to predict the velocity and temperature of
the gas and the volume fraction describing the percentage of coal dust at each point.

Circular Blast. The second setting we consider is a two-dimensional circular blast case, which
represents a two-dimensional version of the Sod’s shock tube problem (Sod, 1978). We initialize a
circular region of high pressure such that the pressure inside the circle is substantially higher than
its surroundings as shown in Figure 8. We vary the ratio of these initial pressures from 1.99 to 50
to produce a set of 99 cases split into 90 training cases and 9 evaluation cases. Once the simulation
starts, a circular shock travels radially outward, while an expansion wave travels in the opposite
direction. This continues until the outward moving shock reflects from the boundaries and travels
inwards toward the origin. The interaction of the reflected shocks with the post-shock gas generates
instabilities which grow into turbulent structures. Once these reflected shocks reach the origin,
they reflect again, thus propagating radially outward. This continues repeatedly, while with each
reflection, the shocks lose strength. The maximum Mach number, which correlates with the initial
pressure ratio, varied from 0.49 to 2.97 across cases. We train our models to predict the velocity,
temperature, and density fields.

5.2 SHOCKCAST BACKBONES

We use the ConvNeXt architecture (Liu et al., 2022b) as the backbone architecture for our Neu-
ral CFL model trained with the noise injection strategy from Sanchez-Gonzalez et al. (2020) with
noise level 0.01. We experiment with a variety of neural solver architectures. Multiscale process-
ing has been highlighted as a vital component of neural solvers (Gupta & Brandstetter, 2023), and
thus, we explore the interaction between our timestep conditioning strategies and various multiscale
processing mechanisms: two hierarchical mechanisms and two global mechanisms. The first hierar-
chical model we consider is the U-Net (Ronneberger et al., 2015). We use the modern U-Net variant
from Gupta & Brandstetter (2023), which closely resembles architectures used by diffusion mod-
els (Ho et al., 2020). The Convolutional Neural Operator (CNO) (Raonic et al., 2024) extends the
U-Net into the neural operator framework using anti-aliasing techniques from Karras et al. (2021).
Both architectures use a hierarchical approach to processing dynamics on different scales, whereas

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Tr
ue

t = 1.006× 10−4 t = 1.263× 10−3 t = 2.507× 10−3 t = 3.779× 10−3 t = 4.814× 10−3

Pr
ed

ic
te

d

t = 1.006× 10−4 t = 1.263× 10−3 t = 2.506× 10−3 t = 3.784× 10−3 t = 4.819× 10−3

Circular Blast: Density

Figure 4: Comparison of the ground truth (top) and predicted (bottom) density fields for the circular
blast data. We obtain predictions with autoregressive unrolling of ShockCast.

F-FNO U-Net CNO Transolver
0.58

0.60

0.62

Correlation Time Proportion (↑)

F-FNO U-Net CNO Transolver

0.10

0.12

TKE Error (↓)

F-FNO U-Net CNO Transolver
0.085

0.090

0.095

0.100

Mean Flow Error (↓)
ShockCast Results: Coal Dust Explosion

Affine Euler MoE

Figure 5: Coal dust explosion results averaged over three neural solver training runs. Error bars are
± 2 standard errors.

the Fourier Neural Operator (Li et al., 2021) employs global Fourier convolutions in the frequency
domain. The variant we employ here is the Factorized FNO (Tran et al., 2023) (F-FNO), which
enhances the scalability of FNO by applying convolutions one spatial dimension at a time. As
an alternative to parallel multi-scale processing with Fourier convolutions, attention enables mesh
points both distant and local to share information with one another. Transolver (Wu et al., 2024) re-
duces the quadratic complexity of attention by coarsening using a learnable soft pooling operation.
For each architecture, we experiment with each of the timestep conditioning strategies introduced
in Section 3.4. We refer to the Affine version of models as the one using either spatial-spectral
conditioning in the case of F-FNO or time-conditioned layer norm in the case of the remaining ar-
chitectures. The remaining model variants add onto the Affine versions by additionally employing
Euler conditioning, as well as MoE conditioning, both of which use Euler residuals. We discuss
these architectures and training procedures in greater detail in Appendices B and C, respectively.

5.3 METRICS

To evaluate predicted solutions, we compute the Pearson’s correlation coefficient for each field and
at each timestep with the ground truth data. This requires the predicted fields to be on the same tem-
poral grid as the ground truth data, for which we use linear interpolation, described in Appendix D.
The correlation time (Kochkov et al., 2021; Lippe et al., 2023; Alkin et al., 2024) for a given field
is defined as the last time t before the correlation sinks below a threshold, which we take to be 0.9
here. We then average this time across all fields and report it as a percentage of the full simulation
time. We additionally use the predicted fields to compute several of the primary physical quantities
of interest to practitioners. The mean flow is computed by averaging each flow field over time, while
the Turbulence Kinetic Energy (TKE) is calculated as the sum of the variances of the fluctuating part

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

F-FNO U-Net CNO Transolver

0.97

0.98

0.99

Correlation Time Proportion (↑)

F-FNO U-Net CNO Transolver
0.0200

0.0225

0.0250

0.0275

0.0300

TKE Error (↓)

F-FNO U-Net CNO Transolver

0.04

0.06

0.08

Mean Flow Error (↓)
ShockCast Results: Circular Blast

Affine Euler MoE

Figure 6: Circular blast results averaged over three neural solver training runs. Error bars are ± 2
standard errors.

of the velocity field. These quantities are given by

ū :=
1

T

∫ T

0

u(t)dt TKE :=
1

2T

∫ T

0

(u(t)− ū)2 + (v(t)− v̄)2dt, (4)

respectively. We report the relative error averaged over each variable for the mean flow, and relative
error of the TKE field, where the integrals are approximated using the trapezoidal rule.

5.4 RESULTS

We examine the one-step MAE of several variants of the neural CFL model in Figure 2. For the
circular blast, a single-phase problem where the CFL condition is determined entirely by the velocity
and temperature fields, the base model yields the best performance, as the modeled variables by
themselves are sufficient to accurately predict the timestep size. In contrast, the coal dust explosion
has a more complicated form of the CFL condition to account for both the solid phase describing
the coal dust and the gas phase. The modeled variables primarily focus on the gas phase, with the
exception of the volume fraction. In this more challenging setting, we observe substantial benefits
from our physically-motivated enhancements to the neural CFL model. Our best results are achieved
when using max-pooling, with the spatial gradient of the flow state ∇u and CFL features added to
inputs. In Figure 3, we examine the predicted ∆t obtained through autoregressive unrolling of the
ShockCast framework in each setting and observe a close match with the ground truth. We use the
best neural CFL model in each of the settings for the full ShockCast models discussed next.

We visualize unrolled predictions on the circular blast density field in Figure 4. In Figures 5 and 6,
we examine the performance of ShockCast realized with each of the neural solver architectures
and timestep conditioning strategies. For both the coal dust explosion and circular blast settings,
ShockCast achieves the strongest performance in terms of correlation time when leveraging a U-Net
backbone with time-conditioned layer norm. On the coal dust explosion cases, MoE conditioning
and Euler conditioning with a U-Net backbone achieve the first and second best performance in terms
of TKE error, respectively. Similarly, the TKE error for the circular blast is lowest for Euler and MoE
conditioning strategies with a F-FNO backbone. Finally, while U-Net with time-conditioned layer
norm has the best mean flow error for the coal dust explosion setting, the F-FNO with MoE variant of
ShockCast has the lowest circular blast mean flow error. We present extended results in Appendix F.

6 CONCLUSION

In this work, we develop machine learning methods for modeling high-speed flows with adaptive
time-stepping. To this end, we propose ShockCast, a two-phase framework that learns timestep sizes
in the first phase and evolves fluid fields by the predicted step size in the second phase. To evaluate
ShockCast, we generate two new supersonic flow datasets. Results show that ShockCast is effective
at learning to temporally re-mesh and evolve fluid fields. Our work represents the first steps towards
developing machine learning models for high-speed flows, where there is great potential for neural
acceleration due to immense computational requirements of classical methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Benedikt Alkin, Andreas Fürst, Simon Lucas Schmid, Lukas Gruber, Markus Holzleitner, and Jo-
hannes Brandstetter. Universal physics transformers: A framework for efficiently scaling neural
operators. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=oUXiNX5KRm.

John D. Anderson. Modern Compressible Flow: With Historical Perspective. McGraw-Hill Educa-
tion, 4th edition, 2020.

John D. Anderson. Fundamentals of Aerodynamics. McGraw Hill, New York, 7th edition, 2023.

Dinshaw S Balsara and Chi-Wang Shu. Monotonicity preserving weighted essentially non-
oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics,
160(2):405–452, 2000.

Sören Bartels. Numerical approximation of partial differential equations, volume 64. Springer,
2016.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Saykat Kumar Biswas and NK Anand. Three-dimensional laminar flow using physics informed deep
neural networks. Physics of Fluids, 35(12), 2023.

Saykat Kumar Biswas and NK Anand. Interfacial conditioning in physics informed neural networks.
Physics of Fluids, 36(7), 2024.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. In Proceedings of the 40th International Conference on Machine Learning,
2023.

Florent Bonnet, Jocelyn Ahmed Mazari, Paola Cinella, and Patrick Gallinari. Airfrans: High fi-
delity computational fluid dynamics dataset for approximating reynolds-averaged navier-stokes
solutions. In 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track
on Datasets and Benchmarks, 2022.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=vSix3HPYKSU.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. SIGGRAPH sketches, 10(1):1,
2007.

Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and Thomas A Zang. Spectral methods:
evolution to complex geometries and applications to fluid dynamics. Springer Science & Business
Media, 2007.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
low-rank physics-informed neural networks. Advances in Neural Information Processing Systems,
36, 2024.

Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathemat-
ical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

10

https://openreview.net/forum?id=oUXiNX5KRm
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng,
Yinpeng Chen, and Youzuo Lin. Openfwi: Large-scale multi-structural benchmark datasets for
full waveform inversion. Advances in Neural Information Processing Systems, 35:6007–6020,
2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Dimitris Drikakis, Marco Hahn, Andrew Mosedale, and Ben Thornber. Large eddy simulation
using high-resolution and high-order methods. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 367(1899):2985–2997, 2009.

John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. Jour-
nal of Machine Learning Research, 20(68):1–55, 2019.

Anthony A Egeln, John C Hewson, Daniel R Guildenbecher, Ryan T Marinis, Marc C Welliver,
and Ryan W Houim. Post-detonation fireball modeling: Validation of freeze out approximations.
Physics of Fluids, 35(6), 2023.

William A Falcon. Pytorch lightning. GitHub, 3, 2019.

T Farrukh, R Houim, D Guildenbecher, M Welliver, and S Balachandar. Particle and fluid time
scales in a spherical multiphase blast flow. Shock Waves, pp. 1–19, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Nico Fleischmann, Stefan Adami, and Nikolaus A Adams. A shock-stable modification of the
hllc riemann solver with reduced numerical dissipation. Journal of computational physics, 423:
109762, 2020.

Niklas Freymuth, Philipp Dahlinger, Tobias Daniel Würth, Simon Reisch, Luise Kärger, and Ger-
hard Neumann. Swarm reinforcement learning for adaptive mesh refinement. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=rZqRu8e4uc.

David Gottlieb and Jan S Hesthaven. Spectral methods for hyperbolic problems. Journal of Com-
putational and Applied Mathematics, 128(1-2):83–131, 2001.

David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods: theory and applica-
tions. SIAM, 1977.

Fernando F Grinstein, Len G Margolin, and William J Rider. Implicit large eddy simulation, vol-
ume 10. Cambridge university press Cambridge, 2007.

Swagnik Guhathakurta. Effect of Radiative Heat Transfer on the Structure and Propagation of
Layered Coal-Dust Explosions. PhD thesis, University of Florida, 2021.

Swagnik Guhathakurta and Ryan W Houim. Influence of thermal radiation on layered dust explo-
sions. Journal of Loss Prevention in the Process Industries, 72:104509, 2021.

Swagnik Guhathakurta and Ryan W Houim. Impact of particle diameter and thermal radiation on
the explosion of dust layers. Proceedings of the Combustion Institute, 39(3):2905–2914, 2023a.

Swagnik Guhathakurta and Ryan W Houim. Propagation and severity of coal-dust explosions and
the effect of radiation in different channel lengths. In Proceedings of the 29th international col-
loquium on the dynamics of explosions and reactive systems, 2023b.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for dif-
ferential equations. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=LZDiWaC9CGL.

11

https://openreview.net/forum?id=rZqRu8e4uc
https://openreview.net/forum?id=rZqRu8e4uc
https://openreview.net/forum?id=LZDiWaC9CGL
https://openreview.net/forum?id=LZDiWaC9CGL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE
modeling. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=dPSTDbGtBY.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Jan Hagnberger, Marimuthu Kalimuthu, Daniel Musekamp, and Mathias Niepert. Vectorized
conditional neural fields: A framework for solving time-dependent parametric partial differ-
ential equations. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=sF9epWkNUG.

Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, and Mohammad Abid Bazaz. Hierarchical deep
learning-based adaptive time stepping scheme for multiscale simulations. Engineering Applica-
tions of Artificial Intelligence, 133:108430, 2024.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for large-
scale PDE pre-training. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=X7UnDevHOM.

Joshua W Hargis, Anthony Egeln, Ryan Houim, and Daniel R Guildenbecher. Visualization of post-
detonation fireball flowfields and comparison to cfd modeling. Proceedings of the Combustion
Institute, 40(1-4):105230, 2024.

Amiram Harten, Peter D Lax, and Bram van Leer. On upstream differencing and godunov-type
schemes for hyperbolic conservation laws. SIAM review, 25(1):35–61, 1983.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji. Group
equivariant Fourier neural operators for partial differential equations. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

Jacob Helwig, Xuan Zhang, Haiyang Yu, and Shuiwang Ji. A geometry-aware message passing
neural network for modeling aerodynamics over airfoils. arXiv preprint arXiv:2412.09399, 2024.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv
preprint arXiv:2405.19101, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Masanobu Horie and Naoto Mitsume. Physics-embedded neural networks: Graph neural pde solvers
with mixed boundary conditions. Advances in Neural Information Processing Systems, 35:23218–
23229, 2022.

Ryan W Houim and Kenneth K Kuo. A low-dissipation and time-accurate method for compressible
multi-component flow with variable specific heat ratios. Journal of Computational Physics, 230
(23):8527–8553, 2011.

Ryan W Houim and Elaine S Oran. A multiphase model for compressible granular–gaseous flows:
formulation and initial tests. Journal of fluid mechanics, 789:166–220, 2016.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

12

https://openreview.net/forum?id=dPSTDbGtBY
https://openreview.net/forum?id=dPSTDbGtBY
https://openreview.net/forum?id=sF9epWkNUG
https://openreview.net/forum?id=X7UnDevHOM

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Steeven Janny, Aurélien Bénéteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf.
EAGLE: Large-scale learning of turbulent fluid dynamics with mesh transformers. In Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=mfIX4QpsARJ.

Steeven Janny, Madiha Nadri, Julie Digne, and Christian Wolf. Space and time continuous physics
simulation from partial observations. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=4yaFQ7181M.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. Advances in neural information processing
systems, 34:852–863, 2021.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

David A Kopriva. Implementing spectral methods for partial differential equations: Algorithms for
scientists and engineers. Springer Science & Business Media, 2009.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023. URL
http://jmlr.org/papers/v24/21-1524.html.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast:
Learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794,
2022.

Hsiao-Chi Li. Flame Quenching or Accelerating by Metal Foam in a Square Channel Using Im-
mersed Boundary Method. University of Florida, 2022.

Hsiao-Chi Li and Ryan W Houim. Pore-scale resolved simulation of quenching, acceleration, and
transition to detonation of hydrogen explosions by metal foams. Combustion and Flame, 259:
113118, 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023a. ISSN 2835-8856. URL
https://openreview.net/forum?id=EPPqt3uERT.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022a.

13

https://openreview.net/forum?id=mfIX4QpsARJ
https://openreview.net/forum?id=mfIX4QpsARJ
https://openreview.net/forum?id=4yaFQ7181M
http://jmlr.org/papers/v24/21-1524.html
https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=c8P9NQVtmnO

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zongyi Li, Miguel Liu-Schiaffini, Nikola Borislavov Kovachki, Burigede Liu, Kamyar Azizzade-
nesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative
dynamics in chaotic systems. In Advances in Neural Information Processing Systems, 2022b.

Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash Otta,
Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al.
Geometry-informed neural operator for large-scale 3d pdes. arXiv preprint arXiv:2309.00583,
2023b.

Phillip Lippe, Bastiaan S Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstet-
ter. Pde-refiner: Achieving accurate long rollouts with neural pde solvers. arXiv preprint
arXiv:2308.05732, 2023.

Yuying Liu, J Nathan Kutz, and Steven L Brunton. Hierarchical deep learning of multiscale dif-
ferential equation time-steppers. Philosophical Transactions of the Royal Society A, 380(2229):
20210200, 2022a.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International conference on
machine learning, pp. 3276–3285. PMLR, 2018.

M Pino Martı́n, Ellen M Taylor, Minwei Wu, and V Gregory Weirs. A bandwidth-optimized weno
scheme for the effective direct numerical simulation of compressible turbulence. Journal of Com-
putational Physics, 220(1):270–289, 2006.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. In Proceedings of the 40th International Conference
on Machine Learning, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Elaine S Oran, Jay P Boris, and Jay P Boris. Numerical simulation of reactive flow, volume 2.
Citeseer, 2001.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNqYL0_XP.

Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Re, and
Stefano Ermon. Transform once: Efficient operator learning in frequency domain. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
B2PpZyAAEgV.

14

https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=B2PpZyAAEgV
https://openreview.net/forum?id=B2PpZyAAEgV

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jacob W Posey, Brayden Roque, Swagnik Guhathakurta, and Ryan W Houim. Mechanisms of
prompt and delayed ignition and combustion of explosively dispersed aluminum powder. Physics
of Fluids, 33(11), 2021.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn Stott,
Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Gencast: Diffusion-based
ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Junuthula Narasimha Reddy, NK Anand, and Pratanu Roy. Finite element and finite volume methods
for heat transfer and fluid dynamics. Cambridge University Press, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear man-
ifold decoders for operator learning. Advances in Neural Information Processing Systems, 35:
5601–5613, 2022.

Smruti Shah and NK Anand. Physics-informed neural networks for periodic flows. Physics of
Fluids, 36(7), 2024.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Zhijun Shen, Wei Yan, and Guangwei Yuan. A robust hllc-type riemann solver for strong shock.
Journal of Computational Physics, 309:185–206, 2016.

Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws. Journal of computational physics, 27(1):1–31, 1978.

Wenbin Song, Mingrui Zhang, Joseph G Wallwork, Junpeng Gao, Zheng Tian, Fanglei Sun,
Matthew Piggott, Junqing Chen, Zuoqiang Shi, Xiang Chen, et al. M2n: Mesh movement net-
works for pde solvers. Advances in Neural Information Processing Systems, 35:7199–7210, 2022.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. In International Conference on Learning Rep-
resentations, 2021.

Ben Thornber, Andrew Mosedale, and Dimitris Drikakis. On the implicit large eddy simulations of
homogeneous decaying turbulence. Journal of Computational Physics, 226(2):1902–1929, 2007.

Ben Thornber, Andrew Mosedale, Dimitris Drikakis, David Youngs, and Robin JR Williams. An
improved reconstruction method for compressible flows with low mach number features. Journal
of computational Physics, 227(10):4873–4894, 2008.

15

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduc-
tion. Springer Science & Business Media, 2013.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=tmIiMPl4IPa.

Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to
godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Gege Wen, Zongyi Li, Qirui Long, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M
Benson. Real-time high-resolution co 2 geological storage prediction using nested fourier neural
operators. Energy & Environmental Science, 16(4):1732–1741, 2023.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
fast transformer solver for PDEs on general geometries. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 53681–53705. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/wu24r.html.

Tailin Wu, Takashi Maruyama, Qingqing Zhao, Gordon Wetzstein, and Jure Leskovec. Learn-
ing controllable adaptive simulation for multi-scale physics. In NeurIPS 2022 AI for Sci-
ence: Progress and Promises, 2022a. URL https://openreview.net/forum?id=
PhktEpJHU3.

Tailin Wu, Qinchen Wang, Yinan Zhang, Rex Ying, Kaidi Cao, Rok Sosic, Ridwan Jalali, Hassan
Hamam, Marko Maucec, and Jure Leskovec. Learning large-scale subsurface simulations with
a hybrid graph network simulator. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4184–4194, 2022b.

Zhikai Wu, Shiyang Zhang, Sizhuang He, Sifan Wang, Min Zhu, Anran Jiao, Lu Lu, and David
van Dijk. Tante: Time-adaptive operator learning via neural taylor expansion. arXiv preprint
arXiv:2502.08574, 2025.

Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov, Jean-
Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, et al. Reinforcement learning for
adaptive mesh refinement. In International conference on artificial intelligence and statistics, pp.
5997–6014. PMLR, 2023.

Mingrui Zhang, Chunyang Wang, Stephan C Kramer, Joseph G Wallwork, Siyi Li, Jiancheng Liu,
Xiang Chen, and Matthew Piggott. Towards universal mesh movement networks. Advances in
Neural Information Processing Systems, 37:14934–14961, 2024a.

Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus
Day, Brian Friesen, Kevin Gott, Daniel Graves, Max Katz, Andrew Myers, Tan Nguyen, Andrew
Nonaka, Michele Rosso, Samuel Williams, and Michael Zingale. AMReX: A Framework for
Block-Structured Adaptive Mesh Refinement. Journal of Open Source Software, 4(37):1370,
2019. doi: 10.21105/joss.01370.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, ..., and Shuiwang Ji.
Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint
arXiv:2307.08423, 2023.

Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsch, and Shui-
wang Ji. Sinenet: Learning temporal dynamics in time-dependent partial differential equa-
tions. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=LSYhE2hLWG.

16

https://openreview.net/forum?id=tmIiMPl4IPa
https://proceedings.mlr.press/v235/wu24r.html
https://openreview.net/forum?id=PhktEpJHU3
https://openreview.net/forum?id=PhktEpJHU3
https://openreview.net/forum?id=LSYhE2hLWG

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendix

A CFD Problem Description and Numerical Models 17
A.1 Coal Dust Explosion . 17
A.2 Circular Blast . 18

B Neural Solvers 19

C Training Details 21
C.1 Datasets . 21
C.2 Training Pipeline . 21
C.3 Parameter Counts, FLOPs and Peak GPU Memory 22
C.4 Solution Runtime Analysis . 23

D Metrics 23

E Solution Visualizations 23

F Extended Results 35

G Limitations and Future Directions 35

H Broader Impacts 40

A CFD PROBLEM DESCRIPTION AND NUMERICAL MODELS

We conduct the numerical simulations in this work using the HyBurn code, which implements high-
order Godunov schemes to solve the governing equations. HyBurn is a finite volume solver that
employs parallelization and adaptive mesh refinement (AMR) via the AMReX library (Zhang et al.,
2019). It uses a low-dissipation, WENO-based high-order Godunov method (Houim & Kuo, 2011;
Houim & Oran, 2016; Balsara & Shu, 2000; Martı́n et al., 2006; Shen et al., 2016; Harten et al., 1983)
and models turbulence using Implicit Large Eddy Simulation (Grinstein et al., 2007; Oran et al.,
2001; Thornber et al., 2008; Drikakis et al., 2009; Thornber et al., 2007). HyBurn solves compress-
ible Navier-Stokes equations for Eulerian-Eulerian granular multiphase reactive flows, employing
advanced numerical techniques developed by Houim & Oran (2016). It uses an explicit third-order
three-stage Runge-Kutta time-stepping algorithm along with two independent CFL numbers – one
for the hyperbolic and the other for the parabolic terms of the compressible Navier-Stokes equa-
tions. The actual timestep size is determined by whichever is the smaller of the two. HyBurn has
been extensively validated and verified against various compressible multiphase and reactive flow
problems (Houim & Kuo, 2011; Houim & Oran, 2016). More details about the algorithms and
the applications of HyBurn can be found in previous work (Guhathakurta & Houim, 2023a; 2021;
Guhathakurta, 2021; Guhathakurta & Houim, 2023b; Posey et al., 2021; Li & Houim, 2024; Li,
2022; Hargis et al., 2024; Egeln et al., 2023; Farrukh et al., 2025).

A.1 COAL DUST EXPLOSION

The first setting we consider is loosely based on the coal dust explosion simulations in Guhathakurta
& Houim (2023a; 2021); Guhathakurta (2021); Guhathakurta & Houim (2023b). The major dif-
ferences are that in this study we use a normal shock instead of a detonation to mimic the primary
explosion in a coal mine, and there are no chemical reactions involved. The computational geometry
we use is a 25 cm by 5 cm two-dimensional rectangular channel containing air, with a thin uniform
layer of coal dust settled on the bottom of the channel. We keep the left and right boundaries open,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Coal Dust Explosion: Grid Independence

Refinement Levels Shock speed (ms−1)

1 1,102.52
2 1,033.99
3 999.70

(a) Coal grid independence tests. We choose an ar-
bitrary point in the domain and measure the shock
speed at this point for each of the configurations.

Circular Blast: Grid Independence

Refinement Levels Time (s× 10−3)

1 1.0178
2 1.0179
3 1.0196

(b) Blast grid independence tests. We choose an arbi-
trary point in the domain and measure the time taken
for the shock to reach this point for each of the three
configurations.

Table 1: Grid independence tests. In each setting, we re-ran a selected case for varying levels of
mesh refinement.

t = 0.000 t = 1.137 t = 2.188 t = 3.128 t = 4.048 t = 4.967 t = 5.889 t = 6.814 t = 7.736

−102 −101 0 101 102

Coal Dust Explosion: Gas Velocity x-component, Shock Mach Number 1.85

Figure 7: Initial gas velocity x-component for a selected coal dust explosion case. Times are in
units of 10−5 seconds and the downsampling factor relative to the classical solver solution is 100×
compared to 500× used for training ShockCast. The initial shock can be seen to be moving from
left to right.

while the top and bottom boundaries are symmetry. This is a multiphase problem containing both
gaseous air and granular coal particles. Near the left boundary, we initialize a normal shock using
post-shock conditions to the left of the shock and quiescent air (300K temperature, 1 atm pressure)
ahead of it. We vary the initial strength of the shock between Mach 1.2 and 2.1 along with the parti-
cle diameter between 1 µm and 150 µm from case to case for a total of 100 cases. We set the initial
volume fraction of the dust layer to 47% and the particles to be monodisperse. We model the coal
particles as being composed of inert ash only, with a solid-phase density of 1330 kgm−3. We use
two AMR levels to give an effective resolution of ∼0.12mm at the finest level. We use a fifth-order
WENO interpolation scheme and the HLL (Toro, 2013) flux reconstruction method. We set the CFL
numbers for both the hyperbolic and parabolic terms to 0.6.

Once the simulation starts, the normal shock travels to the right as shown in Figure 7, where it
interacts with the dust layer, first compressing it and later generating instabilities at the gas-dust
layer interface. These instabilities further grow with time into turbulent vortical structures, which
raise the dust in the channel and mix them with the air. The amount of mixing depends both on
the initial shock strength and the particle diameter. We cap the total simulation time at 3ms for all
cases.

We used a case with initial strength of the shock Mach 3 and particle diameter 30 µm to conduct a
grid independence analysis. We used a base grid of 520×104 and conducted the analysis by varying
the AMReX maximum levels of refinement between 1 and 3. In Table 1a, we compare the shock
speed at an arbitrary point in the domain for each of the three configurations. Because the shock
speed differed least between 2 and 3 levels of refinement (3.4%), we used 2 levels of refinement as
the grid configuration for data generation.

A.2 CIRCULAR BLAST

The second setting we consider is a two-dimensional circular blast case, which represents a two-
dimensional version of the Sod’s shock tube problem (Sod, 1978). We initialize a circular region
of high pressure such that the pressure inside the circle is substantially higher than its surroundings
as shown in Figure 8. We vary the ratio of these initial pressures from 1.99 to 50 to produce a set

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

IPR = 3.44 IPR = 10.23 IPR = 16.53 IPR = 23.81 IPR = 29.63 IPR = 33.51 IPR = 37.88 IPR = 43.69 IPR = 47.58

10 20 30 40 50

Circular Blast: Initial Densities

Figure 8: Initial density field for the circular blast evaluation cases with varying Initial Pressure
Ratios (IPR). Due to the ideal gas law, increasing the pressure also increases the density.

Model Initial
Learning Rate

Latent
Dimension Key Hyperparameters

U-Net 2× 10−4 64 3 downsampling/upsampling levels

CNO 2× 10−4 27
4 downsampling/upsampling levels, 6 resid-
ual blocks per level

F-FNO 1× 10−3 96 32 modes, 12 layers
Transolver 6× 10−4 192 8 layers, 8 attention heads, 8 slices

ConvNeXT 2× 10−4 96
ConvNeXt-T (See Section 3 of Liu et al.
(2022b))

Table 2: Hyperparameters for neural solver and neural CFL models used in both the coal dust
explosion setting and the circular blast setting.

of 99 cases. To reduce the computational cost, we only simulate a quarter of the circle. We use
symmetry boundary conditions for all boundaries to allow for the generated shocks and expansion
waves to reflect when incident on them. We model a single gaseous phase throughout the com-
putational domain. We set the initial temperatures to 300K everywhere, with the gas initially at
rest. We use two Adaptive Mesh Refinement (AMR) levels – triggered by predefined pressure and
density ratio thresholds between any two adjacent computational cells – to give an effective resolu-
tion of ∼0.98mm at the finest level, which is sufficient to resolve the shocks. We use a fifth-order
MUSCL (Van Leer, 1979) interpolation scheme and the HLLC-LM (Fleischmann et al., 2020) flux
reconstruction method. We set the CFL numbers for both the hyperbolic and parabolic terms to 0.8.

Once the simulation starts, a circular shock travels radially outward, while an expansion wave travels
in the opposite direction. This continues until the outward moving shock reflects from the boundaries
and travels inwards toward the origin. The interaction of the reflected shocks with the post-shock
gas generates instabilities which grow into turbulent structures. Once these reflected shocks reach
the origin, they reflect again, thus propagating radially outward. This continues repeatedly, while
with each reflection, the shocks lose strength. We cap the total simulation time at 5ms for all cases.

We used a case with blast pressure of 50 atm to conduct the grid independence test. We used a
base grid of 256×256 and performed the grid independence test by varying the AMREX maximum
levels of refinement between 1 and 3. In Table 1b, we compare the time taken by the shock to reach
an arbitrary point in the domain for each of the three grid configurations. As the difference in the
shock speeds was minor across the three configurations, we chose the grid with 2 levels of maximum
refinement for generating the cases.

B NEURAL SOLVERS

Various neural models for solving PDEs have emerged over the last decade, including Physics-
Informed Neural Networks (Raissi et al., 2019; Biswas & Anand, 2023; 2024; Cho et al., 2024;
Shah & Anand, 2024) and operator learning (Lu et al., 2021; Gupta et al., 2021; Li et al., 2022b;a;
2023b; Poli et al., 2022; Seidman et al., 2022; Kovachki et al., 2023). Neural solvers have been
tailored to a variety of applications of PDE modeling, including subsurface modeling (Deng et al.,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Model Parameters (M) GigaFLOPs Peak Train Memory
(GiB)

U-Net
Affine 140.861 94.328 13.465
Euler 140.861 94.328 14.152
MoE 131.129 85.839 21.307

CNO
Affine 45.710 16.028 8.951
Euler 45.704 16.028 9.629
MoE 174.339 55.917 27.783

F-FNO
Affine 15.372 20.901 18.953
Euler 15.374 20.901 20.164
MoE 15.697 20.762 37.242

Transolver
Affine 11.139 191.112 41.895
Euler 10.336 191.110 41.881
MoE 9.911 182.924 62.432

ConvNeXT 27.822 1.736 11.117

Table 3: Model parameter counts, GigaFLOPs per forward pass, and peak GPU memory usage
during training. FLOPs were computed with a batch size of 1 on the coal dust explosion dataset,
while GPU memory was computed for a batch size of 32 on a single A100 GPU.

2022; Wu et al., 2022b), climate and weather modeling (Bi et al., 2022; Lam et al., 2022; Pathak
et al., 2022; Price et al., 2023; Nguyen et al., 2023), and airfoil design (Bonnet et al., 2022; Helwig
et al., 2024). Neural solvers span a diverse array of architectures, including convolutional models (Li
et al., 2021; Tran et al., 2023; Wen et al., 2022; Helwig et al., 2023; Wen et al., 2023; Bonev et al.,
2023; Zhang et al., 2024b; Raonic et al., 2024), transformers (Cao, 2021; Li et al., 2023a; Janny
et al., 2023; Hao et al., 2024; Alkin et al., 2024), and graph neural networks (Li et al., 2020a;b;
Brandstetter et al., 2022; Horie & Mitsume, 2022).

Previous works have highlighted the importance of multiscale processing mechanisms in design-
ing effective neural solvers Gupta & Brandstetter (2023). This is at least in part due to the temporal
coarsening approach taken by neural solvers. While differential operators defining PDEs are primar-
ily local in nature, their effects become increasingly global as the timestep size is increased beyond
that of the classical solver. It is therefore vital for neural solvers to incorporate spatial processing
mechanisms that enable modeling of phenomena on both local and global scales. Thus, we explore a
variety of neural solver backbones in ShockCast spanning both hierarchical and parallel multi-scale
processing mechanisms. Within the parallel framework, we consider both convolution-based and
attention-based mechanisms.

U-Net. The U-Net Ronneberger et al. (2015) is one of the most prominent examples of a hierar-
chical mechanism. The U-Net is composed of a downsampling path and an upsampling path. To
achieve a global receptive field, the input features sampled on the original solution mesh are first
sequentially downsampled using pooling operations or strided convolutions. At each resolution, the
downsampled features are convolved and point-wise activations are applied. Following the down-
sampling path, an inverse upsampling path is applied, consisting of upsampling operations which
are either transposed convolutions or interpolation, with convolution and non-linearities again ap-
plied at each resolution. To restore high-frequency details that were lost along the downsampling
path, skip connections from respective resolutions along the downsampling path concatenate feature
maps at each stage of the upsampling path. The U-Net architecture we employ in our framework
is the “modern U-Net” architecture from Gupta & Brandstetter (2023), which closely resembles
architectures used by diffusion models (Ho et al., 2020).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

CNO. The Convolutional Neural Operator (Raonic et al., 2024) adapts the U-Net into the neural
operator framework. Neural operators (Kovachki et al., 2023; Seidman et al., 2022) are a class of
neural solver which aim to maintain the continuous nature of the underlying PDE solution despite
the discretization of training data. In doing so, they enable trained neural solvers to be evaluated on
discretizations differing from the training data. CNO extends these properties to the U-Net architec-
ture using anti-aliasing techniques from Karras et al. (2021).

F-FNO. While the previous architectures take a hierarchical approach to multi-scale processing,
Fourier Neural Operators (Li et al., 2021) process information on multiple scales in parallel using
global Fourier convolutions. Convolution kernels are parameterized in the frequency domain such
that the complex-valued weights to be learned represent the coefficients of the kernel function in the
Fourier basis. Due to the convolution theorem, convolutions in the frequency domain are carried
out via point-wise multiplication of frequency modes. Furthermore, because Fourier basis functions
have global support, with high frequency modes describing fine details and low frequencies describ-
ing the “background” of the function, information on multiple spatial scales is processed in parallel.
To execute these convolutions more efficiently, FNOs truncate the number of non-zero modes in
each kernel to a threshold such that only the lowest frequencies are present in the Fourier expan-
sion of the kernel function. Building on this efficiency, Factorized Fourier Neural Operators (Tran
et al., 2023) perform convolutions one spatial dimension at a time such that kernels are a function of
only one spatial dimension. This enables deeper F-FNOs, enhancing the expressive capacity of the
architecture.

Transolver. As an alternative to parallel multi-scale processing with Fourier convolutions, atten-
tion enables mesh points both distant and local to share information with one another. However,
due to its quadratic complexity, adapting Transformers to PDE modeling tasks, where the number
of mesh points can be on the order of thousands and above, presents computational challenges (Li
et al., 2023a; Cao, 2021; Hao et al., 2023). Transolver (Wu et al., 2024) reduces this complexity by
performing attention on a coarsened mesh. The coarsening is achieved by a learnable soft pooling
operation, where the soft assignments are not entirely based on clustering local points together.

C TRAINING DETAILS

C.1 DATASETS

We coarsen the coal dust explosion cases in time by saving every 100 steps, and applied further
coarsening to the saved steps by a factor of 5 for an overall coarsening factor of 500× relative to the
CFD solver. The coarsest AMR level gave a spatial resolution of 104 × 520. We only use the left-
most fifth of the domain along the horizontal axis such that the training resolution was 104 × 104.
We train models on the velocity and temperature fields of the gas, as well as the volume fraction
describing the percentage of coal comprising each computational cell.

For the circular blast cases, we save solutions every 100 CFD steps. The coarsest AMR level for
the circular blast setting gives a spatial resolution of 256 × 256, which we coarsened further to the
training resolution of 128× 128 using averaging. We train models on the velocity, temperature and
density fields.

The initial shock strength and particle diameters for the Coal Dust Explosion are sampled ran-
domly. Half of them are sampled using uniform sampling and the remaining half are sampled using
Bridson’s algorithm (Bridson, 2007) to fill the parameter space. The initial pressure ratios for the
Spherical Blast dataset are uniformly spaced. In both settings, the evaluation cases are selected so as
to be as diverse as possible by first sampling points in the parameter space using Bridson’s algorithm
and then finding the corresponding case closest to the sampled point.

C.2 TRAINING PIPELINE

We implement our training pipeline in PyTorch (Paszke et al., 2019) using PyTorch Lightning (Fal-
con, 2019). Depending on model training memory requirements, we train models on between 1-2
80GiB A100 GPUs or between 1-8 11GiB RTX 2080 GPUs. We optimize all models using the
Adam optimizer (Kingma & Ba, 2015) with a cosine learning rate scheduler (Loshchilov & Hutter,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Coal Dust Explosion: Runtime (s)
Model GPU CPU

CNO
Affine 2.15 (0.07) 42.51 (0.15)
Euler 2.30 (0.03) 42.57 (0.08)
MoE 7.14 (0.01) 108.51 (0.28)

F-FNO
Affine 1.41 (0.03) 58.05 (0.41)
Euler 1.42 (0.01) 56.38 (0.04)
MoE 3.75 (0.04) 82.49 (0.53)

Transolver
Affine 2.22 (0.03) 159.82 (1.10)
Euler 2.21 (0.04) 167.54 (6.15)
MoE 3.39 (0.03) 175.19 (0.56)

U-Net
Affine 1.66 (0.01) 85.44 (0.69)
Euler 1.66 (0.01) 87.36 (0.33)
MoE 2.78 (0.01) 79.29 (0.67)

Circular Blast: Runtime (s)
Model GPU CPU

CNO
Affine 1.67 (0.03) 40.58 (0.47)
Euler 1.94 (0.01) 41.86 (0.54)
MoE 6.12 (0.10) 117.45 (2.34)

F-FNO
Affine 1.15 (0.01) 56.32 (2.14)
Euler 1.18 (0.01) 56.45 (2.23)
MoE 3.12 (0.03) 79.91 (2.56)

Transolver
Affine 2.34 (0.01) 194.56 (4.49)
Euler 2.33 (0.03) 198.53 (5.82)
MoE 3.76 (0.04) 226.63 (4.59)

U-Net
Affine 1.61 (0.01) 94.76 (2.43)
Euler 1.64 (0.01) 95.49 (2.16)
MoE 2.51 (0.04) 84.96 (1.06)

Table 4: ShockCast runtime to compute a solution via autoregressive unrolling in both settings on
CPU and GPU, presented as mean (standard error).

Minimum Mean Maximum

15,592 67,441 128,675

Table 5: Classical solver runtime to compute a solution on 16 CPU cores in seconds for the Coal
Dust Explosion setting.

2017). We use a batch size of 32 for all neural solver models, and a batch size of 320 for neural
CFL models. We train neural solver models for 400 epochs, resulting in over 75K training updates
for the coal dust explosion dataset and over 50K training updates for the circular blast dataset. We
train neural CFL models for 800 epochs using training noise with a level of 0.01 (Sanchez-Gonzalez
et al., 2020). On the coal dust explosion dataset, this results in over 12K training updates, while for
the circular blast dataset, this results in over 6K training updates. We present initial learning rates
and other key hyperparameters used for all models in Table 2.

C.3 PARAMETER COUNTS, FLOPS AND PEAK GPU MEMORY

In Table 3, we present parameter counts, forward FLOPs, and peak training memory for the coal dust
explosion cases. We compute FLOPs with a batch size of one using FlopCounterMode from the
torch.utils.flop counter module, and report training memory observed on a single A100
GPU using a batch size of 32.

In our experiments, we offset increased computation when using the MoE timestep conditioning
strategy by reducing the latent dimension of all models except CNO according to the square root
of the number of experts used. We use four experts for all models except for Transolver, where
we use two experts due to high memory consumption. For CNO, we ran into stability issues when
attempting to scale the number of parameters beyond those reported in (Herde et al., 2024). As can
be seen in Table 3, this led to a reduced amount of computation for the CNO variants of ShockCast
relative to the other neural solver backbones. However, when using MoE timestep conditioning, we
found that we could stably train CNO with 4 experts with no reduction in the embedding dimension.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 SOLUTION RUNTIME ANALYSIS

In Table 4, we present the time to compute a solution for ShockCast across all neural solvers back-
bones and conditioning methods in both settings, timed on both GPU and CPU-only. We report
runtimes for the classical solver in the Coal Dust Explosion setting in Table 5.

D METRICS

Correlation time proportion. We compute Pearson’s correlation coefficient for each field and
at each timestep with the ground truth data. This requires the predicted fields to be on the same
temporal grid as the ground truth data, for which we use linear interpolation. Specifically, for the
function f : R → Rd sampled on the grid {tj}nj where tj ≤ tj+1, we interpolate f to the query
point t⋆ ∈ [t1, tn] as

f(t⋆) ≈
n−1∑
j

1[tj ,tj+1](t
⋆)

(
f(tj)(tj+1 − t⋆) + f(tj+1)(t

⋆ − tj)

tj+1 − tj

)
,

where 1[a,b] is the characteristic function given by

1[a,b](x) =

{
1 x ∈ [a, b]

0 o.w.
.

The correlation time (Kochkov et al., 2021; Lippe et al., 2023; Alkin et al., 2024) for a given field
is defined as the last time t before the correlation sinks below a threshold, which we take to be 0.9
here. We then average this time across all fields and report it as a proportion of the full simulation
time such that a perfect prediction would have correlation time proportion of 1.

Mean flow and Turbulence Kinetic Energy. The mean flow is defined as the flow states averaged
over time, while the turbulence kinetic energy is the sum of the variances of the fluctuating part of
the velocity field. These quantities are given by

ū :=
1

T

∫ T

0

u(t)dt TKE :=
1

2T

∫ T

0

(u(t)− ū)2 + (v(t)− v̄)2dt. (5)

We approximate the integrals in Equation (5) using the trapezoidal rule as∫ T

0

f(t)dt ≈ 1

2

n−1∑
j

∆j (f(tj+1) + f(tj)) ,

where ∆j := tj+1 − tj .

E SOLUTION VISUALIZATIONS

Here, we visualize true and predicted fields for ShockCast using the F-FNO with Euler conditioning
neural solver backbone on a selected solution from the evaluation datasets. For the coal dust explo-
sion setting, this solution has shock Mach number of 1.85, while for the circular blast setting, it has
a max Mach number of 2.68. We visualize TKE fields in Figures 9 and 10 and mean flow fields
in Figures 11 and 12. When visualizing the instantaneous fields, we subsample the true solution in
time to reduce the number of snapshots. For each of the snapshots u(t) in the subsampled solu-
tion, we find the snapshot from the solution û(t̂) autoregressively unrolled by ShockCast with the
closest predicted time t̂ to t. We then visualize the true snapshots u(t) alongside the corresponding
closest-in-time predicted snapshots û(t̂), as well as the residual between each pair |u(t) − û(t̂)|.
We present these visualizations in Figures 13 to 16 for each of the fields in the coal dust explosion
case and in Figures 17 to 20 for each of the fields in the circular blast case.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

True Predicted

Relative Error = 0.035

Residual

1000 2000 3000 4000 5000

−1000

−500

0

500

1000

Coal Dust Explosion: TKE

Figure 9: TKE for coal dust explosion.

True Predicted

Relative Error = 0.021

Residual

10000 20000 30000 40000 50000 60000

−2000

0

2000

Circular Blast: TKE

Figure 10: TKE for circular blast.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G
as

V
el

oc
ity

x
-c

om
po

ne
nt

True Predicted

Relative Error = 0.003

Residual
G

as
V

el
oc

ity
y

-c
om

po
ne

nt

Relative Error = 0.218

Vo
lu

m
e

Fr
ac

tio
n

Relative Error = 0.071

G
as

Te
m

pe
ra

tu
re

Relative Error = 0.002

100 200 300 400

−2

0

2

4

6

−5 0 5 10

−5.0

−2.5

0.0

2.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−0.10

−0.05

0.00

0.05

0.10

375 400 425 450 475 500 525

−4

−2

0

2

Coal Dust Explosion: Mean Flow

Figure 11: Mean flow for coal dust explosion.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

V
el

oc
ity

x
-c

om
po

ne
nt

True Predicted

Relative Error = 0.025

Residual
V

el
oc

ity
y

-c
om

po
ne

nt

Relative Error = 0.027

D
en

si
ty

Relative Error = 0.021

Te
m

pe
ra

tu
re

Relative Error = 0.024

0 50 100 150 200

−10

0

10

0 50 100 150 200

−10

0

10

6 8 10 12 14 16

−2

−1

0

1

200 300 400 500 600

−50

0

50

Circular Blast: Mean Flow

Figure 12: Mean flow for circular blast.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

t = 4.626× 10−5 t = 4.624× 10−5 Relative Error = 0.007 t = 1.586× 10−3 t = 1.582× 10−3 Relative Error = 0.005

t = 2.369× 10−4 t = 2.357× 10−4 Relative Error = 0.033 t = 1.786× 10−3 t = 1.782× 10−3 Relative Error = 0.004

t = 3.857× 10−4 t = 3.852× 10−4 Relative Error = 0.020 t = 1.936× 10−3 t = 1.931× 10−3 Relative Error = 0.006

t = 5.854× 10−4 t = 5.819× 10−4 Relative Error = 0.011 t = 2.087× 10−3 t = 2.081× 10−3 Relative Error = 0.003

t = 7.363× 10−4 t = 7.323× 10−4 Relative Error = 0.012 t = 2.290× 10−3 t = 2.284× 10−3 Relative Error = 0.005

t = 8.855× 10−4 t = 8.809× 10−4 Relative Error = 0.009 t = 2.444× 10−3 t = 2.437× 10−3 Relative Error = 0.008

t = 1.085× 10−3 t = 1.081× 10−3 Relative Error = 0.008 t = 2.599× 10−3 t = 2.642× 10−3 Relative Error = 0.032

t = 1.237× 10−3 t = 1.232× 10−3 Relative Error = 0.008 t = 2.807× 10−3 t = 2.796× 10−3 Relative Error = 0.009

t = 1.436× 10−3 t = 1.431× 10−3 Relative Error = 0.006 t = 2.964× 10−3 t = 2.951× 10−3 Relative Error = 0.008

−102 −101 0 101 102 −102 −101 0 101 102−102−101 0 101 102 −102−101 0 101 102

True Predicted Residual True Predicted Residual
Coal Dust Explosion: Gas Velocity x-component

Figure 13: Gas velocity x-component for coal dust explosion.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

t = 4.626× 10−5 t = 4.624× 10−5 Relative Error = 0.025 t = 1.586× 10−3 t = 1.582× 10−3 Relative Error = 0.107

t = 2.369× 10−4 t = 2.357× 10−4 Relative Error = 0.299 t = 1.786× 10−3 t = 1.782× 10−3 Relative Error = 0.154

t = 3.857× 10−4 t = 3.852× 10−4 Relative Error = 0.261 t = 1.936× 10−3 t = 1.931× 10−3 Relative Error = 0.215

t = 5.854× 10−4 t = 5.819× 10−4 Relative Error = 0.197 t = 2.087× 10−3 t = 2.081× 10−3 Relative Error = 0.126

t = 7.363× 10−4 t = 7.323× 10−4 Relative Error = 0.263 t = 2.290× 10−3 t = 2.284× 10−3 Relative Error = 0.139

t = 8.855× 10−4 t = 8.809× 10−4 Relative Error = 0.320 t = 2.444× 10−3 t = 2.437× 10−3 Relative Error = 0.173

t = 1.085× 10−3 t = 1.081× 10−3 Relative Error = 0.207 t = 2.599× 10−3 t = 2.642× 10−3 Relative Error = 0.528

t = 1.237× 10−3 t = 1.232× 10−3 Relative Error = 0.220 t = 2.807× 10−3 t = 2.796× 10−3 Relative Error = 0.238

t = 1.436× 10−3 t = 1.431× 10−3 Relative Error = 0.301 t = 2.964× 10−3 t = 2.951× 10−3 Relative Error = 0.229

−102 −101 0 101 102 −102 −101 0 101 102−102−101 0 101 102 −102−101 0 101 102

True Predicted Residual True Predicted Residual
Coal Dust Explosion: Gas Velocity y-component

Figure 14: Gas velocity y-component for coal dust explosion.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

t = 4.626× 10−5 t = 4.624× 10−5 Relative Error = 0.004 t = 1.586× 10−3 t = 1.582× 10−3 Relative Error = 0.146

t = 2.369× 10−4 t = 2.357× 10−4 Relative Error = 0.020 t = 1.786× 10−3 t = 1.782× 10−3 Relative Error = 0.061

t = 3.857× 10−4 t = 3.852× 10−4 Relative Error = 0.048 t = 1.936× 10−3 t = 1.931× 10−3 Relative Error = 0.112

t = 5.854× 10−4 t = 5.819× 10−4 Relative Error = 0.088 t = 2.087× 10−3 t = 2.081× 10−3 Residual Norm = 0.206

t = 7.363× 10−4 t = 7.323× 10−4 Relative Error = 0.122 t = 2.290× 10−3 t = 2.284× 10−3 Residual Norm = 0.123

t = 8.855× 10−4 t = 8.809× 10−4 Relative Error = 0.161 t = 2.444× 10−3 t = 2.437× 10−3 Residual Norm = 0.058

t = 1.085× 10−3 t = 1.081× 10−3 Relative Error = 0.177 t = 2.599× 10−3 t = 2.642× 10−3 Residual Norm = 0.011

t = 1.237× 10−3 t = 1.232× 10−3 Relative Error = 0.171 t = 2.807× 10−3 t = 2.796× 10−3 Residual Norm = 0.000

t = 1.436× 10−3 t = 1.431× 10−3 Relative Error = 0.139 t = 2.964× 10−3 t = 2.951× 10−3 Residual Norm = 0.000

0 10−2 10−1 0 10−2 10−1−10−1 0 10−1 −10−1 0 10−1

True Predicted Residual True Predicted Residual
Coal Dust Explosion: Volume Fraction

Figure 15: Volume fraction for coal dust explosion.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

t = 4.626× 10−5 t = 4.624× 10−5 Relative Error = 0.003 t = 1.586× 10−3 t = 1.582× 10−3 Relative Error = 0.005

t = 2.369× 10−4 t = 2.357× 10−4 Relative Error = 0.014 t = 1.786× 10−3 t = 1.782× 10−3 Relative Error = 0.005

t = 3.857× 10−4 t = 3.852× 10−4 Relative Error = 0.015 t = 1.936× 10−3 t = 1.931× 10−3 Relative Error = 0.005

t = 5.854× 10−4 t = 5.819× 10−4 Relative Error = 0.013 t = 2.087× 10−3 t = 2.081× 10−3 Relative Error = 0.004

t = 7.363× 10−4 t = 7.323× 10−4 Relative Error = 0.010 t = 2.290× 10−3 t = 2.284× 10−3 Relative Error = 0.003

t = 8.855× 10−4 t = 8.809× 10−4 Relative Error = 0.011 t = 2.444× 10−3 t = 2.437× 10−3 Relative Error = 0.003

t = 1.085× 10−3 t = 1.081× 10−3 Relative Error = 0.008 t = 2.599× 10−3 t = 2.642× 10−3 Relative Error = 0.027

t = 1.237× 10−3 t = 1.232× 10−3 Relative Error = 0.007 t = 2.807× 10−3 t = 2.796× 10−3 Relative Error = 0.004

t = 1.436× 10−3 t = 1.431× 10−3 Relative Error = 0.006 t = 2.964× 10−3 t = 2.951× 10−3 Relative Error = 0.004

3× 102 4× 102 5× 102 3× 102 4× 102 5× 102−102 0 −102 0

True Predicted Residual True Predicted Residual
Coal Dust Explosion: Gas Temperature

Figure 16: Gas temperature for coal dust explosion.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

t = 1.006× 10−4 t = 1.006× 10−4 Relative Error = 0.001 t = 2.613× 10−3 t = 2.614× 10−3 Relative Error = 0.031

t = 4.089× 10−4 t = 4.089× 10−4 Relative Error = 0.001 t = 2.947× 10−3 t = 2.948× 10−3 Relative Error = 0.062

t = 6.196× 10−4 t = 6.196× 10−4 Relative Error = 0.001 t = 3.164× 10−3 t = 3.165× 10−3 Relative Error = 0.096

t = 9.427× 10−4 t = 9.426× 10−4 Relative Error = 0.001 t = 3.471× 10−3 t = 3.476× 10−3 Relative Error = 0.138

t = 1.263× 10−3 t = 1.263× 10−3 Relative Error = 0.003 t = 3.779× 10−3 t = 3.784× 10−3 Relative Error = 0.136

t = 1.551× 10−3 t = 1.551× 10−3 Relative Error = 0.004 t = 4.084× 10−3 t = 4.093× 10−3 Relative Error = 0.139

t = 1.765× 10−3 t = 1.765× 10−3 Relative Error = 0.005 t = 4.345× 10−3 t = 4.352× 10−3 Relative Error = 0.126

t = 2.079× 10−3 t = 2.081× 10−3 Relative Error = 0.011 t = 4.654× 10−3 t = 4.584× 10−3 Relative Error = 0.261

t = 2.399× 10−3 t = 2.399× 10−3 Relative Error = 0.017 t = 4.901× 10−3 t = 4.906× 10−3 Relative Error = 0.180

−102 −101 0 101 102 −102 −101 0 101 102−102 0 102 −102 0 102

True Predicted Residual True Predicted Residual
Circular Blast: Velocity x-component

Figure 17: Velocity x-component for circular blast.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

t = 1.006× 10−4 t = 1.006× 10−4 Relative Error = 0.001 t = 2.613× 10−3 t = 2.614× 10−3 Relative Error = 0.030

t = 4.089× 10−4 t = 4.089× 10−4 Relative Error = 0.001 t = 2.947× 10−3 t = 2.948× 10−3 Relative Error = 0.059

t = 6.196× 10−4 t = 6.196× 10−4 Relative Error = 0.001 t = 3.164× 10−3 t = 3.165× 10−3 Relative Error = 0.088

t = 9.427× 10−4 t = 9.426× 10−4 Relative Error = 0.002 t = 3.471× 10−3 t = 3.476× 10−3 Relative Error = 0.135

t = 1.263× 10−3 t = 1.263× 10−3 Relative Error = 0.003 t = 3.779× 10−3 t = 3.784× 10−3 Relative Error = 0.140

t = 1.551× 10−3 t = 1.551× 10−3 Relative Error = 0.004 t = 4.084× 10−3 t = 4.093× 10−3 Relative Error = 0.141

t = 1.765× 10−3 t = 1.765× 10−3 Relative Error = 0.005 t = 4.345× 10−3 t = 4.352× 10−3 Relative Error = 0.127

t = 2.079× 10−3 t = 2.081× 10−3 Relative Error = 0.011 t = 4.654× 10−3 t = 4.584× 10−3 Relative Error = 0.255

t = 2.399× 10−3 t = 2.399× 10−3 Relative Error = 0.018 t = 4.901× 10−3 t = 4.906× 10−3 Relative Error = 0.186

−102 −101 0 101 102 −102 −101 0 101 102−102 0 102 −102 0 102

True Predicted Residual True Predicted Residual
Circular Blast: Velocity y-component

Figure 18: Velocity y-component for circular blast.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

t = 1.006× 10−4 t = 1.006× 10−4 Relative Error = 0.001 t = 2.613× 10−3 t = 2.614× 10−3 Relative Error = 0.060

t = 4.089× 10−4 t = 4.089× 10−4 Relative Error = 0.001 t = 2.947× 10−3 t = 2.948× 10−3 Relative Error = 0.091

t = 6.196× 10−4 t = 6.196× 10−4 Relative Error = 0.002 t = 3.164× 10−3 t = 3.165× 10−3 Relative Error = 0.110

t = 9.427× 10−4 t = 9.426× 10−4 Relative Error = 0.002 t = 3.471× 10−3 t = 3.476× 10−3 Relative Error = 0.128

t = 1.263× 10−3 t = 1.263× 10−3 Relative Error = 0.003 t = 3.779× 10−3 t = 3.784× 10−3 Relative Error = 0.135

t = 1.551× 10−3 t = 1.551× 10−3 Relative Error = 0.007 t = 4.084× 10−3 t = 4.093× 10−3 Relative Error = 0.147

t = 1.765× 10−3 t = 1.765× 10−3 Relative Error = 0.011 t = 4.345× 10−3 t = 4.352× 10−3 Relative Error = 0.155

t = 2.079× 10−3 t = 2.081× 10−3 Relative Error = 0.018 t = 4.654× 10−3 t = 4.584× 10−3 Relative Error = 0.228

t = 2.399× 10−3 t = 2.399× 10−3 Relative Error = 0.041 t = 4.901× 10−3 t = 4.906× 10−3 Relative Error = 0.154

100 101 100 101−101 0 101 −101 0 101

True Predicted Residual True Predicted Residual
Circular Blast: Density

Figure 19: Density for circular blast.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

t = 1.006× 10−4 t = 1.006× 10−4 Relative Error = 0.000 t = 2.613× 10−3 t = 2.614× 10−3 Relative Error = 0.065

t = 4.089× 10−4 t = 4.089× 10−4 Relative Error = 0.001 t = 2.947× 10−3 t = 2.948× 10−3 Relative Error = 0.098

t = 6.196× 10−4 t = 6.196× 10−4 Relative Error = 0.001 t = 3.164× 10−3 t = 3.165× 10−3 Relative Error = 0.121

t = 9.427× 10−4 t = 9.426× 10−4 Relative Error = 0.001 t = 3.471× 10−3 t = 3.476× 10−3 Relative Error = 0.147

t = 1.263× 10−3 t = 1.263× 10−3 Relative Error = 0.003 t = 3.779× 10−3 t = 3.784× 10−3 Relative Error = 0.165

t = 1.551× 10−3 t = 1.551× 10−3 Relative Error = 0.008 t = 4.084× 10−3 t = 4.093× 10−3 Relative Error = 0.182

t = 1.765× 10−3 t = 1.765× 10−3 Relative Error = 0.011 t = 4.345× 10−3 t = 4.352× 10−3 Relative Error = 0.194

t = 2.079× 10−3 t = 2.081× 10−3 Relative Error = 0.019 t = 4.654× 10−3 t = 4.584× 10−3 Relative Error = 0.224

t = 2.399× 10−3 t = 2.399× 10−3 Relative Error = 0.043 t = 4.901× 10−3 t = 4.906× 10−3 Relative Error = 0.211

102 103 102 103−102 0 102 −102 0 102

True Predicted Residual True Predicted Residual
Circular Blast: Temperature

Figure 20: Temperature for circular blast.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Coal Dust Explosion: One-Step Prediction Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 0.94 (0.01) 9.94 (0.02) 3.03 (0.01) 0.38 (0.00) 3.57 (0.00)
Euler 0.97 (0.01) 10.27 (0.08) 3.15 (0.04) 0.38 (0.00) 3.69 (0.02)
MoE 0.92 (0.00) 9.93 (0.04) 2.86 (0.02) 0.36 (0.00) 3.52 (0.01)

F-FNO
Affine 0.93 (0.00) 10.27 (0.06) 3.04 (0.01) 0.36 (0.00) 3.65 (0.02)
Euler 0.93 (0.00) 10.20 (0.01) 3.01 (0.03) 0.36 (0.00) 3.62 (0.01)
MoE 0.93 (0.00) 10.33 (0.03) 3.05 (0.01) 0.36 (0.00) 3.67 (0.01)

Transolver
Affine 1.22 (0.02) 12.98 (0.19) 2.62 (0.01) 0.44 (0.01) 4.32 (0.05)
Euler 1.18 (0.02) 12.83 (0.22) 2.60 (0.04) 0.44 (0.01) 4.26 (0.07)
MoE 1.20 (0.01) 12.83 (0.07) 2.53 (0.02) 0.43 (0.00) 4.25 (0.02)

U-Net
Affine 0.92 (0.01) 10.32 (0.06) 2.80 (0.02) 0.35 (0.00) 3.59 (0.02)
Euler 0.91 (0.01) 10.27 (0.05) 2.82 (0.02) 0.35 (0.00) 3.59 (0.02)
MoE 0.93 (0.01) 10.36 (0.07) 2.88 (0.01) 0.35 (0.00) 3.63 (0.02)

Table 6: Relative error for one-step predictions on evaluation split of coal dust explosion cases.

F EXTENDED RESULTS

In this section, we present the numerical values of average evaluation errors and their corresponding
standard errors as mean (standard error). In Tables 6 and 7, we present one-step errors for Shock-
Cast. We note that the timestep predicted by the neural CFL model will not perfectly match the
ground truth timestep such that the prediction from the neural solver model will be for a time which
differs from the ground truth. To compute the unrolled errors in Tables 8 and 9 and correlation time
proportions shown in Tables 10 and 11, we linearly interpolate ShockCast predictions in time to be
sampled on the same temporal grid as the ground truth data. As can be seen in Figure 15, the volume
fraction field at later timesteps can be sparse, and so we clamp the norm of the ground truth field
in the denominator of the relative error to have a minimum value of 1. For the mean flow results,
which we show in Tables 12 and 13, and TKE results that we present in Table 14, the target quan-
tities involve integrating the instantaneous fields with respect to time, and thus, no interpolation is
required.

G LIMITATIONS AND FUTURE DIRECTIONS

As previously discussed, neural solvers can benefit from time-adaptive schemes, as varying the
timestep size according to the rate of change can lead to more balanced one-step objectives across
flow states with varying gradient sharpness. Here, we have supervised our neural CFL model using
timesteps resulting from coarsening a temporal mesh computed using the CFL condition. How-
ever, approaches that learn to adapt timestep sizes based on a policy that balances solution accuracy
with computational cost, as is done by Wu et al. (2022a) for spatial remeshing, may lead to further
improvements. While the settings here contain dynamics comprising some of the most prevalent
phenomena in high-speed flows, including shocks, blasts, and a fluid-solid interaction, future works
should look to study other phenomena such as detonations and boundary layers. As discussed in Sec-
tion 3.1, the use of adaptive time-stepping results in more balanced training objectives, which often
results in improved generalization due to variance reduction (Duchi & Namkoong, 2019). Neverthe-
less, neural solvers in general do not include the same theoretical convergence guarantees enjoyed
by classical methods. Future works should look to extend these results from the classical setting to
machine learning methods.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Circular Blast: One-Step Prediction Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 2.08 (0.01) 2.08 (0.01) 1.82 (0.01) 1.73 (0.01) 1.93 (0.01)
Euler 2.05 (0.01) 2.08 (0.02) 1.79 (0.01) 1.69 (0.01) 1.90 (0.01)
MoE 1.75 (0.03) 1.75 (0.04) 1.49 (0.01) 1.42 (0.01) 1.60 (0.01)

F-FNO
Affine 1.87 (0.00) 1.87 (0.00) 1.93 (0.00) 2.05 (0.00) 1.93 (0.00)
Euler 1.85 (0.01) 1.84 (0.01) 1.93 (0.00) 2.04 (0.00) 1.92 (0.01)
MoE 1.87 (0.00) 1.86 (0.00) 2.00 (0.01) 2.14 (0.00) 1.97 (0.00)

Transolver
Affine 1.21 (0.01) 1.21 (0.01) 0.95 (0.01) 0.93 (0.01) 1.07 (0.01)
Euler 1.27 (0.02) 1.27 (0.02) 1.01 (0.01) 0.99 (0.01) 1.14 (0.01)
MoE 1.28 (0.01) 1.29 (0.01) 1.02 (0.01) 0.99 (0.01) 1.15 (0.01)

U-Net
Affine 1.52 (0.00) 1.51 (0.01) 1.34 (0.00) 1.37 (0.00) 1.44 (0.00)
Euler 1.52 (0.00) 1.52 (0.00) 1.34 (0.00) 1.38 (0.01) 1.44 (0.00)
MoE 1.71 (0.01) 1.70 (0.01) 1.49 (0.01) 1.52 (0.01) 1.61 (0.01)

Table 7: Relative error for one-step predictions on evaluation split of circular blast cases.

Coal Dust Explosion: Unrolled Prediction Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 3.09 (0.08) 45.30 (1.25) 18.02 (1.00) 1.22 (0.05) 16.91 (0.59)
Euler 3.07 (0.09) 45.71 (1.15) 17.53 (0.34) 1.19 (0.03) 16.88 (0.35)
MoE 3.04 (0.02) 45.53 (0.17) 17.58 (0.70) 1.18 (0.01) 16.83 (0.15)

F-FNO
Affine 2.87 (0.08) 42.70 (0.38) 16.72 (0.09) 1.10 (0.01) 15.85 (0.13)
Euler 2.80 (0.00) 42.51 (0.66) 16.98 (0.27) 1.09 (0.01) 15.84 (0.20)
MoE 2.89 (0.06) 43.27 (0.73) 17.16 (0.32) 1.13 (0.01) 16.11 (0.14)

Transolver
Affine 3.33 (0.07) 42.59 (1.20) 19.59 (0.21) 1.20 (0.02) 16.68 (0.26)
Euler 3.33 (0.02) 43.95 (0.65) 19.26 (0.70) 1.22 (0.03) 16.94 (0.30)
MoE 3.21 (0.11) 42.61 (0.84) 19.56 (0.60) 1.22 (0.03) 16.65 (0.38)

U-Net
Affine 3.03 (0.05) 44.66 (0.49) 16.26 (0.23) 1.12 (0.01) 16.27 (0.16)
Euler 2.93 (0.03) 44.82 (0.40) 16.86 (0.25) 1.12 (0.00) 16.43 (0.08)
MoE 3.00 (0.04) 45.02 (0.47) 17.12 (0.10) 1.14 (0.01) 16.57 (0.15)

Table 8: Relative error for unrolled predictions on evaluation split of coal dust explosion cases.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Circular Blast: Unrolled Prediction Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 6.93 (0.08) 6.99 (0.12) 7.63 (0.02) 7.96 (0.03) 7.37 (0.05)
Euler 6.98 (0.13) 7.06 (0.12) 7.58 (0.06) 7.92 (0.06) 7.38 (0.08)
MoE 6.74 (0.06) 6.77 (0.05) 7.48 (0.07) 7.85 (0.05) 7.21 (0.01)

F-FNO
Affine 5.89 (0.03) 5.86 (0.01) 5.59 (0.01) 5.89 (0.01) 5.81 (0.01)
Euler 5.70 (0.04) 5.73 (0.06) 5.56 (0.03) 5.87 (0.03) 5.71 (0.04)
MoE 5.91 (0.08) 5.95 (0.10) 5.68 (0.01) 6.00 (0.03) 5.89 (0.04)

Transolver
Affine 7.35 (0.31) 7.35 (0.32) 7.59 (0.05) 8.07 (0.02) 7.59 (0.17)
Euler 7.54 (0.16) 7.31 (0.11) 7.63 (0.09) 8.11 (0.04) 7.65 (0.09)
MoE 7.27 (0.17) 7.23 (0.23) 7.62 (0.10) 8.08 (0.06) 7.55 (0.14)

U-Net
Affine 5.45 (0.07) 5.47 (0.10) 5.16 (0.03) 5.44 (0.04) 5.38 (0.05)
Euler 5.50 (0.01) 5.44 (0.02) 5.24 (0.06) 5.55 (0.06) 5.43 (0.03)
MoE 5.46 (0.02) 5.50 (0.02) 5.30 (0.04) 5.56 (0.03) 5.45 (0.01)

Table 9: Relative error for unrolled predictions on evaluation split of circular blast cases.

Coal Dust Explosion: Correlation Time Proportion ×10−2 (↑)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 80.00 (0.00) 19.05 (0.17) 80.04 (1.10) 61.05 (1.06) 60.03 (0.53)
Euler 80.00 (0.00) 21.40 (2.96) 78.53 (1.59) 64.21 (0.92) 61.04 (0.92)
MoE 80.00 (0.00) 19.48 (0.32) 79.27 (1.07) 65.45 (2.44) 61.05 (0.85)

F-FNO
Affine 80.00 (0.00) 19.76 (0.28) 78.74 (0.32) 65.71 (0.30) 61.05 (0.16)
Euler 80.00 (0.00) 20.72 (1.46) 78.21 (0.23) 64.86 (0.94) 60.95 (0.13)
MoE 80.00 (0.00) 16.17 (2.99) 77.64 (0.68) 65.69 (0.25) 59.88 (0.94)

Transolver
Affine 80.00 (0.00) 21.76 (2.71) 75.25 (0.28) 65.19 (0.48) 60.55 (0.76)
Euler 80.00 (0.00) 19.23 (4.55) 75.80 (0.69) 64.48 (0.48) 59.88 (1.10)
MoE 80.00 (0.00) 19.36 (0.34) 76.46 (0.74) 65.06 (0.05) 60.22 (0.17)

U-Net
Affine 80.00 (0.00) 21.90 (1.68) 79.92 (1.13) 63.17 (0.10) 61.25 (0.12)
Euler 80.00 (0.00) 20.02 (0.15) 79.27 (1.01) 64.27 (0.56) 60.89 (0.26)
MoE 80.00 (0.00) 22.08 (1.50) 78.65 (0.96) 63.12 (0.11) 60.96 (0.29)

Table 10: Correlation time proportion for unrolled predictions on evaluation split of coal dust explo-
sion cases.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Circular Blast: Correlation Time Proportion ×10−2 (↑)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 100.00 (0.00) 100.00 (0.00) 93.38 (0.39) 93.07 (0.23) 96.61 (0.15)
Euler 100.00 (0.00) 100.00 (0.00) 93.35 (0.12) 92.89 (0.22) 96.56 (0.08)
MoE 100.00 (0.00) 100.00 (0.00) 93.04 (0.09) 92.79 (0.06) 96.46 (0.02)

F-FNO
Affine 100.00 (0.00) 100.00 (0.00) 96.07 (0.42) 95.30 (0.15) 97.84 (0.14)
Euler 100.00 (0.00) 100.00 (0.00) 95.77 (0.06) 95.49 (0.14) 97.81 (0.05)
MoE 100.00 (0.00) 100.00 (0.00) 95.52 (0.06) 94.96 (0.05) 97.62 (0.03)

Transolver
Affine 100.00 (0.00) 100.00 (0.00) 94.11 (0.50) 93.58 (0.47) 96.92 (0.24)
Euler 100.00 (0.00) 100.00 (0.00) 94.11 (0.39) 93.37 (0.39) 96.87 (0.17)
MoE 100.00 (0.00) 100.00 (0.00) 94.18 (0.42) 93.09 (0.01) 96.82 (0.10)

U-Net
Affine 100.00 (0.00) 100.00 (0.00) 97.22 (0.84) 96.13 (0.21) 98.34 (0.26)
Euler 100.00 (0.00) 100.00 (0.00) 96.25 (0.42) 96.10 (0.23) 98.09 (0.16)
MoE 100.00 (0.00) 100.00 (0.00) 95.70 (0.07) 95.57 (0.13) 97.82 (0.05)

Table 11: Correlation time proportion for unrolled predictions on evaluation split of circular blast
cases.

Coal Dust Explosion: Mean Flow Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 1.00 (0.02) 23.03 (0.39) 12.42 (0.17) 0.42 (0.01) 9.22 (0.10)
Euler 0.97 (0.05) 22.68 (0.86) 12.71 (0.30) 0.39 (0.01) 9.19 (0.27)
MoE 0.91 (0.04) 22.79 (0.25) 12.25 (0.28) 0.37 (0.01) 9.08 (0.10)

F-FNO
Affine 0.82 (0.10) 22.59 (0.12) 11.80 (0.12) 0.35 (0.01) 8.89 (0.08)
Euler 0.79 (0.04) 22.29 (0.25) 11.99 (0.31) 0.32 (0.01) 8.85 (0.13)
MoE 0.80 (0.02) 22.44 (0.13) 12.55 (0.24) 0.34 (0.00) 9.03 (0.10)

Transolver
Affine 1.44 (0.09) 23.07 (0.60) 14.32 (0.17) 0.39 (0.03) 9.81 (0.10)
Euler 1.37 (0.10) 23.47 (0.70) 13.46 (0.13) 0.39 (0.01) 9.67 (0.14)
MoE 1.25 (0.16) 22.78 (0.11) 13.20 (0.15) 0.40 (0.02) 9.41 (0.09)

U-Net
Affine 1.06 (0.07) 22.50 (0.24) 11.17 (0.30) 0.36 (0.02) 8.77 (0.10)
Euler 1.03 (0.05) 23.33 (0.30) 11.74 (0.41) 0.37 (0.02) 9.12 (0.18)
MoE 1.06 (0.02) 22.53 (0.48) 11.62 (0.25) 0.35 (0.01) 8.89 (0.17)

Table 12: Relative error for mean flow on evaluation split of coal dust explosion cases.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Circular Blast: Mean Flow Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 6.25 (0.12) 6.20 (0.24) 2.35 (0.06) 2.33 (0.07) 4.28 (0.11)
Euler 6.24 (0.23) 6.25 (0.21) 2.30 (0.05) 2.28 (0.06) 4.27 (0.13)
MoE 7.94 (2.10) 7.98 (2.14) 2.30 (0.06) 2.24 (0.05) 5.12 (1.08)

F-FNO
Affine 5.77 (0.22) 5.70 (0.15) 1.73 (0.01) 1.68 (0.02) 3.72 (0.10)
Euler 5.77 (0.19) 5.81 (0.12) 1.72 (0.02) 1.66 (0.03) 3.74 (0.08)
MoE 5.12 (0.13) 5.12 (0.07) 1.71 (0.01) 1.69 (0.02) 3.41 (0.03)

Transolver
Affine 6.21 (0.13) 6.04 (0.23) 2.27 (0.01) 2.37 (0.01) 4.22 (0.08)
Euler 11.59 (1.40) 10.82 (1.95) 2.43 (0.01) 2.49 (0.01) 6.83 (0.83)
MoE 6.52 (0.28) 6.30 (0.42) 2.34 (0.05) 2.44 (0.02) 4.40 (0.18)

U-Net
Affine 7.94 (2.63) 7.90 (2.45) 1.62 (0.05) 1.53 (0.03) 4.75 (1.29)
Euler 7.97 (2.34) 7.92 (2.32) 1.67 (0.05) 1.58 (0.02) 4.79 (1.18)
MoE 12.89 (0.02) 12.95 (0.12) 1.76 (0.03) 1.63 (0.02) 7.31 (0.05)

Table 13: Relative error for mean flow on evaluation split of circular blast cases.

Coal Dust Explosion: TKE
Relative Error ×10−2 (↓)

Model TKE

CNO
Affine 11.55 (0.23)
Euler 10.91 (0.16)
MoE 10.94 (0.11)

F-FNO
Affine 11.01 (0.36)
Euler 10.28 (0.11)
MoE 10.93 (0.04)

Transolver
Affine 12.72 (0.50)
Euler 12.44 (0.32)
MoE 11.79 (0.88)

U-Net
Affine 9.85 (0.24)
Euler 9.21 (0.12)
MoE 8.91 (0.16)

Circular Blast: TKE
Relative Error ×10−2 (↓)

Model TKE

CNO
Affine 2.60 (0.02)
Euler 2.69 (0.07)
MoE 2.64 (0.05)

F-FNO
Affine 2.29 (0.03)
Euler 2.23 (0.06)
MoE 2.16 (0.03)

Transolver
Affine 2.68 (0.08)
Euler 2.95 (0.04)
MoE 2.77 (0.06)

U-Net
Affine 2.27 (0.12)
Euler 2.30 (0.06)
MoE 2.36 (0.03)

Table 14: Relative error for TKE on evaluation splits.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

H BROADER IMPACTS

Neural PDE solvers have been applied in accelerating dynamics simulations across a variety of
real-world applications of PDE modeling, including weather and climate forecasting, aerodynamics
modeling, and subsurface modeling. As neural solvers often do not include guarantees on gener-
alization or stability over long time-integration periods, it is vital to perform rigorous validation
before relying on predictions in applications. Here, we have explored the potential of neural solvers
to accelerate modeling of high-speed flows. High-speed flows play an important role in the design
of a variety of applications with potential for societal impact, including spacecraft, missiles, and
atmospheric reentry vehicles. It is therefore important to closely monitor the development of works
along this direction.

40

	
	Introduction
	Background
	Solving Time-Dependent Partial Differential Equations
	The Courant–Friedrichs–Lewy Condition
	Neural Solvers

	Methods
	Learning High-Speed Flows
	A Two-Phase Framework
	Neural CFL
	Timestep Conditioning for Neural Solvers

	Related Work
	Experiments
	Datasets
	ShockCast Backbones
	Metrics
	Results

	Conclusion
	Appendix

	 Appendix
	CFD Problem Description and Numerical Models
	Coal Dust Explosion
	Circular Blast

	Neural Solvers
	Training Details
	Datasets
	Training Pipeline
	Parameter Counts, FLOPs and Peak GPU Memory
	Solution Runtime Analysis

	Metrics
	Solution Visualizations
	Extended Results
	Limitations and Future Directions
	Broader Impacts

