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ABSTRACT

We consider the problem of modeling high-speed flows using machine learning
methods. While most prior studies focus on low-speed fluid flows in which uni-
form time-stepping is practical, flows approaching and exceeding the speed of
sound exhibit sudden changes such as shock waves. In such cases, it is essential
to use adaptive time-stepping methods to allow a temporal resolution sufficient
to resolve these phenomena while simultaneously balancing computational costs.
Here, we propose a two-phase machine learning method, known as ShockCast,
to model high-speed flows with adaptive time-stepping. In the first phase, we
propose to employ a machine learning model to predict the timestep size. In the
second phase, the predicted timestep is used as an input along with the current
fluid fields to advance the system state by the predicted timestep. We explore
several physically-motivated components for timestep prediction and introduce
timestep conditioning strategies inspired by neural ODE and Mixture of Experts.
As ShockCast is the first framework for learning high-speed flows, we evaluate
our methods by generating two supersonic flow datasets.

1 INTRODUCTION

Learning fluid dynamics aims to accelerate fluid modeling using machine learning models (Li et al.,
2021; Zhang et al., 2023). Because this is an emerging area of research, most current works fo-
cus on low-speed scenarios in which flows are assumed to be incompressible. In such cases, the
time scale of dynamics is relatively stable, enabling the use of time-stepping schemes with uniform
step sizes without substantially affecting solution quality or the required computational effort. In
contrast, time scales vary greatly for high-speed flows such that uniform time-stepping is no longer
a tractable strategy. For example, supersonic flow occurs when a fluid moves faster than the lo-
cal speed of sound (Anderson, 2023; 2020). The speed of such flows is typically characterized by
the Mach number M , defined as the ratio of the flow velocity v to the local speed of sound a as
M = v/a. Flows in the supersonic regime (commonly 1 < M < 5) exhibit distinct phenomena
with small time scales, including shock waves, expansion fans, and significant compressibility ef-
fects (Anderson, 2020). Hypersonic flow refers to extremely high-speed fluid flows, conventionally
defined by Mach numbers greater than 5. In the hypersonic regime, encountered in the design of
spacecraft, missiles, and atmospheric reentry vehicles, flows exhibit unique and complex behaviors
such as heating, strong shock wave interactions, and chemical reactions.

For both supersonic and hypersonic flows, the time scale required to accurately resolve these phe-
nomena is much smaller than other parts of the dynamics. Therefore, uniform time-stepping is no
longer practical, as it would require the use of the smallest time scale for all steps, inflating the
required computation prohibitively. Instead, high-speed flow solvers employ adaptive time-stepping
schemes which dynamically adjust the timestep size such that smaller steps are taken in the presence
of sharp gradients. Adaptive time-stepping can also benefit neural solvers through more balanced
objectives. When using a uniform step size, the amount of evolution the model is required to learn
can vary greatly between states with sharp gradients and smoother states, which is an especially
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pertinent consideration for high-speed flows. By instead inversely scaling the step size according to
the rate of change, the difficulties of different training pairs are more evenly distributed.

However, because neural solvers achieve speedup through use of coarsened space-time meshes,
classical approaches for determining the timestep size are not applicable. We therefore develop
ShockCast, the first machine learning framework (to the best of our knowledge) for temporally-
adaptive modeling of high-speed flows. ShockCast consists of two phases: a neural CFL phase,
where the timestep is predicted, and a neural solver phase, where the flow field is evolved forward in
time by the predicted timestep size. We investigate the effect of physically-motivated components
in our neural CFL model, and develop several novel timestep conditioning strategies for neural
solvers inspired by neural ODE (Chen et al., 2018) and Mixture of Experts (Shazeer et al., 2017).
To evaluate our framework, we generate two new high-speed flow datasets modeling a circular blast
(maximum Mach numbers vary from 0.49 to 2.97 across cases) and a multiphase coal dust explosion
(Mach numbers of the initial shock vary from 1.2 to 2.1). Our work represents the first steps towards
developing machine learning models for high-speed flows, where there is great potential for neural
acceleration due to the immense computational requirements of classical methods.

2 BACKGROUND

In Section 2.1, we briefly introduce how PDEs are solved numerically before describing the role that
the CFL condition plays in this task in Section 2.2. We then overview several prominent machine
learning approaches for solving PDEs in Section 2.3.

2.1 SOLVING TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Time-dependent PDEs are common in engineering, with some of the most prominent applications
arising in fluid dynamics. In two spatial dimensions, they typically equate a first derivative in time
to some operator H of spatial derivatives for an unknown solution function u(x, y, t) ∈ RD as

∂tu = H(u, ∂xu, ∂xxu, ∂yu, ∂yyu, ∂xyu, . . .), (1)

with boundary conditions and initial conditions imposing additional constraints on u. To solve a
PDE, we need to identify a function u satisfying these constraints. In most real-world applications
of PDE modeling, including fluid dynamics, an analytical form of this solution is intractable to
obtain, and so we instead rely on producing u in numerical form, that is, obtaining point-wise
evaluations on a discrete set of collocation points in space-time. This is done by evolving the PDE
forward in time by first approximating the spatial derivatives on the right-hand side of Equation (1)
using finite difference methods, finite volume methods, finite element methods (Reddy et al., 2022),
or spectral methods (Gottlieb & Orszag, 1977; Gottlieb & Hesthaven, 2001; Canuto et al., 2007;
Kopriva, 2009). Plugging these quantities into H gives ∂tu(t), which is then time-integrated to
advance the solution in time by a step size of ∆t.

2.2 THE COURANT–FRIEDRICHS–LEWY CONDITION

Numerical time integrators are very sensitive to the timestep size ∆t. When u(t) is changing rapidly,
or more formally, when ∥∂tu(t)∥ grows large, too large ∆t can lead to divergence of the numerical
solution (Anderson, 2023). In low-speed flows, the time scale does not vary drastically, which is
to say that the magnitudes of temporal derivatives do not fluctuate substantially. In such cases, ∆t
can be chosen as a fixed value to match the smallest time scale, simplifying the numerical solution
process. On the other hand, time scales vary greatly in high-speed flows. For example, shock wave
interactions in supersonic and hypersonic flows produce extremely sharp spatial gradients that can
only be resolved with small timestep sizes. Following the dissipation of these phenomena, the so-
lution can become smoother such that the time scale is substantially larger. Uniform time-stepping
schemes, which must maintain a timestep small enough to resolve sharp gradients even in smooth re-
gions, therefore impose greater computational burden compared to adaptive time-stepping methods,
where timestep sizes are dynamically adjusted according to the rate of change of the solution.

Adaptive time-stepping methods employ the Courant–Friedrichs–Lewy (CFL) Condition (Courant
et al., 1967) to determine the timestep size. The CFL condition is a necessary condition on the
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Figure 1: Overview of the ShockCast framework for time-adaptive modeling of high-speed flows.
Left: Training pipeline. The neural CFL model and time-conditioned neural solver are conditioned
on the current flow state and predict the corresponding timestep size ∆t and flow state ∆t ahead,
respectively. Right: Inference pipeline. ShockCast autoregressively alternates between predicting
the timestep size given the current flow state using the neural CFL model and evolving the flow state
forward in time by the predicted timestep size using the neural solver model. Note that the example
data are from the circular blast dataset we generated in this work.

timestep size to attain convergence of the numerical solution (Bartels, 2016). For a single-phase
flow in two spatial dimensions and a target Courant number C ∈ (0, 1), the condition requires that

∆t ≤ C

λmax
min
x,y

(∆x,∆y), (2)

where minx,y(∆x,∆y) is the minimum cell height and width in the spatial discretization and the
maximum wave speed λmax is defined as

λmax := max
x,y

λ(x, y) λ(x, y) := max (|u(x, y)|+ a(x, y), |v(x, y)|+ a(x, y)) , (3)

where u and v denote the x and y components of the velocity, and a(x, y) :=
√
γRT (x, y) is the

local sound speed defined by the ratio of specific heats γ, the specific gas constantR and the temper-
ature T . Intuitively, the CFL condition restricts information flow for stability such that information
propagates no more than one cell in any direction per timestep, which can be seen from the scaling
by the minimum cell size and inverse scaling by the wave speed in Equation (2).

2.3 NEURAL SOLVERS

As previously discussed, numerically solving PDEs is a computationally intensive process. Deep
surrogate models which can accelerate the solution of PDEs are therefore of great interest. Various
approaches have emerged over the last decade, including Physics-Informed Neural Networks (Raissi
et al., 2019) and operator learning (Kovachki et al., 2023). Speedups over classical methods are
primarily achieved by the ability of neural solvers to learn solution mappings on coarsened grids in
space-time (Stachenfeld et al., 2021; Kochkov et al., 2021). To maintain stability, classical methods
require computational grids to be sufficiently fine in time, as specified by the CFL condition, as well
as in space. On the other hand, neural methods can learn to map between solutions spaced hundreds
of classical solver steps apart on much lower-dimensional spatial discretizations, thereby realizing
substantial speedups. Additionally, classical methods require that all D flow variables comprising
the PDE be evolved, whereas neural solvers can learn to explicitly model only a subset of variables
of interest while implicitly learning to incorporate the effect of the omitted variables.

3 METHODS

3.1 LEARNING HIGH-SPEED FLOWS

High-speed flows are one of the most resource-intensive applications of PDE modeling and therefore
stand to benefit greatly from the speedup offered by neural solvers. In such settings, time-adaptive
meshes present a more balanced one-step objective for neural solvers. When using a uniform step
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size ∆t, the difference between inputs and targets ∥u(t +∆t) − u(t)∥ tends to grow with the rate
of change of inputs with respect to time ∥∂tu(t)∥, which follows from the definition of a derivative
∂tu(t) := limh→0(u(t+ h)− u(t))/h. This implies that inputs with sharp gradients are less corre-
lated with targets such that the mapping for sharp-gradient inputs is more difficult to learn compared
to smoother ones. By instead following an adaptive scheme to inversely scale ∆t according to the
rate of change of u(t), the difference ∥u(t)−u(t+∆t)∥ is more uniformly distributed across inputs
with varying degrees of sharpness in gradients, thereby reducing variance in the training objective.
This is a particularly relevant consideration for high-speed flows, where the sharpness of gradients
varies greatly throughout time due to phenomena such as shock waves. Furthermore, the ability
to train neural solvers on time-adaptive meshes allows direct use of solutions produced from high-
speed flow solvers without introducing error by interpolating to a uniform grid or modifying solver
codes to save solutions at uniform timesteps.

Although well-motivated, the use of adaptive temporal meshes presents several challenges for neural
solvers. Because the step size is determined by the solution, it is not known ahead of time and must
instead be computed on-the-fly during autoregressive rollout. Importantly, the ∆t at inference time
must be aligned with those from training to avoid a test-time distribution shift. While the CFL condi-
tion is used to determine the step size for classical solvers during data generation, it cannot produce
∆t matching those in the training data due to the use of coarsened computational meshes and only
modeling a subset of the variables comprising the PDE. Specifically, while neural solvers are trained
to advance time by hundreds of classical solver steps with a single forward pass, the CFL condition
is used to compute the size of a single solver step, and will therefore suggest a step size orders of
magnitude smaller than the neural solver encountered during training. Furthermore, because neural
solvers learn on coarsened spatial meshes, the cell sizes ∆x and ∆y appearing in Equation (2) will
not match those used to compute ∆t in the training data. Finally, Equation (2) is the condition for a
single phase flow, whereas a multiphase setting that features, for example, a solid phase interacting
with a liquid phase has a much more complicated form involving a large number of field variables.
Direct use of this form would require the neural solver to learn to evolve all of these variables,
thereby reducing the model’s capacity to capture fields of interest accurately.

These challenges motivate us to develop ShockCast, a two-phase framework consisting of a
timestep-conditioned neural solver and a neural CFL model which can emulate the timestep sizes in
the training data on a coarsened space-time mesh using only a subset of the field variables. At infer-
ence time, each unrolling step utilizes each of the phases in turn. In the first phase, the neural CFL
model predicts the timestep size which is used by the neural solver in the second phase to evolve
the current flow field forward in time by the predicted timestep. We investigate approaches for bet-
ter aligning the neural CFL model with the CFL condition, and introduce several novel timestep
conditioning strategies for the neural solver.

3.2 A TWO-PHASE FRAMEWORK

Our datasets D := {Ui}Ni consist of N numerical solutions to the compressible Navier-Stokes
equations produced by a classical high-speed flow solver. Each solution U := {uj}nj consists of
a series of n snapshots on a temporal grid T := {tj}nj , where uj := u(tj) ∈ RD×M denotes
the solution at time point tj sampled on a spatial discretization with M mesh points and D fields.
Notably, T is coarsened relative to the grid used by the classical solver by selecting every J-th
solution from the solver for a coarsening factor J ≥ 100

For the first phase of our framework, we train a neural CFL model ψ to minimize
Ej∼T ,U∼D [Lc (ψ(uj),∆j)] for the loss Lc, where we take Lc to be the MAE. In the sec-
ond phase, we train a neural solver ϕ to map the solution at the current timestep uj and the
timestep size ∆j to the subsequent solution uj+1 by optimizing the one-step objective given by
Ej∼T ,U∼D [Ls (ϕ(uj ,∆j),uj+1)] , where we take Ls to be the relative error averaged over fields.
While the neural solver is trained to emulate the behavior of the classical solver used to generate the
data, the neural CFL model is trained to emulate the process by which the timestep sizes are chosen
while generating data. It is important to again emphasize that due to the use of a coarsened computa-
tional mesh and a reduced number of states being modeled, it is not possible to directly use the CFL
condition to deterministically predict the timestep size. At inference time, ShockCast predicts the
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full solution given the initial condition u0 by alternating between the two phases autoregressively as

∆̂t := ψ(û) û(t+ ∆̂t) = ϕ
(
û(t), ∆̂t

)
,

where û(t) denotes the predicted state up until time t. This process, shown in Figure 1, is repeated
until a pre-specified stopping time is reached.

3.3 NEURAL CFL

Inspired by the classical CFL condition, we experiment with several modifications to the input fea-
tures and internal structure of our neural CFL model. As adaptive time-stepping schemes adjust ∆t
according to the sharpness of the gradients of u(t), we include the spatial gradients ∇u computed
using finite differences for all fields in u as inputs. From Equation (2), we furthermore observe the
dependence of the CFL condition on the max wave speed, computed by taking the maximum over
the local wave speed λ(x, y) in all computational cells. This operation can be viewed as a functional
mapping λ to the scalar value λmax via max pooling. This motivates us to employ max pooling as
our spatial downsampling function. Finally, as previously discussed, the classical CFL condition is
not directly applicable due to the use of mesh coarsening and modeling only a subset of the field
variables. However, it is possible that the functions comprising the condition can be used to learn a
surrogate condition. We therefore add CFL features to inputs as the local wave speed λ(x, y), the
velocity magnitudes |u(x, y)| and |v(x, y)|, and the local sound speed a(x, y).

3.4 TIMESTEP CONDITIONING FOR NEURAL SOLVERS

We now discuss our approaches for timestep conditioning for the neural solver phase.

Time-Conditioned Layer Norm. Several prior works have considered training models to advance
time by multiples of a uniform step size (Gupta & Brandstetter, 2023; Herde et al., 2024). These
models have utilized time-conditioned layer norm, a technique originally introduced for condition-
ing diffusion models on the diffusion time (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021).
Prior to each layer, the timestep size ∆t is embedded into two vectors a and b with sizes match-
ing the hidden dimension dmodel of the feature map z. These are then applied as a scale and shift
following each normalization layer as LN(z)(1 + a) + b.

Spatial-Spectral Conditioning. Many neural solvers perform convolutions in Fourier space and
may not use normalization layers by default (Li et al., 2021; Tran et al., 2023). For these models,
the Spatial-Spectral conditioning strategy introduced by Gupta & Brandstetter (2023) can be used to
perform timestep conditioning in the frequency domain. Under this scheme, the Fourier transform
of the feature map is point-wise multiplied with a complex-valued embedding ξ of ∆t as F(z)ξ. ξ
has different entries for each frequency of F(z), and so to maintain parameter-efficiency, Gupta &
Brandstetter (2023) share ξ across all channels of z.

Euler Residuals. Neural solvers often employ residual connections (He et al., 2016) as zl+1 =
zl+Fl(zl), where the l-th solver layer Fl includes spatial integration operations such as convolution
or attention. Many works have studied the relationship between residual connections and Euler
integration (Lu et al., 2018; Haber & Ruthotto, 2017; Ruthotto & Haber, 2020), and even extended
it to more general classes of integrators (Chen et al., 2018; Kidger, 2022). For a function of time v,
Euler integrators approximate time integration as

v(t+∆t) = v(t) +

∫ t+∆t

t

∂tv(τ)dτ ≈ v(t) + ∆t∂tv(t).

When viewing the evolution of the latent features zl 7→ zl+1 from layer-to-layer as the evolution
of some latent map z(t) ∈ Rdmodel×M in time, the time integration of z carried out numerically by
the Euler integrator corresponds exactly to residual connections. In our scenario, we interpret the
l-th layer representation zl corresponding to the input field u(t) and timestep size ∆t as the latent
form of some intermediate state u(t + α∆t), where α ∈ [0, 1] increases monotonically with depth
in the network. This interpretation leads to Euler Residuals, in which the period of time integration
executed by Fl is related to the timestep size ∆t as zl+1 = zl + aFl(zl), where a is an affine
transformation of ∆t as a = W∆t+ c for W , c ∈ Rdmodel .
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Mixture of Experts. Mixture of Experts (Shazeer et al., 2017; Jacobs et al., 1991; Fedus et al.,
2022) has emerged as an effective approach to scaling up models and has been applied in PDE
modeling tasks (Hao et al., 2023). The Mixture of Experts (MoE) layer consists of a gating network
Gl and K experts Fl,1, . . . , Fl,k. The gating network is often a simple MLP, while the experts can
have more complex architectures. Based on layer inputs zl, the gating network weighs the outputs
of the experts according to the gate Gl(zl) ∈ RK as zl+1 = zl +

∑K
k Gl(zl)kFl,k(zl). The gating

network can then learn to partition the latent space such that each expert specializes in a particular
area. As our task involves learning to evolve dynamics by variable time lengths, we gate experts
according to the timestep ∆t as

zl+1 = zl +

K∑
k

Gl(∆t)k (akFl,k(zl)) ,

where ak is an affine transformation of ∆t for the k-th expert, and plays the same role as for
the Euler residuals. This enables each layer to have experts specializing in short time integration
periods where u(t) contains sharp gradients, as well as experts for handling longer timesteps where
the dynamics behave more smoothly.

4 RELATED WORK

Learnable spatial re-meshing for PDEs has been an active area of research, with advances made in
supervised Pfaff et al. (2021); Song et al. (2022); Zhang et al. (2024a) and reinforcement learning Wu
et al. (2022a); Freymuth et al. (2023); Yang et al. (2023) frameworks. However, to the best of
our knowledge, we are the first to consider learning to temporally re-mesh and utilize data with
adaptable temporal resolution, which are both vital for developing models for high-speed flows.
Works in this direction have instead developed various schemes using temporally uniform data. Wu
et al. (2025) recently introduced a pipeline wherein a timestep prediction model is trained using an
unsupervised loss designed to avoid timesteps that are too small. A second module then predicts
temporal derivatives of various orders such that the solution can be queried using a Taylor expansion
at any point up until the predicted timestep, enabling supervision using the temporally-uniform
ground truth data. Following a similar continuous-time strategy, Janny et al. (2024) propose to
learn an interpolator such that arbitrary time points between temporally uniform training data can be
queried. Hagnberger et al. (2024) employ a conditional neural field to map from initial conditions to
arbitrary query times. Other works learn to map forward in time by various multiples of a uniform
step size, with Liu et al. (2022a); Hamid et al. (2024) training different models for each step size and
Gupta & Brandstetter (2023); Herde et al. (2024) training one model to be shared across step sizes
using time-conditioned layer norm. Importantly, Gupta & Brandstetter (2023); Herde et al. (2024)
consider the timestep size to be known a priori, with Gupta & Brandstetter (2023) treating this as a
benchmark for probing the ability of neural solvers to respond to timestep conditioning and Herde
et al. (2024) using it as a pre-training task. As detailed in Section 3.1, this assumption is not realistic
in the setting we consider here.

5 EXPERIMENTS

5.1 DATASETS

We consider two settings of high-speed flows in the supersonic regime. We discuss the generation
of these cases in Appendix A and visualize solutions in Appendix E.

Coal Dust Explosion. The first setting we consider is a multiphase problem containing both
gaseous air and granular coal particles. The simulation begins with a thin, uniform layer of coal
dust settled on the bottom of a channel. Near the left boundary, we initialize a normal shock. We
vary the initial strength of the shock between Mach 1.2 and 2.1 along with the particle diameter
from case to case for a total of 100 cases, with 90 for training and 10 for evaluation. Once the
simulation starts, the normal shock travels to the right as shown in Figure 7, where it interacts with
the dust layer, first compressing it and later generating instabilities at the gas-dust layer interface.
These instabilities further grow with time into turbulent vortical structures, which raise the dust in
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Figure 2: One-step MAE of Neural CFL models on ∆t averaged over 3 training runs, where ∆t is
normalized to have standard deviation 1. Error bars are ± 2 standard errors.
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Figure 3: ∆t predicted by autoregressive unrolling of ShockCast with F-FNO+Euler conditioning
neural solver backbone for a selected solution.

the channel and mix them with the air. The amount of mixing depends both on the initial shock
strength and the particle diameter. We train our models to predict the velocity and temperature of
the gas and the volume fraction describing the percentage of coal dust at each point.

Circular Blast. The second setting we consider is a two-dimensional circular blast case, which
represents a two-dimensional version of the Sod’s shock tube problem (Sod, 1978). We initialize a
circular region of high pressure such that the pressure inside the circle is substantially higher than
its surroundings as shown in Figure 8. We vary the ratio of these initial pressures from 1.99 to 50
to produce a set of 99 cases split into 90 training cases and 9 evaluation cases. Once the simulation
starts, a circular shock travels radially outward, while an expansion wave travels in the opposite
direction. This continues until the outward moving shock reflects from the boundaries and travels
inwards toward the origin. The interaction of the reflected shocks with the post-shock gas generates
instabilities which grow into turbulent structures. Once these reflected shocks reach the origin,
they reflect again, thus propagating radially outward. This continues repeatedly, while with each
reflection, the shocks lose strength. The maximum Mach number, which correlates with the initial
pressure ratio, varied from 0.49 to 2.97 across cases. We train our models to predict the velocity,
temperature, and density fields.

5.2 SHOCKCAST BACKBONES

We use the ConvNeXt architecture (Liu et al., 2022b) as the backbone architecture for our Neu-
ral CFL model trained with the noise injection strategy from Sanchez-Gonzalez et al. (2020) with
noise level 0.01. We experiment with a variety of neural solver architectures. Multiscale process-
ing has been highlighted as a vital component of neural solvers (Gupta & Brandstetter, 2023), and
thus, we explore the interaction between our timestep conditioning strategies and various multiscale
processing mechanisms: two hierarchical mechanisms and two global mechanisms. The first hierar-
chical model we consider is the U-Net (Ronneberger et al., 2015). We use the modern U-Net variant
from Gupta & Brandstetter (2023), which closely resembles architectures used by diffusion mod-
els (Ho et al., 2020). The Convolutional Neural Operator (CNO) (Raonic et al., 2024) extends the
U-Net into the neural operator framework using anti-aliasing techniques from Karras et al. (2021).
Both architectures use a hierarchical approach to processing dynamics on different scales, whereas
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Circular Blast: Density

Figure 4: Comparison of the ground truth (top) and predicted (bottom) density fields for the circular
blast data. We obtain predictions with autoregressive unrolling of ShockCast.
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ShockCast Results: Coal Dust Explosion

Affine Euler MoE

Figure 5: Coal dust explosion results averaged over three neural solver training runs. Error bars are
± 2 standard errors.

the Fourier Neural Operator (Li et al., 2021) employs global Fourier convolutions in the frequency
domain. The variant we employ here is the Factorized FNO (Tran et al., 2023) (F-FNO), which
enhances the scalability of FNO by applying convolutions one spatial dimension at a time. As
an alternative to parallel multi-scale processing with Fourier convolutions, attention enables mesh
points both distant and local to share information with one another. Transolver (Wu et al., 2024) re-
duces the quadratic complexity of attention by coarsening using a learnable soft pooling operation.
For each architecture, we experiment with each of the timestep conditioning strategies introduced
in Section 3.4. We refer to the Affine version of models as the one using either spatial-spectral
conditioning in the case of F-FNO or time-conditioned layer norm in the case of the remaining ar-
chitectures. The remaining model variants add onto the Affine versions by additionally employing
Euler conditioning, as well as MoE conditioning, both of which use Euler residuals. We discuss
these architectures and training procedures in greater detail in Appendices B and C, respectively.

5.3 METRICS

To evaluate predicted solutions, we compute the Pearson’s correlation coefficient for each field and
at each timestep with the ground truth data. This requires the predicted fields to be on the same tem-
poral grid as the ground truth data, for which we use linear interpolation, described in Appendix D.
The correlation time (Kochkov et al., 2021; Lippe et al., 2023; Alkin et al., 2024) for a given field
is defined as the last time t before the correlation sinks below a threshold, which we take to be 0.9
here. We then average this time across all fields and report it as a percentage of the full simulation
time. We additionally use the predicted fields to compute several of the primary physical quantities
of interest to practitioners. The mean flow is computed by averaging each flow field over time, while
the Turbulence Kinetic Energy (TKE) is calculated as the sum of the variances of the fluctuating part
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Figure 6: Circular blast results averaged over three neural solver training runs. Error bars are ± 2
standard errors.

of the velocity field. These quantities are given by

ū :=
1

T

∫ T

0

u(t)dt TKE :=
1

2T

∫ T

0

(u(t)− ū)2 + (v(t)− v̄)2dt, (4)

respectively. We report the relative error averaged over each variable for the mean flow, and relative
error of the TKE field, where the integrals are approximated using the trapezoidal rule.

5.4 RESULTS

We examine the one-step MAE of several variants of the neural CFL model in Figure 2. For the
circular blast, a single-phase problem where the CFL condition is determined entirely by the velocity
and temperature fields, the base model yields the best performance, as the modeled variables by
themselves are sufficient to accurately predict the timestep size. In contrast, the coal dust explosion
has a more complicated form of the CFL condition to account for both the solid phase describing
the coal dust and the gas phase. The modeled variables primarily focus on the gas phase, with the
exception of the volume fraction. In this more challenging setting, we observe substantial benefits
from our physically-motivated enhancements to the neural CFL model. Our best results are achieved
when using max-pooling, with the spatial gradient of the flow state ∇u and CFL features added to
inputs. In Figure 3, we examine the predicted ∆t obtained through autoregressive unrolling of the
ShockCast framework in each setting and observe a close match with the ground truth. We use the
best neural CFL model in each of the settings for the full ShockCast models discussed next.

We visualize unrolled predictions on the circular blast density field in Figure 4. In Figures 5 and 6,
we examine the performance of ShockCast realized with each of the neural solver architectures
and timestep conditioning strategies. For both the coal dust explosion and circular blast settings,
ShockCast achieves the strongest performance in terms of correlation time when leveraging a U-Net
backbone with time-conditioned layer norm. On the coal dust explosion cases, MoE conditioning
and Euler conditioning with a U-Net backbone achieve the first and second best performance in terms
of TKE error, respectively. Similarly, the TKE error for the circular blast is lowest for Euler and MoE
conditioning strategies with a F-FNO backbone. Finally, while U-Net with time-conditioned layer
norm has the best mean flow error for the coal dust explosion setting, the F-FNO with MoE variant of
ShockCast has the lowest circular blast mean flow error. We present extended results in Appendix F.

6 CONCLUSION

In this work, we develop machine learning methods for modeling high-speed flows with adaptive
time-stepping. To this end, we propose ShockCast, a two-phase framework that learns timestep sizes
in the first phase and evolves fluid fields by the predicted step size in the second phase. To evaluate
ShockCast, we generate two new supersonic flow datasets. Results show that ShockCast is effective
at learning to temporally re-mesh and evolve fluid fields. Our work represents the first steps towards
developing machine learning models for high-speed flows, where there is great potential for neural
acceleration due to immense computational requirements of classical methods.
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A CFD PROBLEM DESCRIPTION AND NUMERICAL MODELS

We conduct the numerical simulations in this work using the HyBurn code, which implements high-
order Godunov schemes to solve the governing equations. HyBurn is a finite volume solver that
employs parallelization and adaptive mesh refinement (AMR) via the AMReX library (Zhang et al.,
2019). It uses a low-dissipation, WENO-based high-order Godunov method (Houim & Kuo, 2011;
Houim & Oran, 2016; Balsara & Shu, 2000; Martı́n et al., 2006; Shen et al., 2016; Harten et al., 1983)
and models turbulence using Implicit Large Eddy Simulation (Grinstein et al., 2007; Oran et al.,
2001; Thornber et al., 2008; Drikakis et al., 2009; Thornber et al., 2007). HyBurn solves compress-
ible Navier-Stokes equations for Eulerian-Eulerian granular multiphase reactive flows, employing
advanced numerical techniques developed by Houim & Oran (2016). It uses an explicit third-order
three-stage Runge-Kutta time-stepping algorithm along with two independent CFL numbers – one
for the hyperbolic and the other for the parabolic terms of the compressible Navier-Stokes equa-
tions. The actual timestep size is determined by whichever is the smaller of the two. HyBurn has
been extensively validated and verified against various compressible multiphase and reactive flow
problems (Houim & Kuo, 2011; Houim & Oran, 2016). More details about the algorithms and
the applications of HyBurn can be found in previous work (Guhathakurta & Houim, 2023a; 2021;
Guhathakurta, 2021; Guhathakurta & Houim, 2023b; Posey et al., 2021; Li & Houim, 2024; Li,
2022; Hargis et al., 2024; Egeln et al., 2023; Farrukh et al., 2025).

A.1 COAL DUST EXPLOSION

The first setting we consider is loosely based on the coal dust explosion simulations in Guhathakurta
& Houim (2023a; 2021); Guhathakurta (2021); Guhathakurta & Houim (2023b). The major dif-
ferences are that in this study we use a normal shock instead of a detonation to mimic the primary
explosion in a coal mine, and there are no chemical reactions involved. The computational geometry
we use is a 25 cm by 5 cm two-dimensional rectangular channel containing air, with a thin uniform
layer of coal dust settled on the bottom of the channel. We keep the left and right boundaries open,
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Coal Dust Explosion: Grid Independence

Refinement Levels Shock speed (ms−1)

1 1,102.52
2 1,033.99
3 999.70

(a) Coal grid independence tests. We choose an ar-
bitrary point in the domain and measure the shock
speed at this point for each of the configurations.

Circular Blast: Grid Independence

Refinement Levels Time (s× 10−3)

1 1.0178
2 1.0179
3 1.0196

(b) Blast grid independence tests. We choose an arbi-
trary point in the domain and measure the time taken
for the shock to reach this point for each of the three
configurations.

Table 1: Grid independence tests. In each setting, we re-ran a selected case for varying levels of
mesh refinement.

t = 0.000 t = 1.137 t = 2.188 t = 3.128 t = 4.048 t = 4.967 t = 5.889 t = 6.814 t = 7.736

−102 −101 0 101 102

Coal Dust Explosion: Gas Velocity x-component, Shock Mach Number 1.85

Figure 7: Initial gas velocity x-component for a selected coal dust explosion case. Times are in
units of 10−5 seconds and the downsampling factor relative to the classical solver solution is 100×
compared to 500× used for training ShockCast. The initial shock can be seen to be moving from
left to right.

while the top and bottom boundaries are symmetry. This is a multiphase problem containing both
gaseous air and granular coal particles. Near the left boundary, we initialize a normal shock using
post-shock conditions to the left of the shock and quiescent air (300K temperature, 1 atm pressure)
ahead of it. We vary the initial strength of the shock between Mach 1.2 and 2.1 along with the parti-
cle diameter between 1 µm and 150 µm from case to case for a total of 100 cases. We set the initial
volume fraction of the dust layer to 47% and the particles to be monodisperse. We model the coal
particles as being composed of inert ash only, with a solid-phase density of 1330 kgm−3. We use
two AMR levels to give an effective resolution of ∼0.12mm at the finest level. We use a fifth-order
WENO interpolation scheme and the HLL (Toro, 2013) flux reconstruction method. We set the CFL
numbers for both the hyperbolic and parabolic terms to 0.6.

Once the simulation starts, the normal shock travels to the right as shown in Figure 7, where it
interacts with the dust layer, first compressing it and later generating instabilities at the gas-dust
layer interface. These instabilities further grow with time into turbulent vortical structures, which
raise the dust in the channel and mix them with the air. The amount of mixing depends both on
the initial shock strength and the particle diameter. We cap the total simulation time at 3ms for all
cases.

We used a case with initial strength of the shock Mach 3 and particle diameter 30 µm to conduct a
grid independence analysis. We used a base grid of 520×104 and conducted the analysis by varying
the AMReX maximum levels of refinement between 1 and 3. In Table 1a, we compare the shock
speed at an arbitrary point in the domain for each of the three configurations. Because the shock
speed differed least between 2 and 3 levels of refinement (3.4%), we used 2 levels of refinement as
the grid configuration for data generation.

A.2 CIRCULAR BLAST

The second setting we consider is a two-dimensional circular blast case, which represents a two-
dimensional version of the Sod’s shock tube problem (Sod, 1978). We initialize a circular region
of high pressure such that the pressure inside the circle is substantially higher than its surroundings
as shown in Figure 8. We vary the ratio of these initial pressures from 1.99 to 50 to produce a set
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IPR = 3.44 IPR = 10.23 IPR = 16.53 IPR = 23.81 IPR = 29.63 IPR = 33.51 IPR = 37.88 IPR = 43.69 IPR = 47.58

10 20 30 40 50

Circular Blast: Initial Densities

Figure 8: Initial density field for the circular blast evaluation cases with varying Initial Pressure
Ratios (IPR). Due to the ideal gas law, increasing the pressure also increases the density.

Model Initial
Learning Rate

Latent
Dimension Key Hyperparameters

U-Net 2× 10−4 64 3 downsampling/upsampling levels

CNO 2× 10−4 27
4 downsampling/upsampling levels, 6 resid-
ual blocks per level

F-FNO 1× 10−3 96 32 modes, 12 layers
Transolver 6× 10−4 192 8 layers, 8 attention heads, 8 slices

ConvNeXT 2× 10−4 96
ConvNeXt-T (See Section 3 of Liu et al.
(2022b))

Table 2: Hyperparameters for neural solver and neural CFL models used in both the coal dust
explosion setting and the circular blast setting.

of 99 cases. To reduce the computational cost, we only simulate a quarter of the circle. We use
symmetry boundary conditions for all boundaries to allow for the generated shocks and expansion
waves to reflect when incident on them. We model a single gaseous phase throughout the com-
putational domain. We set the initial temperatures to 300K everywhere, with the gas initially at
rest. We use two Adaptive Mesh Refinement (AMR) levels – triggered by predefined pressure and
density ratio thresholds between any two adjacent computational cells – to give an effective resolu-
tion of ∼0.98mm at the finest level, which is sufficient to resolve the shocks. We use a fifth-order
MUSCL (Van Leer, 1979) interpolation scheme and the HLLC-LM (Fleischmann et al., 2020) flux
reconstruction method. We set the CFL numbers for both the hyperbolic and parabolic terms to 0.8.

Once the simulation starts, a circular shock travels radially outward, while an expansion wave travels
in the opposite direction. This continues until the outward moving shock reflects from the boundaries
and travels inwards toward the origin. The interaction of the reflected shocks with the post-shock
gas generates instabilities which grow into turbulent structures. Once these reflected shocks reach
the origin, they reflect again, thus propagating radially outward. This continues repeatedly, while
with each reflection, the shocks lose strength. We cap the total simulation time at 5ms for all cases.

We used a case with blast pressure of 50 atm to conduct the grid independence test. We used a
base grid of 256×256 and performed the grid independence test by varying the AMREX maximum
levels of refinement between 1 and 3. In Table 1b, we compare the time taken by the shock to reach
an arbitrary point in the domain for each of the three grid configurations. As the difference in the
shock speeds was minor across the three configurations, we chose the grid with 2 levels of maximum
refinement for generating the cases.

B NEURAL SOLVERS

Various neural models for solving PDEs have emerged over the last decade, including Physics-
Informed Neural Networks (Raissi et al., 2019; Biswas & Anand, 2023; 2024; Cho et al., 2024;
Shah & Anand, 2024) and operator learning (Lu et al., 2021; Gupta et al., 2021; Li et al., 2022b;a;
2023b; Poli et al., 2022; Seidman et al., 2022; Kovachki et al., 2023). Neural solvers have been
tailored to a variety of applications of PDE modeling, including subsurface modeling (Deng et al.,
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Model Parameters (M) GigaFLOPs Peak Train Memory
(GiB)

U-Net
Affine 140.861 94.328 13.465
Euler 140.861 94.328 14.152
MoE 131.129 85.839 21.307

CNO
Affine 45.710 16.028 8.951
Euler 45.704 16.028 9.629
MoE 174.339 55.917 27.783

F-FNO
Affine 15.372 20.901 18.953
Euler 15.374 20.901 20.164
MoE 15.697 20.762 37.242

Transolver
Affine 11.139 191.112 41.895
Euler 10.336 191.110 41.881
MoE 9.911 182.924 62.432

ConvNeXT 27.822 1.736 11.117

Table 3: Model parameter counts, GigaFLOPs per forward pass, and peak GPU memory usage
during training. FLOPs were computed with a batch size of 1 on the coal dust explosion dataset,
while GPU memory was computed for a batch size of 32 on a single A100 GPU.

2022; Wu et al., 2022b), climate and weather modeling (Bi et al., 2022; Lam et al., 2022; Pathak
et al., 2022; Price et al., 2023; Nguyen et al., 2023), and airfoil design (Bonnet et al., 2022; Helwig
et al., 2024). Neural solvers span a diverse array of architectures, including convolutional models (Li
et al., 2021; Tran et al., 2023; Wen et al., 2022; Helwig et al., 2023; Wen et al., 2023; Bonev et al.,
2023; Zhang et al., 2024b; Raonic et al., 2024), transformers (Cao, 2021; Li et al., 2023a; Janny
et al., 2023; Hao et al., 2024; Alkin et al., 2024), and graph neural networks (Li et al., 2020a;b;
Brandstetter et al., 2022; Horie & Mitsume, 2022).

Previous works have highlighted the importance of multiscale processing mechanisms in design-
ing effective neural solvers Gupta & Brandstetter (2023). This is at least in part due to the temporal
coarsening approach taken by neural solvers. While differential operators defining PDEs are primar-
ily local in nature, their effects become increasingly global as the timestep size is increased beyond
that of the classical solver. It is therefore vital for neural solvers to incorporate spatial processing
mechanisms that enable modeling of phenomena on both local and global scales. Thus, we explore a
variety of neural solver backbones in ShockCast spanning both hierarchical and parallel multi-scale
processing mechanisms. Within the parallel framework, we consider both convolution-based and
attention-based mechanisms.

U-Net. The U-Net Ronneberger et al. (2015) is one of the most prominent examples of a hierar-
chical mechanism. The U-Net is composed of a downsampling path and an upsampling path. To
achieve a global receptive field, the input features sampled on the original solution mesh are first
sequentially downsampled using pooling operations or strided convolutions. At each resolution, the
downsampled features are convolved and point-wise activations are applied. Following the down-
sampling path, an inverse upsampling path is applied, consisting of upsampling operations which
are either transposed convolutions or interpolation, with convolution and non-linearities again ap-
plied at each resolution. To restore high-frequency details that were lost along the downsampling
path, skip connections from respective resolutions along the downsampling path concatenate feature
maps at each stage of the upsampling path. The U-Net architecture we employ in our framework
is the “modern U-Net” architecture from Gupta & Brandstetter (2023), which closely resembles
architectures used by diffusion models (Ho et al., 2020).
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CNO. The Convolutional Neural Operator (Raonic et al., 2024) adapts the U-Net into the neural
operator framework. Neural operators (Kovachki et al., 2023; Seidman et al., 2022) are a class of
neural solver which aim to maintain the continuous nature of the underlying PDE solution despite
the discretization of training data. In doing so, they enable trained neural solvers to be evaluated on
discretizations differing from the training data. CNO extends these properties to the U-Net architec-
ture using anti-aliasing techniques from Karras et al. (2021).

F-FNO. While the previous architectures take a hierarchical approach to multi-scale processing,
Fourier Neural Operators (Li et al., 2021) process information on multiple scales in parallel using
global Fourier convolutions. Convolution kernels are parameterized in the frequency domain such
that the complex-valued weights to be learned represent the coefficients of the kernel function in the
Fourier basis. Due to the convolution theorem, convolutions in the frequency domain are carried
out via point-wise multiplication of frequency modes. Furthermore, because Fourier basis functions
have global support, with high frequency modes describing fine details and low frequencies describ-
ing the “background” of the function, information on multiple spatial scales is processed in parallel.
To execute these convolutions more efficiently, FNOs truncate the number of non-zero modes in
each kernel to a threshold such that only the lowest frequencies are present in the Fourier expan-
sion of the kernel function. Building on this efficiency, Factorized Fourier Neural Operators (Tran
et al., 2023) perform convolutions one spatial dimension at a time such that kernels are a function of
only one spatial dimension. This enables deeper F-FNOs, enhancing the expressive capacity of the
architecture.

Transolver. As an alternative to parallel multi-scale processing with Fourier convolutions, atten-
tion enables mesh points both distant and local to share information with one another. However,
due to its quadratic complexity, adapting Transformers to PDE modeling tasks, where the number
of mesh points can be on the order of thousands and above, presents computational challenges (Li
et al., 2023a; Cao, 2021; Hao et al., 2023). Transolver (Wu et al., 2024) reduces this complexity by
performing attention on a coarsened mesh. The coarsening is achieved by a learnable soft pooling
operation, where the soft assignments are not entirely based on clustering local points together.

C TRAINING DETAILS

C.1 DATASETS

We coarsen the coal dust explosion cases in time by saving every 100 steps, and applied further
coarsening to the saved steps by a factor of 5 for an overall coarsening factor of 500× relative to the
CFD solver. The coarsest AMR level gave a spatial resolution of 104 × 520. We only use the left-
most fifth of the domain along the horizontal axis such that the training resolution was 104 × 104.
We train models on the velocity and temperature fields of the gas, as well as the volume fraction
describing the percentage of coal comprising each computational cell.

For the circular blast cases, we save solutions every 100 CFD steps. The coarsest AMR level for
the circular blast setting gives a spatial resolution of 256 × 256, which we coarsened further to the
training resolution of 128× 128 using averaging. We train models on the velocity, temperature and
density fields.

The initial shock strength and particle diameters for the Coal Dust Explosion are sampled ran-
domly. Half of them are sampled using uniform sampling and the remaining half are sampled using
Bridson’s algorithm (Bridson, 2007) to fill the parameter space. The initial pressure ratios for the
Spherical Blast dataset are uniformly spaced. In both settings, the evaluation cases are selected so as
to be as diverse as possible by first sampling points in the parameter space using Bridson’s algorithm
and then finding the corresponding case closest to the sampled point.

C.2 TRAINING PIPELINE

We implement our training pipeline in PyTorch (Paszke et al., 2019) using PyTorch Lightning (Fal-
con, 2019). Depending on model training memory requirements, we train models on between 1-2
80GiB A100 GPUs or between 1-8 11GiB RTX 2080 GPUs. We optimize all models using the
Adam optimizer (Kingma & Ba, 2015) with a cosine learning rate scheduler (Loshchilov & Hutter,
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Coal Dust Explosion: Runtime (s)
Model GPU CPU

CNO
Affine 2.15 (0.07) 42.51 (0.15)
Euler 2.30 (0.03) 42.57 (0.08)
MoE 7.14 (0.01) 108.51 (0.28)

F-FNO
Affine 1.41 (0.03) 58.05 (0.41)
Euler 1.42 (0.01) 56.38 (0.04)
MoE 3.75 (0.04) 82.49 (0.53)

Transolver
Affine 2.22 (0.03) 159.82 (1.10)
Euler 2.21 (0.04) 167.54 (6.15)
MoE 3.39 (0.03) 175.19 (0.56)

U-Net
Affine 1.66 (0.01) 85.44 (0.69)
Euler 1.66 (0.01) 87.36 (0.33)
MoE 2.78 (0.01) 79.29 (0.67)

Circular Blast: Runtime (s)
Model GPU CPU

CNO
Affine 1.67 (0.03) 40.58 (0.47)
Euler 1.94 (0.01) 41.86 (0.54)
MoE 6.12 (0.10) 117.45 (2.34)

F-FNO
Affine 1.15 (0.01) 56.32 (2.14)
Euler 1.18 (0.01) 56.45 (2.23)
MoE 3.12 (0.03) 79.91 (2.56)

Transolver
Affine 2.34 (0.01) 194.56 (4.49)
Euler 2.33 (0.03) 198.53 (5.82)
MoE 3.76 (0.04) 226.63 (4.59)

U-Net
Affine 1.61 (0.01) 94.76 (2.43)
Euler 1.64 (0.01) 95.49 (2.16)
MoE 2.51 (0.04) 84.96 (1.06)

Table 4: ShockCast runtime to compute a solution via autoregressive unrolling in both settings on
CPU and GPU, presented as mean (standard error).

Minimum Mean Maximum

15,592 67,441 128,675

Table 5: Classical solver runtime to compute a solution on 16 CPU cores in seconds for the Coal
Dust Explosion setting.

2017). We use a batch size of 32 for all neural solver models, and a batch size of 320 for neural
CFL models. We train neural solver models for 400 epochs, resulting in over 75K training updates
for the coal dust explosion dataset and over 50K training updates for the circular blast dataset. We
train neural CFL models for 800 epochs using training noise with a level of 0.01 (Sanchez-Gonzalez
et al., 2020). On the coal dust explosion dataset, this results in over 12K training updates, while for
the circular blast dataset, this results in over 6K training updates. We present initial learning rates
and other key hyperparameters used for all models in Table 2.

C.3 PARAMETER COUNTS, FLOPS AND PEAK GPU MEMORY

In Table 3, we present parameter counts, forward FLOPs, and peak training memory for the coal dust
explosion cases. We compute FLOPs with a batch size of one using FlopCounterMode from the
torch.utils.flop counter module, and report training memory observed on a single A100
GPU using a batch size of 32.

In our experiments, we offset increased computation when using the MoE timestep conditioning
strategy by reducing the latent dimension of all models except CNO according to the square root
of the number of experts used. We use four experts for all models except for Transolver, where
we use two experts due to high memory consumption. For CNO, we ran into stability issues when
attempting to scale the number of parameters beyond those reported in (Herde et al., 2024). As can
be seen in Table 3, this led to a reduced amount of computation for the CNO variants of ShockCast
relative to the other neural solver backbones. However, when using MoE timestep conditioning, we
found that we could stably train CNO with 4 experts with no reduction in the embedding dimension.
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C.4 SOLUTION RUNTIME ANALYSIS

In Table 4, we present the time to compute a solution for ShockCast across all neural solvers back-
bones and conditioning methods in both settings, timed on both GPU and CPU-only. We report
runtimes for the classical solver in the Coal Dust Explosion setting in Table 5.

D METRICS

Correlation time proportion. We compute Pearson’s correlation coefficient for each field and
at each timestep with the ground truth data. This requires the predicted fields to be on the same
temporal grid as the ground truth data, for which we use linear interpolation. Specifically, for the
function f : R → Rd sampled on the grid {tj}nj where tj ≤ tj+1, we interpolate f to the query
point t⋆ ∈ [t1, tn] as

f(t⋆) ≈
n−1∑
j

1[tj ,tj+1](t
⋆)

(
f(tj)(tj+1 − t⋆) + f(tj+1)(t

⋆ − tj)

tj+1 − tj

)
,

where 1[a,b] is the characteristic function given by

1[a,b](x) =

{
1 x ∈ [a, b]

0 o.w.
.

The correlation time (Kochkov et al., 2021; Lippe et al., 2023; Alkin et al., 2024) for a given field
is defined as the last time t before the correlation sinks below a threshold, which we take to be 0.9
here. We then average this time across all fields and report it as a proportion of the full simulation
time such that a perfect prediction would have correlation time proportion of 1.

Mean flow and Turbulence Kinetic Energy. The mean flow is defined as the flow states averaged
over time, while the turbulence kinetic energy is the sum of the variances of the fluctuating part of
the velocity field. These quantities are given by

ū :=
1

T

∫ T

0

u(t)dt TKE :=
1

2T

∫ T

0

(u(t)− ū)2 + (v(t)− v̄)2dt. (5)

We approximate the integrals in Equation (5) using the trapezoidal rule as∫ T

0

f(t)dt ≈ 1

2

n−1∑
j

∆j (f(tj+1) + f(tj)) ,

where ∆j := tj+1 − tj .

E SOLUTION VISUALIZATIONS

Here, we visualize true and predicted fields for ShockCast using the F-FNO with Euler conditioning
neural solver backbone on a selected solution from the evaluation datasets. For the coal dust explo-
sion setting, this solution has shock Mach number of 1.85, while for the circular blast setting, it has
a max Mach number of 2.68. We visualize TKE fields in Figures 9 and 10 and mean flow fields
in Figures 11 and 12. When visualizing the instantaneous fields, we subsample the true solution in
time to reduce the number of snapshots. For each of the snapshots u(t) in the subsampled solu-
tion, we find the snapshot from the solution û(t̂) autoregressively unrolled by ShockCast with the
closest predicted time t̂ to t. We then visualize the true snapshots u(t) alongside the corresponding
closest-in-time predicted snapshots û(t̂), as well as the residual between each pair |u(t) − û(t̂)|.
We present these visualizations in Figures 13 to 16 for each of the fields in the coal dust explosion
case and in Figures 17 to 20 for each of the fields in the circular blast case.
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Figure 9: TKE for coal dust explosion.
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Figure 10: TKE for circular blast.
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Figure 11: Mean flow for coal dust explosion.
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Figure 12: Mean flow for circular blast.
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Figure 13: Gas velocity x-component for coal dust explosion.
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Figure 14: Gas velocity y-component for coal dust explosion.
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Figure 15: Volume fraction for coal dust explosion.
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Figure 16: Gas temperature for coal dust explosion.
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Figure 17: Velocity x-component for circular blast.
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Figure 18: Velocity y-component for circular blast.
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Figure 19: Density for circular blast.
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Figure 20: Temperature for circular blast.
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Coal Dust Explosion: One-Step Prediction Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 0.94 (0.01) 9.94 (0.02) 3.03 (0.01) 0.38 (0.00) 3.57 (0.00)
Euler 0.97 (0.01) 10.27 (0.08) 3.15 (0.04) 0.38 (0.00) 3.69 (0.02)
MoE 0.92 (0.00) 9.93 (0.04) 2.86 (0.02) 0.36 (0.00) 3.52 (0.01)

F-FNO
Affine 0.93 (0.00) 10.27 (0.06) 3.04 (0.01) 0.36 (0.00) 3.65 (0.02)
Euler 0.93 (0.00) 10.20 (0.01) 3.01 (0.03) 0.36 (0.00) 3.62 (0.01)
MoE 0.93 (0.00) 10.33 (0.03) 3.05 (0.01) 0.36 (0.00) 3.67 (0.01)

Transolver
Affine 1.22 (0.02) 12.98 (0.19) 2.62 (0.01) 0.44 (0.01) 4.32 (0.05)
Euler 1.18 (0.02) 12.83 (0.22) 2.60 (0.04) 0.44 (0.01) 4.26 (0.07)
MoE 1.20 (0.01) 12.83 (0.07) 2.53 (0.02) 0.43 (0.00) 4.25 (0.02)

U-Net
Affine 0.92 (0.01) 10.32 (0.06) 2.80 (0.02) 0.35 (0.00) 3.59 (0.02)
Euler 0.91 (0.01) 10.27 (0.05) 2.82 (0.02) 0.35 (0.00) 3.59 (0.02)
MoE 0.93 (0.01) 10.36 (0.07) 2.88 (0.01) 0.35 (0.00) 3.63 (0.02)

Table 6: Relative error for one-step predictions on evaluation split of coal dust explosion cases.

F EXTENDED RESULTS

In this section, we present the numerical values of average evaluation errors and their corresponding
standard errors as mean (standard error). In Tables 6 and 7, we present one-step errors for Shock-
Cast. We note that the timestep predicted by the neural CFL model will not perfectly match the
ground truth timestep such that the prediction from the neural solver model will be for a time which
differs from the ground truth. To compute the unrolled errors in Tables 8 and 9 and correlation time
proportions shown in Tables 10 and 11, we linearly interpolate ShockCast predictions in time to be
sampled on the same temporal grid as the ground truth data. As can be seen in Figure 15, the volume
fraction field at later timesteps can be sparse, and so we clamp the norm of the ground truth field
in the denominator of the relative error to have a minimum value of 1. For the mean flow results,
which we show in Tables 12 and 13, and TKE results that we present in Table 14, the target quan-
tities involve integrating the instantaneous fields with respect to time, and thus, no interpolation is
required.

G LIMITATIONS AND FUTURE DIRECTIONS

As previously discussed, neural solvers can benefit from time-adaptive schemes, as varying the
timestep size according to the rate of change can lead to more balanced one-step objectives across
flow states with varying gradient sharpness. Here, we have supervised our neural CFL model using
timesteps resulting from coarsening a temporal mesh computed using the CFL condition. How-
ever, approaches that learn to adapt timestep sizes based on a policy that balances solution accuracy
with computational cost, as is done by Wu et al. (2022a) for spatial remeshing, may lead to further
improvements. While the settings here contain dynamics comprising some of the most prevalent
phenomena in high-speed flows, including shocks, blasts, and a fluid-solid interaction, future works
should look to study other phenomena such as detonations and boundary layers. As discussed in Sec-
tion 3.1, the use of adaptive time-stepping results in more balanced training objectives, which often
results in improved generalization due to variance reduction (Duchi & Namkoong, 2019). Neverthe-
less, neural solvers in general do not include the same theoretical convergence guarantees enjoyed
by classical methods. Future works should look to extend these results from the classical setting to
machine learning methods.
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Circular Blast: One-Step Prediction Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 2.08 (0.01) 2.08 (0.01) 1.82 (0.01) 1.73 (0.01) 1.93 (0.01)
Euler 2.05 (0.01) 2.08 (0.02) 1.79 (0.01) 1.69 (0.01) 1.90 (0.01)
MoE 1.75 (0.03) 1.75 (0.04) 1.49 (0.01) 1.42 (0.01) 1.60 (0.01)

F-FNO
Affine 1.87 (0.00) 1.87 (0.00) 1.93 (0.00) 2.05 (0.00) 1.93 (0.00)
Euler 1.85 (0.01) 1.84 (0.01) 1.93 (0.00) 2.04 (0.00) 1.92 (0.01)
MoE 1.87 (0.00) 1.86 (0.00) 2.00 (0.01) 2.14 (0.00) 1.97 (0.00)

Transolver
Affine 1.21 (0.01) 1.21 (0.01) 0.95 (0.01) 0.93 (0.01) 1.07 (0.01)
Euler 1.27 (0.02) 1.27 (0.02) 1.01 (0.01) 0.99 (0.01) 1.14 (0.01)
MoE 1.28 (0.01) 1.29 (0.01) 1.02 (0.01) 0.99 (0.01) 1.15 (0.01)

U-Net
Affine 1.52 (0.00) 1.51 (0.01) 1.34 (0.00) 1.37 (0.00) 1.44 (0.00)
Euler 1.52 (0.00) 1.52 (0.00) 1.34 (0.00) 1.38 (0.01) 1.44 (0.00)
MoE 1.71 (0.01) 1.70 (0.01) 1.49 (0.01) 1.52 (0.01) 1.61 (0.01)

Table 7: Relative error for one-step predictions on evaluation split of circular blast cases.

Coal Dust Explosion: Unrolled Prediction Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 3.09 (0.08) 45.30 (1.25) 18.02 (1.00) 1.22 (0.05) 16.91 (0.59)
Euler 3.07 (0.09) 45.71 (1.15) 17.53 (0.34) 1.19 (0.03) 16.88 (0.35)
MoE 3.04 (0.02) 45.53 (0.17) 17.58 (0.70) 1.18 (0.01) 16.83 (0.15)

F-FNO
Affine 2.87 (0.08) 42.70 (0.38) 16.72 (0.09) 1.10 (0.01) 15.85 (0.13)
Euler 2.80 (0.00) 42.51 (0.66) 16.98 (0.27) 1.09 (0.01) 15.84 (0.20)
MoE 2.89 (0.06) 43.27 (0.73) 17.16 (0.32) 1.13 (0.01) 16.11 (0.14)

Transolver
Affine 3.33 (0.07) 42.59 (1.20) 19.59 (0.21) 1.20 (0.02) 16.68 (0.26)
Euler 3.33 (0.02) 43.95 (0.65) 19.26 (0.70) 1.22 (0.03) 16.94 (0.30)
MoE 3.21 (0.11) 42.61 (0.84) 19.56 (0.60) 1.22 (0.03) 16.65 (0.38)

U-Net
Affine 3.03 (0.05) 44.66 (0.49) 16.26 (0.23) 1.12 (0.01) 16.27 (0.16)
Euler 2.93 (0.03) 44.82 (0.40) 16.86 (0.25) 1.12 (0.00) 16.43 (0.08)
MoE 3.00 (0.04) 45.02 (0.47) 17.12 (0.10) 1.14 (0.01) 16.57 (0.15)

Table 8: Relative error for unrolled predictions on evaluation split of coal dust explosion cases.
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Circular Blast: Unrolled Prediction Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 6.93 (0.08) 6.99 (0.12) 7.63 (0.02) 7.96 (0.03) 7.37 (0.05)
Euler 6.98 (0.13) 7.06 (0.12) 7.58 (0.06) 7.92 (0.06) 7.38 (0.08)
MoE 6.74 (0.06) 6.77 (0.05) 7.48 (0.07) 7.85 (0.05) 7.21 (0.01)

F-FNO
Affine 5.89 (0.03) 5.86 (0.01) 5.59 (0.01) 5.89 (0.01) 5.81 (0.01)
Euler 5.70 (0.04) 5.73 (0.06) 5.56 (0.03) 5.87 (0.03) 5.71 (0.04)
MoE 5.91 (0.08) 5.95 (0.10) 5.68 (0.01) 6.00 (0.03) 5.89 (0.04)

Transolver
Affine 7.35 (0.31) 7.35 (0.32) 7.59 (0.05) 8.07 (0.02) 7.59 (0.17)
Euler 7.54 (0.16) 7.31 (0.11) 7.63 (0.09) 8.11 (0.04) 7.65 (0.09)
MoE 7.27 (0.17) 7.23 (0.23) 7.62 (0.10) 8.08 (0.06) 7.55 (0.14)

U-Net
Affine 5.45 (0.07) 5.47 (0.10) 5.16 (0.03) 5.44 (0.04) 5.38 (0.05)
Euler 5.50 (0.01) 5.44 (0.02) 5.24 (0.06) 5.55 (0.06) 5.43 (0.03)
MoE 5.46 (0.02) 5.50 (0.02) 5.30 (0.04) 5.56 (0.03) 5.45 (0.01)

Table 9: Relative error for unrolled predictions on evaluation split of circular blast cases.

Coal Dust Explosion: Correlation Time Proportion ×10−2 (↑)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 80.00 (0.00) 19.05 (0.17) 80.04 (1.10) 61.05 (1.06) 60.03 (0.53)
Euler 80.00 (0.00) 21.40 (2.96) 78.53 (1.59) 64.21 (0.92) 61.04 (0.92)
MoE 80.00 (0.00) 19.48 (0.32) 79.27 (1.07) 65.45 (2.44) 61.05 (0.85)

F-FNO
Affine 80.00 (0.00) 19.76 (0.28) 78.74 (0.32) 65.71 (0.30) 61.05 (0.16)
Euler 80.00 (0.00) 20.72 (1.46) 78.21 (0.23) 64.86 (0.94) 60.95 (0.13)
MoE 80.00 (0.00) 16.17 (2.99) 77.64 (0.68) 65.69 (0.25) 59.88 (0.94)

Transolver
Affine 80.00 (0.00) 21.76 (2.71) 75.25 (0.28) 65.19 (0.48) 60.55 (0.76)
Euler 80.00 (0.00) 19.23 (4.55) 75.80 (0.69) 64.48 (0.48) 59.88 (1.10)
MoE 80.00 (0.00) 19.36 (0.34) 76.46 (0.74) 65.06 (0.05) 60.22 (0.17)

U-Net
Affine 80.00 (0.00) 21.90 (1.68) 79.92 (1.13) 63.17 (0.10) 61.25 (0.12)
Euler 80.00 (0.00) 20.02 (0.15) 79.27 (1.01) 64.27 (0.56) 60.89 (0.26)
MoE 80.00 (0.00) 22.08 (1.50) 78.65 (0.96) 63.12 (0.11) 60.96 (0.29)

Table 10: Correlation time proportion for unrolled predictions on evaluation split of coal dust explo-
sion cases.
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Circular Blast: Correlation Time Proportion ×10−2 (↑)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 100.00 (0.00) 100.00 (0.00) 93.38 (0.39) 93.07 (0.23) 96.61 (0.15)
Euler 100.00 (0.00) 100.00 (0.00) 93.35 (0.12) 92.89 (0.22) 96.56 (0.08)
MoE 100.00 (0.00) 100.00 (0.00) 93.04 (0.09) 92.79 (0.06) 96.46 (0.02)

F-FNO
Affine 100.00 (0.00) 100.00 (0.00) 96.07 (0.42) 95.30 (0.15) 97.84 (0.14)
Euler 100.00 (0.00) 100.00 (0.00) 95.77 (0.06) 95.49 (0.14) 97.81 (0.05)
MoE 100.00 (0.00) 100.00 (0.00) 95.52 (0.06) 94.96 (0.05) 97.62 (0.03)

Transolver
Affine 100.00 (0.00) 100.00 (0.00) 94.11 (0.50) 93.58 (0.47) 96.92 (0.24)
Euler 100.00 (0.00) 100.00 (0.00) 94.11 (0.39) 93.37 (0.39) 96.87 (0.17)
MoE 100.00 (0.00) 100.00 (0.00) 94.18 (0.42) 93.09 (0.01) 96.82 (0.10)

U-Net
Affine 100.00 (0.00) 100.00 (0.00) 97.22 (0.84) 96.13 (0.21) 98.34 (0.26)
Euler 100.00 (0.00) 100.00 (0.00) 96.25 (0.42) 96.10 (0.23) 98.09 (0.16)
MoE 100.00 (0.00) 100.00 (0.00) 95.70 (0.07) 95.57 (0.13) 97.82 (0.05)

Table 11: Correlation time proportion for unrolled predictions on evaluation split of circular blast
cases.

Coal Dust Explosion: Mean Flow Relative Error ×10−2 (↓)

Model Gas Velocity
x-component

Gas Velocity
y-component

Volume
Fraction

Gas
Temperature Mean

CNO
Affine 1.00 (0.02) 23.03 (0.39) 12.42 (0.17) 0.42 (0.01) 9.22 (0.10)
Euler 0.97 (0.05) 22.68 (0.86) 12.71 (0.30) 0.39 (0.01) 9.19 (0.27)
MoE 0.91 (0.04) 22.79 (0.25) 12.25 (0.28) 0.37 (0.01) 9.08 (0.10)

F-FNO
Affine 0.82 (0.10) 22.59 (0.12) 11.80 (0.12) 0.35 (0.01) 8.89 (0.08)
Euler 0.79 (0.04) 22.29 (0.25) 11.99 (0.31) 0.32 (0.01) 8.85 (0.13)
MoE 0.80 (0.02) 22.44 (0.13) 12.55 (0.24) 0.34 (0.00) 9.03 (0.10)

Transolver
Affine 1.44 (0.09) 23.07 (0.60) 14.32 (0.17) 0.39 (0.03) 9.81 (0.10)
Euler 1.37 (0.10) 23.47 (0.70) 13.46 (0.13) 0.39 (0.01) 9.67 (0.14)
MoE 1.25 (0.16) 22.78 (0.11) 13.20 (0.15) 0.40 (0.02) 9.41 (0.09)

U-Net
Affine 1.06 (0.07) 22.50 (0.24) 11.17 (0.30) 0.36 (0.02) 8.77 (0.10)
Euler 1.03 (0.05) 23.33 (0.30) 11.74 (0.41) 0.37 (0.02) 9.12 (0.18)
MoE 1.06 (0.02) 22.53 (0.48) 11.62 (0.25) 0.35 (0.01) 8.89 (0.17)

Table 12: Relative error for mean flow on evaluation split of coal dust explosion cases.
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Circular Blast: Mean Flow Relative Error ×10−2 (↓)

Model Velocity
x-component

Velocity
y-component Density Temperature Mean

CNO
Affine 6.25 (0.12) 6.20 (0.24) 2.35 (0.06) 2.33 (0.07) 4.28 (0.11)
Euler 6.24 (0.23) 6.25 (0.21) 2.30 (0.05) 2.28 (0.06) 4.27 (0.13)
MoE 7.94 (2.10) 7.98 (2.14) 2.30 (0.06) 2.24 (0.05) 5.12 (1.08)

F-FNO
Affine 5.77 (0.22) 5.70 (0.15) 1.73 (0.01) 1.68 (0.02) 3.72 (0.10)
Euler 5.77 (0.19) 5.81 (0.12) 1.72 (0.02) 1.66 (0.03) 3.74 (0.08)
MoE 5.12 (0.13) 5.12 (0.07) 1.71 (0.01) 1.69 (0.02) 3.41 (0.03)

Transolver
Affine 6.21 (0.13) 6.04 (0.23) 2.27 (0.01) 2.37 (0.01) 4.22 (0.08)
Euler 11.59 (1.40) 10.82 (1.95) 2.43 (0.01) 2.49 (0.01) 6.83 (0.83)
MoE 6.52 (0.28) 6.30 (0.42) 2.34 (0.05) 2.44 (0.02) 4.40 (0.18)

U-Net
Affine 7.94 (2.63) 7.90 (2.45) 1.62 (0.05) 1.53 (0.03) 4.75 (1.29)
Euler 7.97 (2.34) 7.92 (2.32) 1.67 (0.05) 1.58 (0.02) 4.79 (1.18)
MoE 12.89 (0.02) 12.95 (0.12) 1.76 (0.03) 1.63 (0.02) 7.31 (0.05)

Table 13: Relative error for mean flow on evaluation split of circular blast cases.

Coal Dust Explosion: TKE
Relative Error ×10−2 (↓)

Model TKE

CNO
Affine 11.55 (0.23)
Euler 10.91 (0.16)
MoE 10.94 (0.11)

F-FNO
Affine 11.01 (0.36)
Euler 10.28 (0.11)
MoE 10.93 (0.04)

Transolver
Affine 12.72 (0.50)
Euler 12.44 (0.32)
MoE 11.79 (0.88)

U-Net
Affine 9.85 (0.24)
Euler 9.21 (0.12)
MoE 8.91 (0.16)

Circular Blast: TKE
Relative Error ×10−2 (↓)

Model TKE

CNO
Affine 2.60 (0.02)
Euler 2.69 (0.07)
MoE 2.64 (0.05)

F-FNO
Affine 2.29 (0.03)
Euler 2.23 (0.06)
MoE 2.16 (0.03)

Transolver
Affine 2.68 (0.08)
Euler 2.95 (0.04)
MoE 2.77 (0.06)

U-Net
Affine 2.27 (0.12)
Euler 2.30 (0.06)
MoE 2.36 (0.03)

Table 14: Relative error for TKE on evaluation splits.
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H BROADER IMPACTS

Neural PDE solvers have been applied in accelerating dynamics simulations across a variety of
real-world applications of PDE modeling, including weather and climate forecasting, aerodynamics
modeling, and subsurface modeling. As neural solvers often do not include guarantees on gener-
alization or stability over long time-integration periods, it is vital to perform rigorous validation
before relying on predictions in applications. Here, we have explored the potential of neural solvers
to accelerate modeling of high-speed flows. High-speed flows play an important role in the design
of a variety of applications with potential for societal impact, including spacecraft, missiles, and
atmospheric reentry vehicles. It is therefore important to closely monitor the development of works
along this direction.
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