

OPENREVIEWER: PREDICTING CONFERENCE DECISIONS WITH LLMs AND BEYOND

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of AI conference submissions has strained the peer-review system, motivating interest in AI-assisted review. Yet it remains unclear how reliably such systems approximate human judgment, which relies on domain expertise and nuanced reasoning. To address this challenge, we introduce OpenReviewer, a model designed to directly predict conference acceptance decisions rather than generate full reviews. Using ICLR 2024–2025 data, we evaluate large language models (LLMs), vision–language models (VLMs), and interpretable statistical models. Results show that text-only LLMs with continual pre-training outperform multimodal counterparts, achieving up to 78.5% accuracy on balanced datasets (vs. 50% random baseline). White-box statistical models further provide interpretability through feature analysis, revealing that structural attributes (e.g., paper length, section balance, citation engagement) are consistently predictive. Beyond average accuracy, a confidence-stratified utility analysis shows that the top 10% most confident predictions reach 92.92% overall precision, enabling reliable triage of “obvious” accepts and rejects while exposing areas of uncertainty. Overall, our findings demonstrate both the promise and limitations of AI-involved peer review: current models can reduce workload and aid submission reviewing, but fall short of reliably replacing expert judgment.

1 INTRODUCTION

The peer-review process is becoming increasingly unsustainable as submissions to top-tier AI conferences continue to grow at an unprecedented pace, as shown in Figure 1¹. This explosive growth places pressure on program committees and reviewers, leading to heavier workloads and concerns over the quality and consistency of reviews (Lawrence, 2022; Beygelzimer et al., 2023; Kim et al., 2025; Schaeffer et al., 2025). For authors, uncertainty around submission outcomes and suboptimal venue choices can negatively influence research trajectories and academic career development (e.g., timely PhD graduation) (Kousha & Thelwall, 2024; Yang, 2025).

Recent work has explored AI-assisted review generation as a potential solution, where models take papers as inputs to generate reviews. (Sukpanichnant et al., 2024; Ye et al., 2024; Shin et al., 2025). To our knowledge, no existing work uses LLMs to predict acceptance directly from the paper content itself. Reliable acceptance prediction could guide authors in developing submission strategies, while helping committees triage obviously good/low-quality papers and allocate human review resources more effectively. Therefore, we propose

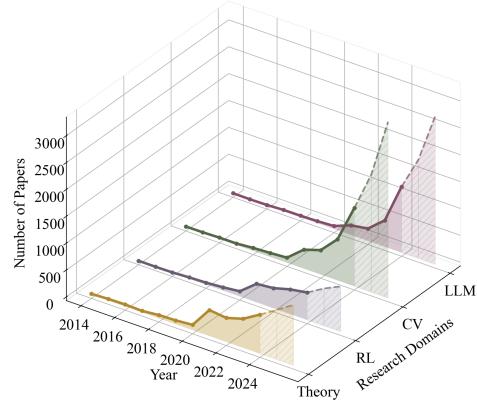


Figure 1: Number of papers accepted by NeurIPS from 2015 to 2024 across four major research domains, with the dashed line indicating the predicted trend.

¹Our data sources include official conference announcements and the Paper Copilot platform (<https://papercopilot.com/>).

054 OpenReviewer, a LLM-based model that predicts the acceptance of papers submitted to AI con-
 055 ferences.

056 OpenReviewer is developed using conference submissions and corresponding acceptance infor-
 057 mation collected from the OpenReview platform². In particular, our dataset consists of submission
 058 records from the International Conference on Learning Representations (ICLR), chosen for its
 059 broad coverage of AI topics and the openness of its submission and decision records. The training
 060 dataset includes three components of papers: (1) *textual content*, consisting primarily of anonymized
 061 manuscript text; (2) *visual information*, such as system figures and charts; and (3) interpretable, man-
 062 ually engineered *statistical features*.

063 We adopt prompt-based fine-tuning (Shi & Lipani, 2023) to help LLMs understand the given task,
 064 combined with a decoupled label loss (Tam et al., 2021) to encourage the use of vocabulary tokens
 065 (e.g. Yes, No) as labels during training. We explore three approaches for this task: text-only large
 066 language models, vision-language models, and white-box statistical classifiers. Among text-only
 067 models, continued pretraining (CPT) on unlabeled corpora prior to fine-tuning yields the best result,
 068 achieving **78.5%** accuracy on a label-balanced dataset (50% random baseline). For VLMs mod-
 069 els, unsurprisingly, incorporating image inputs consistently outperforms text-only inputs. We also
 070 provide qualitative analyses highlighting cases where images help and where they mislead. In addi-
 071 tion, we conduct a white-box analysis of statistical features by extracting 29 heuristic quantitative
 072 features across eight categories. Using only these features, a Random Forest classifier (Breiman,
 073 2001) attains a surprisingly strong 74.2% accuracy, surpassing VLMs. Finally, a model confidence-
 074 stratified analysis for OpenReviewer shows that within the top 10% confidence slice, covering
 075 up to 53.06% of predictions, LLMs achieve 93.09% precision on the Accept class, with a compa-
 076 rable trend observed for the Reject class. This enables reliable triage of clear accepts and rejects
 077 while routing uncertain cases for human review. Overall, these findings indicate that AI can support
 078 peer review by reducing the workload on straightforward submissions, while human experts remain
 079 essential for more nuanced judgments.

081 2 RELATED WORK

082 **Peer Review Analysis.** The peer review process, particularly in rapidly evolving fields like AI, is
 083 facing a sustainability crisis with reviewer overload and declining quality (Chen et al., 2025; Kim
 084 et al., 2025). While LLMs have been explored to automate or assist reviewing, their readiness lacks
 085 validation. Large-scale experiments show LLMs can distinguish paper quality but exhibit significant
 086 biases (Pataranutaporn et al., 2025), with researchers warning against premature deployment due to
 087 risks in factual accuracy and logical reasoning (Ye et al., 2024). New evaluation methods identify
 088 “blind spots” in LLM reviews, revealing that they often miss crucial methodological flaws such as
 089 experimental design issues, statistical significance problems, and logical inconsistencies in argu-
 090 mentation (Shin et al., 2025). Improvement efforts include structured argumentative review frame-
 091 works (Sukpanichnant et al., 2024) and graph reasoning systems over reviewer-author debates (Tae-
 092 choyotin & Acuna, 2025). Additionally, AI-assisted reviews create an “AI review lottery,” inflating
 093 scores and masking weaknesses (Latona et al., 2024). These challenges prompt calls for systemic
 094 reform, including transparent processes and reviewer rewards (Yang, 2025; Ye et al., 2024), dedi-
 095 cated critique tracks (Schaeffer et al., 2025), and lessons from platforms like OpenReview (Wang
 096 et al., 2023).

097 **Paper Quality Modeling.** Recent advancements in LLMs have spurred significant research into
 098 computationally modeling the quality of scholarly papers in the form of evaluation, revision, and
 099 generation. Research focuses on automated assessment using domain-aware retrieval and latent
 100 reasoning (Zheng et al., 2025), verifiable claim extraction (Song et al., 2024), and retraction pre-
 101 diction for scientific integrity (Yang & Jia, 2025). Beyond evaluation, quality models support pa-
 102 per improvement through human-AI collaborative revision frameworks (Fragiadakis et al., 2024;
 103 Dong et al., 2022) and fully automated generation systems like ARISE, which uses explicit quality
 104 rubrics (Schneider, 2025).

105
 106
 107 ²<https://openreview.net/>

108 **LLM-based Document Classification.** LLMs shift document classification from traditional fine-
 109 tuning to prompt-based, few-shot learning. This involves reformulating classification tasks as cloze
 110 questions, enabling strong performance with minimal labeled data (Schick & Schütze, 2021). Re-
 111 cent studies further demonstrate that continued pretraining can significantly enhance prompt-tuning
 112 effectiveness, making it an even more powerful learning approach (Chen et al., 2022). Despite these
 113 advances, LLM-based classification faces several challenges. Raw LLM outputs often suffer from
 114 miscalibration issues, necessitating the development of context-aware calibration techniques (Zhao
 115 et al., 2021). Additionally, the direct application of LLMs as zero-shot or few-shot classifiers shows
 116 promise but remains task-dependent, requiring careful model selection for specialized domains such
 117 as classifying scientific revision intents (Ruan et al., 2024). To address these limitations, researchers
 118 have developed hybrid and advanced approaches. Hybrid models like DeepCCP successfully inte-
 119 grate semantic understanding with citation network structure to achieve more accurate classifica-
 120 tion (Zhao & Feng, 2022). Furthermore, advanced approaches explore classification through gen-
 121 eration tasks, including benchmarking LLMs on writing paper sections (Garg et al., 2025) and de-
 122 veloping multi-agent frameworks for paper reproduction (Miao et al., 2025). These developments
 123 highlight the evolution towards deeper, context-aware reasoning.

124 3 OPENREVIEWER FOR PREDICTING ACCEPTANCE

125 We formulate paper acceptance prediction as a binary classification problem. State-of-the-art LLMs
 126 and VLMs are inherently generative, making them not directly applicable to traditional classification
 127 tasks. To use the capabilities of these powerful pre-trained generative models without training a
 128 new classification head from scratch³, we adopt a prompt-based fine-tuning strategy Ruan et al.
 129 (2024); Schick & Schütze (2021); Shi & Lipani (2023). Specifically, we design an instructive prompt
 130 template \mathcal{T} that presents the paper’s features within a natural-language query and guides the model
 131 to generate a decision token corresponding to one of the two target classes: *accept* or *reject*. The
 132 template example is given in App. D.

133 3.1 CONTINUAL PRE-TRAINING

134 Continual pre-training (CPT) extends the training of large generative models on additional unlabeled
 135 corpora to improve their adaptability to new domains and evolving data distributions (Gururangan
 136 et al., 2020; Chen et al., 2023). It is widely adopted in industry-scale generative systems, where
 137 models are periodically updated with fresh data to sustain relevance and maintain competitive per-
 138 formance (Gururangan et al., 2020; Chen et al., 2023; Ke et al., 2023; Elhady et al., 2025). The
 139 training objective typically follows next-token prediction, formalized as

$$140 \mathcal{L}_{\text{CPT}} = - \sum_{t=1}^T \log P_{\theta}(x_t \mid x_{<t}), \quad (1)$$

141 which maximizes the likelihood of generating each token x_t given its preceding context $x_{<t}$ and
 142 model parameters θ . In this paper, we also explore continual pre-training to adapt general-purpose
 143 base models to the academic peer-review scenario before fine-tuning on the classification task. We
 144 present the effectiveness of CPT in Section 4.3, with further training details provided in the App. E.
 145 Unless otherwise specified, CPT is used as the default post-training strategy for our textual models
 146 before fine-tuning.

147 3.2 INPUT SETTINGS

148 Given a paper input instance x and prompt template $\mathcal{T}(x)$, the model defines a conditional proba-
 149 bility over the label verbalizer (Tam et al., 2021). We consider two input configurations for $\mathcal{T}(x)$:
 150 *text-only* and *text-image multimodal*. Text-only inputs are anonymized main-body texts from the
 151 paper manuscripts. The multimodal setting extends the text-only configuration by additionally in-
 152 corporating visual features extracted from figures in the paper. Details of the PDF preprocessing and
 153 figure extraction procedure are provided in App. C. Formally,

$$154 \mathcal{T}(x) = \phi(x^{(\text{text})} \oplus x^{(\text{figure})}) \quad (2)$$

155 ³Our initial experiments with training a classification head on top of a pre-trained LLMs resulted in lower
 156 accuracy and slower convergence compared to prompt-based generation.

162 where ϕ is modality-specific encoding determined by the multimodal model, and $x^{(\text{figure})}$ is an
 163 optional input. $\mathcal{T}(x)$ packs all modalities into a single token sequence consumable by the model.
 164

165 We then append a designated decision slot and generate only at this position, defining $\mathcal{T}^{\text{dec}} =$
 166 $\mathcal{T}(x) \oplus [\text{label_mask}]$. *Verbalizer* \mathcal{V} maps each candidate label token v to a class; this allows many-
 167 to-one mappings (e.g., $\{\text{yes}, \text{accept}\} = 1$; $\{\text{reject}, \text{no}\} = 0$).

168 3.3 MODEL TRAINING OBJECTIVE

170 Given an input \mathcal{T}^{dec} and its corresponding ground-truth label y^* , we apply supervision *only* at the
 171 decision position, masking all other positions. Following ADAPET (Tam et al., 2021), we define the
 172 Vocabulary Decoupled Label Loss (VDLL). Let $z_\theta(t \mid \mathcal{T}^{\text{dec}})$ denote candidate labels logits at the
 173 decision slot t , we then define the (3) *restricted softmax* and (4) training objective as:

$$174 \quad \tilde{p}_\theta(t \mid \mathcal{T}^{\text{dec}}) = \frac{\exp(z_\theta(t \mid \mathcal{T}^{\text{dec}}))}{\sum_{a \in \mathcal{V}} \exp(z_\theta(a \mid \mathcal{T}^{\text{dec}}))} \quad (3)$$

$$177 \quad \mathcal{L}_{\text{VDLL}}(\theta) = -\log \sum_{t \in \mathcal{V}_{y^*}} \tilde{p}_\theta(t \mid \mathcal{T}^{\text{dec}}), \quad (4)$$

180 3.4 INFERENCE MECHANISM

182 At inference time, we determine the predicted class by comparing the *logit-based* scores of all
 183 verbalizer candidates at the decision slot. Let $z_\theta(t \mid \mathcal{T}^{\text{dec}})$ denote the pre-softmax logit assigned
 184 by the model to token t at the decision position. We first obtain the token IDs of all verbalizer
 185 candidates \mathcal{V} . For each class y , the score is defined as the maximum logit among its associated
 186 verbalizer tokens. The final prediction \hat{y} is then obtained by selecting the class with a higher score,
 187 for example predicting *Accept* if $\text{score}(\text{yes}) > \text{score}(\text{no})$ and vice versa:

$$188 \quad \hat{y} = \arg \max_{y \in \mathcal{Y}} \text{score}_\theta(y \mid \mathcal{T}^{\text{dec}}) \quad (5)$$

189 We report a binary decision $b(\hat{y}) \in \{0, 1\}$.
 190

191 4 EXPERIMENTS

193 4.1 DATA COLLECTION AND PRE-PROCESSING

195 We collect all ICLR 2025 and 2024 submissions and their corresponding final decisions (*accepted*
 196 or *rejected*) via the OpenReview API-V2. The papers were further partitioned into four main
 197 subfields based on title keywords: Large Language Models (LLM), Computer Vision (CV), Rein-
 198 forcement Learning (RL), and Theoretical (Theory). Papers that do not fall into these categories are
 199 left for future discussion. We build two datasets: the ICLR 2025 dataset, which is naturally imbal-
 200 anced with a 34/66 accepted-to-rejected split and balanced domain-specific sets from ICLR 2024
 201 and 2025 with a 50/50 split. Table 6 summarizes the differences. More implementation details are
 202 explained in App. C.

204 4.2 MODELS AND INPUTS

206 We include two categories of models: **text-only** LLMs and **vision-language** models. For the
 207 text-only LLMs, we select the Qwen-3 family at Qwen3-4B and Qwen3-8B parameter scales
 208 (Yang et al., 2025). For VLMS, we include Qwen2.5-VL-3B-Instruct (Bai et al., 2025) and
 209 Gemma-3-4b-bit (Team et al., 2025). Both of these multimodal models are instruction-tuned
 210 variants. We take the vanilla non-fine-tuned version of each model in a zero-shot setting as the baseline.
 211 After collecting and preprocessing the papers along with their acceptance outcomes, we fine-tune
 212 and evaluate the two categories of selected models using the following inputs.

213 **Text-only LLMs:** We first anonymize each paper by removing all information that could reveal
 214 author identity or acceptance status, including author names, affiliations, email addresses, URLs,
 215 and header or footer text. Beyond these removals, the input consists of the full manuscript body text
 and mathematical formulas, but excludes tables and figure captions.

216 Table 1: Performance (%) of LLMs across four domains and the overall aggregation (ALL) on the
 217 balanced dataset. All models use Qwen3 as the backbone. We compare fine-tuning with CPT against
 218 the original checkpoints (Orig) at the 4B and 8B parameter scales.

220	SUB- 221 DOMAIN	ALL				LLM				CV				RL				THEORY				
		ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	
222	CPT	4B*	48.7	23.8	51.0	34.7	54.2	26.9	52.4	36.5	51.0	26.6	49.5	33.7	50.6	22.2	47.4	32.6	46.1	24.3	48.6	30.2
		4B	76.4	76.3	76.4	76.4	70.2	70.1	70.2	70.1	70.2	75.3	70.4	68.7	57.4	62.5	57.3	52.4	55.9	61.5	55.5	49.1
		8B	78.5	78.5	78.3	78.5	70.0	70.1	70.0	70.1	73.9	74.1	74.0	73.9	67.5	68.0	67.6	67.3	53.4	53.6	53.2	51.0
224	Orig	4B*	51.9	24.5	52.1	33.5	54.4	28.1	51.6	38.0	51.1	27.2	49.6	37.5	51.5	21.6	49.6	31.7	47.4	22.3	47.6	31.5
		4B	67.3	71.4	68.2	66.3	68.8	69.1	68.8	68.6	71.0	71.0	71.1	71.0	59.3	59.7	59.3	58.9	57.2	59.5	56.9	53.9
		8B	69.0	69.0	69.0	69.0	69.7	69.9	69.8	69.7	72.5	73.2	72.6	72.4	62.6	64.3	62.6	61.5	55.4	55.9	55.2	54.0

226 * Baseline models. Random guess baseline accuracy is 50%.

228 Table 2: Performance (%) of VLMs across four domains on the balanced dataset. Mac-P and Mac-R
 229 denote Macro Precision and Macro Recall, respectively.

231	SUB- 232 DOMAIN	ALL				LLM				CV				RL				THEORY				
		ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	
233	Qwen-VL	txt&img	46.0	23.0	50.0	31.5	54.6	27.1	50.0	35.3	51.6	25.8	50.0	34.0	50.2	25.1	50.0	33.4	47.6	23.8	50.0	32.3
		txt	48.0	24.0	50.0	32.4	54.6	27.3	50.0	35.3	51.6	25.8	50.0	34.0	50.2	25.1	50.0	33.4	47.6	23.8	50.0	32.3
		txt&img	68.2	68.6	67.8	67.7	74.2	75.5	74.5	74.1	70.0	70.1	69.8	69.8	65.7	66.2	65.8	65.5	61.5	62.6	60.5	59.3
235	Qwen-3	txt	64.4	69.2	65.3	62.7	69.9	70.2	70.3	69.9	69.1	68.8	68.8	60.6	62.5	60.5	58.8	61.5	61.4	61.1	61.1	
		txt&img	34.4	17.2	50.0	25.6	50.6	53.1	50.0	33.9	50.4	58.5	50.0	33.6	50.0	25.0	50.0	33.3	49.6	41.5	49.9	33.3
		txt	34.4	17.2	50.0	25.6	50.0	35.0	50.0	33.4	50.0	50.0	50.0	33.5	50.0	25.0	49.9	33.3	50.0	41.7	50.0	33.5
236	Gemma-3	txt&img	61.9	58.0	53.2	44.3	61.9	60.5	60.3	60.3	56.5	56.4	56.3	56.2	55.7	57.5	55.6	52.7	55.9	55.9	55.9	55.8
		txt	71.2	67.7	66.0	66.5	57.5	59.3	57.3	54.8	58.4	59.0	58.7	58.2	58.4	61.2	58.5	55.8	59.0	58.5	57.3	56.6

238 * Baseline models. Random guess baseline accuracy is 50%.

241 **Multimodal Models:** For VLMs, the input consists of only only the *Abstract* and *Introduction*
 242 text, together with the first two figures from each paper. To disentangle the contributions of textual
 243 and visual information in VLMs, we consider two input configurations: **text+image** and **text-only**.

245 4.3 RESULTS

248 We evaluate prediction performance using Accuracy, Macro-Precision (Mac-P), Macro-Recall
 249 (Mac-R), and F1. Mac-P and Mac-R average class-wise precision and recall, while F1 is the
 250 harmonic mean of precision and recall. As shown in Table 1 and 2, text-only unimodal models generally
 251 outperform multimodal text-image models of comparable size. For example, within the Qwen
 252 family, Qwen3-4B achieves 76.4% accuracy, surpassing multimodal Qwen2.5-VL-3B-Instruct
 253 at 68.2% and also shows consistently higher Mac-R, Mac-P, and F1.

255 **Text-only models** We evaluate two training strategies: (i) prompt-based fine-tuning on the original
 256 models, and (ii) CPT followed by prompt-based fine-tuning. As shown in Table 1, CPT yields
 257 clear improvements for downstream classification. On the aggregated ALL domain, CPT consistently
 258 outperforms fine-tuning from the original checkpoints (Orig) at the same parameter scale, **improving
 259 accuracy from 67.3% to 76.4% at 4B and from 69.0% to 78.5% at 8B**. Moreover, CPT is
 260 more effective at larger scales. For instance, CPT yields a 9.1% improvement at 4B while a 9.5%
 261 improvement at 8B on the all domain, with consistent increases in LLM, CV, and RL at the 8B scale.

263 **Vision-Language models** We evaluate various VL models, i.e., Qwen2.5-VL-3B-Instruct
 264 and Gemma-3-4B-it. As shown in Table 2, **Qwen2.5-VL outperforms Gemma-3**, achieving
 265 68.2% versus 61.9% with text-image input, and consistently higher accuracy across all four sub-
 266 domains. Second, for Qwen2.5-VL, incorporating text-image input consistently improves perfor-
 267 mance over text-only input. For example, in the LLM domain it achieves 74.2% compared to 69.9%
 268 with text-only, and this trend holds across the other three subdomains as well as the aggregated all
 269 domain. More results on the imbalanced dataset in-domain result in-domain result are provided in
 App. F.1

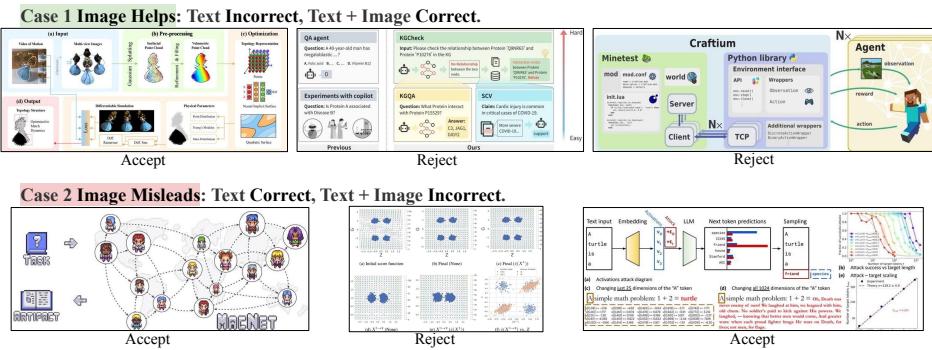
270
271
272
273
274
275

Figure 2: Examples of vision–language model predictions on previous submission. Case Group 1: text alone leads to incorrect predictions, while the image provides complementary cues that correct the outcome. Case Group 2: text alone yields the correct answer, but adding the image introduces misleading signals and causes errors.

286

White Box Features							
Structure	Visual Content	Citation Engagement	Methodological Rigor	Writing Quality	Novelty & Contribution	Appendix Material	
total words*	avg caption length	citations in text*	dataset mentions	abstract	novel method claims	word count	
total pages*	image density	citation density	metrics mentions	word count	comparison studies	header count	
header count*	table density	baseline mentions	baseline mentions	avg sentence length	contribution statements	images count	
section balance	image count	statistical tests	statistical tests	experiment count		table count	
variance*	equation density					equation count	
words/page	table count						
	equation count						

Figure 3: White box features organized by category and ranked by importance within each group. Features marked with asterisks (*) represent the top 5 most important features from the Random Forest model

4.4 QUALITATIVE ANALYSIS FOR VL-MODELS

To better understand the role of visual inputs, we qualitatively analyze two outcomes: *Image Helps*, where the model fails with text but succeeds with text–image inputs, and *Image Misleads*, where the addition of images reduces accuracy. Figure 2 illustrates these patterns on prior submissions (Xiong et al., 2025; Lin et al., 2024; Malagón et al.; Qian et al.; Wang et al., 2025; Fort). *Image Helps* (first row) show that schematic figures conveying high-level methodology or motivation, such as pipelines or dataset overviews, help predict the acceptance. In contrast, *Image Misleads* cases often involve detailed result visualizations that are difficult to interpret from figures alone. Additional examples are in App. F.2. We further evaluate models using images as the sole input modality with detail provided in App. F.3.

4.5 STATISTICAL FEATURE ANALYSIS

We train white-box statistical models on manually engineered features to provide an alternative performance baseline and interpretable insights into the structural characteristics that distinguish accepted papers from rejected (Wang et al., 2023).

Models and Features We extract 29 quantitative features from each submission PDF across seven categories, as illustrated in Figure 3. A comprehensive list of all features can be found in App. H. These features are then used to train four supervised classifiers, namely Random Forest (Breiman, 2001), Support Vector Machine (Schölkopf et al., 1999), Logistic Regression (Hosmer Jr et al., 2013), and Gradient Boosting (Friedman, 2002).

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Domain	Imbalanced Dataset					Balanced Dataset					Out-of-Distribution Test				
	Size	Model	Acc	F1	AUC	Size	Model	Acc	F1	AUC	Size	Model	Acc	F1	AUC
LLM	3,716	SVM	70.6	34.3	72.2	3,238	RF	66.3	67.8	71.5	2,121	GB	49.5	4.6	57.4
CV	2,776	RF	71.5	49.0	72.2	3,520	GB	68.3	69.6	73.3	2,230	LR	51.4	2.8	55.8
RL	1,251	LR	70.1	44.4	72.1	1,526	GB	65.7	67.7	70.5	1,008	GB	51.5	1.1	58.3
Theory	1,735	SVM	68.5	36.9	70.2	1,974	SVM	63.0	64.7	71.2	1,228	GB	49.8	2.9	50.8
Combined	9,478	RF	77.3	60.9	83.0	10,258	RF	74.2	74.9	83.1	6,587	GB	53.1	2.2	61.8

GB = Gradient Boosting, RF = Random Forest, LR = Logistic Regression, SVM = Support Vector Machine

Table 3: Performance of statistical models on (i) the imbalanced ICLR 2025 dataset, (ii) balanced domain-specific datasets, and (iii) the Out-of-Distribution Test: models trained on the imbalanced ICLR 2025 data and evaluated on the balanced 50/50 test set.

Classification Performance Table 3 reveals distinct performance patterns across all dataset configurations. Random Forest emerges as the best-performing white-box model across both imbalanced and balanced datasets, achieving 77.3% accuracy with an F1-score of 60.9 on imbalanced data, and 74.2% accuracy with a substantially improved F1-score of 74.9 on balanced data. The out-of-domain study demonstrates that *models trained on imbalanced data but evaluated on balanced datasets suffer significant performance degradation*, with Random Forest achieving only 53.1% accuracy and immensely low F1-scores across all models, as the models classified nearly all papers as rejected due to their bias toward the majority class learned from the rejection-heavy imbalanced training data.

The balanced dataset yields on average slightly lower accuracy but significantly higher F1-scores compared to imbalanced, despite having less training data, indicating that *class balance is more critical than dataset size for effective predicting minority research domain*. Across both balanced and imbalanced configurations, combined domain models consistently achieve the best performance compared to individual domains, demonstrating that *cross-domain feature interactions enhance predictive capability*. However, all white-box model results remain significantly below those achieved by fine-tuned LLMs and VLMs, showing the limitations of traditional machine learning approaches in capturing the semantic complexity inherent in peer review decisions.

Feature Importance Analysis Random Forest feature importance analysis reveals that structural characteristics dominate acceptance prediction across both dataset configurations, as measured by Gini impurity-based importance scores (Nembrini et al., 2018). As shown in Table 4, the same core structural features consistently appear in the top five most discriminative features across both imbalanced and balanced datasets, suggesting that **paper acceptance favors structure quality rather than domain-specific content**.

Examining the feature rankings reveals several patterns. Content length indicators (*total words*, *total pages*) consistently dominate both configurations, with *total words* ranking first in both cases but showing increased importance (0.079 vs 0.073) in the balanced dataset. Organizational structure features (*header count*, *section balance variance*) maintain high importance across configurations. Most notably, *citations in text* replaces *avg caption length* in the balanced dataset’s top five, suggesting that scholarly engagement becomes more discriminative when class imbalance is addressed.

These patterns indicate that accepted papers consistently tend to be more comprehensive (evidenced by length-based features), better organized (reflected in structural balance metrics), and demonstrate

(a) Imbalanced Dataset		
Rank	Feature	Imp. Cat.
1	total words	0.0739 Struct.
2	header count	0.0587 Struct.
3	total pages	0.0575 Struct.
4	section balance variance	0.0492 Struct.
5	avg caption length	0.0465 Visual

(b) Balanced Dataset		
Rank	Feature	Imp. Cat.
1	total words	0.0792 Struct.
2	total pages	0.0658 Struct.
3	header count	0.0569 Struct.
4	section balance variance	0.0474 Struct.
5	citations in text	0.0448 Citation

Table 4: Top five most discriminative features for paper acceptance prediction from Random Forest analysis across both dataset configurations.

378 stronger scholarly engagement (particularly evident in balanced datasets where citation patterns
 379 emerge as discriminative). However, the modest importance scores (all < 0.08) across both config-
 380 urations indicate that **no single structural characteristic serves as a strong predictor**, explaining
 381 why semantic understanding via LLMs significantly outperforms purely structural approaches.
 382

383 5 UTILITY ANALYSIS FOR RECOGNIZING “OBVIOUS” PAPERS

385 In Section 4, we set a default acceptance threshold using $\text{score}(\text{yes}) > \text{score}(\text{no})$, though this
 386 can be adjusted in practical peer-review workflows. In practice, if the model can confidently triage
 387 “clearly good” and “clearly bad” submissions with minimal errors, it can both reduce reviewer work-
 388 load and discourage authors from making redundant submission attempts. This section provides a
 389 *confidence-based utility analysis* to accommodate this need.
 390

391 5.1 CONFIDENCE-BASED STRATIFICATION

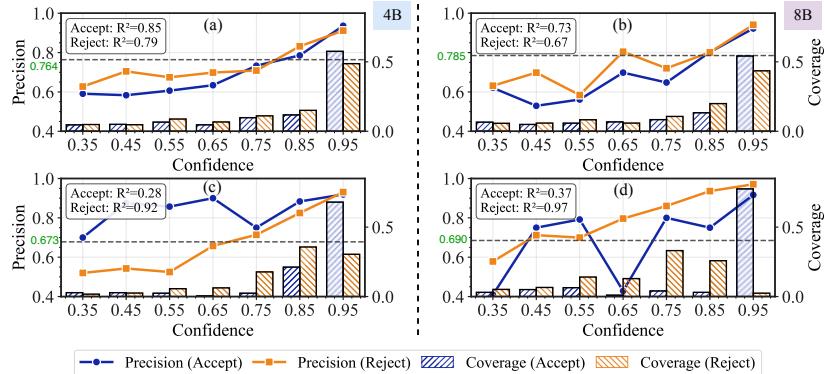
393 **Decision confidence.** At the designated decision slot (cf. §3), let l_{yes} and l_{no} be the pre-softmax
 394 logits for the tokens associated with the labels ACCEPT and REJECT, respectively. We define p as the
 395 softmax-normalized probability assigned to a class, accept or reject, when considering only these
 396 two logits. Then we define a scalar *confidence* c with $c \approx 0$ indicates indecision ($\approx 0.5/0.5$) and
 397 $c \approx 1$ indicates near-certainty. Formally,

$$398 c = |p_{\text{yes}} - p_{\text{no}}| = |2p_{\text{yes}} - 1| \in [0, 1] \quad (6)$$

400 **The coverage metric.** Next, we define *coverage* as the fraction of a class’s falling within a given
 401 confidence bin. Predictions are partitioned into disjoint bins B_k (e.g., $[0.0, 0.1), \dots, [0.9, 1.0]$). For
 402 a set \mathcal{S} of examples (restricted to a predicted class), the *coverage* of bin B_k is:

$$403 \text{Cov}(B_k; \mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \mathbb{1}\{c_i \in B_k\} = \frac{|\{i \in \mathcal{S} : c_i \in B_k\}|}{|\mathcal{S}|}. \quad (7)$$

405 $c_i \in [0, 1]$ is confidence value of i . Using these definition together with precision per class, we then
 406 examine how reliability scales with the model’s self-reported certainty.
 407



421 Figure 4: Coverage and precision across confidence bins for ACCEPT and REJECT predictions, shown
 422 for 4B and 8B CPT models. Each panel reports the linear coefficient R^2 of a least-squares fit of
 423 precision vs. confidence. Panels (a) and (b) correspond to models trained on the balanced dataset,
 424 while panels (c) and (d) correspond to models trained on the imbalanced.

426 5.2 STRATIFIED RESULTS AND OBSERVATIONS

428 We analyze four CPT models: *Qwen3-4B* and *Qwen3-8B* with each trained on the balanced and
 429 imbalanced datasets, and summarize their behavior in Fig. 4, which plots coverage and precision for
 430 both predicted classes across confidence bins. Overall, we observe that high-confidence regions ($c \geq$
 431 0.9) achieve high precision with substantial coverage, while class imbalance reduces the coverage
 of confident rejects.

432 **Confidence Concentration and Coverage–Confidence Patterns** Across all models, an average
 433 of 81.3% of predictions fall within the high-confidence range $c \in [0.8, 1.0]$. In the most confident
 434 interval $c \in [0.9, 1.0]$ ($c = 0.95$ in the table), both ACCEPT and REJECT achieve precision above
 435 91%. This indicates the presence of substantial “obvious tails” that can be triaged with minimal error:
 436 **when models are highly confident, they are usually correct.** For ACCEPT, coverage increases
 437 *monotonically* with confidence: it always exceeds 50% and reaches 75.2% for the Qwen3–8B model
 438 on the imbalanced dataset (Figure 4d), suggesting that most acceptance predictions are made with
 439 high certainty. In contrast, although REJECT precision improves as c increases, its coverage is not
 440 consistently monotonic under imbalanced training, reflecting the relative scarcity of confidently
 441 identified rejections.

442 We further assess how precision scales with confidence by fitting a least-squares regression sepa-
 443 rately for ACCEPT and REJECT. The coefficient of determination (R^2) (Piepho, 2019), reported in
 444 the figures, characterizes the degree of linearity in this relationship. The results of R^2 indicate that
 445 for the minority class, models trained on imbalanced data exhibit markedly poorer certainty than
 446 their counterparts trained on balanced data. More details are provided in App. I and J.

447 5.3 OPENREVIEWER HELPS IDENTIFY “OBVIOUS” GOOD/BAD PAPERS

449 In this section, we examine whether
 450 OpenReviewer can reliably identify pa-
 451 pers that are clear accepts or clear rejects. To
 452 this end, we focus on predictions where the
 453 model is extremely confident ($c \in [0.9, 1.0]$)
 454 and analyze the corresponding error rates using
 455 the case of Qwen3–4B model trained on the
 456 balanced dataset. First, we rank them by their
 457 confidence scores c and take the top- $K\%$ mass
 458 within this band with $K \in \{1, 3, 5, 7, 9\}$, i.e.,
 459 2% step increases. For each slice we report
 460 per-class *error* ($= 1 - \text{precision}$) and *coverage*.

461 Table 5 reveals encouraging results for work-
 462 load reduction. When we consider only the top
 463 1% most-confident predictions, the model cov-
 464 ers 12.74% of all accept decisions with just
 465 2.18% error, and 11.36% of all reject decisions
 466 with 3.07% error. *In practical terms, if the model makes 500 accept predictions, the 64 most-*
 467 *confident ones would contain fewer than two mistakes.*

468 As we expand to include more confident predictions, we naturally trade some accuracy for greater
 469 coverage. The top 9% slice covers nearly half of all decisions, 45.02% of accepts and 41.12% of
 470 rejects, while maintaining reasonably low error rates of 6.03% and 6.06% respectively, illustrating
 471 the expected precision-coverage trade-off.

472 These results suggest that a confidence-based triage system could substantially reduce reviewer
 473 workload. By automatically handling the most obvious cases where the model is highly confident,
 474 conferences could focus human reviewer effort on the more nuanced submissions where expert judg-
 475 ment is most valuable.

477 6 CHALLENGES AND FUTURE WORK

479 This paper presents the first work using LLM to predict AI paper acceptance. Our work opens sev-
 480 eral promising directions for AI-assisted reviewing, including (i) assessing fairness across subfields,
 481 (ii) monitoring evolving conference standards, (iii) effectively integrating human-in-the-loop review
 482 pipelines, and (iv) exploring bias detection to ensure equitable outcomes.

Top-mass slice	ACCEPT		REJECT	
	Error ↓	Coverage ↑	Error ↓	Coverage ↑
Top 1.0%	2.18	12.74	3.07	11.36
Top 3.0%	3.21	28.91	3.94	26.58
Top 5.0%	4.12	36.84	4.83	33.71
Top 7.0%	4.89	40.41	5.51	39.18
Top 9.0%	6.03	45.02	6.06	41.12
All (10%)	6.91	53.06	7.24	47.34

Table 5: Performance of high-confidence predictions ($c \in [0.9, 1.0]$): error rates and coverage for progressively larger confidence slices. Error rate (%) lower is better ↓; coverage (%) shows the fraction of each class captured in the slice (higher is better ↑).

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Alina Beygelzimer, Yann N Dauphin, Percy Liang, and Jennifer Wortman Vaughan. Has the ma-
492 chine learning review process become more arbitrary as the field has grown? the neurips 2021
493 consistency experiment. *arXiv preprint arXiv:2306.03262*, 2023.

494 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.
495

496 Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang. Revisiting parameter-efficient
497 tuning: Are we really there yet? *arXiv preprint arXiv:2202.07962*, 2022.

498 Nuo Chen, Moming Duan, Andre Huikai Lin, Qian Wang, Jiaying Wu, and Bingsheng He. Po-
499 sition: The current ai conference model is unsustainable! diagnosing the crisis of centralized ai
500 conference. *arXiv preprint arXiv:2508.04586*, 2025.

501 Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and Claire Cui.
502 Lifelong language pretraining with distribution-specialized experts. In *International Conference
503 on Machine Learning*, pp. 5383–5395. PMLR, 2023.

504 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
505 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,
506 2022.

507 Ahmed Elhady, Eneko Agirre, and Mikel Artetxe. Emergent abilities of large language models under
508 continued pre-training for language adaptation. In Wanxiang Che, Joyce Nabende, Ekaterina
509 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the
510 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 32174–32186, Vienna,
511 Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
512 10.18653/v1/2025.acl-long.1547. URL <https://aclanthology.org/2025.acl-long.1547/>.

513 Yifan Feng, Chengwu Yang, Xingliang Hou, Shaoyi Du, Shihui Ying, Zongze Wu, and Yue
514 Gao. Beyond graphs: Can large language models comprehend hypergraphs? *arXiv preprint
515 arXiv:2410.10083*, 2024.

516 Stanislav Fort. Scaling laws for adversarial attacks on language model activations and tokens. In
517 *The Thirteenth International Conference on Learning Representations*.

518 George Fragiadakis, Christos Diou, George Kousiouris, and Mara Nikolaidou. Evaluating human-
519 ai collaboration: A review and methodological framework. *CoRR*, abs/2407.19098, 2024. URL
520 <https://doi.org/10.48550/arXiv.2407.19098>.

521 Jerome H Friedman. Stochastic gradient boosting. *Computational statistics & data analysis*, 38(4):
522 367–378, 2002.

523 Krishna Garg, Firoz Shaik, Sambaran Bandyopadhyay, and Cornelia Caragea. Let’s use chatgpt to
524 write our paper! benchmarking llms to write the introduction of a research paper, 2025. URL
525 <https://arxiv.org/abs/2508.14273>.

526 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
527 and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
528 Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th
529 Annual Meeting of the Association for Computational Linguistics*, pp. 8342–8360, Online, July
530 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
531 <https://aclanthology.org/2020.acl-main.740/>.

532 David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. *Applied logistic regression*. John
533 Wiley & Sons, 2013.

534 Loi Duc Huynh, Tianshi Che, Zijie Zhang, Yang Zhou, Ruoming Jin, and Dejing Dou. k-odd one
535 clear (k-ooc), a novel gpu kernel that improves quantization accuracy and speed of gptq algorithm.
536 2025.

540 Hyungkyu Kang and Min-hwan Oh. Adversarial policy optimization for offline preference-based
 541 reinforcement learning. *arXiv preprint arXiv:2503.05306*, 2025.

542

543 Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
 544 training of language models. In *The Eleventh International Conference on Learning Representa-
 545 tions*, 2023. URL https://openreview.net/forum?id=m_GDIItaI3o.

546 Jaeho Kim, Yunseok Lee, and Seulki Lee. Position: The AI conference peer review crisis demands
 547 author feedback and reviewer rewards. In *Forty-second International Conference on Machine
 548 Learning Position Paper Track*, 2025. URL <https://openreview.net/forum?id=l8QemUZaIA>.

549

550 Kayvan Kousha and Mike Thelwall. Artificial intelligence to support publishing and peer review: A
 551 summary and review. *Learned Publishing*, 37(1):4–12, 2024.

552

553 Giuseppe Russo Latona, Manoel Horta Ribeiro, Tim R. Davidson, Veniamin Veselovsky, and Robert
 554 West. The ai review lottery: Widespread ai-assisted peer reviews boost paper scores and accep-
 555 tance rates, 2024. URL <https://arxiv.org/abs/2405.02150>.

556

557 Neil D. Lawrence. The neurips experiment. [https://inverseprobability.com/talks/notes/
 the-neurips-experiment-snsf.html](https://inverseprobability.com/talks/notes/the-neurips-experiment-snsf.html), 2022. Blog post.

558

559 Xinna Lin, Siqi Ma, Junjie Shan, Xiaojing Zhang, Shell Xu Hu, Tiannan Guo, Stan Z Li, and
 560 Kaicheng Yu. Biokgbench: A knowledge graph checking benchmark of ai agent for biomed-
 561 ical science. *arXiv preprint arXiv:2407.00466*, 2024.

562

563 Mikel Malagón, Josu Ceberio, and Jose A Lozano. Craftium: Bridging flexibility and efficiency
 564 for rich 3d single-and multi-agent environments. In *Forty-second International Conference on
 Machine Learning*.

565

566 Jiacheng Miao, Joe R. Davis, Jonathan K. Pritchard, and James Zou. Paper2agent: Reimagining
 567 research papers as interactive and reliable ai agents, 2025. URL <https://arxiv.org/abs/2509.06917>.

568

569 Stefano Nembrini, Inke R König, and Marvin N Wright. The revival of the gini importance? *Bioin-
 formatics*, 34(21):3711–3718, 2018.

570

571 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 572 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 573 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

574

575 Pat Pataranutaporn, Nattavudh Powdthavee, Chayapatr Achiwaranguprok, and Pattie Maes. Can ai
 576 solve the peer review crisis? a large scale cross model experiment of llms' performance and biases
 577 in evaluating over 1000 economics papers. *arXiv preprint arXiv:2502.00070*, 2025.

578

579 Hans-Peter Piepho. A coefficient of determination (r2) for generalized linear mixed models. *Bio-
 metrical journal*, 61(4):860–872, 2019.

580

581 Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
 582 Weize Chen, Cheng Yang, et al. Scaling large language model-based multi-agent collaboration.
 583 In *The Thirteenth International Conference on Learning Representations*.

584

585 Haolin Ruan, Shaohang Xu, Zhi Chen, Yining Dong, and Chin Pang Ho. Target-oriented soft-robust
 586 inverse reinforcement learning. 2025.

587

588 Qian Ruan, Ilia Kuznetsov, and Iryna Gurevych. Are large language models good classifiers? a study
 589 on edit intent classification in scientific document revisions. In Yaser Al-Onaizan, Mohit Bansal,
 590 and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural
 Language Processing*, pp. 15049–15067, Miami, Florida, USA, November 2024. Association for
 591 Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.839. URL <https://aclanthology.org/2024.emnlp-main.839/>.

592

593 Rylan Schaeffer, Joshua Kazdan, Yegor Denisov-Blanch, Brando Miranda, Matthias Gerstgrasser,
 594 Susan Zhang, Andreas Haupt, Isha Gupta, Elyas Obbad, Jesse Dodge, et al. Position: Ma-
 595 chine learning conferences should establish a "refutations and critiques" track. *arXiv preprint
 arXiv:2506.19882*, 2025.

594 Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
 595 natural language inference. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceed-
 596 ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
 597 guistics: Main Volume*, pp. 255–269, Online, April 2021. Association for Computational Linguis-
 598 tics. doi: 10.18653/v1/2021.eacl-main.20. URL <https://aclanthology.org/2021.eacl-main.20/>.

599 Johannes Schneider. Generative to agentic ai: Survey, conceptualization, and challenges. *arXiv
 600 preprint arXiv:2504.18875*, 2025.

602 Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
 603 vector method for novelty detection. *Advances in neural information processing systems*, 12,
 604 1999.

605 Zhengxiang Shi and Aldo Lipani. Don’t stop pretraining? make prompt-based fine-tuning powerful
 606 learner. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 607 <https://openreview.net/forum?id=s7xWeJQACI>.

609 Hyungyu Shin, Jingyu Tang, Yoonjoo Lee, Nayoung Kim, Hyunseung Lim, Ji Yong Cho, Hwajung
 610 Hong, Moontae Lee, and Juho Kim. Mind the blind spots: A focus-level evaluation framework
 611 for llm reviews. *arXiv preprint arXiv:2502.17086*, 2025.

612 Yixiao Song, Yekyung Kim, and Mohit Iyyer. Veriscore: Evaluating the factuality of verifiable
 613 claims in long-form text generation, 2024. URL <https://arxiv.org/abs/2406.19276>.

615 Purin Sukpanichnant, Anna Rapberger, and Francesca Toni. Peerarg: Argumentative peer review
 616 with llms. *arXiv preprint arXiv:2409.16813*, 2024.

617 Pawin Taechoyotin and Daniel Acuna. Remor: Automated peer review generation with llm reasoning
 618 and multi-objective reinforcement learning, 2025. URL <https://arxiv.org/abs/2505.11718>.

620 Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving
 621 and simplifying pattern exploiting training. In Marie-Francine Moens, Xuanjing Huang, Lucia
 622 Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods
 623 in Natural Language Processing*, pp. 4980–4991, Online and Punta Cana, Dominican Republic,
 624 November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
 625 407. URL <https://aclanthology.org/2021.emnlp-main.407/>.

626 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 627 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 628 report. *arXiv preprint arXiv:2503.19786*, 2025.

630 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
 631 Yuan Qu, Fukai Shang, Bo Zhang, Liqun Wei, Zhihao Sui, Wei Li, Botian Shi, Yu Qiao, Dahua
 632 Lin, and Conghui He. Mineru: An open-source solution for precise document content extraction,
 633 2024. URL <https://arxiv.org/abs/2409.18839>.

634 Gang Wang, Qi Peng, Yanfeng Zhang, and Mingyang Zhang. What have we learned from openre-
 635 view? *World Wide Web*, 26(2):683–708, 2023.

636 Liming Wang, Muhammad Jehanzeb Mirza, Yishu Gong, Yuan Gong, Jiaqi Zhang, Brian H Tracey,
 637 Katerina Placek, Marco Vilela, and James R Glass. Can diffusion models disentangle? a theore-
 638 tical perspective. *arXiv preprint arXiv:2504.00220*, 2025.

640 Xiaoyu Xiong, Changyu Hu, Chunru Lin, Pingchuan Ma, Chuang Gan, and Tao Du. Topogaussian:
 641 Inferring internal topology structures from visual clues. *arXiv preprint arXiv:2503.12343*, 2025.

642 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 643 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 644 arXiv:2505.09388*, 2025.

646 Jing Yang. Position: The artificial intelligence and machine learning community should adopt a more
 647 transparent and regulated peer review process. In *Forty-second International Conference on Ma-
 chine Learning Position Paper Track*, 2025. URL <https://openreview.net/forum?id=gnyqRarPzW>.

648 Yuqing Yang and Robin Jia. When do llms admit their mistakes? understanding the role of model
649 belief in retraction. *arXiv preprint arXiv:2505.16170*, 2025.
650

651 Rui Ye, Xianghe Pang, Jingyi Chai, Jiaao Chen, Zhenfei Yin, Zhen Xiang, Xiaowen Dong, Jing
652 Shao, and Siheng Chen. Are we there yet? revealing the risks of utilizing large language models
653 in scholarly peer review. *arXiv preprint arXiv:2412.01708*, 2024.

654 Chen Bo Calvin Zhang, Zhang-Wei Hong, Aldo Pacchiano, and Pulkit Agrawal. Orso: Accelerating
655 reward design via online reward selection and policy optimization. *arXiv preprint
656 arXiv:2410.13837*, 2024.

657

658 Qihang Zhao and Xiaodong Feng. Utilizing citation network structure to predict paper citation
659 counts: A deep learning approach. *Journal of Informetrics*, 16(1):101235, 2022.

660

661 Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate Before Use: Im-
662 proving Few-Shot Performance of Language Models. In Marina Meila and Tong Zhang (eds.),
663 *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Pro-
664 ceedings of Machine Learning Research*, pp. 12697–12706. PMLR, 18–24 Jul 2021. URL
<https://proceedings.mlr.press/v139/zhao21c.html>.

665

666 Wuqiang Zheng, Yiyan Xu, Xinyu Lin, Chongming Gao, Wenjie Wang, and Fuli Feng. Navigating
667 through paper flood: Advancing llm-based paper evaluation through domain-aware retrieval and
668 latent reasoning, 2025. URL <https://arxiv.org/abs/2508.05129>.

669

670 Yuan Zhou, Peng Zhang, Mengya Song, Alice Zheng, Yiwen Lu, Zhiheng Liu, Yong Chen, and
671 Zhaohan Xi. Zodiac: A cardiologist-level llm framework for multi-agent diagnostics. *arXiv
672 preprint arXiv:2410.02026*, 2024.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A REPRODUCIBILITY STATEMENT

704 We take several steps to enable full replication of our results.

706 **Data.** We use ICLR 2024–2025 submissions and final decisions obtained via the OpenReview
 707 API–V2 under CC BY 4.0; our crawl, de-identification, and parsing pipeline and the rules for do-
 708 main labeling and class balancing are described in App. C and summarized in Table 6.

710 **Models & training.** Exact model checkpoints and modalities appear in Sec. 4.2. The prompt tem-
 711 plate and label verbalizers are given in App. D; the continual pre-training corpus construction, pack-
 712 ing block size, and optimization details are in Sec. 3.1 and App. E. All experiments were run on a
 713 two NVIDIA A100 80GB GPUs; precision and optimizer choices match App. E.4.

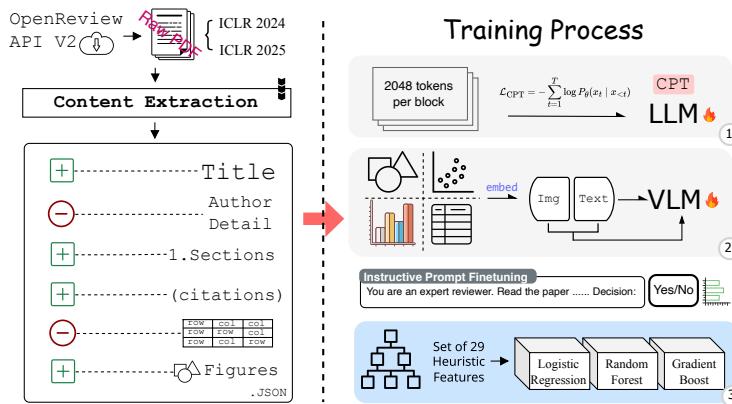
714 **Baselines & features.** The 29 engineered features and model choices are documented in Sec. 4.5
 715 and App. H. Evaluation. We report Accuracy, Macro-Precision, Macro-Recall and F1 with results in
 716 Tables 1–2, 8–10; the out-of-distribution tests is detailed in Apps. G. The confidence-stratified utility
 717 analysis includes formulas and binning definitions in Sec. 5, Apps. I–J.

718 Upon publication, we will release our complete codebase and processed datasets, with rebuild
 719 scripts, to facilitate replication and extension of this work.

722 B USE OF LARGE LANGUAGE MODELS

724 In this work, we used large language models (LLMs) for two distinct purposes. First, we employed
 725 OpenAI’s ChatGPT (GPT-5) exclusively for grammar correction and improving the fluency of the
 726 manuscript. Second, we evaluated ChatGPT’s performance on our prediction task as part of the ex-
 727 perimental analysis. Significantly, the model did not contribute to the research design, methodology,
 728 or interpretation of results; its role in writing was strictly limited to polishing sentence structure and
 729 enhancing readability. All technical contributions remain the sole work of the authors.

731 C DATA COLLECTION AND PRE-PROCESSING



746 Figure 5: Data collection and preprocessing workflow and training pipeline.

749 We collect all ICLR 2025 and 2024 submissions and their corresponding final decisions (*accepted* or
 750 *rejected*) via the OpenReview API–V2. All acquired data complies with the Creative Commons
 751 Attribution 4.0 International (CC BY 4.0) license. The papers were further partitioned into four
 752 main subfields based on title keywords: Large Language Models (LLM), Computer Vision (CV),
 753 Reinforcement Learning (RL), and Theoretical (Theory). Papers that do not fall into these categories
 754 are left for future discussion. Summary counts for each subfield are reported in Table 6.

755 From the collected submissions, we construct two distinct datasets for our analysis: a complete
 ICLR2025 dataset as well as balanced domain-specific datasets by combining papers from both

756 ICLR 2024 and 2025 to ensure equal representation of accepted and rejected papers, addressing
 757 potential class imbalance issues that could bias our analysis.
 758

759 We employ MINERU (Wang et al.,
 760 2024), an OCR-based tool, to ex-
 761 tract structured content from the
 762 collected PDFs. As shown in Fig-
 763 ure 5.

764 MINERU processes each document
 765 by separating text, images, ta-
 766 bles, and equations, and generates
 767 a structured JSON representation.
 768 From this output, we retain only
 769 elements labeled as figures, tables,
 770 or equations, and restricted text ex-
 771 traction to the title, abstract, and in-
 772 troduction sections for use in our prediction model.⁴ The final representation for each paper con-
 773 sisted of clean text files for the targeted sections, alongside organized visual elements paired with
 774 their original captions.

775 D PROMPT TEMPLATE

776 We design an instructive prompt template that presents the paper’s features within a natural-language
 777 query and guides the model to generate a decision token corresponding to one of the two target
 778 classes: *accept* or *reject*.

779 Input Example

780 Template $\mathcal{T}(x)$:

781 You are an expert reviewer. Read the paper content and decide if it
 782 should be accepted.

783 Paper content: $\langle x \rangle$

784 Decision:

785 Given a paper input instance x and prompt template $\mathcal{T}(x)$, the model defines a conditional proba-
 786 bility over the *label verbalizer* Tam et al. (2021).

787 E CONTINUAL PRE-TRAINING

788 E.1 MOTIVATION

789 Continual pre-training (CPT) adapts a strong general-purpose language model to the peer-review do-
 790 main by further training on large-scale, unlabeled scientific corpora. Unlike supervised fine-tuning,
 791 CPT retains the original causal language modeling objective, thereby aligning the model’s genera-
 792 tive priors with the linguistic and structural regularities of academic manuscripts. This is particularly
 793 important in OpenReviewer, where downstream tasks rely on prompt-conditioned generation rather
 794 than explicit classification heads. This section will describe the training detail used for CPT.

801 E.2 INPUT SETTING

802 We construct the CPT corpus by aggregating unlabeled texts from academic paper PDFs pro-
 803 cessed with MinerU. Each document is concatenated with an EOS separator, tokenized using the
 804 model’s native tokenizer, and packed into fixed-length blocks of size B (default $B = 2048$). This
 805 block-packing strategy eliminates under-filled sequences and ensures efficient utilization of training
 806 batches. The input IDs and labels are identical, enabling pure causal next-token prediction.

807
 808
 809 ⁴Manual spot-checking confirmed high quality of the extracted content.

This preprocessing not only exposes the model to scientific writing styles, rhetorical markers, and citation format, etc. but also reduces the domain gap between generic pre-training corpora and the specialized peer-review domain.

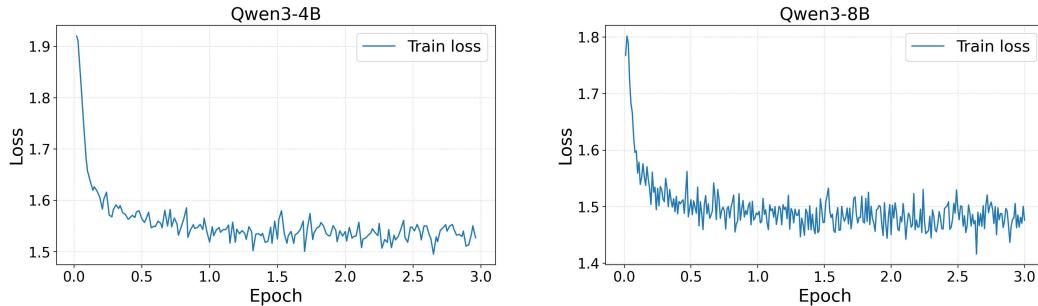


Figure 6: Continual pre-training loss results of Qwen3-4B and Qwen3-8B on the balanced dataset corpus.

E.3 RESULT

During continual pre-training on the balanced corpus, the training loss decreases steadily for both Qwen3-4B and Qwen3-8B, indicating stable optimization. The 8B model converges slightly faster and to a lower final loss than the 4B model, consistent with its larger capacity. We observed no signs of divergence or instability across the three epochs, suggesting CPT effectively adapts the base models to scientific writing before downstream fine-tuning.

E.4 HYPERPARAMETER SETTINGS

To maintain training stability, we adopt AdamW optimization with cosine learning rate decay, gradient checkpointing, and norm clipping. CPT is performed *prior* to prompt-based fine-tuning so that the updated parameters θ encode domain knowledge without introducing task-specific biases. Training was conducted on a single NVIDIA A100 80GB GPU.

Hyperparameter	Value
Backbone Model	Qwen3-4B(8B)
Sequence Length (B)	2048
Batch Size (per device)	2
Gradient Accumulation	8 (effective batch = $2 \times 8 \times \text{GPUs}$)
Epochs	3
Learning Rate	$1(2) \times 10^{-5}$
Warmup Ratio	0.1
Weight Decay	0.1
Optimizer	AdamW
Scheduler	Cosine decay
Precision	bfloat16 (default)
Attention Backend	SDPA (FlashAttention-2 optional)
Gradient Checkpointing	Enabled
Max Grad Norm	1.0

Table 7: Hyperparameter settings for continual pre-training in OpenReview.

864 F ADDITIONAL RESULTS ON VL-MODEL

866 F.1 RESULTS ON IMBALANCE DATASET (IN-DISTRIBUTION)

868 Table 8 shows results on the imbalanced dataset. The models exhibit base-rate and threshold bias:
869 minimizing loss encourages predicting the majority class. The prediction becomes more sensitive to
870 textreject patterns while under-covering the minority.

871 *Imbalanced In-Distribution Test*

872 SUB- 873 DOMAIN	874 LLM				875 CV				876 RL				877 THEORY				878 ALL			
	879 ACC	879 MAC-P	879 MAC-R	879 F1	879 ACC	879 MAC-P	879 MAC-R	879 F1	879 ACC	879 MAC-P	879 MAC-R	879 F1	879 ACC	879 MAC-P	879 MAC-R	879 F1	879 ACC	879 MAC-P	879 MAC-R	879 F1
txt&img	35.7	17.9	50.0	26.3	35.6	17.8	50.0	26.3	32.9	16.5	50.0	24.8	33.1	16.6	50.0	24.9	34.8	17.4	50.0	25.8
txt*	35.7	17.9	50.0	26.3	35.7	17.8	50.0	26.3	32.9	16.5	50.0	24.8	33.1	16.6	50.0	24.9	34.8	17.4	50.0	25.8
txt&king	73.2	70.9	71.2	71.0	63.1	63.5	64.0	59.9	59.6	55.4	55.7	55.5	68.5	63.1	59.3	59.4	74.8	65.8	76.9	66.4
txt	74.2	68.2	69.5	68.2	69.5	68.1	69.5	68.2	66.3	57.9	53.9	51.9	67.2	62.5	62.0	62.2	75.5	71.9	69.4	67.1
Gemma-3-4B	35.6	17.8	49.8	26.2	35.6	17.8	50.0	26.3	32.5	16.3	49.4	24.5	33.1	16.6	50.0	24.9	34.4	17.2	50.0	25.6
txt&img	34.0	17.0	50.0	25.4	34.6	17.3	50.0	25.7	34.8	17.4	50.0	25.8	37.1	18.6	50.0	27.1	34.4	17.2	50.0	25.6
txt&king	64.3	32.2	50.0	39.1	63.8	54.4	50.9	43.7	67.9	83.8	51.3	42.8	66.0	55.9	55.0	45.6	76.8	91.5	35.7	51.4
txt	70.7	71.4	59.1	57.8	73.7	72.2	66.5	67.4	69.6	66.3	65.7	65.9	72.5	72.5	66.1	66.7	72.4	70.2	64.4	65.1

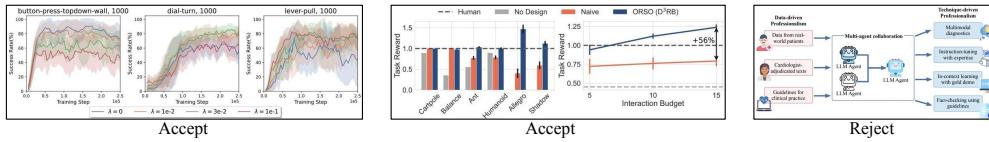
880 * Baseline models.

881 Table 8: Accuracy performance (%) of Qwen2.5-VL-3B-Instruct and Gemma-3-4B-it
882 across four broad domains on imbalanced dataset. Mac-P and Mac-R denote Macro Precision and
883 Macro Recall, respectively.

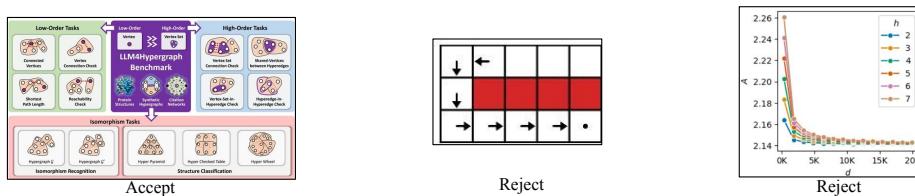
885 F.2 MORE QUALITY ANALYSIS

888 Figure 7 shows additional examples of these two patterns from prior submissions (Kang & Oh, 2025;
889 Zhang et al., 2024; Zhou et al., 2024; Feng et al., 2024; Ruan et al., 2025; Huynh et al., 2025). Most
890 image-help cases are teaser images, which usually contain clear text and visual cues that support the
891 model’s judgment. In contrast, many image-mislead cases come from result analysis figures rather
892 than teaser images, and thus contain little or no explicit textual guidance, making them harder for
893 the model to interpret correctly.

894 Case 1 Image Helps: Text Incorrect, Text + Image Correct.



900 Case 2 Image Misleads: Text Correct, Text + Image Incorrect.



901 Figure 7: More examples of vision–language model predictions on previous submission.

910 F.3 IMAGE-ONLY FOR PREDICTION

912 We further evaluate models using images as the sole input modality. First, we employ
913 DINO-v2 (Oquab et al., 2023)⁵ as a classifier, where the inputs are the first two main figures from
914 each paper. This setting yields an accuracy of 39.5% and an F1 score of 49.8%. In addition, we
915 experiment with converting the first two pages of each PDF into images and training Qwen-VL
916 with these image-only inputs. However, the performance in this setting remains close to that of the
917 untrained baseline.

918 ⁵<https://huggingface.co/facebook/dinov2-base>

918 G ABLATION STUDIES

920 We train on the imbalanced ICLR-2025 split and evaluate on a balanced 50/50 test to probe robustness. Across sizes, OOD accuracy hovers around 67–69%, with noticeable drops in macro-recall/F1
 921 versus in-distribution, reflecting a reject-majority bias learned from imbalanced training. CPT offers
 922 modest, inconsistent gains (slightly higher macro-recall/F1 in some domains) but does not eliminate
 923 the bias; larger models (8B) do not guarantee better OOD generalization than 4B. Overall, results
 924 show that class balance during training matters more than scale, and that simple fine-tuning on im-
 925 balanced data leads to systematic under-coverage of ACCEPT, suggesting the need for rebalancing,
 926 threshold calibration, or post-hoc confidence conditioning for reliable deployment.

LLMs Out-of-Distribution Test																					
SUB-DOMAIN	ALL				LLM				CV				RL				THEORY				
	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	
CPT	4B	67.8	72.5	67.0	68.4	65.6	71.4	64.9	65.6	68.2	70.8	69.9	71.6	66.4	68.1	53.1	46.7	54.8	54.3	51.9	44.2
	8B	68.5	68.2	70.5	70.2	67.9	68.3	70.3	69.1	68.7	72.9	70.1	71.8	65.6	62.2	52.4	54.3	53.7	48.8	51.2	44.2
Orig	4B	68.6	70.9	69.0	70.8	65.9	67.4	66.8	68.0	67.5	71.5	68.4	69.8	62.8	67.4	62.7	62.3	59.5	65.5	58.5	55.8
	8B	67.0	70.5	66.1	67.4	66.6	67.2	68.3	66.7	67.1	70.8	67.9	69.3	61.6	64.8	59.7	57.2	52.3	51.3	50.4	44.6

935 Table 9: Ablation results on the imbalanced ICLR 2025 dataset. Models are trained with the original
 936 accept/reject ratio (31.7% / 68.3%) and evaluated on the balanced 50/50 Out-of-Distribution test set.

VLMs Out-of-Distribution Test																					
SUB-DOMAIN	ALL				CV				RL				THEORY				LLM				
	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	ACC	MAC-P	MAC-R	F1	
Qwen	txt&img	75.2	89.8	55.4	68.5	66.7	63.7	75.6	69.2	59.9	67.8	45.5	54.4	59.1	73.8	44.5	47.0	65.0	83.2	45.1	58.5
	txt	76.2	89.4	58.0	70.3	75.2	80.7	65.7	72.4	55.7	88.9	18.2	30.2	66.1	82.0	45.6	58.6	59.3	87.5	29.9	44.6
Gemma	txt&img	70.2	80.2	69.5	67.0	53.2	73.7	8.1	14.7	50.3	58.1	20.5	30.3	60.2	58.7	82.2	68.5	62.0	64.4	68.3	66.3
	txt	76.2	81.2	75.7	75.0	53.7	58.0	23.3	33.2	57.5	63.5	45.5	53.0	54.4	73.1	21.1	32.8	55.7	75.4	28.1	40.9

945 Table 10: Accuracy performance (%) of Qwen2.5–VL–3B–Instruct and Gemma–3–4B–it
 946 across four broad domains under the Out-of-Distribution Test setting

949 H COMPLETE TABLE OF WHITE BOX FEATURES

951 The complete 29 white-box features importance are reported in Table 11.

953 I R_2 DERIVATION

955 We quantify how reliability scales with certainty by *separately for each predicted class* (ACCEPT,
 956 REJECT) fitting an ordinary least squares line to bin-level precision vs. confidence (using the *filtered*
 957 *bin midpoints* as x):

959 Given paired points $\{(x_i, y_i)\}$ where x_i is the confidence-bin midpoint and y_i the corresponding
 960 precision:

$$961 \text{Fit: } y = mx + b, \quad (8)$$

$$963 \text{Residual sum of squares: } SS_{\text{res}} = \sum_i (y_i - \hat{y}_i)^2, \quad (9)$$

$$965 \text{Total sum of squares: } SS_{\text{tot}} = \sum_i (y_i - \bar{y})^2, \quad (10)$$

$$967 \text{Coefficient of determination: } R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}. \quad (11)$$

970 Interpretation.

- 971 • $R^2 = 1$: perfect linear fit.

972	Feature	Bal	973	Imb
974 Structure				
975 total words	0.0792	0.0739	976	
977 total pages	0.0658	0.0575	978	
header count	0.0569	0.0587		
section balance variance	0.0474	0.0492		
words/page	0.0446	0.0437		
979 Visual Content				
980 avg caption length	0.0439	0.0465	981	
image density	0.0374	0.0378	982	
table density	0.0363	0.0370	983	
image count	0.0362	0.0332	984	
equation density	0.0360	0.0372	985	
table count	0.0355	0.0356		
equation count	0.0315	0.0341		
986 Citation Engagement				
987 citations in text	0.0448	0.0403	988	
citation density	0.0408	0.0395		

(a) Structural, visual, and citation features

990 Feature	Bal	991 Imb
992 Methodological Rigor		
dataset mentions	0.0389	0.0374
metrics mentions	0.0355	0.0356
baseline mentions	0.0241	0.0240
statistical tests	0.0061	0.0058
experiment count	0.0030	0.0031
993 Writing Quality		
abstract word count	0.0430	0.0446
avg sentence length	0.0423	0.0432
994 Novelty & Contribution		
novel method claims	0.0346	0.0365
comparison studies	0.0327	0.0356
contribution statements	0.0318	0.0314
995 App. Material		
word count (appendix)	0.0188	0.0203
header count (appendix)	0.0179	0.0177
images count (appendix)	0.0125	0.0134
table count (appendix)	0.0121	0.0161
equation count (appendix)	0.0088	0.0095

(b) Methodological, writing, novelty, and appendix features

Bal = balanced dataset importance; *Imb* = imbalanced dataset importance.

Table 11: Feature importance across balanced (Bal) and imbalanced (Imb) datasets using a Random Forest. Values are normalized importances.

- $R^2 = 0$: no better than predicting the mean \bar{y} .
- $R^2 < 0$: worse than predicting the mean.
- $R^2 = \text{NaN}$: not enough points, constant x , or zero variance in y ($SS_{\text{tot}} = 0$).

J LINEAR PRECISION-CONFIDENCE RELATIONSHIP

We further quantify how reliability scales with certainty by fitting, separately for ACCEPT and REJECT, an least squares model of precision against confidence, and we report the linear coefficient of determination R^2 in the figures to characterize the strength of the linearity.

On the **balanced** dataset (Fig. 4a, 4b), two classes exhibit similar R^2 values, indicating that increases in confidence translate into nearly equivalent gains in precision for both ACCEPT and REJECT. Moreover, the Qwen3-4B model exhibits a stronger linear relationship than the Qwen3-8B model on this dataset, with the highest fit $R^2 = 0.85$.

On the **imbalanced** dataset (Fig. 4c, 4d), by contrast, the precision–confidence relationship diverges across classes: the minority class (ACCEPT) typically shows a lower R^2 , reflecting weaker separability than under balanced training.