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ABSTRACT

The rapid growth of Al conference submissions has strained the peer-review sys-
tem, motivating interest in Al-assisted review. Yet it remains unclear how reliably
such systems approximate human judgment, which relies on domain expertise and
nuanced reasoning. To address this challenge,, we introduce OpenReviewer, a
model designed to directly predict conference acceptance decisions rather than
generate full reviews. Using ICLR 2024-2025 data, we evaluate large language
models (LLMs), vision—language models (VLMs), and interpretable statistical
models. Results show that text-only LLMs with continual pre-training outperform
multimodal counterparts, achieving up to 78.5% accuracy on balanced datasets
(vs. 50% random baseline). White-box statistical models further provide inter-
pretability through feature analysis, revealing that structural attributes (e.g., paper
length, section balance, citation engagement) are consistently predictive. Beyond
average accuracy, a confidence-stratified utility analysis shows that the top 10%
most confident predictions reach 92.92% overall precision, enabling reliable triage
of “obvious” accepts and rejects while exposing areas of uncertainty. Overall, our
findings demonstrate both the promise and limitations of Al-involved peer review:
current models can reduce workload and aid submission reviewing, but fall short

of reliably replacing expert judgment.

1 INTRODUCTION

The peer-review process is becoming increasingly
unsustainable as submissions to top-tier Al confer-
ences continue to grow at an unprecedented pace, as
shown in Figure ﬁﬂ This explosive growth places
pressure on program committees and reviewers,
leading to heavier workloads and concerns over the
quality and consistency of reviews (Lawrence} [2022;
Beygelzimer et al.| 2023} [Kim et al., 2025} |Schaef-
fer et al.,2025). For authors, uncertainty around sub-
mission outcomes and suboptimal venue choices can
negatively influence research trajectories and aca-
demic career development (e.g., timely PhD gradua-
tion) (Kousha & Thelwall, 2024;|Yang) [2025)).

Recent work has explored Al-assisted review gener-
ation as a potential solution, where models take pa-
pers as inputs to generate reviews. (Sukpanichnant
et al., 2024; |Ye et al., 2024; |Shin et al., 2025). To
our knowledge, no existing work uses LLMs to pre-
dict acceptance directly from the paper content it-
self. Reliable acceptance prediction could guide au-

Number of Papers

Figure 1: Number of papers accepted by
NeurIPS from 2015 to 2024 across four ma-
jor research domains, with the dashed line in-
dicating the predicted trend.

thors in developing submission strategies, while helping committees triage obviously good/low-
quality papers and allocate human review resources more effectively. Therefore, we propose

'Our data sources include official conference announcements and the Paper Copilot platform (https:

//papercopilot.com/).


https://papercopilot.com/
https://papercopilot.com/

Under review as a conference paper at ICLR 2026

OpenReviewer, a LLM-based model that predicts the acceptance of papers submitted to Al con-
ferences.

OpenReviewer is developed using conference submissions and corresponding acceptance infor-
mation collected from the OpenReview platfornﬂ In particular, our dataset consists of submission
records from the International Conference on Learning Representations (ICLR) ), chosen for its
broad coverage of Al topics and the openness of its submission and decision records. The training
dataset includes three components of papers: (1) textual content, consisting primarily of anonymized
manuscript text; (2) visual information, such as system figures and charts; and (3) interpretable, man-
ually engineered statistical features.

We adopt prompt-based fine-tuning (Shi & Lipani, 2023)) to help LLMs understand the given task,
combined with a decoupled label loss (Tam et al., [2021) to encourage the use of vocabulary tokens
(e.g. Yes, No) as labels during training. We explore three approaches for this task: text-only large
language models, vision—language models, and white-box statistical classifiers. Among text-only
models, continued pretraining (CPT) on unlabeled corpora prior to fine-tuning yields the best result,
achieving 78.5% accuracy on a label-balanced dataset (50% random baseline). For VLMs mod-
els, unsurprisingly, incorporating image inputs consistently outperforms text-only inputs. We also
provide qualitative analyses highlighting cases where images help and where they mislead. In addi-
tion, we conduct a white-box analysis of statistical features by extracting 29 heuristic quantitative
features across eight categories. Using only these features, a Random Forest classifier (Breiman)
2001) attains a surprisingly strong 74.2% accuracy, surpassing VLMs. Finally, a model confidence-
stratified analysis for OpenReviewer shows that within the top 10% confidence slice, covering
up to 53.06% of predictions, LLMs achieve 93.09% precision on the Accept class, with a compa-
rable trend observed for the Reject class. This enables reliable triage of clear accepts and rejects
while routing uncertain cases for human review. Overall, these findings indicate that Al can support
peer review by reducing the workload on straightforward submissions, while human experts remain
essential for more more nuanced judgments.

2 RELATED WORK

Peer Review Analysis. The peer review process, particularly in rapidly evolving fields like Al, is
facing a sustainability crisis with reviewer overload and declining quality (Chen et al., [2025; |Kim
et al.| 2025). While LLMs have been explored to automate or assist reviewing, their readiness lacks
validation. Large-scale experiments show LLMs can distinguish paper quality but exhibit significant
biases (Pataranutaporn et al.,|2025)), with researchers warning against premature deployment due to
risks in factual accuracy and logical reasoning (Ye et al.| |2024). New evaluation methods identify
“blind spots” in LLM reviews, revealing that they often miss crucial methodological flaws such as
experimental design issues, statistical significance problems, and logical inconsistencies in argu-
mentation (Shin et al.| [2025). Improvement efforts include structured argumentative review frame-
works (Sukpanichnant et al.,|2024) and graph reasoning systems over reviewer-author debates (Tae-
choyotin & Acunal [2025). Additionally, Al-assisted reviews create an “Al review lottery,” inflating
scores and masking weaknesses (Latona et al.l [2024). These challenges prompt calls for systemic
reform, including transparent processes and reviewer rewards (Yang, 2025; |Ye et al.l 2024), dedi-
cated critique tracks (Schaeffer et al., |2025)), and lessons from platforms like OpenReview (Wang
et al.l [2023)).

Paper Quality Modeling. Recent advancements in LLMs have spurred significant research into
computationally modeling the quality of scholarly papers in the form of evaluation, revision, and
generation. Research focuses on automated assessment using domain-aware retrieval and latent
reasoning (Zheng et al.l 2025), verifiable claim extraction (Song et al.| 2024), and retraction pre-
diction for scientific integrity (Yang & Jial 2025). Beyond evaluation, quality models support pa-
per improvement through human-Al collaborative revision frameworks (Fragiadakis et al., |2024;
Dong et al.,|2022) and fully automated generation systems like ARISE, which uses explicit quality
rubrics (Schneider, 2025)).

“https://openreview.net/
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LLM-based Document Classification. LLMs shift document classification from traditional fine-
tuning to prompt-based, few-shot learning. This involves reformulating classification tasks as cloze
questions, enabling strong performance with minimal labeled data (Schick & Schiitzel [2021). Re-
cent studies further demonstrate that continued pretraining can significantly enhance prompt-tuning
effectiveness, making it an even more powerful learning approach (Chen et al.}2022). Despite these
advances, LLM-based classification faces several challenges. Raw LLM outputs often suffer from
miscalibration issues, necessitating the development of context-aware calibration techniques (Zhao
et al.,2021). Additionally, the direct application of LLMs as zero-shot or few-shot classifiers shows
promise but remains task-dependent, requiring careful model selection for specialized domains such
as classifying scientific revision intents (Ruan et al.,[2024). To address these limitations, researchers
have developed hybrid and advanced approaches. Hybrid models like DeepCCP successfully inte-
grate semantic understanding with citation network structure to achieve more accurate classifica-
tion (Zhao & Feng| 2022)). Furthermore, advanced approaches explore classification through gen-
eration tasks, including benchmarking LLMs on writing paper sections (Garg et al., 2025) and de-
veloping multi-agent frameworks for paper reproduction (Miao et al., [2025). These developments
highlight the evolution towards deeper, context-aware reasoning.

3 OPENREVIEWER FOR PREDICTING ACCEPTANCE

We formulate paper acceptance prediction as a binary classification problem. State-of-the-art LLMs
and VLMs are inherently generative, making them not directly applicable to traditional classification
tasks. To use the capabilities of these powerful pre-trained generative models without training a
new classification head from scratc we adopt a prompt-based fine-tuning strategy Ruan et al.
(2024);Schick & Schiitze|(2021);|Shi & Lipani|(2023). Specifically, we design an instructive prompt
template 7 that presents the paper’s features within a natural-language query and guides the model
to generate a decision token corresponding to one of the two target classes: accept or reject. The
template example is given in App.[D}

3.1 CONTINUAL PRE-TRAINING

Continual pre-training (CPT) extends the training of large generative models on additional unlabeled
corpora to improve their adaptability to new domains and evolving data distributions (Gururangan
et al., 2020; (Chen et al., |2023). It is widely adopted in industry-scale generative systems, where
models are periodically updated with fresh data to sustain relevance and maintain competitive per-
formance (Gururangan et al., 2020; (Chen et al., 2023 Ke et al., 2023 [Elhady et al., |2025). The
training objective typically follows next-token prediction, formalized as

T

Lepr = — Y log Py(xy | <), 1

t=1
which maximizes the likelihood of generating each token x, given its preceding context x.; and
model parameters 6. In this paper, we also explore continual pre-training to adapt general-purpose
base models to the academic peer-review scenario before fine-tuning on the classification task. We
present the effectiveness of CPT in Section[4.3] with further training details provided in the App.[E]
Unless otherwise specified, CPT is used as the default post-training strategy for our textual models
before fine-tuning.

3.2 INPUT SETTINGS

Given a paper input instance x and prompt template 7 (), the model defines a conditional proba-
bility over the label verbalizer (Tam et al., 2021). We consider two input configurations for 7 (xz):
text-only and text-image multimodal. Text-only inputs are anonymized main-body texts from the
paper manuscripts. The multimodal setting extends the text-only configuration by additionally in-
corporating visual features extracted from figures in the paper. Details of the PDF preprocessing and
figure extraction procedure are provided in App.[C| Formally,

T(JJ) — ¢($(text) ) x(ﬁgure)) (2)

30ur initial experiments with training a classification head on top of a pre-trained LLMs resulted in lower
accuracy and slower convergence compared to prompt-based generation.
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where ¢ is modality-specific encoding determined by the multimodal model, and z(fg"®) is an
optional input. 7 () packs all modalities into a single token sequence consumable by the model.

We then append a designated decision slot and generate only at this position, defining 79¢¢ =
T (z) @ [label_mask]. Verbalizer V maps each candidate label token v to a class; this allows many-
to-one mappings (e.g., {yes, accept} = 1;{reject,no} = 0).

3.3 MODEL TRAINING OBJECTIVE

Given an input 79 and its corresponding ground-truth label y*, we apply supervision only at the
decision position, masking all other positions. Following ADAPET (Tam et al.,|2021)), we define the
Vocabulary Decoupled Label Loss (VDLL). Let zg(t | 79°¢) denote candidate labels logits at the
decision slot ¢, we then define the (3) restricted softmax and (4) training objective as:

exp(zo(t | 7))
Zaev eXp(ZQ(a ‘ Tdec))
Lyprn(0) = —log > polt | T4, (4)

tEV,

Po(t | T9) = 3)

3.4 INFERENCE MECHANISM

At inference time, we determine the predicted class by comparing the logit-based scores of all
verbalizer candidates at the decision slot. Let z¢(t | 79°¢) denote the pre-softmax logit assigned
by the model to token ¢ at the decision position. We first obtain the token IDs of all verbalizer
candidates V. For each class y, the score is defined as the maximum logit among its associated
verbalizer tokens. The final prediction ¢ is then obtained by selecting the class with a higher score,
for example predicting Accept if score(yes) > score(no) and vice versa:

9 = arg max scoreg(y | ’Tdec) ®)
yey

We report a binary decision b(g) € {0,1}.

4 EXPERIMENTS

4.1 DATA COLLECTION AND PRE-PROCESSING

We collect all ICLR 2025 and 2024 submissions and their corresponding final decisions (accepted
or rejected) via the OpenReview API-V2. The papers were further partitioned into four main
subfields based on title keywords: Large Language Models (LLM), Computer Vision (CV), Rein-
forcement Learning (RL), and Theoretical (Theory). Papers that do not fall into these categories are
left for future discussion. We build two datasets: the ICLR 2025 dataset, which is naturally imbal-
anced with a 34/66 accepted-to-rejected split and balanced domain-specific sets from ICLR 2024
and 2025 with a 50/50 split. Table [6] summarizes the differences. More implementation details are
explained in App.[C]

4.2 MODELS AND INPUTS

We include two categories of models: text-only LLMs and vision-language models. For the
text-only LLMs, we select the Qwen—3 family at Qwen3-4B and Qwen3-8B parameter scales
(Yang et al.| [2025). For vLMs, we include Qwen2 .5-VL-3B-Instruct (Bai et al.}|2025) and
Gemma-3-4b-it (Team et al.,[2025)). Both of these multimodal models are instruction-tuned vari-
ants. We take the vanilla non-fine-tuned version of each model in a zero-shot setting as the baseline.
After collecting and preprocessing the papers along with their acceptance outcomes, we fine-tune
and evaluate the two categories of selected models using the following inputs.

Text-only LLMs: We first anonymize each paper by removing all information that could reveal
author identity or acceptance status, including author names, affiliations, email addresses, URLs,
and header or footer text. Beyond these removals, the input consists of the full manuscript body text
and mathematical formulas, but excludes tables and figure captions.
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Table 1: Performance (%) of LLMs across four domains and the overall aggregation (ALL) on the
balanced dataset. All models use Qwen3 as the backbone. We compare fine-tuning with CPT against
the original checkpoints (Orig) at the 4B and 8B parameter scales.

sus- | ALL LLM cv RL THEORY
DOMAIN‘ Acc

MAC-P MAc-R  Fl ‘ACC MAcC-P MAc-R  Fl ‘ACC MAcC-P MAC-R  FI AcCc MAC-P MAC-R  Fl Acc  MAC-P MAC-R  Fl

4B° [ 487 238 510 347542 269 524 365|510 266 49.5 337 506 222 474 326 46.1 243 486 302

EL 4B | 764 763 764 764702 701 702" 70.1|70.2 753 704 687 574 625 573 524 559 615 555 49.1
8B | 785 785 783 785|700 70.1 70.0 70.1|73.9 74.1 740 739 67.5 68.0 67.6 67.3 534 53.6 532 51.0

48" BN 24.5 521 33.5 [ECEH 28.1 516 380 [N 27.2 496 37.5 BN 21.6 49.6 31.7 EUEN 22.3 476 315

o
WO4B | 673 714 682 663|688 69.1 688 686|710 71.0 71.1 71.0 593 59.7 593 589 572" 59.5 56.9 53.9
© 8B |69.0 69.0 69.0 69.0|69.7 69.9 69.8 69.7 725 732 72.6 724 626 643 626 61.5 554 559 552 54.0

* Baseline models. Random guess baseline accuracy is 50%.

Table 2: Performance (%) of VLMs across four domains on the balanced dataset. Mac-P and Mac-R
denote Macro Precision and Macro Recall, respectively.

sus- | ALL LLM Ccv RL THEORY
DOMAIN| Acc Mac-P Mac-R  Fl | Acc Mac-P MAC-R  FI  AcC MaAcC-P MAC-R  Fl | Acc MAC-P Mac-R  Fl | Acc MAc-P Mac-R  Fl

2 wieimg] 46.0 23.0 500 315|546 27.1 500 353 516 258 500 340502 251 500 334 |47.6 238 500 323
T 480 240 500 324546 273 500 353 51.6 258 500 340|502 25.1 50.0 334 |47.6 238 500 323

Y kimg| 682 68.6° 67.8° 67.7| 742 755 745 741 700 70.1 69.8 69.8 | 65. 60.5 59.3
e | 644 692 653 6271699 702 703 69.9 69.0 69.1 68.8 68.8|60.6 62.5 60.5 58.8 |61.5 614 61.1 61.1

wimg] 344 172 500 256|506 531 500 339 504 585 500 336|500 250 50.0 333|496 415 4990 333
E oo 344 172 500 256 (500 350 500 334 500 500 50.0 335|500 250 499 333|500 417 500 335

fv:txx&imi 619 5807 5327 4437619 605 603 603 565 564 563 5627557 . . . . . .
wxt | 712 67.7 66.0 66.5|57.5 593 573 54.8 584 59.0 58.7 582|584 612 585 55.8|59.0 585 573 56.6

" Baseline models. Random guess baseline accuracy is 50%.

Multimodal Models: For VLMs, the input consists of only only the Abstract and Introduction
text, together with the first two figures from each paper. To disentangle the contributions of textual
and visual information in VLMs, we consider two input configurations: text+image and text-only.

4.3 RESULTS

We evaluate prediction performance using Accuracy, Macro-Precision (Mac-P), Macro-Recall
(Mac-R), and F1. Mac-P and Mac-R average class-wise precision and recall, while F1 is the har-
monic mean of precision and recall. As shown in Table[T|and 2] text-only unimodal models generally
outperform multimodal text-image models of comparable size. For example, within the Qwen fam-
ily, Qwen3—-4B achieves 76.4% accuracy, surpassing multimodal Qwen2 .5-VL-3B-Instruct
at 68.2% and also shows consistently higher Mac-R, Mac-P, and F1.

Text-only models We evaluate two training strategies: (i) prompt-based fine-tuning on the origi-
nal models, and (ii) CPT followed by prompt-based fine-tuning. As shown in Table [T} CPT yields
clear improvements for downstream classification. On the aggregated ALL domain, CPT consistently
outperforms fine-tuning from the original checkpoints (Orig) at the same parameter scale, improv-
ing accuracy from 67.3% to 76.4% at 4B and from 69.0% to 78.5% at 8B. Moreover, CPT is
more effective at larger scales. For instance, CPT yields a 9.1% improvement at 4B while a 9.5%
improvement at 8B on the all domain, with consistent increases in LLM, CV, and RL at the 8B scale.

Vision—Language models We evaluate various VL models, i.e., Qwen2.5-VL-3B-Instruct
and Gemma-3-4B-it. As shown in Table [2] Qwen2.5-VL outperforms Gemma-3, achieving
68.2% versus 61.9% with text—image input, and consistently higher accuracy across all four sub-
domains. Second, for Qwen?2 . 5-VL, incorporating text-image input consistently improves perfor-
mance over text-only input. For example, in the LLM domain it achieves 74.2% compared to 69.9%
with text-only, and this trend holds across the other three subdomains as well as the aggregated all
domain. More results on the imbalanced dataset in-domain result in-domain result are provided in

App.
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Case 1 Image Helps: Text Incorrect, Text + Image Correct.
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Case 2 Image Misleads: Text Correct, Text + Image Incorrect.

e ew

Rej‘ect‘

Figure 2: Examples of vision—language model predictions on previous submission. Case Group 1:
text alone leads to incorrect predictions, while the image provides complementary cues that correct
the outcome. Case Group 2: text alone yields the correct answer, but adding the image introduces

misleading signals and causes errors.
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Figure 3: White box features organized by category and ranked by importance within each group.
Features marked with asterisks (*) represent the top 5 most important features from the Random
Forest model

4.4 QUALITATIVE ANALYSIS FOR VL-MODELS

To better understand the role of visual inputs, we qualitatively analyze two outcomes: Image Helps,
where the model fails with text but succeeds with text-image inputs, and Image Misleads, where the
addition of images reduces accuracy. Figure ]illustrates these patterns on prior submissions (Xiong
et al.| 20255 Lin et al., [2024; Malagon et al.; |Q1ian et al.; [Wang et al.| [2025; [Fort). Image Helps (first
row) show that schematic figures conveying high-level methodology or motivation, such as pipelines
or dataset overviews, help predict the acceptance. In contrast, Image Misleads cases often involve
detailed result visualizations that are difficult to interpret from figures alone. Additional examples
are in App. [F.2] We further evaluate models using images as the sole input modality with detail

provided in App. [F3]

4.5 STATISTICAL FEATURE ANALYSIS

We train white-box statistical models on manually engineered features to provide an alternative
performance baseline and interpretable insights into the structural characteristics that distinguish
accepted papers from rejected (Wang et al., [ 2023).

Models and Features We extract 29 quantitative features from each submission PDF across seven
categories, as illustrated in Figure 3] A comprehensive list of all features can be found in App.
These features are then used to train four supervised classifiers, namely Random Forest (Breiman,
2001), Support Vector Machine (Scholkopf et al., [1999), Logistic Regression (Hosmer Jr et al.,
2013)), and Gradient Boosting (Friedman) 2002).
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Imbalanced Dataset Balanced Dataset Out-of-Distribution Test
Domain Size Model Acc F1 AUC‘ Size Model Acc F1 AUC ‘ Size Model Acc F1 AUC

LLM 3,716 SVM 70.634.3 72.2 3,238 RF 66.367.8 71.5 2,121 GB 49.54.6 57.4
(6)% 2,776 RF 71.549.0 72.2 3,520 GB 68.369.6 73.3 2,230 LR 51.42.8 558
RL 1,251 LR 70.1444 72.1 1,526 GB 65.767.7 70.5 1,008 GB 51.51.1 58.3
Theory 1,735 SVM 68.536.9 70.2 1,974 SVM 63.064.7 71.2 1,228 GB 49.82.9 50.8

Combined 9,478 RF 77.360.9 83.0 10,258 RF 742749 83.1 6,587 GB 53.12.2 61.8
GB = Gradient Boosting, RF = Random Forest, LR = Logistic Regression, SVM = Support Vector Machine

Table 3: Performance of statistical models on (i) the imbalanced ICLR 2025 dataset, (ii) balanced
domain-specific datasets, and (iii) the Out-of-Distribution Test: models trained on the imbalanced
ICLR 2025 data and evaluated on the balanced 50/50 test set.

(_?lassiﬁc?tion Performance Table1 dreveals dis- (a) Imbalanced Dataset

tinct performance patterns across all dataset con-

figurations. Random Forest emerges as the best- Rank Feature Imp. Cat.

performing white-box model across both imbal- 1 total words 0.0739 Struct.

anced and balanced datasets, achieving 77.3% ac- 2  header count 0.0587 Struct.

curacy with an Fl-score of 60.9 on imbalanced i tOtil, Pa%ei ) 882;; E?’UC:'
. : . s€ction balance variance . ruct.

data, and 74.2% accuracy with a substantially im 5 avg caption length 0.0465 Visual

proved F1-score of 74.9 on balanced data. The out-
of-domain study demonstrates that models trained (b) Balanced Dataset
on imbalanced data but evaluated on balanced

datasets suffer significant performance degradation, ~Rank Feature Imp.  Cat.
with Random Forest achieving only 53.1% accuracy 1 total words 0.0792 Struct.
and immensely low Fl-scores across all models, as 2 total pages 0.0658 Struct.
the models classified nearly all papers as rejected 3~ header count . 0.0569 Struct.
due to their bias toward the majority class learned 4  section balance variance  0.0474 Struct.
5 citations in text 0.0448 Citation

from the rejection-heavy imbalanced training data.

The balanced dataset yields on average slightly Table 4: Top five most discriminative features
lower accuracy but significantly higher Fl-scores for paper acceptance prediction from Ran-
compared to imbalanced, despite having less train-  dom Forest analysis across both dataset con-
ing data, indicating that class balance is more criti-  figurations.

cal than dataset size for effective predicting minor-

ity research domain. Across both balanced and imbalanced configurations, combined domain mod-
els consistently achieve the best performance compared to individual domains, demonstrating that
cross-domain feature interactions enhance predictive capability. However, all white-box model re-
sults remain significantly below those achieved by fine-tuned LLMs and VLMs, showing the limi-
tations of traditional machine learning approaches in capturing the semantic complexity inherent in
peer review decisions.

Feature Importance Analysis Random Forest feature importance analysis reveals that structural
characteristics dominate acceptance prediction across both dataset configurations, as measured by
Gini impurity—based importance scores (Nembrini et al.,|2018)). As shown in Table@ the same core
structural features consistently appear in the top five most discriminative features across both im-
balanced and balanced datasets, suggesting that paper acceptance favors structure quality rather
than domain-specific content.

Examining the feature rankings reveals several patterns. Content length indicators (total words,
total pages) consistently dominate both configurations, with total words ranking first in
both cases but showing increased importance (0.079 vs 0.073) in the balanced dataset. Organiza-
tional structure features (header count, section balance variance) maintain high im-
portance across configurations. Most notably, citations in text replaces avg caption
length in the balanced dataset’s top five, suggesting that scholarly engagement becomes more
discriminative when class imbalance is addressed.

These patterns indicate that accepted papers consistently tend to be more comprehensive (evidenced
by length-based features), better organized (reflected in structural balance metrics), and demonstrate
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stronger scholarly engagement (particularly evident in balanced datasets where citation patterns
emerge as discriminative). However, the modest importance scores (all < 0.08) across both config-
urations indicate that no single structural characteristic serves as a strong predictor, explaining
why semantic understanding via LLMs significantly outperforms purely structural approaches.

5 UTILITY ANALYSIS FOR RECOGNIZING “OBVIOUS” PAPERS

In Section {4} we set a default acceptance threshold using score(yes) > score(no), though this
can be adjusted in practical peer-review workflows. In practice, if the model can confidently triage
“clearly good” and “clearly bad” submissions with minimal errors, it can both reduce reviewer work-
load and discourage authors from making redundant submission attempts. This section provides a
confidence-based utility analysis to accommodate this need.

5.1 CONFIDENCE-BASED STRATIFICATION

Decision confidence. At the designated decision slot (cf. , let lyes and Iy, be the pre-softmax
logits for the tokens associated with the labels ACCEPT and REJECT, respectively. We define p as the
softmax-normalized probability assigned to a class, accept or reject, when considering only these
two logits. Then we define a scalar confidence ¢ with ¢ = 0 indicates indecision (= 0.5/0.5) and
¢ ~ 1 indicates near-certainty. Formally,

¢ = |Pyes — Pro| = |2pyes — 1| € [0, 1] (6)

The coverage metric. Next, we define coverage as the fraction of a class’s falling within a given
confidence bin. Predictions are partitioned into disjoint bins By, (e.g., [0.0,0.1),...,[0.9, 1.0]). For
a set S of examples (restricted to a predicted class), the coverage of bin By, is:
’{ZES : CZ'GB]C}’
S| '

Cov(BisS) = = 3 ei € By} = )
ISl ies

¢; € [0, 1] is confidence value of i. Using these definition together with precision per class, we then

examine how reliability scales with the model’s self-reported certainty.

)

4B . 1.0 8B
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Figure 4: Coverage and precision across confidence bins for ACCEPT and REJECT predictions, shown
for 4B and 8B CPT models. Each panel reports the linear coefficient R? of a least-squares fit of
precision vs. confidence. Panels (a) and (b) correspond to models trained on the balanced dataset,
while panels (c) and (d) correspond to models trained on the imbalanced.

5.2 STRATIFIED RESULTS AND OBSERVATIONS

We analyze four CPT models: Qwen3-4B and Qwen3-8B with each trained on the balanced and
imbalanced datasets, and summarize their behavior in Fig. ] which plots coverage and precision for
both predicted classes across confidence bins. Overall, we observe that high-confidence regions (¢ >
0.9) achieve high precision with substantial coverage, while class imbalance reduces the coverage
of confident rejects.
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Confidence Concentration and Coverage—Confidence Patterns Across all models, an average
of 81.3% of predictions fall within the high-confidence range ¢ € [0.8,1.0]. In the most confident
interval ¢ € [0.9,1.0] (¢ = 0.95 in the table), both ACCEPT and REJECT achieve precision above
91%. This indicates the presence of substantial “obvious tails” that can be triaged with minimal er-
ror: when models are highly confident, they are usually correct. For ACCEPT, coverage increases
monotonically with confidence: it always exceeds 50% and reaches 75.2% for the Qwen3-8B model
on the imbalanced dataset (Figure Ad), suggesting that most acceptance predictions are made with
high certainty. In contrast, although REJECT precision improves as c increases, its coverage is not
consistently monotonic under imbalanced training, reflecting the relative scarcity of confidently
identified rejections.

We further assess how precision scales with confidence by fitting a least-squares regression sepa-
rately for ACCEPT and REJECT. The coefficient of determination (R?) (Piephol 2019)), reported in
the figures, characterizes the degree of linearity in this relationship. The results of R indicate that
for the minority class, models trained on imbalanced data exhibit markedly poorer certainty than
their counterparts trained on balanced data. More details are provided in App.[[]and [J|

5.3 OpPENREVIEWER HELPS IDENTIFY “OBVIOUS” GOOD/BAD PAPERS

In this section, we examine whether

OpenReviewer can reliably identify pa- Top-mass ACCEPT REJECT

pers that are clear accepts or clear rejects.To slice o | Coverage 1 Error | Coverage 1

this end, we focus on predictions where the

model is extremel nfiden 9, 1.

an(c)id;nalsyzee tthee ci)frecs(l))onillfn; f(J?I'Of I"E[I(t)CSS)’uSi(I)l]g) Top 3.0% 321 2891 394 2658
. Top 5.0% 4.12 36.84 4.83 33.71

the case of Qwen3-4B model trained on the Top7.0% 489  40.41 551 3018

balanced dataset. FlrSt, we rank them by their TOp 9.0% 6.03 45.02 6.06 41.12

confidence scores ¢ and take the top- K % mass

within this band with K € {1,3,5,7,9}, i.e., All (10%) 691 53.06 724  47.34

2% step increases. For each slice we report

per-class error (= 1 — precision) and coverage. Table 5: Performance of high-confidence predic-

tions (¢ € [0.9, 1.0]): error rates and coverage for

. . progressively larger confidence slices. Error rate

load reduction. When we consider only the top (%) lower is better |; coverage (%) shows the frac-

1% most-confident predictions, the model cov- 1 f each class captured in the slice (higher is
ers 12.74% of all accept decisions with just better 1)

2.18% error, and 11.36% of all reject decisions
with 3.07% error. In practical terms, if the model makes 500 accept predictions, the 64 most-
confident ones would contain fewer than two mistakes.

Top 1.0% 2.18 12.74 3.07 11.36

Table [3] reveals encouraging results for work-

As we expand to include more confident predictions, we naturally trade some accuracy for greater
coverage. The top 9% slice covers nearly half of all decisions, 45.02% of accepts and 41.12% of
rejects, while maintaining reasonably low error rates of 6.03% and 6.06% respectively, illustrating
the expected precision-coverage trade-off.

These results suggest that a confidence-based triage system could substantially reduce reviewer
workload. By automatically handling the most obvious cases where the model is highly confident,
conferences could focus human reviewer effort on the more nuanced submissions where expert judg-
ment is most valuable.

6 CHALLENGES AND FUTURE WORK

This paper presents the first work using LLLM to predict Al paper acceptance. Our work opens sev-
eral promising directions for Al-assisted reviewing, including (i) assessing fairness across subfields,
(ii) monitoring evolving conference standards, (iii) effectively integrating human-in-the-loop review
pipelines, and (iv) exploring bias detection to ensure equitable outcomes.
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A REPRODUCIBILITY STATEMENT
We take several steps to enable full replication of our results.

Data. We use ICLR 2024-2025 submissions and final decisions obtained via the OpenReview
API-V2 under CC BY 4.0; our crawl, de-identification, and parsing pipeline and the rules for do-
main labeling and class balancing are described in App. [Cland summarized in Table[6]

Models & training. Exact model checkpoints and modalities appear in Sec. The prompt tem-
plate and label verbalizers are given in App. D} the continual pre-training corpus construction, pack-
ing block size, and optimization details are in Sec. [3.I]and App. [El All experiments were run on a
two NVIDIA A100 80GB GPUs; precision and optimizer choices match App. [E.4]

Baselines & features. The 29 engineered features and model choices are documented in Sec. [4.5]
and App.H| Evaluation. We report Accuracy, Macro-Precision, Macro-Recall and F1 with results in
Tables the out-of-ditribution tests is detailed in Apps.[G] The confidence-stratified utility
analysis includes formulas and binning definitions in Sec.[5} Apps.[I-[]

Upon publication, we will release our complete codebase and processed datasets, with rebuild
scripts, to facilitate replication and extension of this work.

B USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) for two distinct purposes. First, we employed
OpenATI’s ChatGPT (GPT-5) exclusively for grammar correction and improving the fluency of the
manuscript. Second, we evaluated ChatGPT’s performance on our prediction task as part of the ex-
perimental analysis. Significantly, the model did not contribute to the research design, methodology,
or interpretation of results; its role in writing was strictly limited to polishing sentence structure and
enhancing readability. All technical contributions remain the sole work of the authors.

C DATA COLLECTION AND PRE-PROCESSING
OpenReview A= [ ICLR 2024
API V2(p) »{ ICLR 2025
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Figure 5: Data collection and preprocessing workflow and training pipeline.

We collect all ICLR 2025 and 2024 submissions and their corresponding final decisions (accepted or
rejected) via the OpenReview API-V2. All acquired data complies with the Creative Commons
Attribution 4.0 International (CC BY 4.0) license. The papers were further partitioned into four
main subfields based on title keywords: Large Language Models (LLM), Computer Vision (CV),
Reinforcement Learning (RL), and Theoretical (Theory). Papers that do not fall into these categories
are left for future discussion. Summary counts for each subfield are reported in Table[6]

From the collected submissions, we construct two distinct datasets for our analysis: a complete
ICLR2025 dataset as well as balanced domain-specific datasets by combining papers from both
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ICLR 2024 and 2025 to ensure equal representation of accepted and rejected papers, addressing
potential class imbalance issues that could bias our analysis.

We employ MINERU (Wang et al.,

2024), an OCR-based tool, to ex- Imbalanced Balanced
tract Structured content from the Domain Size Accept Reject Size Accept Reject
collected PDFs. As shown in Fig- LLM 3,716 1253 2463(3,238 1,619 1,619
ure 35 CV 2,779 951 1,8283,520 1,760 1,760
M U hd RL 1,253 440 813 |1,526 763 763
INERU processes each document Theory 1,741 625 1116|1974 987 987
by separating text, images, ta-
bles, and equations, and generates Combined 9,489 3,269 6,220 |10,258 5,129 5,129
a structured JSON representation. All 11,601 4,000 7,601 10,258 5,129 5,129
From this output, we retain only o )
elements labeled as figures, tables, Table 6: Data distribution across four domains for
or equations, and restricted text ex- both the imbalanced and balanced datasets

traction to the title, abstract, and in-

troduction sections for use in our prediction modelﬂ The final representation for each paper con-
sisted of clean text files for the targeted sections, alongside organized visual elements paired with
their original captions.

D PROMPT TEMPLATE

We design an instructive prompt template that presents the paper’s features within a natural-language
query and guides the model to generate a decision token corresponding to one of the two target
classes: accept or reject.

Template 7 (x):

You are an expert reviewer. Read the paper content and decide if it
should be accepted.

Paper content: (z)

Decision:

Given a paper input instance x and prompt template 7 (x), the model defines a conditional proba-
bility over the label verbalizer Tam et al.|(2021).

E CONTINUAL PRE-TRAINING

E.1 MOTIVATION

Continual pre-training (CPT) adapts a strong general-purpose language model to the peer-review do-
main by further training on large-scale, unlabeled scientific corpora. Unlike supervised fine-tuning,
CPT retains the original causal language modeling objective, thereby aligning the model’s genera-
tive priors with the linguistic and structural regularities of academic manuscripts. This is particularly
important in OpenReviewer, where downstream tasks rely on prompt-conditioned generation rather
than explicit classification heads. This section will describe the training detail used for CPT.

E.2 INPUT SETTING

We construct the CPT corpus by aggregating unlabeled texts from academic paper PDFs pro-
cessed with MinerU. Each document is concatenated with an EOS separator, tokenized using the
model’s native tokenizer, and packed into fixed-length blocks of size B (default B = 2048). This
block-packing strategy eliminates under-filled sequences and ensures efficient utilization of training
batches. The input IDs and labels are identical, enabling pure causal next-token prediction.

*Manual spot-checking confirmed high quality of the extracted content.
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This preprocessing not only exposes the model to scientific writing styles, rhetorical markers, and
citation format, etc. but also reduces the domain gap between generic pre-training corpora and the
specialized peer-review domain.

Qwen3-4B Qwen3-8B
1.9 —— Train loss 18 —— Train loss
1.8 1.7
@ @
ol7 o016
) -
1.6 15
15 14
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch Epoch

Figure 6: Continual pre-training loss results of Qwen3-4B and Qwen3-8B on the balanced dataset
corpus.

E.3 RESULT

During continual pre-training on the balanced corpus, the training loss decreases steadily for both
Qwen3-4B and Qwen3-8B, indicating stable optimization. The 8B model converges slightly faster
and to a lower final loss than the 4B model, consistent with its larger capacity. We observed no
signs of divergence or instability across the three epochs, suggesting CPT effectively adapts the
base models to scientific writing before downstream fine-tuning.

E.4 HYPERPARAMETER SETTINGS

To maintain training stability, we adopt AdamW optimization with cosine learning rate decay, gra-
dient checkpointing, and norm clipping. CPT is performed prior to prompt-based fine-tuning so
that the updated parameters 6 encode domain knowledge without introducing task-specific biases.
Training was conducted on a single NVIDIA A100 80GB GPU.

Hyperparameter Value

Backbone Model Qwen3-4B(8B)

Sequence Length (B) 2048

Batch Size (per device) 2

Gradient Accumulation 8 (effective batch = 2x 8 x GPUs)

Epochs 3

Learning Rate 1(2) x 1075
Warmup Ratio 0.1

Weight Decay 0.1

Optimizer AdamW
Scheduler Cosine decay
Precision bfloat16 (default)

Attention Backend SDPA (FlashAttention-2 optional)
Gradient Checkpointing Enabled
Max Grad Norm 1.0

Table 7: Hyperparameter settings for continual pre-training in OpenReviewer.
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F ADDITIONAL RESULTS ON VL-MODEL

F.1 RESULTS ON IMBALANCE DATASET (IN-DISTRIBUTION)

Table [8] shows results on the imbalanced dataset. The models exhibit base-rate and threshold bias:
minimizing loss encourages predicting the majority class. The prediction becomes more sensitive to
textitreject patterns while under-covering the minority.

Imbalanced In-Distribution Test

sus- | LLM cv RL THEORY ALL
DOMAL\"

Acc Mac-PMac-R FI AcC MAC-P MAC-R Fl | Acc Mac-PMac-R FI  AcC MAC-P Mac-R  Fl | Acc Mac-P Mac-R  Fl
& w&img| 35.7 17.9 50.0 263 356 17.8 50.0 263|329 165 50.0 248 33.1 16.6 50.0 249|348 174 50.0 258

xt | 742 682 69.5 682 69.5 68.1 69.5 682|663 579 539 519 672 625 620 622|755 719 694 67.1

v‘& ' | 340 17.0 50.0 254 346 173 50.0 257|348 174 500 25.8 37.1 18.6 50.0 27.1|344 172 50.0 25.6

£ w&img| 6437 3227 50.0 39.1 63.8 544 509 4371679 838 513 428 66.0 559 55.0 456|768 91.5 357 514
S we [70.7 714 59.1 57.8 737 722 665 67.4|69.6 663 657 659 725 725 66.1 667|724 702 644 65.1

* Baseline models.

Table 8: Accuracy performance (%) of Qwen2.5-VL-3B-Instruct and Gemma-3-4B-it
across four broad domains on imbalanced dataset. Mac-P and Mac-R denote Macro Precision and
Macro Recall, respectively.

F.2 MORE QUALITY ANALYSIS

Figure[7]shows additional examples of these two patterns from prior submissions (Kang & Ohl 2023}
[Zhang et al} 2024} Zhou et al}, 2024} [Feng et al}[2024}; Ruan et al., 2025 [Huynh et al.,[2025). Most
image-help cases are teaser images, which usually contain clear text and visual cues that support the
model’s judgment. In contrast, many image-mislead cases come from result analysis figures rather
than teaser images, and thus contain little or no explicit textual guidance, making them harder for
the model to interpret correctly.

Case 1 Image Helps: Text Incorrect, Text + Image Correct.
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Case 2 Image Misleads: Text Correct, Text + Image Incorrect.
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Figure 7: More examples of vision—language model predictions on previous submission.

F.3 IMAGE-ONLY FOR PREDICTION

We further evaluate models using images as the sole input modality. First, we employ
DINO-v2 (Oquab et al.| |2023[E| as a classifier, where the inputs are the first two main figures from
each paper. This setting yields an accuracy of 39.5% and an F1 score of 49.8%. In addition, we
experiment with converting the first two pages of each PDF into images and training Qwen-VL
with these image-only inputs. However, the performance in this setting remains close to that of the
untrained baseline.

>https://huggingface.co/facebook/dinov2-base
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G ABLATION STUDIES

We train on the imbalanced ICLR-2025 split and evaluate on a balanced 50/50 test to probe robust-
ness. Across sizes, OOD accuracy hovers around 67-69%, with noticeable drops in macro-recall/F1
versus in-distribution, reflecting a reject-majority bias learned from imbalanced training. CPT offers
modest, inconsistent gains (slightly higher macro-recall/F1 in some domains) but does not eliminate
the bias; larger models (8B) do not guarantee better OOD generalization than 4B. Overall, results
show that class balance during training matters more than scale, and that simple fine-tuning on im-
balanced data leads to systematic under-coverage of ACCEPT, suggesting the need for rebalancing,
threshold calibration, or post-hoc confidence conditioning for reliable deployment.

LLMs Out-of-Distribution Test

sus- | ALL LLM cv RL THEORY
DDMAIN‘ Acc

MAc-P MAc-R  Fl ‘ACC MAc-P MAc-R  Fl ‘ACC Mac-P MAc-R  Fl AcCc MAC-P MAC-R  F1 AcC MAc-P Mac-R  Fl

4B | 678 725 67.0 684|656 714 649 656|682 708 699 71.6 664 68.1 53.1 46.7 54.8 543 519 442
8B | 685 682 705 702|679 683 703 69.1 687 729 70.1 71.8 65.6 622 524 543 5377 48.8 512 442

4B | 68.6 709 69.0 70.8|659 674 66.8 68.0 675 715 684 69.8 62.8 674 62.7 623 59.5 655 585 55.8
8B | 67.0 70.5 66.1 67.4|66.6 672 683 66.7|67.1 70.8 679 693 61.6 64.8 59.7 572 523 513 504 44.6

Orig| CPT

Table 9: Ablation results on the imbalanced ICLR 2025 dataset. Models are trained with the original
accept/reject ratio (31.7% / 68.3%) and evaluated on the balanced 50/50 Out-of-Distribution test set.

VLMs Out-of-Distribution Test

sue- | ALL cv RL THEORY LLM
DDMAIN\ AcC Mac-PMac-R Fl | Acc Mac-PMac-R FI AcC Mac-PMac-R Fl | Acc Mac-P Mac-R  FI | AcC Mac-P MacR  Fl
xt&img| 75.2 89.8 554 68.5|66.7 63.7 75.6 69.2 599 67.8 455 544 |59.1 73.8 445 47.0]650 832 451 58.5

txt

762 894 580 703|752 80.7 657 724 557 889 182 30.2|66.1 820 456 58.6|593 875 299 446

702 802 695 67.0|532 737 8.1 147 503 58.1 20.5 30.3|60.2 587 822 685620 644 683 66.3
762 812 757 750|537 58.0 233 332 575 635 455 53.0|544 731 21.1 328|557 754 28.1 409

=
)
=
e
é txt&img
1)

]

txt

Table 10: Accuracy performance (%) of Qwen2.5-VL-3B-Instruct and Gemma-3-4B-it
across four broad domains under the Out-of-Distribution Test setting

H COMPLETE TABLE OF WHITE BOX FEATURES

The complete 29 white-box features importance are reported in Table[T1]

I R, DERIVATION

We quantify how reliability scales with certainty by separately for each predicted class (ACCEPT,
REJECT) fitting an ordinary least squares line to bin-level precision vs. confidence (using the filtered
bin midpoints as x):

Given paired points {(z;,y;)} where x; is the confidence-bin midpoint and y; the corresponding
precision:

Fit: y = max + b, 3)
Residual sum of squares:  SSies = > _(yi — §i)°, ©))
i
Total sum of squares: SSi = Z(yz — )2, (10)
. I 2 S Stes
Coefficient of determination: R“ =1 — . an
SSot

Interpretation.

» R? = 1: perfect linear fit.
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Feature

Bal Imb

Structure

total words

total pages

header count

section balance variance
words/page

0.0792 0.0739
0.0658 0.0575
0.0569 0.0587
0.0474 0.0492
0.0446 0.0437

Visual Content
avg caption length
image density
table density
image count
equation density
table count
equation count

0.0439 0.0465
0.03740.0378
0.0363 0.0370
0.0362 0.0332
0.0360 0.0372
0.0355 0.0356
0.0315 0.0341

Citation Engagement
citations in text
citation density

0.0448 0.0403
0.0408 0.0395

(a) Structural, visual, and citation features

Feature

Bal Imb

Methodological Rigor
dataset mentions
metrics mentions
baseline mentions
statistical tests
experiment count

0.0389 0.0374
0.0355 0.0356
0.0241 0.0240
0.0061 0.0058
0.0030 0.0031

Writing Quality
abstract word count
avg sentence length

0.0430 0.0446
0.0423 0.0432

Novelty & Contribution
novel method claims
comparison studies
contribution statements

0.0346 0.0365
0.0327 0.0356
0.0318 0.0314

App. Material

word count (appendix)
header count (appendix)
images count (appendix)
table count (appendix)
equation count (appendix)

0.0188 0.0203
0.01790.0177
0.01250.0134
0.0121 0.0161
0.0088 0.0095

(b) Methodological, writing, novelty, and appendix

features

Bal = balanced dataset importance; Imb = imbalanced dataset importance.

Table 11: Feature importance across balanced (Bal) and imbalanced (Imb) datasets using a Random
Forest. Values are normalized importances.

* R? = 0: no better than predicting the mean 7.
+ R? < 0: worse than predicting the mean.

» R? = NaN: not enough points, constant z, or zero variance in y (SSi; = 0).

J LINEAR PRECISION-CONFIDENCE RELATIONSHIP

We further quantify how reliability scales with certainty by fitting, separately for ACCEPT and
REJECT, an least squares model of precision against confidence, and we report the linear coefficient
of determination R? in the figures to characterize the strength of the linearity.

On the balanced dataset (Fig. 4a, 4b), two classes exhibit similar R? values, indicating that increases
in confidence translate into nearly equivalent gains in precision for both ACCEPT and REJECT. More-
over, the Qwen3-4B model exhibits a stronger linear relationship than the Qwen3-8B model on
this dataset, with the highest fit R = 0.85.

On the imbalanced dataset (Fig. 4c, 4d), by contrast, the precision—confidence relationship diverges
across classes: the minority class (ACCEPT) typically shows a lower R?, reflecting weaker separa-
bility than under balanced training.
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