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ABSTRACT

Neural stochastic differential equations (Neural SDEs) have emerged as powerful
mesh-free generative models for continuous stochastic processes, with critical ap-
plications in fields such as finance, physics, and biology. Previous state-of-the-art
methods have relied on adversarial training, such as GANs, or on minimizing dis-
tance measures between processes using signature kernels. However, GANs suf-
fer from issues like instability, mode collapse, and the need for specialized train-
ing techniques, while signature kernel-based methods require solving linear PDEs
and backpropagating gradients through the solver, whose computational complex-
ity scales quadratically with the discretization steps. In this paper, we identify a
novel class of strictly proper scoring rules for comparing continuous Markov pro-
cesses. This theoretical finding naturally leads to a novel approach called Finite
Dimensional Matching (FDM) for training Neural SDEs. Our method leverages
the Markov property of SDEs to provide a computationally efficient training ob-
jective. This scoring rule allows us to bypass the computational overhead asso-
ciated with signature kernels and reduces the training complexity from O(D2) to
O(D) per epoch, where D represents the number of discretization steps of the
process. We demonstrate that FDM achieves superior performance, consistently
outperforming existing methods in terms of both computational efficiency and
generative quality.

1 INTRODUCTION

Stochastic differential equations (SDEs) are a modeling framework used to describe systems in-
fluenced by random forces, with applications spanning finance, physics, biology, and engineering.
They incorporate stochastic terms to allow the modeling of complex systems under uncertainties.

A neural stochastic differential equation (Neural SDE) (Kidger et al., 2021; Issa et al., 2023; Tzen &
Raginsky, 2019; Jia & Benson, 2019; Hodgkinson et al., 2021; Li et al., 2020; Morrill et al., 2020)
is an SDE where neural networks parameterize the drift and diffusion terms. This model acts as
a mesh-free generative model for time-series data and has shown a significant impact in financial
applications (Arribas et al., 2021; Gierjatowicz et al., 2020; Choudhary et al., 2023; Hoglund et al.,
2023).

Training Neural SDEs typically involves minimizing a distance measure between the distribution of
generated paths and the distribution of observed data paths. State-of-the-art performance has been
achieved using signature kernels to define a distance measure on path space (Issa et al., 2023). Al-
though effective, this approach requires solving a linear partial differential equation (PDE) whose
computational complexity scales quadratically with the discretization step, which becomes imprac-
tical for long time series. An alternative is training these models adversarially as Generative Ad-
versarial Network (GAN) (Kidger et al., 2021). However, GAN-based training can be fraught with
issues such as instability, mode collapse, and the need for specialized techniques.

∗Most of the work was done during an internship at Cisco.
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In this paper, we present a theoretical result that extends scoring rules for comparing distributions
in finite-dimensional spaces to those for continuous Markov processes. This extension forms the
basis of a novel algorithm, Finite Dimensional Matching (FDM), designed for training generative
models of stochastic processes. FDM exploits the Markovian nature of SDEs by leveraging the
two-time joint distributions of the process, providing an efficient training objective that bypasses
the complexities of signature kernels. Notably, FDM reduces the computational complexity from
O(D2) to O(D) per training step, where D represents the number of discretization steps.

The key contributions of this paper are as follows:

• Our main theorem shows that scoring rules to compare continuous Markov processes can
be easily built upon scoring rules on finite-dimensional space.

• Our main theorem suggests an efficient training method, FDM, for Neural SDE.
• Our experiments show that FDM outperforms prior methods on multiple benchmarks.

The rest of the paper is organized as follows: Section 2 provides a review of the relevant literature.
In Section 3, we present preliminary results that lay the foundation for our main contributions. Sec-
tion 4 introduces our main theorem, which extends scoring rules for finite dimensions to continuous
Markov processes and leads to the development of our novel Finite Dimensional Matching (FDM)
algorithm. In section 5, we analyze the sample complexity and sensitivity of FDM. Section 6 details
the experimental setup and results, demonstrating the superiority of FDM in terms of both compu-
tational efficiency and generative performance across several benchmark datasets. Finally, Section
7 concludes the paper by summarizing the contributions, limitations, and directions for future work.

2 RELATED WORK

We begin by reviewing prior applications of scoring rules in generative modeling followed by an
exploration of the literature on training Neural SDEs.

2.1 SCORING RULES

Scoring rules offer a method to measure discrepancies between distributions (Gneiting & Raftery,
2007) and are especially appealing for generative modeling and have been employed in training
various generative models (Bouchacourt et al., 2016; Gritsenko et al., 2020; Pacchiardi et al., 2024;
Pacchiardi & Dutta, 2022; Issa et al., 2023; Bonnier & Oberhauser, 2024). Notably, Pacchiardi et al.
(2024) apply scoring rules to discrete Markov chains, although their extension to continuous-time
processes has not yet been explored. Issa et al. (2023) and Bonnier & Oberhauser (2024) construct
scoring rules for continuous processes by utilizing signature kernels.

2.2 NEURAL SDES

Several methods have been proposed for training Neural SDEs as generative models, each differing
in how they define the divergence or distance between distributions on path space. In Table 1, we
compare different methods for training Neural SDEs, highlighting their divergence measures and the
corresponding discriminator or training objectives. Our approach, Finite Dimensional Matching
(FDM), introduces a novel scoring rule specifically designed for continuous Markov processes.

One method to train Neural SDE is the latent SDE model introduced by Li et al. (2020), which trains
a Neural SDE using variational inference principles (Opper, 2019). In their framework, training
involves optimizing the free energy that includes the Kullback-Leibler (KL) divergence between
the original SDE and an auxiliary SDE. These two SDEs share the same diffusion term but have
different drift terms. The KL divergence between their laws can be computed using Girsanov’s
change of measure theorem. However, the performance of latent SDEs is generally inferior to SDE-
GANs due to lower model capacity (Kidger et al., 2021; Issa et al., 2023).

A prominent method is the SDE-GAN introduced by Kidger et al. (2021), which employs adversarial
training to fit a Neural SDE, as in Wasserstein-GANs (Arjovsky et al., 2017). This approach relies
on the 1-Wasserstein distance, with the discriminator parameterized by neural controlled differential
equations (Kidger et al., 2020; Morrill et al., 2021). However, SDE-GANs are notoriously difficult
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Table 1: Methods for training Neural SDEs. SigKer stands for signature kernel (Issa et al., 2023),
TruncSig is for truncated signature (Bonnier & Oberhauser, 2024), SDE-GAN is proposed by
Kidger et al. (2021), and Latent SDE is proposed by Li et al. (2020).

Methods Divergence or distance Discriminator or training objective
Latent SDE KL-divergence Monte-Carlo simulation of free energy
SDE-GAN 1-Wasserstein distance Optimizing discriminator nets
SigKer Signature kernel score Solving Goursat PDEs
TruncSig Truncated signature kernel score Truncated approximation of signature
FDM (Ours) A novel class of scoring rules for

continuous Markov processes
Standard ERM of the expected scores

to train due to their high sensitivity to hyperparameters. Another major challenge is the need for
a Lipschitz discriminator, which requires techniques like weight clipping and gradient penalties to
enforce this constraint (Kidger, 2022). Adversarial training for time-series generative models has
also been explored in the context of discrete data (Ni et al., 2022; Yoon et al., 2019).

Another key contribution to training Neural SDEs is the signature kernel method (Issa et al., 2023;
Bonnier & Oberhauser, 2024), which minimizes a distance measure based on signature kernels (Lee
& Oberhauser, 2023) of paths. However, evaluation of the signature kernel requires solving Goursat
partial differential equations (PDEs) and backpropagating gradients through the solver (Salvi et al.,
2021). The computational complexity of solving Goursat PDEs scales quadratically with the number
of discretization steps, which can be prohibitive for long time series data. Bonnier & Oberhauser
(2024) approximates the signature kernel as inner products of truncated signature transforms, called
truncated signature. However, the scoring rule based on truncated signature is not strictly proper and
has O(dN ) memory complexity where d is the number of features and N is the truncation size.

The concurrent work of Snow & Krishnamurthy (2025) introduces a novel technique that leverages
Wiener space cubature theory to bypass Monte Carlo simulations in Neural SDE training.

3 PRELIMINARIES

In this section, we set up the notations and introduce the following preliminary concepts: Neural
SDEs, Markov processes, and scoring rules.

Background and Notations Let {Ω,F ,P} be a probability space where Ω,F ,P denote the sample
space, sigma-algebra, and probability measure, respectively. For a random variable ξ, the function
Pξ = P ◦ ξ−1 is the induced measure on its range space. In particular, for a random process X , PX

denotes its law. We use the superscript ⊤ for the transposition of a matrix or vector.

Neural SDE Let B : [0, T ] × Ω → Rdnoise be a Brownian motion on Rdnoise , where dnoise ∈ N.
We define a Neural SDE as in Issa et al. (2023) and Kidger et al. (2021):

Z0 = ξθ(a), dZt = µθ(t, Zt)dt+ σθ(t, Zt)dWt, X
θ
t = AθZt + bθ

where a is sampled from a dinitial-dimensional standard Gaussian distribution,

ξθ : Rdinitial → Rdz , µθ : [0, T ]× Rdz → Rdz , σθ : [0, T ]× Rdz → Rdz×dnoise

along with Aθ ∈ Rdx×dz , bθ ∈ Rdx , are functions parameterized by neural networks, and
dinitial, dx, dz ∈ N. We assume additionally that µθ and σθ are Lipschitz continuous in both argu-
ments and ξθ(a) has finite second-order momentum. These conditions ensure that the SDE for Zt

has a unique strong solution. Suppose Yt is the data process, we’d like to train the neural networks
θ on data sampled from PY so that PXθ matches PY .

Markov Process We say a continuous process Xt with filtration {Ft} is Markov if Xu is in-
dependent of Ft for all u ≥ t given Xt (Kallenberg, 2021). For an SDE of the form dXt =
µ(t,Xt) dt+ σ(t,Xt) dBt, with the filtration generated by the Brownian motion Bt, Xt is Markov
as long as the SDE has a unique strong solution (Theorem 9.1, Mao (2007)).

Scoring Rules Given a measurable space (Ω0,F0) and ω0 ∈ Ω0, a scoring rule (Gneiting & Raftery,
2007) s(P, ω0) maps a probability measure P on Ω0 and a sample ω0 to R. The expected score is
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defined as S(P,Q) = EQ[s(P, ω0)] =
∫
Ω0

s(P, ω0) dQ(ω0), where P is the predictive distribution
and Q is the true distribution. The scoring rule s is said to be proper if the expected score satisfies
S(P,Q) ≤ S(Q,Q). It is strictly proper if S(P,Q) = S(Q,Q) ⇐⇒ P = Q. For example,
let k : Rd × Rd → R be the RBF kernel defined as k(x, y) = exp

(
−γ∥x− y∥2

)
, where γ >

0 is a parameter that determines the width of the kernel, then s(P, z) = 1
2EZ,Z′∼P k(Z,Z

′) −
EZ∼P k(Z, z) is a strictly proper scoring rule for distribution on Rd (Gneiting & Raftery, 2007).

Let P θ be a distribution controlled by a generative model θ, and let Q be the true distribution
accessed through data. Given a strictly proper scoring rule s, sufficient model capacity of θ, and
sufficient data points from Q, P θ can be trained by maximizing S(P θ, Q) over θ, leading to P θ =
Q. While many scoring rules for finite-dimensional spaces have been proposed, we lack strictly
proper scoring rules for random processes that can be evaluated efficiently. In our main claim,
we show that a strictly proper scoring rule for a two-time joint distribution, i.e., the distributions
{(Xt1 , Xt2),∀t1, t2 ∈ [0, T ]}, for a random process X , can be converted into a strictly proper
scoring rule for continuous Markov processes.

4 FINITE DIMENSIONAL MATCHING

In this section, we present our main theorem, which converts a scoring rule for a two-time joint
distribution into a scoring rule for a Markov process. Specifically, if we have a scoring rule for
Ω0 = R2d, then Theorem 2 allows us to convert it into a scoring rule for Markov processes X,Y :
[0, T ] → Rd, where d ∈ N and T ∈ R>0.

4.1 SCORING RULE FOR MARKOV PROCESS

In this section, we present our main theorem which shows that a strictly proper scoring rule for
the two-time joint distributions can be converted to a scoring rule for two Markov processes. Let
continuous Markov processes X,Y on [0, T ] take values in a Polish space E endowed with its Borel
σ-algebra. Let s be any strictly proper scoring rule defined on E ×E . Let S(P,Q) = EQ[s(P, ω)] <
∞,∀ measures P,Q on E × E . We define the scoring rule s̄ for continuous Markov processes as
following:
Definition 1. s̄(PX , y) = E(t1,t2)∼U([0,T ]2)s(P(Xt1

,Xt2
), (yt1 , yt2)), where P(Xt1

,Xt2
) is the joint

marginal distributions at times t1, t2 of X , and U([0, T ]2) is the uniform distribution on [0, T ]2.

Let S̄(PX ,PY ) = Ey∼PY
[s̄(PX , y)]. Now we present our main claim, with its proofs deferred to

the appendix.
Theorem 2. If s is a strictly proper scoring rule for distributions on E × E , s̄ is a strictly proper
scoring rule for E-valued continuous Markov processes on [0, T ] where T ∈ R>0. That is, for
any E-valued continuous Markov processes X,Y with laws PX ,PY , respectively, S̄(PX ,PY ) ≤
S̄(PY ,PY ) with equality achieved only if PX = PY .

In the appendix, we present a more generalized version of Theorem 2 that does not require the
timestamps t1 and t2 to be sampled from U([0, T ]2) in the definition of s̄. Nonetheless, to maintain
clarity and simplicity, we focus our discussion on the uniform sampling case in the main paper.

Suppose Xθ is a Markov process parameterized by neural net parameters θ with sufficient capacity.
Therefore, maximizing S̄(PXθ ,PY ) = EY∼PY

[s̄(PXθ , Y )], which can be achieved by maximizing
the corresponding empirical average, will result in PXθ = PY .

We present a concrete example on the application of Theorem 2. Consider continuous Markov
processes X,Y on [0, T ] taking values in Rd. Let k : R2d × R2d → R be the RBF kernel, recall
that s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′) − EZ∼P k(Z, z) is a strictly proper scoring rule for distribution

on R2d (Gneiting & Raftery, 2007). By Theorem 2,

s̄(PX , y) = E(t1,t2)∼U([0,T ]2)

[
1

2
EX,X′k([Xt1 , Xt2 ], [X

′
t1 , X

′
t2 ])− EXk([Xt1 , Xt2 ], [yt1 , yt2 ])

]
(1)

is strictly proper, where [·, ·] is the concatenation of two vectors. S̄(PXθ ,PY ) = EY∼PY
[s̄(PXθ , Y )]

can be estimated through empirical average and optimized efficiently.

4



Published as a conference paper at ICLR 2025

4.2 FDM ALGORITHM

We consider an expected score S̄(PXθ ,PY ) = EY∼PY
[s̄(PXθ , Y )], which can be estimated using

an empirical average Ŝ. For example, an unbiased estimator of S̄ for s̄ defined in (1) can be con-
structed using batches of generated paths BX = {xi}Bi=1 and data paths BY = {yi}Bi=1. For each i,
independently sample two timestamps ti and t′i. The empirical estimator is then given by:

Ŝ(BX ,BY ) =
1

2B(B − 1)

∑
i̸=j

k
(
[xi

tj , x
i
t′j
], [xj

tj , x
j
t′j
]
)
− 1

B2

B∑
i=1

B∑
j=1

k
(
[xi

tj , x
i
t′j
], [yjtj , y

j
t′j
]
)
.

Note that the above estimator Ŝ only requires each data path to be (potentially irregularly) observed
at two distinct timestamps, and we can observe the xi’s at any timestamps since they are generated
by the Neural SDE model. Alternative empirical objectives are provided in the appendix.

In Algorithm 1, we present the concrete finite dimensional matching (FDM) algorithm derived from
Theorem 2 to train a Neural SDE Xθ.

Algorithm 1: Finite Dimensional Matching (FDM)

Input: Neural SDE Xθ, data paths {yi : i ∈ [N ]}, strictly proper scoring rule s , batch size B
1 repeat
2 Generate a batch of simulated paths BX = {xi : i ∈ [B]} using the Neural SDE model θ;
3 Randomly sample a batch of data paths BY ⊂ {yi : i ∈ [N ]} with |BY | = B ;
4 Compute the empirical estimate Ŝ(BX ,BY ) of S̄(PXθ ,PY );
5 Maximize Ŝ with respect to θ using an optimizer of the user’s choice;
6 until stopping criterion is met;

5 THEORETICAL PROPERTIES

In this section, we investigate the sample complexity and sensitivity of the proposed scoring rules s̄.
All proofs are deffered to the appendix.

5.1 SAMPLE COMPLEXITY

We show that the sample complexity of the estimator Ŝ(BX ,BY ) retains the classical sample com-
plexity of a kernel-based scoring rule s (Gretton et al., 2012). Let k be a kernel associated with a
Reproducing Kernel Hilbert Space (RKHS) and s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′) − EZ∼P k(Z, z) be

a strictly proper scoring rule. Recall that s̄(PX , y) = E(t1,t2)∼U([0,T ]2)s(P(Xt1
,Xt2

), (yt1 , yt2)) and
S̄(PX ,PY ) = Ey∼PY

[s̄(PX , y)].
Theorem 3. Let k(·, ·) satisfy 0 ≤ k(·, ·) ≤ K and the batch size B ≥ 2. For any ε > 0,

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 8Bε2

47K2

)
.

Equivalently, with probability at least 1 − δ, the deviation of Ŝ from its expected value S̄(PX ,PY )
is bounded as ∣∣ Ŝ(BX ,BY )− S̄(PX ,PY )

∣∣ ≤ K

√
47 ln(2/δ)

8B
.

Ŝ exhibits a sample complexity analogous to the classical sample complexity of kernel-based scoring
rules s. In Section B of the appendix, we extend this analysis to an alternative estimator where all
sample paths are evaluated at n shared timestamps.

5.2 SENSITIVITY

Let X be an Itô diffusion on Rd, i.e., dXt = µ(t,Xt)dt + σ(t,Xt)dBt. The following theorem
shows how perturbations in µ and σ affect the value of the scoring rule s̄(PX , y).
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Theorem 4. Let X satisfy dXt = µ(t,Xt)dt + σ(t,Xt)dBt on Rd. Let X̃ satisfy dX̃t =

µ̃(t, X̃t)dt+σ̃(t, X̃t)dBt on Rd where ∀t, x, ∥µ(t, x)− µ̃(t, x)∥2 ≤ δµ, ∥σ(t, x)− σ̃(t, x)∥2 ≤ δσ ,
and δµ, δσ are constants. Assume the scoring rule s(P, z) is Lipschitz in terms of distribution P with
respect to the Wasserstein-2 distance. Assume both X and X̃ have unique strong solutions and share
the same initial conditions, then |s̄(PX , y)− s̄(PX̃ , y)| ≤ LsC(δµ + δσ), where Ls is the Lipschitz
constant of s, the constant C depends on Lipschitz constants of µ and σ.

If we allow different sampling distributions of t1, t2 than uniform as in the generalized main theorem
Theorem 7 in the appendix, C may also depend on the sampling distribution of t1, t2. This result
provides a theoretical guarantee that small changes in the dynamics of the process result in changes
to the scoring rule that are linear with respect to δµ + δσ .

6 EXPERIMENTS

Table 2: Average KS test scores (lower is better) and chance of rejecting the null hypothesis (%)
at 5%-significance level on marginals (lower is better) of metal prices, trained on paths evenly
sampled at 64 timestamps.

Dim Model t = 6 t = 19 t = 32 t = 44 t = 57

SILVER

SigKer .144, 23.9 .134, 14.4 .130, 11.5 .126, 9.20 .122, 7.96
TruncSig .274, 97.9 .277, 98.7 .293, 99.3 .304, 99.6 .315, 99.6

SDE-GAN .330, 70.0 .647, 100. .789, 100. .813, 100. .828, 100.
FDM (ours) .118, 9.76 .114, 7.24 .112, 6.08 .114, 7.20 .117, 8.16

GOLD

SigKer .129, 10.7 .127, 9.40 .128, 10.1 .126, 9.80 .123, 8.16
TruncSig .255, 94.7 .274, 98.4 .298, 96.8 .316, 99.8 .330, 99.8

SDE-GAN .244, 90.6 .299, 94.8 .318, 96.8 .336, 96.8 .352, 91.7
FDM (ours) .119, 9.32 .117, 8.00 .115, 7.34 .116, 7.66 .118, 8.52

Table 3: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance
level on marginals of U.S. stock indices, trained on paths evenly sampled at 64 timestamps. ”DOL-
LAR”, ”USA30”, ”USA500”, ”USATECH”, and ”USSC2000” stand for US Dollar Index, USA 30
Index, USA 500 Index, USA 100 Technical Index, and US Small Cap 2000, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

DOLLAR

SigKer .262, 76.4 .316, 82.1 .322, 83.7 .314, 84.4 .296, 83.9
TruncSig .279, 98.3 .303, 99.4 .323, 99.7 .339, 99.8 .354, 99.9

SDE-GAN .389, 93.0 .544, 98.3 .605, 99.5 .599, 99.8 .553, 99.8
FDM (ours) .143, 25.6 .151, 29.6 .153, 30.7 .155, 31.7 .156, 33.0

USA30

SigKer .200, 56.5 .239, 78.8 .264, 91.8 .279, 94.2 .291, 93.7
TruncSig .171, 51.5 .194, 61.9 .213, 70.9 .228, 79.1 .250, 89.5

SDE-GAN .311, 80.9 .402, 91.6 .428, 90.6 .550, 99.9 .666, 100.
FDM (ours) .132, 15.6 .123, 10.0 .124, 9.50 .124, 9.30 .121, 8.04

USA500

SigKer .287, 86.8 .350, 92.3 .367, 94.0 .365, 93.5 .355, 93.1
TruncSig .189, 57.7 .204, 63.7 .221, 71.3 .231, 77.4 .244, 86.1

SDE-GAN .310, 97.0 .448, 93.3 .625, 100. .713, 100. .746, 100.
FDM (ours) .122, 9.82 .117, 6.84 .117, 6.56 .117, 6.30 .118, 6.52

USATECH

SigKer .212, 80.6 .240, 91.0 .242, 90.9 .239, 90.6 .245, 92.2
TruncSig .197, 74.1 .227, 86.1 .247, 91.3 .265, 94.8 .280, 97.6

SDE-GAN .420, 99.9 .786, 100. .910, 100. .950, 100. .969, 100.
FDM (ours) .123, 9.92 .119, 7.48 .118, 6.68 .118, 6.54 .118, 6.74

USSC2000

SigKer .255, 70.1 .312, 88.3 .328, 94.5 .325, 94.2 .314, 93.6
TruncSig .180, 46.5 .199, 62.5 .221, 78.8 .233, 89.0 .248, 96.4

SDE-GAN .317, 75.4 .572, 98.2 .764, 100. .843, 100. .887, 100.
FDM (ours) .134, 16.6 .126, 11.1 .122, 8.80 .124, 9.14 .122, 8.34
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Table 4: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 64 timestamps.

Dim Model t=6 t=19 t=32 t=44 t=57

EUR/USD

SigKer .251, 66.5 .293, 70.3 .288, 66.4 .271, 55.4 .248, 38.5
TruncSig .273, 97.9 .313, 99.6 .340, 99.8 .354, 99.9 .369, 99.9

SDE-GAN .529, 89.2 .665, 95.8 .723, 96.0 .754, 97.7 .784, 99.8
FDM (ours) .125, 12.9 .113, 6.26 .109, 5.04 .110, 5.46 .111, 6.10

USD/JPY

SigKer .165, 34.3 .189, 38.1 .191, 34.4 .188, 30.5 .185, 29.3
TruncSig .252, 87.8 .291, 98.0 .317, 99.4 .334, 99.7 .354, 99.9

SDE-GAN .212, 73.4 .267, 85.2 .309, 88.6 .359, 91.2 .425, 92.8
FDM (ours) .120, 9.54 .111, 6.04 .110, 5.54 .111, 5.92 .111, 5.98

Table 5: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals of energy prices, trained on paths evenly sampled at 64 timestamps.
We reserve the latest 20% data as test dataset and measure how well the model predicts into future.
”BRENT”, ”DIESEL”, ”GAS”, and ”LIGHT” stand for U.S. Brent Crude Oil, Gas oil, Natural Gas,
and U.S. Light Crude Oil, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

BRENT

SigKer .284, 69.4 .339, 70.7 .343, 68.0 .328, 65.4 .302, 60.0
TruncSig .254, 91.8 .264, 95.4 .273, 96.7 .292, 98.1 .303, 98.8

SDE-GAN .487, 97.0 .812, 100 .929, 100 .961, 100 .981, 100
FDM (ours) .127, 12.9 .123, 10.2 .125, 11.5 .124, 11.6 .124, 11.4

DIESEL

SigKer .187, 47.1 .218, 55.4 .223, 49.6 .222, 42.9 .219, 38.1
TruncSig .221, 81.9 .244, 93.9 .262, 97.9 .274, 98.9 .305, 99.6

SDE-GAN .279, 77.9 .522, 97.6 .664, 99.8 .735, 100 .793, 100
FDM (ours) .122, 10.2 .117, 7.82 .117, 8.20 .123, 10.5 .123, 10.7

GAS

SigKer .244, 70.4 .298, 77.1 .305, 71.5 .295, 69.1 .273, 63.7
TruncSig .244, 82.0 .280, 93.4 .301, 97.6 .328, 99.4 .342, 99.7

SDE-GAN .337, 86.2 .586, 99.8 .717, 99.9 .801, 100 .877, 100
FDM (ours) .116, 7.52 .116, 7.36 .123, 11.7 .127, 14.4 .126, 13.7

LIGHT

SigKer .184, 60.1 .200, 66.9 .195, 59.1 .186, 53.0 .173, 43.6
TruncSig .245, 91.7 .261, 94.6 .272, 96.4 .292, 98.7 .308, 99.5

SDE-GAN .266, 74.8 .403, 76.0 .464, 85.7 .604, 98.6 .717, 99.9
FDM (ours) .121, 9.82 .122, 10.4 .131, 15.5 .131, 15.2 .132, 15.5

We evaluate our method, FDM1, by comparing it to three existing methods for training Neural
SDEs: the signature kernel method (SigKer, Issa et al. (2023)), the truncated signature method
(TruncSig, Bonnier & Oberhauser (2024)), and SDE-GAN (Kidger et al., 2021). Our experiments
are conducted across five real-world datasets: energy prices, bonds, metal prices, U.S. stock indices,
and exchange rates, as well as one synthetic dataset, the Rough Bergomi model2. The real-world
datasets are historical price data for variety of financial instruments. The rough Bergomi model is a
widely used stochastic volatility model and has been extensively described in Issa et al. (2023). For
all datasets, we model all features jointly with a single multi-dimensional Neural SDE.

Consistent with Issa et al. (2023), we use the Kolmogorov-Smirnov (KS) test to assess the marginal
distributions for each dimension. Specifically, we compare a batch of generated paths against an
unseen batch from the real data distribution and calculate the KS scores and the chance of rejecting
the null hypothesis, which states that the two distributions are identical. This process is repeated

1code available at https://github.com/Z-Jianxin/FDM
2All real-world datasets are obtained from https://www.dukascopy.com/swiss/english/

marketwatch/historical/
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Table 6: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance
level on marginals of bonds, trained on paths evenly sampled at 64 timestamps. We reserve the
most latest 20% data as test dataset and measure how well the model predicts into future. ”BUND”,
”UKGILT”, and ”USTBOND” stand for Euro Bund, UK Long Gilt, and US T-BOND, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

BUND

SigKer .210, 49.0 .244, 52.8 .251, 54.7 .252, 58.7 .245, 54.3
TruncSig .261, 95.0 .296, 99.4 .328, 99.7 .350, 99.9 .362, 99.9

SDE-GAN .339, 97.8 .582, 100 .613, 99.3 .764, 100 .831, 100
FDM (ours) .119, 10.2 .120, 8.80 .124, 8.66 .125, 9.72 .118, 8.20

UKGILT

SigKer .158, 26.0 .183, 27.5 .197, 30.5 .201, 31.8 .201, 32.0
TruncSig .200, 67.8 .244, 89.8 .285, 98.9 .312, 99.7 .337, 99.8

SDE-GAN .366, 84.3 .640, 99.8 .862, 100 .902, 100 .921, 100
FDM (ours) .127, 12.6 .113, 6.62 .109, 5.28 .109, 5.36 .109, 5.70

USTBOND

SigKer .189, 40.6 .207, 37.6 .213, 35.7 .213, 35.3 .214, 36.2
TruncSig .229, 73.5 .248, 81.3 .284, 95.0 .310, 99.3 .334, 99.8

SDE-GAN .351, 84.4 .688, 100 .853, 100 .903, 100 .916, 100
FDM (ours) .137, 17.9 .124, 10.8 .115, 6.60 .113, 6.14 .111, 5.64

Table 7: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 256 timestamps.

Dim Model t = 25 t = 76 t = 128 t = 179 t = 230

EUR/USD

SigKer .535, 100. .535, 100. .536, 100. .546, 100. .540, 100.
TruncSig .137, 18.9 .184, 67.1 .252, 99.6 .290, 100. .318, 100.

SDE-GAN .134, 21.6 .411, 100. .569, 100. .548, 100. .338, 99.9
FDM (ours) .136, 23.0 .112, 5.70 .123, 12.7 .132, 17.8 .141, 26.6

USD/JPY

SigKer .535, 100. .534, 100. .535, 100. .538, 100. .541, 100.
TruncSig .114, 7.10 .152, 28.3 .199, 82.8 .232, 97.9 .242, 99.2

SDE-GAN .201, 72.6 .334, 99.9 .407, 100. .405, 100. .338, 100.
FDM (ours) .124, 13.8 .112, 6.30 .118, 6.90 .122, 9.00 .115, 6.20

for all the test batches and we report the averaged KS scores and the chance of rejecting the null
hypothesis across all the batches.

For all experiments, we use fully connected neural networks to parameterize the drift and diffusion
terms, with hyperparameters and preprocessings suggested in Issa et al. (2023). We choose s to be
s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′)−EZ∼P k(Z, z) where k is the rbf kernel with unit kernel bandwidth.

In particular, following Issa et al. (2023), we let our method and TruncSig train for 10000 steps,
while SDE-GAN trains for 5000 steps and SigKer for 4000 steps, to normalize the training time.
Despite the differences in training steps, our method remains the fastest in terms of wall-clock time.
All models are trained and evaluated on a single NVIDIA H100 GPU.

For our experiments, we first follow Issa et al. (2023) to train and evaluate the models on three
datasets—metal prices, stock indices, and exchange rates—using sequences with 64 timestamps and
random train-test splits. This training and evaluation process is repeated with five different random
seeds, and the average KS scores and rejection rates are reported in Tables 2, 3, and 4, respectively,
with corresponding standard deviations provided in the appendix. For the energy price and bonds
datasets, we reserve the latest 20% of the data for testing, evaluating the trained models via the
KS test on generated sequences against unseen future sequences. These results are presented in
Tables 5 and 6. We repeat the experiments on these two datasets five times, with standard deviations
also reported in the appendix. Additionally, for the exchange rates dataset, we trained and tested
the models using sequences with 256 and 1024 timestamps, reporting KS test results in Tables 7
and 8, and training time in Table 16 in the appendix. For the synthetic rough Bergomi model, we
generated sequences with 64 timestamps across both 16 and 32 dimensions, with results reported

8
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Table 8: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 1024 timestamps. A thread limit error is encountered during the training of
the SigKer (Issa et al., 2023), which relies on a dedicated parallel PDE solver.

Dim Model t = 102 t = 307 t = 512 t = 716 t = 921

EUR/USD

SigKer - - - - -
TruncSig .476, 100. .718, 100. .993, 100. .996, 100. .887, 100.

SDE-GAN .280, 98.4 .818, 100. .963, 100. .846, 100. .805, 100.
FDM (ours) .117, 11.1 .117, 9.00 .138, 25.1 .153, 36.2 .191, 66.5

USD/JPY

SigKer - - - - -
TruncSig .766, 100. .743, 100. .670, 100. .998, 100. 1.00, 100.

SDE-GAN .528, 100. .291, 100. .389, 100. .530, 100. .655, 100.
FDM (ours) .138, 20.9 .124, 14.3 .150, 32.1 .199, 74.9 .260, 97.9

Table 9: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-
tamps from a 16-dimension rough Bergomi model.

Model t = 6 t = 19 t = 32 t = 44 t = 57

SigKer .112, 6.60 .118, 7.80 .124, 10.8 .132, 16.3 .144, 25.5
TruncSig .450, 100. .458, 100. .462, 100. .461, 100. .460, 100.

SDE-GAN .308, 99.8 .374, 99.4 .393, 99.5 .406, 99.6 .430, 99.7
FDM (ours) .113, 7.20 .116, 7.80 .119, 8.80 .124, 11.8 .131, 15.8

in Tables 9 and 10, where we report the average KS scores and the chance of rejecting the null
hypothesis across different dimensions. We also compare the computational efficiency of the models
in terms of training time for different dimensions of the Rough Bergomi model, with detailed results
summarized in Table 17 in the appendix. We highlight the best-performing model across all tables.

We include qualitative studies in Figure 1, which compare the dynamics of joint distributions of real
and generated data points for the metal price dataset. We compare the sample paths of the metal
price dataset in Figure 2. Due to space constraints, we provide further qualitative studies comparing
pairwise joint distributions and sample paths, along with tables comparing computational efficiency,
in section G in the appendix. Our results demonstrate that our method outperforms competitors in
an overwhelming majority of cases in terms of KS test results, qualitative results, and computational
efficiency.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our main theorem demonstrates that any strictly proper scoring rule for comparing distributions on
finite dimensions can be extended to strictly proper scoring rules for comparing the laws of con-
tinuous Markov processes. This theorem naturally leads to the FDM algorithm for training Neural
SDEs. We empirically show that FDM outperforms current state-of-the-art methods for training
Neural SDEs, both in terms of generative quality and computational efficiency. However, the ap-
plicability of our main theorem is currently constrained by the assumptions of continuity and the
Markov property. Although this lies beyond the scope of Neural SDEs, we provide a straightfor-
ward extension of the main theorem to Càdlàg Markov processes in the appendix. This extension
broadens the applicability of FDM to a wider range of models, including jump processes. Fur-
thermore, an intriguing direction for future work would be to relax the Markov assumptions, for
instance, by incorporating hidden Markov models.
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Table 10: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-
tamps from a 32-dimension rough Bergomi model. TruncSig runs out of GPU memory.

Model t=6 t=19 t=32 t=44 t=57

SigKer .120, 11.1 .137, 18.5 .149, 26.5 .157, 35.3 .168, 45.2
TruncSig - - - - -

SDE-GAN .284, 99.8 .288, 99.7 .298, 99.8 .311, 99.9 .326, 100.
FDM (ours) .117, 9.10 .119, 10.2 .122, 11.4 .124, 13.0 .128, 15.4

Figure 1: Blue points are real samples and orange points are generated by Neural SDEs. The
dynamics of the joint distribution of gold and silver prices in the metal price data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is the silver price and the vertical axis is the gold price.

Figure 2: Sample paths for silver (top) and gold (bottom) prices from the metal dataset. Blue lines
represent real samples, while red lines represent those generated by Neural SDEs. From left to right,
the plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively.
The horizontal axis represents time, and the vertical axis represents metal prices.

10



Published as a conference paper at ICLR 2025

REFERENCES
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R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

13

https://arxiv.org/abs/2502.12395
https://arxiv.org/abs/1905.09883
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

	Introduction
	Related Work
	Scoring Rules
	Neural SDEs

	Preliminaries
	Finite Dimensional Matching
	Scoring Rule for Markov Process
	FDM Algorithm

	Theoretical Properties
	Sample Complexity
	Sensitivity

	Experiments
	Conclusion, Limitations, and Future Work
	Proof of Theorem 2
	Proof of Sample Complexity
	Proof of Sensitivity
	Extension to Càdlàg Markov Process
	Computational Efficiency
	Alternative Empirical Objectives
	Additional Experimental Results



