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The increasing adoption of energy-intensive artificial in-
telligence (AI), including large language models (LLMs), 

contributes to carbon emissions and exacerbates the cli-
mate crisis, with downstream health impacts (1–3). Early 
studies show promise in the ability of LLMs to accurately 
interpret medical language in clinical records such as radi-
ology reports, which can help with patient summarization 
or image labeling tasks (4–6). However, the rising interest 
in medical applications of LLMs also raises concerns about 
the potential high energy use of LLMs.

Two fundamental LLM characteristics, model design 
and inherent size, may influence the balance of perfor-
mance accuracy and energy use during medical applica-
tions. A general-purpose model is designed to handle a 
wide array of tasks without specific optimizations for any 

single domain, making it versatile across diverse applica-
tions, including radiology (7,8). In contrast, a specialized 
fine-tuned model may have specific enhanced capabilities 
to follow instructions, theoretically more suitable for clini-
cal language instruction–based tasks (9,10).

LLM size is typically defined by the number of “param-
eters.” The parameters in an LLM are akin to the weighted 
neurons in the human brain, where each one contributes 
to the model’s overall knowledge and decision-making pro-
cess. Therefore, the size of an LLM refers to its complexity 
and learning capacity such that more parameters mean the 
model can potentially recognize more nuanced patterns in 
the data, which could translate into higher accuracy for 
tasks such as diagnosing diseases from radiographs. Cur-
rent models range in millions to trillions of parameters 

Background:  Large language models (LLMs) for medical applications use unknown amounts of energy, which contribute to the overall 
carbon footprint of the health care system.

Purpose:  To investigate the tradeoffs between accuracy and energy use when using different LLM types and sizes for medical 
applications.

Materials and Methods:  This retrospective study evaluated five different billion (B)–parameter sizes of two open-source LLMs (Meta’s 
Llama 2, a general-purpose model, and LMSYS Org’s Vicuna 1.5, a specialized fine-tuned model) using chest radiograph reports 
from the National Library of Medicine’s Indiana University Chest X-ray Collection. Reports with missing demographic information 
and missing or blank files were excluded. Models were run on local compute clusters with visual computing graphic processing units. 
A single-task prompt explained clinical terminology and instructed each model to confirm the presence or absence of each of the 
13 CheXpert disease labels. Energy use (in kilowatt-hours) was measured using an open-source tool. Accuracy was assessed with 13 
CheXpert reference standard labels for diagnostic findings on chest radiographs, where overall accuracy was the mean of individual 
accuracies of all 13 labels. Efficiency ratios (accuracy per kilowatt-hour) were calculated for each model type and size.

Results:  A total of 3665 chest radiograph reports were evaluated. The Vicuna 1.5 7B and 13B models had higher efficiency ratios 
(737.28 and 331.40, respectively) and higher overall labeling accuracy (93.83% [3438.69 of 3665 reports] and 93.65% [3432.38 
of 3665 reports], respectively) than that of the Llama 2 models (7B: efficiency ratio of 13.39, accuracy of 7.91% [289.76 of 3665 
reports]; 13B: efficiency ratio of 40.90, accuracy of 74.08% [2715.15 of 3665 reports]; 70B: efficiency ratio of 22.30, accuracy of 
92.70% [3397.38 of 3665 reports]). Vicuna 1.5 7B had the highest efficiency ratio (737.28 vs 13.39 for Llama 2 7B). The larger 
Llama 2 70B model used more than seven times the energy of its 7B counterpart (4.16 kWh vs 0.59 kWh) with low overall accuracy, 
resulting in an efficiency ratio of only 22.30.

Conclusion:  Smaller fine-tuned LLMs were more sustainable than larger general-purpose LLMs, using less energy without 
compromising accuracy, highlighting the importance of LLM selection for medical applications.
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(11). However, this increased ability comes with a cost in terms 
of the energy required to process and analyze input data. The 
energy use related to the initial training and development of the 
models themselves can vary, ranging in megawatt-hours from 

Abbreviations
AI = artificial intelligence, GPU = graphic processing unit, LLM = 
large language model

Summary
This study explores the balance between accuracy and energy use 
in different-sized large language models for a medical application, 
highlighting the importance of model selection to balance performance 
with resource usage.

Key Results
	■ Using open-access data from 3665 chest radiograph reports, 
this study establishes a practical efficiency ratio (accuracy per 
kilowatt-hour) to evaluate the energy consumption of various large 
language model types and sizes.

	■ The 7-billion (B)–parameter Vicuna 1.5 (LMSYS Org) model 
had the highest efficiency ratio (737.28 vs 13.39 for the Llama 2 
7B [Meta] model), while the Vicuna 7B and 13B models had the 
highest overall report-labeling accuracy at 93.83% and 93.65%, 
respectively.

	■ The larger Llama 2 70B model used more than seven times the 
energy of its 7B counterpart (4.16 kWh vs 0.59 kWh) with low 
overall accuracy, resulting in an efficiency ratio of only 22.30.

85.7 MWh for smaller LLMs, such as Google’s T5 (11 billion 
parameters), to 1287 MWh for larger models, such as OpenAI’s 
GPT-3 (175 billion parameters) (12,13). However, for clinical 
research and radiologic applications, most users will not train 
a new LLM from scratch but will leverage pretrained LLMs for 
inference tasks, which currently lack data on energy use.

Therefore, to enable sustainable AI choices, LLM clinical end 
users will need to understand the characteristics of LLMs that 
determine the judicious balance between accuracy and energy 
use, which currently remains a knowledge gap (14,15).

It is important to consider both potential model type and 
model size thresholds, beyond which further accuracy gains do 
not justify the associated energy costs. Thus, the aim of this study 
was to investigate the tradeoffs between accuracy and energy use 
when using a variety of LLM types and sizes for a medical ap-
plication. In particular, five different sizes of two open-source 
LLMs (a general-purpose model and specialized fine-tuned 
model) were examined to identify 13 common disease labels 
within a publicly available chest radiographic data set.

Materials and Methods
This retrospective study used de-identified data and publicly 
available AI models and, thus, was exempt from institutional 
review board review. An overview of the study is shown in Fig-
ure 1, and the code is available on GitHub (https://github.com/
UM2ii/MedCrunchR).

Figure 1:  (A) Flowchart shows selection of the study data, which were derived from the Indiana University Chest X-ray Collection in the National Library of Medicine’s Open-i 
and accessed on December 11, 2023. (B) Diagram shows an overview of the study. The publicly available open-source large language models, Meta’s Llama 2 and LMSYS 
Org’s Vicuna 1.5, were run locally using the chest radiographic data. CodeCarbon 2.3.1 is an open-source software tool designed to track energy use associated with computing 
tasks. Appendix S1 provides details on the prompt used. An output file was generated to report the results of 13 diagnostic findings according to CheXpert (Stanford ML Group) 
radiologist-labeled reference standard disease labels. AP = anteroposterior, B = billion, Cardiom = cardiomediastinum, JSON = JavaScript Object Notation.
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LLMs and Parameter Sizes
To evaluate LLM efficiency (accuracy and energy use) for a pre-
specified medical labeling task, two LLMs were selected (Meta’s 
Llama 2 [16] and LMSYS Org’s Vicuna 1.5 [17]) based on 
three factors. First, both are open-source and publicly available 
models, and thus downloadable for local energy measurement 
and transparency. Second, both are established LLMs in their 
categories; Llama 2 is a popular general-purpose LLM (18) and 
Vicuna 1.5 is a model fine-tuned on Llama 2 that has enhanced 
capability to better interpret instructions (17,19). Lastly, each 
model has various default billion (B)–parameter sizes available 
(7B, 13B, and 70B for Llama 2; 7B and 13B for Vicuna 1.5). 
This range in model sizes and complexity (number of param-
eters) enabled a comparison of how energy use and performance 
may correlate with an increasing number of parameters. All of 
these base models were used with no additional adjustments 
or fine-tuning to ensure reproducibility and generalizability of 
study findings. Finally, the temperature hyperparameter was set 
to 0 for the experiments to reduce hallucinations and enhance 
consistency of the outputs for reproducibility.

Data Set Selection
This study used downloadable chest radiograph reports from 
the publicly available Indiana University Chest X-ray Collection 
(Indiana Network for Patient Care) available from the National 
Institutes of Health–National Library of Medicine’s open-source 
biomedical image search engine, Open-i (https://openi.nlm.nih.
gov), which was accessed on December 11, 2023 (20). Subse-
quently, reports were excluded due to missing demographic in-
formation and missing or blank report files (Fig 1A). This data 
set is an ideal clinical LLM exemplar use-case as it contains 13 
well-defined standardized radiologist-labeled reference standard 
disease labels, allowing for structured evaluation of LLM accu-
racy in clinical language interpretation, such as accurately ex-
tracting the presence of a specific finding or disease (21). Further 
details on how this data set was generated have been described 
previously (20).

Instruction Prompt
The 13 CheXpert (Stanford ML Group; https://stanfordmlgroup.
github.io/competitions/chexpert/) labels were used to develop a sin-
gle-task prompt (Appendix S1), which was essentially an adapta-
tion of a prior published prompt (9), explaining CheXpert clinical 
terminology and instructing each LLM to confirm the presence 
or absence of each of the 13 labels across the entire data set (Fig 
1B). Two expert clinical radiologists verified the accuracy of the 
CheXpert terminology. Of note, the labels are not independent of 
each other, and can overlap as they are not mutually exclusive. The 
following are the 13 CheXpert labels used within the prompt in al-
phabetical order: atelectasis, cardiomegaly, consolidation, edema, 
enlarged cardiomediastinum, fracture, lung lesion, lung opacity, 
pleural effusion, pleural other, pneumonia, pneumothorax, and 
support devices. The “no finding” label was excluded, as it is de-
rived from the positive or uncertain presence of the other labels. 
Within the prompt, the model was instructed to categorize the 13 
possible findings as positive (value of 1) or negative (value of 0) 
in JavaScript Object Notation standard text-based format (Fig 2).

For the given task and prompt, each model was tested on 
whether it was able to produce valid JavaScript Object Nota-
tion (JSON) files with no missing labels (adequate response) or 
failed to follow instructions with missing labels in the JSON file 
(inadequate response). Individual label accuracy and combined 
overall accuracy for the report were calculated, given that there 
was potential for overlapping labels.

Energy Use Evaluation Experiments
Each model generated a response on the entire data set (overall 
accuracy), and subsequently individually identified the presence 
or absence of 13 disease labels. CodeCarbon (version 2.3.1; BCG 
GAMMA, Comet.ml, Haverford College, MILA), an open-source 
software tool designed for tracking the energy use (in kilowatt- 
hours) associated with computing tasks, was used to track  
the energy use of each LLM during the experiments (22–24).  
CodeCarbon records the energy use of the computing environ-
ment inclusive of graphics processing units (GPUs), central 
processing units, and random access memory. However, the ex-
periments in this study focused solely on GPU energy consump-
tion as many AI tools, including LLMs, rely heavily on GPUs for 
their accelerated parallel processing tasks. This approach allowed 
for more streamlined data collection and more precise evalua-
tion of LLM energy use to better inform future AI optimiza-
tion efforts by concentrating on the primary energy-consuming 
component in AI workloads. GPU energy use was measured 
using the pynvml library that was automatically installed with 
CodeCarbon (23).

Performance accuracy and associated energy use on the entire 
data set was obtained across five parameter sizes between the two 
LLM models (Llama 2 at 7B, 13B, and 70B parameters; Vi-
cuna 1.5 at 7B and 13B parameters), which were run on the de-
fault settings with the single-task instruction prompt for the 13 
CheXpert labels described above. All models were run on local 
compute clusters with NVIDIA RTX A6000 (NVIDIA; https:// 
www.nvidia.com/en-us/design-visualization/rtx-a6000/ ) GPUs. 
While a single GPU was used for almost all the models, the 
larger Llama 2 70B model required four NVIDIA RTX A6000 
GPUs to run due to computational demands.

Statistical Analysis
Accuracy was calculated for each CheXpert label separately and 
complemented by sensitivity, specificity, and F1 metrics for each 
label. Overall accuracy was reported as the mean of individual 
accuracies of all 13 labels, reflecting a comprehensive perspective 
on model performance across all diagnostic labels. The tradeoff 
in efficiency of this performance was defined and calculated as an 
“efficiency ratio” (performance per energy unit, or accuracy per 
kilowatt-hour, where accuracy was the overall accuracy) for each 
model type and size. For the efficiency ratio, overall accuracy 
was chosen for the use-case as it measures the model’s ability to 
handle multiple labeling tasks simultaneously, providing a more 
holistic view of performance-energy tradeoffs for the global task. 
Data were initially generated in Python 3.12.4 (Python Software 
Foundation), and then descriptive statistics were generated in 
Excel (version 2405, build 16.0.17628.20006, 64-bit; Microsoft 
365) for analysis and visual comparison.
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Results

Characteristics of the Data Set
Of 3955 chest radiograph reports, 290 were excluded due to 
missing demographic information (n = 267) and missing or 
blank report files (n = 23), leaving 3665 chest radiograph reports 
evaluated in the study (Fig 1A).

Accuracy and Valid Outputs
The diagnostic performance of each model and parameter size 
according to the 13 disease labels is illustrated in Figure 3, 
and additional individual-label results for Llama 2 and Vi-
cuna 1.5 are provided in Tables 1 and 2, respectively. Llama 
2 demonstrated increased accuracy with increasing parameter 
size as follows: the 7B model achieved an overall accuracy of 
7.91% (289.76 of 3665 reports), with inadequate responses 
at 20.22% (741 of 3665 reports); the 13B achieved an overall 
accuracy of 74.08% (2715.15 of 3665 reports), with inad-
equate responses at 5.38% (197 of 3665 reports); and the 
70B model reached an overall accuracy of 92.70% (3397.38 
of 3665 reports), with inadequate responses at 0.03% (one 
of 3665 reports) (Table 3). The fine-tuned Vicuna 1.5 model 
showed consistently high accuracy levels, with the 7B and 
13B sizes achieving overall accuracies of 93.83% (3438.69 
of 3665 reports) and 93.65% (3432.38 of 3665 reports), re-
spectively, and a similar proportion of inadequate responses 
at 0.03% (one of 3665 reports).

Energy Use
The Llama 2 models consumed more energy, with the 7B, 13B, 
and 70B models using 0.59 kWh, 1.81 kWh, and 4.16 kWh, 
respectively. In contrast, the Vicuna 1.5 models used less energy 
overall (7B, 0.13 kWh; 13B, 0.28 kWh) (Table 3).

Efficiency Ratios
The present study introduces an efficiency ratio (accuracy per 
kilowatt-hour) as a novel metric to evaluate the practical utility of 
LLMs against their energy consumption. The Vicuna 1.5 mod-
els emerged as the most efficient, with 7B achieving the highest 
ratio (737.28) and the 13B model close behind (331.40), while 
all Llama 2 models had much lower efficiency ratios (7B, 13.39; 
13B, 40.90; 70B, 22.30) (Table 3).

Discussion
Large language models (LLMs) show inherent tradeoffs be-
tween accuracy and energy use in an exemplar medical applica-
tion, highlighting the need to select the right model for the right 
task to balance performance and resource usage. Thus, we eval-
uated five different parameter sizes of two open-source LLMs 
using chest radiograph reports from the Indiana University 
Chest X-ray Collection available from the National Institutes 
of Health–National Library of Medicine Open-i search engine. 
Using data from 3665 chest radiograph reports, we established 
an efficiency ratio (accuracy per kilowatt-hour) to evaluate 
the practical utility of LLMS against energy consumption. 

Figure 2:  Illustration shows an example output performed on a single-prompt task of identifying 13 labels on chest radiograph reports. This 
output shows the performance for individual and global labeling tasks by the Meta’s Llama 2 (7B, 13B, 70B) and LMSYS Org’s Vicuna 1.5 
(7B, 13B) models compared with the 13 CheXpert radiologist-labeled reference standard disease labels. Within the prompt (Appendix S1), 
the model is instructed to categorize the 13 possible findings as positive (value of 1) or negative (value of 0) in a JavaScript Object Notation 
standard text-based format. The reference standard labels (0) are shown in black, with inadequate responses (−1) in grey. An inadequate 
response indicates the model failed to follow instructions and had missing labels. The large language model outputs that are concordant with 
reference standard findings are shown in green, and those that are discordant are in orange. B = billion, Cardiom = cardiomediastinum, PA 
= posteroanterior.
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Two models were evaluated as follows: Meta’s Llama 2 (16), a 
general-purpose model, and LMSYS Org’s Vicuna 1.5 (17), a 
specialized fine-tuned model. The Vicuna 1.5 7-billion (B)–pa-
rameter model size had the highest efficiency ratio (737.28 vs 
13.39 for Llama 2 7B), while the Vicuna 1.5 7B and 13B mod-
els had the highest overall diagnostic accuracy at 93.83% and 
93.65%, respectively. The larger Llama 2 70B model used more 
than seven times the energy of its 7B counterpart (4.16 kWh 
vs 0.59 kWh)with lower overall accuracy, resulting in a low 
efficiency ratio of 22.30. This challenges the assumption that 
larger, more complex models will have superior performance, 
and instead demonstrates that fine-tuned models can achieve 
high accuracy with lower energy consumption. Overall, these 
measurements help set an efficiency benchmark for LLM in-
ference tasks in energy-conscious clinical settings. Our energy 
use findings are comparable with that of existing literature; for 
example, assessment of another LLM showed that an inference 
task using the Multi-Genre Natural Language Inference (Mul-
tiNLI) corpus consumed approximately 3.2 kWh of electricity, 
which is within range of our measurements (25).

However, between model sizes, this accuracy versus energy 
use tradeoff is not straightforward. For example, the Vicuna 7B 
model unexpectedly outperformed its 13B counterpart in ac-
curacy, contrary to typical expectations that larger models yield 
better performance. We hypothesized that the specific nature 
of our medical labeling task—focusing on instruction-based 
processing—might align more closely with the optimization 
parameters of the 7B model. This suggests that, beyond size, 
the specific architecture and training of a model play critical 
roles in its suitability for particular medical tasks. Such insights 
prompt a deeper examination of how fine-tuning and model 
complexity interact with task-specific requirements. Addition-
ally, the Vicuna 13B model had higher energy use compared 

with the Vicuna 7B model, and overall may be a poorer choice 
for both performance and sustainability if just comparing these 
two models. This underscores the importance of considering 
both model architecture and task specificity when selecting 
LLMs for clinical applications.

Generative AI tools (eg, LLMs) have increased AI accessibil-
ity and applications in health care, simultaneously raising new 
concerns of equitable distribution of computational resources 
and their downstream consequences, including energy costs 
and availability (22,26). The insights from the present study 
contribute valuable data to this ongoing discussion around the 
sustainability of AI in radiology, showing the nuanced relation-
ship between LLM type, model size, accuracy, and energy use. 
When considering LLMs for clinical applications, there should 
be balance between achieving high diagnostic accuracy and 
energy sustainability, especially at large AI adoption scales. By 
carefully considering model characteristics, such as type and size, 
alongside computational demands, researchers and clinicians 
can make informed environmentally friendly choices.

We acknowledge that AI accuracy and other clinical per-
formance metrics will most certainly be prioritized in medical 
settings to ensure patient safety, and tradeoffs in accuracy for 
gains in energy use may not be practical or realistic. However, 
it is important to recognize that the pursuit of maximizing AI 
accuracy should not occur in isolation from considerations of 
energy use, and ideally there should be attention and effort 
towards improving both accuracy and energy use. In research 
and clinical settings, performance reporting should include 
both accuracy and energy consumption metrics for a com-
prehensive understanding of an AI model’s sustainability im-
pact. This is especially relevant in high-volume AI screening 
applications or for continuous monitoring systems that oper-
ate around the clock, where cumulative energy savings may be 

Figure 3:  Bar graph shows the label-wise comparative diagnostic accuracy of each large language model (LLM) parameter size according to 13 
CheXpert disease labels (the reference standard), illustrating the performance of general-purpose (Llama 2; Meta) and fine-tuned (Vicuna 1.5; LMSYS 
Org) LLMs in the same prompted task. B = billion, Cardiom = cardiomediastinum.
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Table 1: Individual-label Results Used in Accuracy Calculations for Meta’s Llama 2 across Three Model Parameter Sizes 
for 13 Common Disease Labels

Disease and  
Model Parameter Size TP FP TN FN Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)
Atelectasis
  7B 225 2653 42 5 97.83 1.56 16.70 9.13
  13B 151 455 2732 131 53.55 85.72 65.13 83.11
  70B 244 35 3334 52 82.43 98.96 89.39 97.63
Cardiomegaly
  7B 262 2630 32 1 99.62 1.20 18.26 10.05
  13B 226 1655 1519 69 76.61 47.86 60.73 50.30
  70B 322 395 2944 4 98.77 88.17 93.69 89.11
Consolidation
  7B 23 2855 47 0 100.00 1.62 4.67 2.39
  13B 24 482 2963 8 75.00 86.01 80.08 85.91
  70B 25 30 3609 1 96.15 99.18 97.63 99.15
Edema
  7B 31 2848 45 1 96.88 1.56 5.06 2.60
  13B 27 439 2992 11 71.05 87.20 78.23 87.03
  70B 41 33 3588 3 93.18 99.09 96.01 99.02
Enlarged cardiomediastinum
  7B 302 2522 92 9 97.11 3.52 23.66 13.47
  13B 197 519 2601 152 56.45 83.37 66.41 80.66
  70B 341 376 2909 39 89.74 88.55 89.20 88.68
Fracture
  7B 65 2811 49 0 100.00 1.71 7.50 3.90
  13B 37 432 2957 43 46.25 87.25 60.23 86.31
  70B 82 55 3526 2 97.62 98.46 98.03 98.44
Lung lesion
  7B 919 1968 28 10 98.92 1.40 48.79 32.38
  13B 107 410 1952 1000 9.67 82.64 16.62 59.35
  70B 40 0 2491 1134 3.41 100.00 6.49 69.06
Lung opacity
  7B 904 1979 32 10 98.91 1.59 48.36 32.00
  13B 360 554 1834 721 33.30 76.80 43.63 63.25
  70B 215 6 2508 936 18.68 99.76 29.85 74.30
Pleural effusion
  7B 110 2765 47 3 97.35 1.67 10.17 5.37
  13B 75 437 2898 59 55.97 86.90 67.72 85.70
  70B 131 13 3507 14 90.34 99.63 94.59 99.26
Pleural other
  7B 56 2819 49 1 98.25 1.71 6.93 3.59
  13B 1 426 2976 66 1.49 87.48 2.93 85.82
  70B 2 1 3592 70 2.78 99.97 5.40 98.06
Pneumonia
  7B 32 2845 48 0 100.00 1.66 5.32 2.74
  13B 9 443 2994 23 28.13 87.11 42.46 86.57
  70B 33 53 3576 3 91.67 98.54 94.95 98.47
Pneumothorax
  7B 17 2860 48 0 100.00 1.65 4.35 2.22
  13B 10 521 2925 13 43.48 84.88 57.44 84.61
  70B 19 0 3640 6 76.00 100.00 86.30 99.84
Support devices
  7B 218 2657 44 6 97.32 1.63 16.40 8.96
  13B 80 535 2670 184 30.30 83.31 43.85 79.27
  70B 93 13 3366 193 32.52 99.62 48.37 94.38

Note.—Except where indicated, data are numbers of chest radiograph reports. A total of 3665 reports were obtained from the Indiana University 
Chest X-ray Collection available from the National Library of Medicine’s Open-i. The 13 diseases are derived from CheXpert radiologist-labeled 
disease labels as the reference standard. B = billion, FN = false negative, FP = false positive, TN = true negative, TP = true positive.
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substantial. Additionally, lower-energy AI models may be ben-
eficial or preferred in resource-limited settings where energy 
availability constrains technology use, or in more portable de-
vices that require less energy consumption. Because accuracy is 
commonly reported while energy use is frequently overlooked, 
adopting standardized reporting of both is crucial and should 
become the norm (27,28). In an ideal world, clinicians and 
health care leaders would be presented with choices between 
models that do not compromise on accuracy but may vary in 

their sustainability. Informed decision-making should eventu-
ally include selection of an AI model based on both its clinical 
efficacy and its environmental footprint.

Our study had limitations. First, despite a standardized 
approach to terminology (CheXpert) and expert clinical ra-
diologist discussion, developing an input prompt has the 
potential for subjectivity. Second, to standardize comparabil-
ity across models, we used the base models that had inherent 
limitations (ie, context length) and did not include additional 

Table 2: Individual-label Results Used in Accuracy Calculations for LMSYS Org’s Vicuna 1.5 across Two Model Parameter 
Sizes for 13 Common Disease Labels

Disease and  
Model Parameter Size TP FP TN FN Sensitivity (%) Specificity (%) F1 Score (%) Accuracy (%)
Atelectasis
  7B 280 66 3303 8 97.22 98.04 97.60 97.98
  13B 289 178 3191 7 97.64 94.72 96.28 94.95
Cardiomegaly
  7B 314 83 3256 12 96.32 97.51 96.86 97.41
  13B 260 5 3334 66 79.75 99.85 87.97 98.06
Consolidation
  7B 16 214 3424 10 61.54 94.12 74.35 93.89
  13B 26 25 3614 0 100.00 99.31 99.66 99.32
Edema
  7B 38 30 3591 6 86.36 99.17 92.26 99.02
  13B 43 43 3578 1 97.73 98.81 98.26 98.80
Enlarged cardiomediastinum
  7B 305 69 3216 75 80.26 97.90 87.46 96.07
  13B 66 0 3285 314 17.37 100.00 29.19 91.43
Fracture
  7B 78 299 3281 0 100.00 91.65 95.74 91.83
  13B 82 102 3479 2 97.62 97.15 97.39 97.16
Lung lesion
  7B 538 63 2428 634 45.90 97.47 58.59 80.97
  13B 76 0 2491 1098 6.47 100.00 11.85 70.04
Lung opacity
  7B 552 82 552 590 48.34 87.07 54.38 62.16
  13B 592 172 592 559 51.43 77.49 56.15 61.83
Pleural effusion
  7B 118 41 3479 17 87.41 98.84 92.58 98.41
  13B 137 35 3485 8 94.48 99.01 96.61 98.83
Pleural other
  7B 17 232 3361 55 23.61 93.54 37.59 92.17
  13B 1 0 3593 71 1.39 100.00 2.74 98.06
Pneumonia
  7B 35 76 3553 1 97.22 97.91 97.56 97.90
  13B 33 39 3590 3 91.67 98.93 95.12 98.85
Pneumothorax
  7B 21 15 3625 4 84.00 99.59 91.09 99.48
  13B 23 75 3565 2 92.00 97.94 94.86 97.90
Support devices
  7B 119 43 3336 167 41.61 98.73 57.73 94.27
  13B 93 13 3366 193 32.52 99.62 48.37 94.38

Note.—Except where indicated, data are numbers of chest radiograph reports. A total of 3665 reports were obtained from the Indiana 
University Chest X-ray Collection available from the National Library of Medicine’s Open-i. The 13 diseases are derived from CheXpert 
radiologist-labeled disease labels as the reference standard. B = billion, FN = false negative, FP = false positive, TN = true negative,  
TP = true positive.
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accuracy-improving workarounds, such as prompt engineering 
with retrieval augmented generation. Finally, it was necessary 
to deploy four NVIDIA RTX A6000 GPUs for the Llama 2 
70B model, compared with a single GPU for the other models. 
The need for this additional processing power highlights the 
increased energy demand and computational time required for 
larger models, and the need for careful consideration of hard-
ware usage requirements.

In conclusion, the study results showed that smaller fine-
tuned large language models (LLMs) provided a more sustain-
able option than large general-purpose LLMs, as they used less 
energy without compromising overall accuracy in a radiograph 
labeling task. This underscores the importance of LLM selection 
for medical applications. As artificial intelligence (AI) in health 
care continues to evolve, our energy and computational resource 
stewardship can help mitigate the broader downstream conse-
quences of widespread AI use, ensuring that advancements in 
clinical technology align with the principles of ethical, sustain-
able, and responsible use.
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