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Abstract
Multi-horizon and multi-lead time forecasting is a well-established
area in machine learning, particularly in demand forecasting, which
plays a critical role in a product’s lifecycle. Accurate forecasts sup-
port key operational functions, including inventory management,
financial planning, promotion planning, and supply chain opti-
mization. Traditional demand forecasting methods typically rely
on learning sales patterns directly from historical data of a given
product. However, forecasting demand for accessories—products
that are purchased in conjunction with main devices (e.g., covers or
headphones for tablets)—introduces additional complexities. In this
paper, we propose a novel forecasting technique for accessories
that leverages their inherent attach rate patterns to main devices.
Additionally, we introduce a correction module to mitigate biases in
the forecasts of the main products, thereby improving the accuracy
of accessory predictions. While our primary focus is forecasting ac-
cessories for Amazon devices, the proposed methodology is broadly
applicable to any product that exhibits an attach rate dependency.
The proposed model was deployed in production within Amazon in
July 2024 and has since been generating daily accessory forecasts
across 17 countries and two channels: Online (Amazon website)
and Offline (third-party retailers).

ACM Reference Format:
Kyriaki Dimitriadou, Vicky Yu, Michael Behrman, Lihong Xie, Kunal Bhos-
ale, and Lynn Teresi. 2025. ARCA: Forecasting Demand for Device Acces-
sories at Amazon. In Proceedings of the 1st Workshop on "AI for Supply Chain:
Today and Future" @ 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.2 (KDD ’25), August 3, 2025, Toronto, ON, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 Introduction
At Amazon, accessories—such as cover cases, chargers, keyboards,
and headphones—play an important role in enhancing the customer
experience by complementing main devices and improving their
functionality. Despite their importance, forecasting demand for
accessories is often overlooked or treated as a secondary concern
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in traditional demand models. Accurate forecasting for accessories
is valuable for optimizing inventory, planning promotions, and
making effective product allocation decisions across both online
and offline channels.

Forecasting accessory demand presents unique challenges due
to their inherent dependency on the sales and lifecycle of the cor-
responding main devices. Unlike primary products, which follow
independent demand trends driven by market forces, seasonality,
and promotions, accessory sales are closely tied to the sales of
main devices through attach rates. This creates complexities, such
as variable attach rates, purchase timing lags between accessory
and main device sales, and dependencies across accessory types
(e.g., customers purchasing a tablet cover and a stylus together).
Additionally, misaligned product lifecycles, new device launches,
and external factors like competition and supply chain disruptions
further complicate forecasting efforts. Traditional time-series fore-
casting models, often used for main devices, cannot adequately
capture all of these dynamics for accessories.

To address these challenges, this paper proposes an attach rate-
based forecasting model for accessory demand, aligning with how
product managers and planners think about and manage accessory
sales. By focusing on the relationship between main devices and
their accessories, this approach offers greater interpretability and
transparency, as planners can directly relate the forecast to histori-
cal attach rate patterns and promotional activities. In contrast to
traditional forecasting models, which may be perceived as a "black
box" to non-technical stakeholders, our approach provides a more
intuitive and actionable solution.

We introduce a novel forecasting framework, named ARCA
(Attach Rate with Correction for Accessories) that combines an
attach rate prediction model with a residual correction model. The
attach rate model predicts future attach rate of each accessory based
on historical sales of the accessory itself, as well as the main device,
while the Residual Model corrects biases introduced by inaccuracies
in the main device forecasts. Deployed in production at Amazon in
July 2024, this model has shown promising results, including high
adoption and a significant reduction in forecast errors.

The contributions of this paper include:
(1) We propose a dynamic attach rate-based forecasting model

that leverages machine learning to predict attach rates while
addressing outliers with a dedicated approach. This model
improves forecasting accuracy by capturing demand vari-
ations beyond static attach rate assumptions. Additionally,
it aligns closely with how product managers and planners
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think about accessory demand, making the forecasts more
interpretable, actionable, and consistent with real-world
decision-making.

(2) Our framework improves forecast precision by incorporat-
ing a residual correction model that adjusts for biases in
attach rate estimations and main device forecasts, ensuring
adaptability to shifting demand patterns.

(3) We introduce a correlation-weightedmechanism that dynam-
ically adjusts the reliance on attach rate predictions based
on the strength of accessory-to-main-device relationships.
This approach enhances forecasting accuracy for products
with varying levels of dependency, offering a flexible and
robust solution.

The rest of the paper is organized as follows: in Section 2 we
present the related work on accessory forecasting. In Section 3 we
describe our framework including details on the attach rate model,
as well as the residual correction module. In Section 4 we present
our experimental results. Finally, we conclude our work in section 5
and end with the customer problem statement.

2 Related work
Forecasting accessory demand, particularly in relation to their as-
sociated main devices, remains an underexplored domain within
demand forecasting research. Traditional approaches typically fo-
cus on standalone products and rely on time-series models applied
to historical sales data to generate demand predictions [6, 7]. More
recent advancements have leveraged deep learning techniques for
direct product-level forecasting. For instance, Salinas et al. [11] pro-
pose an RNN-based method that produces probabilistic forecasts
by learning from a large collection of related time series, enabling
accurate item-level demand predictions even in cases of sparse
data. Rangapuram et al. [10] combine state space models with deep
learning to develop a probabilistic forecasting framework that bal-
ances interpretability and data efficiency while capturing complex
temporal patterns.

In the automotive sector, [4] employ Deep Neural Networks
(DNNs) and Recurrent Neural Networks (RNNs) to predict vehicle
accessory demand by modeling complex temporal dependencies
in sales data, addressing the absence of standardized industry ap-
proaches for accessory demand forecasting. However, this study
does not incorporate human-in-the-loop elements such as prod-
uct planners’ input, nor does it exploit attach rate relationships
between accessories and vehicle sales. Similarly, Ramosaj et al. [9]
compare statistical methods and machine learning algorithms for
accessory sales forecasting in a medium-sized Swiss enterprise,
finding that SARIMAX models [1] enhanced with human expert
input outperform purely data-driven approaches. Unlike our work,
their study does not utilize or evaluate attach rate–based modeling
approaches, which are central to our proposed methodology.

Additionally, Arvan et al. [2] provide a systematic review of
judgmental demand forecasting, emphasizing the integration of
expert judgment with quantitative models. In contrast, our paper
introduces a novel forecasting approach for accessory demand that
leverages data-driven, attach rate–based machine learning models
combined with a bias correction module, distinguishing it from
existing reviews and prior works.

Overall, accessory demand forecasting requires novel approaches
that account for product dependencies, lifecycle misalignment, and
cross-product interactions. ARCA advances the field by integrating
machine learning with correction mechanisms in a structured and
interpretable way, improving forecast accuracy while enhancing
explainability.

3 Modeling Approach
3.1 Framework Overview
The Accessory Prediction Framework, named ARCA (figure 1) out-
lines a structured approach to forecasting accessory demand by
integrating historical sales data, pricing information, and main de-
vice forecasts. The framework consists of two primary components:
theAccessory Attach Rate Model and theResidual Model, each
addressing distinct stages of the prediction process.

Figure 1: ARCA: forecasting accessory demand using an at-
tach rate-based model with correction for accessories.

The prediction pipeline begins with multiple input data sources,
including main device–accessory mapping which provides infor-
mation about what accessory is compatible with each main device,
historical sales data, pricing data and vendor lead time (VLT) data
(time from when you place an order to when you receive the prod-
uct) which serve as foundational inputs to the Accessory Attach
Rate model. This model estimates the expected attach rate for each
accessory based on historical relationships between accessory and
main device sales. The attach rate quantifies the proportional re-
lationship between an accessory’s demand and its corresponding
main device sales. Specifically, we define the attach rate as the ratio
of accessory units sold to the attached main device units sold in a
day.

The attach rate-based predictions are then passed to the Resid-
ual Computationmodule, which calculates residuals—discrepancies
between predicted accessory sales (computed as the predicted at-
tach rate multiplied by forecasted main device sales) and observed
sales. These residuals account for variability in accessory demand
that is not captured by the attach rate model.

To refine predictions, the computed residuals are incorporated
into the Residual Model, which integrates additional input fea-
tures, including historical sales, pricing, and main device forecasts.
The final accessory predictions represent the optimized demand
forecast for accessories, combining the structured attach rate ap-
proach with residual-based adjustments. This framework enhances
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both the interpretability of the demand model and its adaptability
to fluctuations in sales patterns.

Our forecasting methodology follows a factor-based approach,
where accessory demand is predicted at the CCAD level: Coun-
try/Channel/ASIN/Day level, where an ASIN corresponds to a
unique product on Amazon, using the following equation:

𝑥𝑖 = 𝑦𝑚 × 𝑎𝑖,𝑚 + 𝑒𝑖 (1)

where for each day in our forecast horizon 𝑥𝑖 represents the fore-
casted sales for accessory ASIN i, 𝑦𝑚 is the forecasted sales volume
for the main device m attached to ASIN i,𝑎𝑖,𝑚 is the attach rate for
accessory ASIN i relative to main device m, 𝑒𝑖 is the error term
capturing the deviation between the forecasted and actual sales.
Next, we delve into each component of the framework, detailing its
functionality and the specific role it plays in the prediction process.
In the following sections, we provide a detailed breakdown of each
component within the framework, highlighting its functionality
and contribution to the overall prediction accuracy.

Accessory Attach Rate Model The Accessory Attach Rate
Model (AR 1) is central to the ARCA framework, designed to provide
dynamic and accurate forecasts of accessory demand by predicting
the attach rate for each accessory relative to its corresponding
main device. The proposed approach uses a forecasting model that
leverages a comprehensive set of features and recent data trends to
predict attach rates with great precision.

The target variable for the AR model is the daily attach rate
(𝑎𝑖,𝑚,𝑡 ), which is defined as the ratio of accessory sales to attached
main device sales on a given day. Specifically, the attach rate for
accessory ASIN 𝑖 , relative to the attached main device𝑚 at time 𝑡 ,
is given by:

𝑎𝑖,𝑚,𝑡 =
𝑠𝑖,𝑡

𝑠𝑚,𝑡

(2)

where 𝑎𝑖,𝑚,𝑡 is the attach rate for accessory ASIN 𝑖 relative to main
device𝑚 on day 𝑡 , 𝑠𝑖,𝑡 is the accessory sales for ASIN 𝑖 on day 𝑡 and
𝑠𝑚,𝑡 is the sales of the main device𝑚 on day 𝑡 . In cases where an
accessory is associated withmultiple main devices (e.g., headphones
compatible with several tablet generations), the main device sales
𝑠𝑚,𝑡 are calculated as the sum of sales across all compatible devices
on day 𝑡 .

The model aims to predict this attach rate for each accessory
ASIN, using historical sales data, price information, and other rel-
evant features. To account for the dynamic nature of accessory
demand, the model utilizes several predictor variables, which can
be represented as:

𝑎𝑖,𝑚,𝑡 = 𝑓 (𝑝𝑖,𝑡 , 𝑝𝑚,𝑡 , 𝑣𝑖,𝑡 , 𝑠𝑡 , ℎ𝑡 ,ASIN𝑖 ) (3)

Where 𝑝𝑖,𝑡 and 𝑝𝑚,𝑡 are the price related features for the accessory
and main device at time 𝑡 , 𝑣𝑖,𝑡 is the binary VLT feature indicating
the availability to ship (value for the feature is set to 0) or not
(value is set to 1) at the day of the purchase 𝑡 , 𝑠𝑡 represents seasonal
indicators (e.g., month and day of the week features), ℎ𝑡 are holiday-
related feature and ASIN𝑖 are the dummy variable for the accessory
ASIN.

1We use the acronym AR to refer to the attach rate model in our work. This is not to
be confused with the acronym for autoregressive models which are common in time
series bibliography.

To develop the AR model, we employ a Random Forest model,
which is known for its ability to capture complex, nonlinear re-
lationships within the data. The relationship between accessory
demand and main device sales is rarely linear, and the attach rate
can fluctuate based on various dynamic factors, therefore we se-
lected this model as it is a good fit for our forecasting needs.

The model is trained using historical data from the past 365 days
leading up to the forecast period. For each accessory 𝑖 , the Random
Forest model predicts the attach rate for each day 𝑡 as:

𝑎𝑖,𝑚,𝑡 = RF(𝑝𝑖,𝑡 , 𝑝𝑚,𝑡 , 𝑣𝑖,𝑡 , 𝑠𝑡 , ℎ𝑡 ,ASIN𝑖 ) (4)

Where 𝑎𝑟,𝑖,𝑚,𝑡 represents the predicted attach rate for accessory
ASIN 𝑖 relative to main device 𝑚 on day 𝑡 , and RF denotes the
Random Forest model that takes into account the various input
features.

The predicted attach rate is then used in the ARCA framework
to estimate accessory sales by multiplying the predicted attach rate
by the forecasted sales of the main device:

𝑠𝑖,𝑡 = 𝑎𝑖,𝑚,𝑡 × 𝑠𝑚,𝑡 (5)

Where 𝑠𝑖,𝑡 is the predicted sales for accessory 𝑖 on day 𝑡 , 𝑎𝑖,𝑚,𝑡 is
the predicted attach rate for accessory 𝑖 relative to main device𝑚
on day 𝑡 and 𝑠𝑚,𝑡 is the forecasted sales of the main device𝑚 on
day 𝑡 .This dynamic approach to forecasting the attach rate ensures
that the model can adapt to changing market conditions, including
seasonal demand shifts, pricing changes, and promotional activities,
improving the accuracy of accessory demand predictions.

3.2 Outlier Correction
To ensure that themodel remains stable and accurate in the presence
of erratic predictions we employ an Outlier Correction methodol-
ogy. The purpose of this methodology is to identify and mitigate
significant discrepancies between the predicted and historical ob-
served attach rates for accessories. The approach first computes
the average actual attach rate (𝑎avg

𝑖,𝑚,𝑡
) from historical data over a

specified period, and then compares it with the predicted attach rate
(𝑎𝑖,𝑚,𝑡 ) for each accessory. The prediction is flagged as an outlier if
the percentage deviation between the predicted and average attach
rate exceeds a predefined threshold 𝜏 , i.e.,�����𝑎𝑖,𝑚,𝑡 − 𝑎

avg
𝑖,𝑚,𝑡

𝑎
avg
𝑖,𝑚,𝑡

����� > 𝜏 (6)

where 𝑎𝑖,𝑚,𝑡 is the predicted attach rate for accessory ASIN 𝑖 relative
to main device𝑚 at time 𝑡 , 𝑎avg

𝑖,𝑚,𝑡
is the average actual attach rate for

accessory 𝑖 over historical data and 𝜏 is the threshold that defines
the acceptable range of deviation between the predicted and average
actual attach rate.

Once an outlier is detected, the flagged prediction is replaced
with a fallback estimate, derived from the median actual attach rate
(𝑎med

𝑖,𝑚,𝑡 ) observed over the past 120 days, as follows:

𝑎corr𝑖,𝑚,𝑡 = 𝑎med
𝑖,𝑚,𝑡 (7)

where 𝑎med
𝑖,𝑚,𝑡 is the median actual attach rate for accessory ASIN 𝑖

relative to main device𝑚.
While themedian offers amore robust estimate in the presence of

anomalies, it lacks responsiveness to recent trends and seasonality
captured by the model. Therefore, we only use it as a correction



KDD ’25, August 3, 2025, Toronto, ON, Canada. Dimitriadou et al.

mechanism when the model’s output deviates substantially from
historical norms. This selective correction balances robustness with
adaptability, ensuring more stable and reliable demand forecasts.

3.3 Residual Computation
The residuals in the AR model represent the discrepancy between
actual accessory sales and the sales predicted using the attach rate
model. These discrepancies arise from two primary sources: (a)
the reliance on forecasted main device sales, which may contain
inherent biases, and (b) the use of predicted attach rates, which,
while generally robust, can exhibit minor fluctuations over time.
Accurately modeling and adjusting for these residuals is essential
to improving the overall forecasting performance of the model.
Accurately modeling these residuals is crucial for improving the
overall forecast accuracy. To achieve this, we explored multiple
modeling approaches, including linear regression and Random For-
est, to predict future residuals at various levels of granularity. The
best results are obtained using a Random Forest model trained at
the CC level.

To train the residual model, we first compute the residuals from
historical data. These residuals quantify the discrepancy between
observed accessory sales and the estimated sales derived from the
predicted attach rate and forecasted main device sales. Specifically,
for each accessory ASIN 𝑖 , the residual 𝑒𝑖 at a day level is computed
as:

𝑒𝑖 = actualSales𝑖 − forecastedSales𝑚 × 𝑎𝑖,𝑚 (8)

where 𝑒𝑖 represents the residual for accessoryASIN 𝑖 , actualSales𝑖
denotes the observed sales of accessory 𝑖 , forecastedSales𝑚 denotes
the observed sales of the corresponding main device𝑚, 𝑎𝑖,𝑚 is the
predicted attach rate for accessory 𝑖 relative to main device𝑚.

The residual forecasting model incorporates a comprehensive
set of features that capture product attributes, pricing values, sea-
sonal effects, and promotional activities to improve the accuracy of
the final predictions. A key predictor is the forecasted unit sales
for the main device, serving as the basis for estimating acces-
sory demand. Pricing-related features include the average selling
price (ASP) for both the accessory and main device. The days on
sale feature tracks the number of days an accessory is available
at a discount. The model accounts for major holidays such as
Prime Day, Christmas, and Black Friday through binary indica-
tors (is_major_holiday) and temporal counters for days before and
after each holiday (days_before_*_holiday, days_after_*_holiday).
Additionally, seasonal effects are captured through binary indica-
tors for the day of the week and month. To refine predictions at the
product level, the model includes ASIN dummy variables (asin_X )
and Program-dummy variables (program_Y ) to account for individ-
ual product effects. To account for within-program cannibalization,
the model tracks the average, minimum, and maximum discounts
for related ASINs within the same program, leveraging historical
pricing data. By incorporating these diverse features, the model
effectively captures key demand drivers, improving the accuracy
and stability of accessory attach rate predictions.

Once the residuals are computed, they are integrated into the
forecasting framework to refine sales predictions. The final acces-
sory sales prediction is adjusted by incorporating the predicted

residuals into the calculation. Specifically, the corrected forecasted
sales for accessory 𝑖 on day 𝑡 is given by:

𝑠final𝑖,𝑡 = (𝑎𝑖,𝑚,𝑡 × 𝑠𝑚,𝑡 ) + 𝑒𝑖,𝑡 (9)
where 𝑠final𝑖,𝑡 represents the final predicted sales for accessory 𝑖

on day 𝑡 , 𝑎𝑖,𝑚,𝑡 is the predicted attach rate for accessory 𝑖 relative to
the main device𝑚, 𝑠𝑚,𝑡 is the forecasted sales of the main device𝑚
on day 𝑡 and 𝑒𝑖,𝑡 is the predicted residual for accessory 𝑖 , capturing
systematic deviations not accounted for by the attach rate model
or the systematic biases in the forecast for the main devices.

By incorporating residual forecasts into the demand estimation
process, the model improves its robustness and accuracy, mitigating
errors introduced by forecasted main device sales and attach rate
fluctuations. This correction enhances the reliability and precision
of accessory demand predictions.

3.4 Correlation Weighed Forecasting
We have observed that approximately 90% of accessory sales ex-
hibit a strong correlation with main device sales (higher than 0.54
Pearson correlation coefficient [8]). However, around 10% of acces-
sory demand does not follow a typical attach rate pattern, making
it challenging to accurately forecast using a standard attach rate
methodology. To address this, we developed a dynamic forecasting
approach that adjusts predictions based on the correlation between
accessory and main device sales. The main idea here is that the
forecast for accessory sales (ASIN 𝑖) on a given day 𝑡 is dynami-
cally adjusted based on the correlation between the accessory sales
and the main device sales. Specifically, we leverage an attach rate
model (ARCA’s prediction) with a higher weight when the ac-
cessory’s sales are strongly correlated with the sales of the main
device. When the correlation is weak, a forecasting model that di-
rectly forecasts for the accessory ASIN sales is used, providing a
more accurate prediction. Following this methodology, the forecast
for ASIN 𝑖 on day 𝑡 is computed as follows:

forecast𝑖 =𝑤ARCA × forecastARCA +𝑤other-model × forecastother-model
(10)

where the weight for the ARCA model,𝑤ARCA, is determined by
the normalized Pearson correlation between accessory sales and
main device sales, as𝑤ARCA = Pearson Correlation+1

2 and the weight for
the alternative forecastingmodel,𝑤other-model, is given by𝑤other-model =

1 −𝑤ARCA.
The Pearson correlation reflects the strength of the relationship

between the sales of the accessory and the main device, where a
higher correlation results in a greater reliance on the ARCA-based
forecast. For accessories with lower correlations, the weight shifts
towards the alternative model, which directly forecasts the acces-
sory’s sales without relying on the attach rate. This methodology
allows for flexible forecasting, adjusting dynamically to the corre-
lation structure between products.

4 Experimental Results
In this section, we present our experimental results. For every
experiment we conducted, we take an average of 12 past forecast
versions: 12 trained models and their forecasts in the past, in order
to draw conclusions. Specifically, we create one forecast version per
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month since January of 2024 until January 2025 for the following
experiments unless otherwise noted.

4.1 Evaluation Metrics Description
To evaluate our results, we used the standard metrics of wMAPE
and wBIAS which we have adapted so that we can use for multiple
forecast versions and different time horizons (evaluation periods).
wMAPE stands for weighted Mean Absolute Percentage Error and
is defined as:

𝑤𝑀𝐴𝑃𝐸𝑉 =
∑
𝐴 𝐴𝐴,𝑉 ,𝑖∗|𝑃𝐸𝐴,𝑉 |∑

𝐴 𝐴𝐴,𝑉
where 𝑃𝐸𝐴,𝑉 =

∑
𝑖∈ℎ 𝐹𝐴,𝑉 ,𝑖−

∑
𝑖∈ℎ 𝐴𝐴,𝑉 ,𝑖∑

𝑖∈ℎ 𝐴𝐴,𝑉 ,𝑖
.

𝐹𝐴,𝑉 ,𝑖 are the forecasted units for a given ASIN𝐴 on a given forecast
version 𝑉 on a given day 𝑖 , 𝐴𝐴,𝑉 ,𝑖 are the actual units sold on that
day for that ASIN and ℎ is the evaluation horizon.

Furthermore, we also use themetric of Bias in order to refer to the
persistent forecast errorwhich is a component of the total calculated
forecast error. We define Bias as:𝑤𝐵𝐼𝐴𝑆𝑉 =

∑
𝐴 𝐴𝐴,𝑉 ,𝑖∗𝑃𝐸𝐴,𝑉∑

𝐴 𝐴𝐴,𝑉

The wMAPE metric provides insight into the accuracy of the
forecasts, with lower values indicating better model performance.
Meanwhile, wBIAS serves to evaluate the directional accuracy of
the models, where values close to zero indicate minimal forecast
bias, and negative or positive values reflect underestimation or
overestimation tendencies, respectively.

4.2 Attach Rate Predictions
In this experiment, we evaluated wMAPE and wBIAS of different
forecasting approaches for the attach rate across 12 historical fore-
cast versions. Our analysis focuses on specific horizon and lead
time combinations—horizons of 5 and 15 days, and lead times of
0, 5, and 10 days—which are the most relevant for the allocation
use case of our model. The reported results, presented in Table 1,
focus on forecasts for the US ONLINE market (products sold on
amazon.com in the US), which is the country/channel with the
highest historical accessory sales. We compare multiple approaches
for predicting future attach rates. The Median AR model, used as
a baseline, calculates the median attach rate over the past 60 days
for each accessory ASIN and applies this value as the forecasted
attach rate across the entire horizon. This method results in a high
AVG wMAPE of 70.33% and a substantial bias of 53.74%, indicating
a consistent tendency to overestimate demand.

Model AVG wMAPE AVG wBIAS
1: Median AR 70.33 53.74
2: Model-based AR - CC - Week 69.35 8.94
3: Model-based AR - CC - Day 64.79 0.36
4: Model-based AR - Program - Week 69.13 11.86
5: Model-based AR - Program - Day 58.94 1.74
6: Model-based AR - Device - Week 69.57 1.09
7: Model-based AR - Device - Day 62.88 -31.26
Table 1: Performance comparison of different AR models.

We also present results from several model-based approaches.
For these experiments, we employ a Random Forest model [3] as the
ML approach, as it is readily available in our testing platform and
effectively captures nonlinear patterns—unlike linearmodels, which
performed worse than the baseline due to their inability to capture

attach rate trends. We present results for attach rate models built at
different levels: a) the Country/Channel level (CC): a single model
trained on all ASINs at the country/channel level, b) the Program
level: a model trained separately for each accessory program (e.g.,
all headphone ASINs connecting to a specific tablet) and c) the
Device level: A model trained for each device type (e.g., eReader,
SMP, Alexa etc.), encompassing multiple accessory programs. For
each modeling approach, we test building the model using daily vs.
weekly data aggregation, analyzing whether forecasting at the day
level yields better results than week-level aggregation.

Our results indicate that model-based approaches work better
than a static attach rate (approach 1). Among the model-based ap-
proaches, approach 5: Model-based AR - Program - Day performs
best in terms of accuracy, achieving the lowest AVGwMAPE (58.94%
wMAPE) and a low bias (1.74%), making it the most balanced model.
In contrast, approach 2: Model-based AR - CC - Week performs the
worst, with the highest wMAPE (69.35%) and a high bias (8.94%),
demonstrating poor forecast accuracy. Notably, one variation of
Model-based AR - Program - Day exhibits a negative bias (-31.26%),
indicating a tendency to underpredict demand. Overall, daily-level
models outperform their weekly counterparts, indicating that us-
ing more data for training the model (at the day level) helps learn
patterns more accurately. Furthermore, building the model at the
program level achieves the best accuracy indicating that accessory
programs have unique attach rate behaviors, and a model trained
specifically on a program’s data can better learn its patterns com-
pared to a model that generalizes across all programs (either on the
country/channel level or the device level).

4.3 Residual Model Performance
Next, we compare the performance of the pure attach rate model
with that of the attach rate model augmented by the residual model.
For this experiment, we utilize the best-performing attach rate
model approach from the previous experiment, specifically Ap-
proach 5: Model-based AR - Program - Day. We present the results
of the wMAPE across 12 forecast versions for the US ONLINE
channel.

Figure 2: Impact of the Residual Model on wMAPE.

The comparison between the AR model and the AR model with
residuals (AR+Residual) in Figure 2, reveals that the latter con-
sistently outperforms the former across different lead times and
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Lead
Time

Horizon wMAPE
(ARCA)

wBIAS
(ARCA)

wMAPE (Corre-
lation Weighted
ARCA)

wBIAS (Correla-
tion Weighted
ARCA)

0 5 44.3 -23.2 42.3 -18.4
0 15 42.0 -20.3 40.0 -21.3
5 5 46.4 -22.3 42.3 -12.5
5 15 46.1 -19.6 43.0 -21.6
10 5 47.2 -22.4 46.1 -15.6
10 15 43.1 -20.2 42.1 -23.3

Table 2: Impact of the Correlation Weighted Scheme on ARCA’s Performance.

forecasting horizons, as measured by the weighted Mean Abso-
lute Percentage Error (wMAPE). The AR+Residual model shows
improvements in forecast accuracy, ranging from 2.8% to 34.0%,
depending on the lead time and horizon. These results highlight
the effectiveness of incorporating residuals in refining predictions,
particularly for longer-term forecasts, where the AR model tends to
exhibit larger errors. Overall, the AR+Residual model demonstrates
superior performance, with an average wMAPE of 44.9% compared
to the AR model’s 58.9,% underscoring its ability to capture devia-
tions and provide more reliable forecasts.

4.4 Correlation Weighted Forecasting
Next, we present the results of the CorrelationWeighted ARCA and
compare it with the full ARCA performance (AR + Residual Model)
presented above. As our "other-model" when directly forecasting
for accessories, we used an XGBoost model [5] utilizing the same
feature set as described in section 3.3. Note that we do not use
this model directly for forecasting accessories, as it does not align
with the attach rate–based paradigm that planners use to evaluate
forecasts.

The results, presented in Table 2, reveal that, for a lead time of
0, the Correlation Weighted ARCA model outperforms the stan-
dard ARCA model in terms of both wMAPE and wBIAS across all
horizon periods. Specifically, at a 5-period horizon, the wMAPE
for ARCA is 44.3%, whereas for Correlation Weighted ARCA, it
is 42.3%. Similarly, at the 15-period horizon, ARCA’s wMAPE is
42.0%, compared to 40.0% for the Correlation Weighted ARCA. This
demonstrates the efficacy of incorporating correlation weighting,
as it leads to a reduction in forecast error. However, despite the
improvements in accuracy, both models exhibit notable bias, with
ARCA showing consistently negative wBIAS values, indicating a
tendency to underestimate the forecast. The Correlation Weighted
ARCA model also exhibits a similar bias but to a lesser extent, sug-
gesting that the correlation weighting improves the calibration of
the forecast by reducing the overall underestimation observed in
the ARCA model.

5 Conclusion
In this paper, we presented a novel machine learning-based frame-
work for forecasting accessory demand using attach rates, address-
ing the unique challenges of dependency on main device forecasts.
By integrating a dynamic attach rate model with a residual correc-
tion mechanism and a correlation-weighted forecasting approach,
we improved forecasting accuracy and adoption of the forecasts by

product planners. Our approach offers greater interpretability and
alignment with how product managers and planners approach ac-
cessory demand, making the forecasts more actionable. The model,
deployed in production at Amazon in 2024, demonstrated significant
improvements in forecast precision, benefiting inventory manage-
ment, promotion planning, and operational strategies. Our perfor-
mance evaluations indicate that the model achieves an average
wMAPE of 42% in our largest selling country/channel based on his-
torical sales data. This framework represents an effective solution
for forecasting accessory demand and can be extended to other
product categories with similar attach rate dependencies.
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