Under review as a conference paper at ICLR 2026

CPQS-TUNING: A MODEL SELF-PERCEPTION-BASED
DATA FILTERING ALGORITHM FOR EFFICIENT IN-
STRUCTION FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Instruction fine-tuning is a key technique for enhancing the performance of large
language models (LLMs), but low-quality and redundant data often hinder its ef-
fectiveness. Recent studies suggest that filtering a small amount of high-quality
data for instruction fine-tuning can achieve faster and more efficient training per-
formance. However, existing data filtering approaches predominantly depend on
predefined evaluation models or manually designed metrics, without leveraging
information from the target LLM itself. This limitation may result in a mismatch
between the filtering criteria and the actual requirements of the LLM being fine-
tuned, thereby reducing the effectiveness of the fine-tuning process. To address
these issues, we propose a novel perspective: the hidden states of LLMs implic-
itly reflect the quality of the training data. Based on this insight, we propose a
novel data filtering method that extracts the hidden states that reflect the target
LLM’s perception of the data as representative features, and builds a data classifi-
cation model upon them, which outputs the Contrastive Perception Quality Score
(CPQS) for dataset filtering. Our experiments are conducted in both general and
downstream domains. @ In the general domain, our experiments show that train-
ing on under 10% of the data from both the Alpaca_GPT4 and DeepSeek-R1 syn-
thesized reasoning datasets enables our method to outperform models trained on
the complete datasets. Moreover, it surpasses the performance of current state-of-
the-art data-selection techniques. @ In downstream tasks, our approach delivers an
average performance gain exceeding 3.6% over leading data-selection algorithms
across multiple benchmarks, including GSM8K, HumanEval, and HumanEval-
Plus.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 20205 |Chiang et al.l 2023} |Yang et al., 2024a; [Zeng
et al., 2024)), such as ChatGPT (OpenAll 2023 |Ouyang et al.| [2022a)), have led to a groundbreak-
ing shift in the realm of artificial intelligence in recent years. These models excel in understanding
and handling a wide array of complex language tasks. A critical factor behind their success is in-
struction tuning (Ding et al.| 2023} |(Ouyang et al., 2022b; [Sun et al., 2023} [Yu et al |2023), which
enables models to follow user instructions accurately and exhibit outstanding performance on mul-
tiple downstream tasks (Ren et al.,|2024; |Sun et al.| [2025; |Wang et al.l 2023a; Zhou et al., 2024).

During the instruction tuning process, a high-quality training dataset is essential for effective fine-
tuning. Early research on creating such datasets relied on expert-designed responses (Khashabi
et al.l 20205 |Ye et al) 2021; |Wang et al. 2022)), but these efforts were limited by labor and cost
constraints. More recent studies have used powerful teacher LLMs to generate data (Lee et al.,[2024;
Li et al.| [2024a; [Wang et al., 2023b). The primary issue with these methods is that, in large-scale
data generation, the quality of the generated data varies significantly, with both high-quality and
low-quality data being produced. itetDBLP:conf/nips/ZhoulL XOSMMEY YZG23 propose the LIMA
model with a new perspective to address this issue: using as few as 1,000 carefully chosen, high-
quality instruction examples can substantially enhance model performance. This result suggests that
developing practical algorithms to extract a small, high-quality subset from large training datasets
can lead to improved training outcomes.
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Building on this idea, data filtering has become a popular area of research for efficient instruction
fine-tuning (Cao et al.l [2023b; |Chen et al., 2023a; |Chiang et al., 2023; |Liu et al., 2024d). On one
side, a main group of researchers has attempted to use predefined reward models (Chen et al.| |2024;
Lu et al. 2024} |Bukharin et al., 2024; [Li et al.,|2024b)) to score data and filter it accordingly. Other
studies have analyzed data quality from multiple dimensions (Du et al.,2023; L1 et al.,2024cid; [Wu
et al., 2023} | Yu et al.l[2024) and selected data according to defined quality metrics. In summary, pre-
vious research mainly relies on predefined evaluation models or metrics for data filtering, without
considering information from specific LLMs to be fine-tuned. This gap could lead to a mis-
match between the evaluation criteria and the actual needs of the LLMs being fine-tuned, potentially
impacting the success of the fine-tuning process.

To address this gap, this study uses runtime information from large language models as features to
enhance data representation. By working with feature vectors derived from both high-quality and
low-quality data processed by LLMs, it constructs a data classification model that helps select better-
suited, higher-quality data for fine-tuning LL.Ms, making the process more effective and efficient.
Specifically, our approach relies on two key ideas.

(2) Employ hidden states as LLM features: we extract the hidden states (i.e., neuron activa-
tions) (Goloviznina & Kotelnikov, [2024; |Wang et al.| [2024a) of the target LLM as representative
features, which encode the model’s implicit evaluation of data quality. Leveraging them enables us
to analyze training data quality from the LLM’s own perspective.

(b) Label training data based on quality tiers: we build datasets with high-quality and low-quality
labels (Wettig et al., [2024; Wen et al.| [2024), enabling contrastive training that allows our CNN
model, trained on LLM hidden states, to more effectively capture and interpret the implicit evalua-
tion differences that the LLM encodes regarding data quality.

To realize the above ideas, our method is divided into the following four steps: @ We first construct
an instruction fine-tuning dataset with varying performance, containing both “high-quality” and
“low-quality” samples; @ we then extract the hidden states of the target fine-tuning model for each
instruction; @ based on these hidden states, we train a Convolutional Neural Network (CNN) model
to identify whether the current testing sample is effective (i.e., of high quality) or not; @ during
the prediction phase, the CNN model analyzes the hidden states perceived by the LLM for each
instruction, generating a prediction probability and classification result. The prediction probability
classified as effective is referred to as CPQS, which serves as the criterion for dataset filtering.

Through extensive experiments, we validated that our algorithm performs excellently in data se-
lection for general and downstream domain tasks. In the general domain, we tested using the
Alpaca_GPT4 datasets (Taori et al.l 2023) and the reasoning-deepseek dataset (Hartford & Com-
putations, 2025). The experimental results show that the selected data amount by our method was
less than 10% of the original dataset, yet it outperformed models trained on the entire dataset. Addi-
tionally, our algorithm is proven to surpass various state-of-the-art algorithms on multiple LLMs. In
downstream task domains, such as mathematical problems and programming tasks, the experimen-
tal results show that our algorithm outperformed existing state-of-the-art algorithms by an average
of 3.6 percentage points on benchmark tests like GSM8K, HumanEval (Chen et al., 2021), and
HumanEval-Plus (Liu et al.l [2024c)) with the same data scale.

The main contributions of this paper can be summarized as follows:
Method We proposed an efficient and accurate data selection method based on the LLM’s own con-
trastive perception quality score, significantly enhancing instruction-tuning performance.

Study This paper presents extensive empirical studies that utilize two general fine-tuning datasets
and two task-specific datasets. The results indicate that the proposed data selection method
achieves optimal performance in both general tasks and specific areas such as mathematics
and programming.

2  MOTIVATION

We introduce our core idea: using LLM hidden states to extract signals of training data quality,
illustrated with an initial experiment.
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Recent studies show that LLM hidden states hold rich, actionable information. Xie et al.| (2022)
measured task specialization through variability within and between classes in hidden states; |Serve-
dio et al.| (2025) evaluated factual accuracy from hidden-state signals; and |Qian et al.| (2025) used
hidden states to actively filter harmful inputs.

Motivated by these findings, we hypothesize that LLM hidden states encode data-quality signals. To
test this, we conduct an initial experiment and use models of different parameter scales to generate
high- and low-quality data (the rationale behind this selection strategy will be discussed in detail
in Section [3.1)). Specifically, we use GPT-4—produced Alpaca_GPT4 (Taori et al., [2023) as high-
quality data, while low-quality data are obtained by regenerating samples with smaller models (e.g.,
Llama-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct). Following |Chen et al.| (2024), we use DeepSeek-
V3 (Liu et al.| [20244)) to assign a quality score to each sample. As shown in Fig.|l} the high-quality
set averages 4.73 (mostly 4.5-5.0) versus 3.73 for the low-quality set (mostly 3.0-4.5), indicating a
clear gap.

We select the top 500 scored samples from the high-quality set and the bottom 500 from the low-
quality set. Using the last-layer hidden states of Qwen2.5-7B-Instruct as embeddings, we train
a linear logistic regressor; stratified 5-fold CV yields AUC = 1.00 (mean =+ std), indicating linear
separability. For visualization, we project each embedding x onto the hyperplane normal w to obtain
w-X, plot it against PC1, and mark the decision boundary w-x + b = 0; colors denote ground-truth
labels and show clear separation along w-x (Fig.[2). Overall, the two sets are linearly separable in
the model’s hidden-state space.

Building on these findings, we discover that LLM hidden states differentiate high- from low-
quality data. We train a CNN using hidden-state embeddings from both sets and leverage its outputs
to score new samples, providing a prompt-insensitive evaluation of training data quality.

3 PROPOSED METHODS

This section provides a detailed description of our method. The core of our approach is to train
an external CNN model by extracting the hidden states perceived by an LM on high-quality and
low-quality general fine-tuning datasets for each data point. This model will be used to analyze the
implicit evaluation of the training data within the hidden states of the LLM. The method consists of
four key steps, as shown in Figure[3] We will discuss each step in depth and analyze it accordingly.

3.1 CONSTRUCTION OF HIGH- AND LOW-QUALITY DATASETS

Prior work has demonstrated that data synthesized by stronger models, such as GPT-4, tends to be of
higher quality and can substantially improve the downstream performance of smaller models (Wang
et al.,|2023b; |Peng et al.| 2023)). Motivated by this observation, we treat outputs from powerful mod-
els (e.g., GPT-4) as high-quality data, while the low-quality set is synthesized using much smaller
models. To construct the training data for the CNN, we randomly sampled 5,000 items from the
Alpaca_GPT4 dataset as high-quality samples, capping the subset to mitigate overfitting risks. The
Alpaca_GPT4 dataset itself is a large-scale, general-domain fine-tuning corpus containing 52,000



Under review as a conference paper at ICLR 2026

(1) Data Construction (2) Hidden States Extraction (3) CNN Model Training

Hidden states 5 _ 5
~ 2> : >Eip>ia
PR

(@) ]

N4

Generate data
A Trin

m
former

s 5
¥
s S5 Ex—sEs sese—iz— 8 — 8 —|q
Iz <2 £ < 2 . H H g
+ Z £ £ C o
- = = = =
Training data
LLM architecture
LLM architecture
Sort based on CPQS 2 n o o
<Sample 1>, a ] & g, ] p £ . £
<Sample 2> < =0 bl =Y el “— g € Ef e Eg e 5000 c—3 3 <«
Sa > g z z £ 2he =P Ehe iz
<Sample 3>, 2 S S 1 2 FE E 2 el
= & & & Sl Test data

(4) Prediction

Figure 3: Overall algorithm architecture diagram

entries, each represented as a triplet {Instruction, Input, Response), where Instruction specifies the
task, Input provides auxiliary context, and Response is the GPT-4—generated answer.

To construct the low-quality data samples, we used two small LMs—Llama-3.2-1B-Instruct (Dubey
et al. 2024) and Qwen2.5-1.5B-Instruct (Yang et al., [2024b)). Specifically, (1) from each Al-
paca_GPT4 entry, we extracted the pair {Instruction, Input); (2) we then used the two models to
generate the corresponding Response, forming new triplets (Instruction, Input, Response); and (3)
we uniformly sampled 5,000 entries from each model’s outputs, resulting in 10,000 items as the
low-quality dataset.

Finally, we combine the high-quality and low-quality datasets to obtain the complete training set.

3.2 EXTRACTION OF HIDDEN STATES

For the collected training dataset, we concatenate the Instruction and Input parts of each entry and
use this concatenated value as the “user” input to the model, while the Response part is used as
the “assistant” input. This combined entry is then passed to the model to obtain the hidden states
across all layers of the model. We retain only the hidden state corresponding to the Response part of
each entry. This choice is made because the evaluation of the fine-tuning dataset’s quality primarily
depends on the quality of the Response.

3.3 TRAINING OF THE EXTERNAL CNN MODEL

The core idea of our algorithm is that the hidden states generated by the LLM contain an implicit
evaluation of the quality of the training data. To analyze the LLM’s quality assessment of the
training data, we propose using an external model to interpret the hidden state vectors produced by
the LLM. The external model uses a Convolutional Neural Network (CNN) architecture. We employ
a simple CNN to learn information relevant to data-quality assessment from an LLM’s hidden states
(subsequent experiments show that this CNN performs quite well compared with simple models
such as MLP), employing both 2D and 1D convolutions to capture detailed spatial and sequential
patterns within the hidden-state vectors.

The CNN model further employs adaptive max pooling and fully connected layers to perform bi-
nary classification, distinguishing between high- and low-quality data based on the LLM’s hidden
states. For efficient training, we optimize the model using the Adam optimizer with a learning rate
of 0.0001 and employ gradient accumulation alongside mixed precision training (AMP) to reduce
memory overhead and accelerate convergence. The training process minimizes CrossEntropyLoss,
with periodic checkpoints saved to ensure robustness. To guarantee optimal performance, we track
the loss trajectory during training and retain the best-performing model based on validation metrics.

During the training process, we use the hidden states of each sample obtained in the previous section,
along with their corresponding positive and negative labels, for training. The positive-to-negative
sample ratio was set to 1:2, yielding a total of 15,000 samples. We chose this ratio because it
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accelerates loss reduction, and with 15,000 training examples, the loss had already nearly converged.
Inspired by contrastive learning, we framed the CNN’s training as a binary classification task. This
enables the model to distinguish between the different information perceived by the hidden states of
the LLM for good and bad samples. In doing so, the CNN model can more accurately reflect the
LLM’s evaluation of the training data quality.

3.4 PREDICTION OF CONTRASTIVE PERCEPTION QUALITY SCORE

In the prediction phase, we introduce the Contrastive Perception Quality Score (CP QS) to evaluate
the training quality of each instruction-following sample. A higher CP QS indicates that the LLM
assigns greater importance to the data, implying better training effectiveness and higher quality. The
calculation process is as follows:

1. For each instruction-following sample, we first concatenate the Instruction and Input as the “user”
input and the Response as the “assistant” input. The entry is then fed into the LLM, from which we
extract only the hidden states corresponding to the Response part. These hidden states are passed
into a pre-trained CNN to predict class probabilities. We focus on the probability of class 1, which
indicates how likely the LLM regards the sample as high-quality. This value, denoted as CPQS,
serves as our data quality metric. The calculation is as follows:

CPQAS; =pi = f(xi),

where p; is the predicted probability for the i-th sample, representing the likelihood that the sample
belongs to the positive class, and f(x;) is the output of the LLM’s hidden state vector for the i-th
entry, processed by the CNN model to produce the probability that the sample belongs to class 1.

2. After calculating the CP QS for all samples, we sort the entire dataset based on these probabilities
in descending order and select the top K samples for further processing. The specific selection
process is represented as:

Dselected = topg ({CPQSL}i\;l) ;

where Dgglected 1S the set of the top K selected samples from the dataset based on their CPQOS
values, and top ;- denotes selecting the top K samples after sorting.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND MODELS

We benchmark our method on four datasets—two general-domain and two downstream—and three
7 B-parameter open-source LLMs.

Training Datasets. @ General domain. (i) Alpaca_GPT4 (Taori et al., [2023): 52,K instruc-
tion—response pairs generated by GPT-4, widely used as a standard benchmark dataset; overall
medium quality with relatively fluent but sometimes shallow responses. (ii) Reasoning-DeepSeek:
146,K long-chain-reasoning samples distilled from the 300,K Dolphin—-R1 corpus (Hartford & Com-
putations|, [2025)) after filtering out sequences longer than 2, 048 tokens; considered high quality due
to their complexity and coherence, particularly suitable for evaluating reasoning ability. @ Down-
stream tasks. (i) GSMS8K |Cobbe et al.| (2021): 7.5,K training and 1,K test elementary-math word
problems, designed to assess arithmetic and step-by-step reasoning. (ii) Magicoder-Evol-Instruct-
110K (Wer et al., [2024): 110,K programming instructions covering a wide range of languages and
problem types, offering a challenging benchmark for code generation and instruction following.

Models. (i) Llama 2-7B (Touvron et al.,|2023): a base model with 7B parameters, pretrained for
general natural language understanding and generation. (ii) Llama 2-7B-Chat (Touvron et al.,
2023)): a dialogue-tuned variant of Llama 2—7B, optimized for multi-turn conversational scenarios.
(iii) Qwen2.5-7B-Instruct (Yang et al.| 2024b): an instruction-tuned model designed for text and
code generation, mathematical reasoning, and complex multi-step tasks, providing strong perfor-
mance across diverse downstream benchmarks.
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4.2 COMPARISON ALGORITHMS

To validate our algorithm, we compared it with three state-of-the-art data selection methods that
have received broad attention (ICLR 2024, ACL 2024, arXiv preprint): 1. ALPAGASUS: Chen
et al.| (2024) leveraged LLMs such as ChatGPT to automatically detect and filter out low-quality
data. 2. MoDS: Du et al.[(2023)) proposed a data selection strategy based on the criteria of quality,
coverage, and necessity. 3. Superfiltering: [Li et al.| (2024b) introduced a method that uses a smaller
model to filter data by instruction-following difficulty before fine-tuning a larger model.

4.3 IMPLEMENTATION DETAILS

We conducted our experiments on a platform equipped with two NVIDIA RTX 4090 GPUs. We
adopted LoRA-based fine-tuning using the Llama-Factory framework (Zheng et al., [2024). During
supervised fine-tuning (SFT), we used b£1 6 precision, three epochs, a learning rate of Se-5, a batch
size of 16, and a maximum sequence length of 2048. The LoRA scaling factor was a = 8, and the
rank was r = 16. For the deployment and inference of our model, we utilized vLLM (Kwon et al.,
2023). During inference, we configured the temperature to 0, maintained the precision at bf16, and
set the maximum sequence length to 2048.

4.4 EVALUATION METRICS

General Domain Evaluation Standards. We design evaluation metrics tailored to each data type.
For Alpaca_GPT4, we adopt three common metrics: @ Pair-wise Comparison, following|Chen et al.
(2024), where GPT-40 scores model outputs on Koala (180), WizardLM (218), Self-instruct (252),
and Vicuna (80) across relevance and accuracy (1-10 scale), with two rounds to mitigate position
bias and results categorized as Win/Tie/Loss; @ Open LLM Leaderboard, benchmarking on MMLU,
ARC, HellaSwag, and Truthful QA via the Im-evaluation-harness (Gao et al.| [2024)) (batch size 8);
and @ Alpaca Eval, measuring GPT-40 win rate against text-davinci-003 (Li et al., |2023). For the
reasoning-deepseek dataset, we evaluate on GSM8K, Math_500, HumanEval, and GPQA, covering
mathematical reasoning and code generation, using Im-evaluation-harness (Gao et al., 2024) for
GSMS8K and HumanEval, and EvalScope (Team) 2023)) for Math_500 and GPQA.

Evaluation Criteria for Downstream Task Domains. For downstream evaluation, we target
two domains—mathematical reasoning and code generation. In mathematics, we use the GSM8K
dataset (Cobbe et al.|[2021)—a set of 1,000 middle- and high-school arithmetic, algebra, and geom-
etry problems—to measure problem-solving and reasoning skills. For code generation, we employ
the 164-question HumanEval benchmark (Chen et al. 2021)) and its more demanding extension,
HumanEval-Plus (Liu et al., 2023} |2024c), which adds complex tasks to assess code accuracy, rea-
soning, adaptability, and robustness across diverse inputs.

5 EXPERIMENTAL RESULT

5.1 GENERAL DOMAIN EVALUATION

In this section, we compare our data-selection algorithm with three state-of-the-art methods. Exper-
iments are conducted on Alpaca_GPT4 with Llama2-7B and Reasoning-DeepSeek with Qwen2.5-
7B-Instruct to evaluate performance across models and datasets. @ On Alpaca_GPT4, we train with
subsets of 1K, 2K, and larger sizes, evaluating on MMLU, ARC-Challenge, TruthfulQA, HellaSwag,
and AlpacaEval (Table . @ On Reasoning-DeepSeek, we use 10k, 20k, and 50k samples, bench-
marking against the base model, Superfiltering, and ALPAGASUS; MoDS fails on larger subsets.
Results are summarized in Tables[T]and 2

Our algorithm outperforms state-of-the-art methods and achieves better results than full-
dataset training on the Alpaca_GPT4 dataset with Llama2-7B, using less than 10% of the
data. Table [I] presents a performance comparison between our algorithm and other methods on
models trained with filtered subsets of varying sizes from the Alpaca_GPT4 dataset. As shown in
the first part of Table [I] (data size = 1k), our approach consistently outperforms all competitors in
the low-data regime. With only 1k training instances, it attains a macro-average accuracy of 52.68%
over the four public benchmarks and an AlpacaEval win-rate of 55.98%, exceeding the strongest
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Table 1: Comparative evaluation of data-selection algorithms on Alpaca_GPT4 with varying sample
sizes across MMLU, ARC, TruthfulQA, HellaSwag, and AlpacaEval.

Size Algorithm MMLU ARC TruthfulQA HellaSwag Average AlpacaEval
1k Self 42.07 45.73 45.54 77.38 52.68 55.98
1k Superfiltering 41.54  46.67 44.59 77.33 52.53 55.87
1k MoDs 40.21 46.25 46.79 77.20 52.61 52.78
1k Alpagasus 40.32 46.76 43.50 77.12 51.92 49.65
2k Self 44.30 47.18 45.68 77.54 53.68 57.90
2k Superfiltering 42.42 47.61 45.77 77.50 53.32 57.02
2k MoDs 43.21 47.35 45.78 77.59 53.48 53.42
2k Alpagasus 42.93 46.42 45.65 77.71 53.18 56.90
3k Self 43.87 47.89 46.03 77.69 53.87 58.76
5k Self 4433 48.21 47.42 77.83 54.40 59.94
12k Alpagasus 43.22 48.29 46.86 78.43 54.20 58.80
52k Full 42.15 48.23 48.46 78.65 54.37 59.81
(a) Self vs Superfiltering (b) Self vs MoDs
g I, —-EE ZET
Koala | e ] Koala § El
WizardLM & WizardLM §
(c) Self vs Alpagasus (d) Self (1K) vs Alpaca_dataset (52K)
B e, EEB S _nl
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p— [ | p—
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Figure 4: Performance Comparison of Data Selection Methods on the Llama2-7B Model Using the
Alpaca_GPT4 _Dataset.

baseline by 0.15 and 0.11 percentage points, respectively. As illustrated in the second part of Ta-
ble [T] (data size = 2k), doubling the budget to 2k further lifts the macro-average to 53.68% and the
AlpacaEval score to 57.90%, while still maintaining a clear margin over all baselines. We addi-
tionally conduct pairwise preference tests with GPT-40 on Vicuna-style prompts; the comparison in
Figure [] shows that our 1k model already surpasses the model trained on the full 52k corpus. To
assess scalability, we increase the subset size to 3k and 5k. As shown in the third part of Table |I[,
performance improves steadily: at 5k, the open-domain average reaches 54.40%, and the AlpacaE-
val win-rate climbs to 59.94%. Notably, the Sk model outperforms the Alpagasus-filtered 12k model
and surpasses the full 52k model on every metric, confirming the superior efficiency of our selection
criterion.

Our algorithm also outperforms existing methods on the Reasoning-DeepSeek dataset with
the Qwen2.5-7B-Instruct model, achieving better performance using less than 10% of the data
compared to full-dataset training. As shown in Table 2} despite the generally higher quality of
the Reasoning-DeepSeek dataset, existing algorithms fail to achieve outstanding performance, while
our method consistently leads. Specifically, the model trained on our 10K filtered subset achieved an
average score of 65.45 across mathematical and coding reasoning tasks, surpassing models trained
on Superfiltering’s 10K and 20K datasets, Alpagasus’s 113K dataset, and even the full 146K dataset.
Notably, the performance on Math_500 initially declined compared to the base model. We attribute
this to a limited maximum generation length setting of 8K tokens; our additional experiments con-
firmed that increasing the token limit enhances performance significantly. Moreover, we observed
that increasing the size of the filtered training dataset beyond a certain point did not yield substantial
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Table 2: Performance of models trained with data filtering on the Reasoning-DeepSeek dataset
across GSM8K, Math_500, HumanEval, and GPQA benchmarks.

Size Model GSMS8K Math 500 HumanEval GPQA Average
— Base 76.27 73.40 64.02 30.30 61.00
10k Self 85.37 72.40 67.68 36.36 65.45
10k Superfiltering 81.43 70.40 62.20 31.82 61.46
20k Self 85.14 76.20 64.02 34.85 65.05
20k Superfiltering 76.19 71.60 63.41 28.79 60.00
50k Self 84.99 74.20 64.02 36.87 65.02
113k Alpagasus 84.84 66.52 64.63 28.18 61.04
146k Full 85.06 70.60 57.32 30.71 60.92

Table 3: Performance Evaluation of Models Trained with Different Data Selection Methods on the
GSMS8K Dataset in the Mathematics Domain

Model Original  Self MoDs Alpagasus Superfiltering  Full
Llama 2-7B-Chat 24.56 2525  23.05 23.12 17.06 35.56
Qwen 2.5-7B-Instruct 76.27 81.12 7945 76.27 76.80 69.83

improvements. For example, the model trained on the 10K dataset outperformed both the 50K fil-
tered dataset and the full 146K dataset, with the 10K model surpassing the full 146K-trained model
by 3.48 points. This indicates potential noise and redundancy in the full dataset, underscoring the
effectiveness of our targeted filtering approach.

In addition to the evaluations mentioned, we applied our algorithm to select 10k samples from
the 930k Tulu3-SFT-Mixture dataset (Appendix [A.2)), where it continued to outperform competing
methods. We also explored its performance under full-parameter fine-tuning, with results in Ap-
pendix [A.T] confirming its superiority. The iterative nature and performance-influencing factors of
our method are analyzed in Appendices and Further, we demonstrate the generalization
of our method across different LLM sizes in Appendix [A.5] compare its performance with models
using different architectures for hidden-state extraction in Appendix [A.6] and present a comparison
of performance and efficiency with other methods in Appendix

5.2 DOWNSTREAM TASK EVALUATION

We evaluated our algorithm on downstream-task datasets using Llama2-7B-Chat and Qwen2.5-7B-
Instruct. Following the practice of fine-tuning pre-optimized models, we tested on GSM8K (Cobbe
et al., [2021)) (math) and Magicoder-Evol-Instruct-110K (Wei et al., 2024) (code), filtering them to
500 and 1,000 samples respectively. Performance was assessed on GSM8K test, HumanEval, and
HumanEval-Plus. For ALPAGASUS, GPT-40-mini was used for data selection due to its higher
efficiency and lower cost.

Our algorithm outperforms other algorithms in the field of mathematics. Table [3] presents re-
sults on the GSMS8K Dataset, where our algorithm outperforms the others by 4.17 points on Llama
2-7B-Chat and 3.61 points on Qwen 2.5-7B-Instruct. Notably, the model trained on the full GSM8K
dataset underperforms on Qwen 2.5-7B-Instruct (score 76.27), while the model trained on 500 se-
lected data points achieves 81.12, surpassing the full dataset by 11.29 points. This demonstrates the
effectiveness of our algorithm in the field of mathematics.

Our algorithm outperforms other algorithms in the field of code. Tables [ and [5] show re-
sults with the Magicoder-Evol-Instruct-110K dataset. On Llama 2-7B-Chat (Table d)), our algorithm
outperforms others by 4.3 points on average, and models trained on 1000 data points from other
algorithms performed worse than the original. In contrast, the model trained on 1000 points selected
by our algorithm improved by 2.45 points. On Qwen 2.5-7B-Instruct (Table [5), the model trained
with our selected data outperformed others by 1.47 points on average. However, all models trained
on the filtered Magicoder-Evol-Instruct-110K dataset showed performance degradation, likely due
to its lower quality for this model. This demonstrates the effectiveness of our algorithm in the code
domain.
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Table 4: Performance Evaluation of Models Trained with Different Algorithms on Llama 2-7B-Chat
in the Code Domain (pass@1).

Original Self MoDs Alpagasus Superfiltering

HumanEval 134 16.5 12.2 12.2 10.0
HumanEval-Plus 11.6 134 9.8 10.4 9.1
Average 12.5 14.95 11 11.3 9.55

Table 5: Performance Evaluation of Models Trained with Different Algorithms on Qwen 2.5-7B-
Instruct in the Code Domain.

Original Self MoDs Alpagasus Superfiltering

HumanEval 82.9 80.0 78.7 78.0 79.3
HumanEval-Plus 75.6 74.4 72.6 72.6 73.2
Average 79.25 772  75.65 75.3 76.25

6 RELATED WORK

Data Selection Strategies. The goal of instruction tuning (Liu et al., [2024b; Longpre et al., [2023]
Sanh et al. 2022} [Wei et al.l 2022)) is to help LLMs better understand human task requirements.
Early research primarily focused on building large-scale instruction datasets, but studies like LIMA
have shown that only a small amount of high-quality data is needed during instruction fine-tuning
to achieve good results. Existing data selection methods can be classified into four categories:
indicator-based methods, trainable LLM-based methods, powerful LLM-based methods, and small-
model-based methods.

Indicator-based methods use a metric system to identify multiple evaluation indicators to compre-
hensively assess data quality (Cao et al.l |2023aj [Wei et al., 2023). Trainable LLM-based meth-
ods treat the LLM as a trainable data selector, processing and assigning scores to each instruc-
tion fine-tuning data for selection (Chen et al., 2023b; [Li et al., 2024c). Powerful LLM-based ap-
proaches, such as those using models like ChatGPT, typically design prompt templates and leverage
the model’s capabilities to quantitatively evaluate the quality of data samples (Chen et al.| [2024; |[Liu
et al. 2024d). Finally, small-model-based methods involve using external small models to score
the data or projecting the data samples into vectors with a small model for further processing and
selection (Chen et al., 2023a; [L1 et al.| [2024D)).

Performance Evaluation of LLLMs. The evaluation of LLMs is typically done through automatic
evaluation, human evaluation, and using LLMs as evaluators. Automatic evaluation relies on pre-
defined criteria and quantitative assessment (Chen et al.,[2021; Hendrycks et al., [2021; Wang et al.,
2024b)). Human evaluation focuses on qualitative aspects like clarity, consistency, and factual accu-
racy, and is essential for quality assessment (van der Lee et al.,[2021} [Zheng et al.,[2023)). However,
due to its time and labor demands, using powerful LLMs (Chen et al.| 2024} |Huang et al.| [2024) to
evaluate other LLMs has become a popular approach in recent years.

7 CONCLUSION

This paper addresses the issue of low-quality and redundant data in LLM instruction fine-tuning.
Based on the hidden states that reflect the target LLM’s perception of the data, we build a data
classification model and define CPQS as its output. Using CPQS as the criterion, our method filters
high-quality data subsets, thereby improving the efficiency and effectiveness of instruction fine-
tuning.

Experimental results show that our approach achieves superior performance with less than 10%
of the original data compared to models trained on the full dataset. It also outperforms exist-
ing data selection techniques at equal data scales. In downstream tasks, such as mathematical
problem solving (GSM8K) and programming (HumanEval, HumanEval+), our method provides
a 3.6% average performance improvement over current state-of-the-art data selection algorithms.
The code and data have been provided online at https://anonymous.4open.science/r/
CPQS—-Tuning-7307.
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Table 6: Comparative evaluation of models trained with different data-selection algorithms and
sample sizes (1k vs. 2k) on five benchmarks.

Size Model MMLU ARC Truthful-QA HellaSwag Avg. AlpacaEval
1k Self 4195 4787 50.92 717.57 54.58 65.93
1k Superfiltering | 41.76  47.78 51.05 77.56 54.54 64.36
1k MoDs 4143 4753 48.46 76.82 53.56 57.02
1k Alpagasus 39.76  47.87 52.08 77.54 54.31 55.14
2k Self 42.06  48.25 53.47 77.66 55.36 69.73
2k Superfiltering | 42.14  48.63 51.71 77.97 55.11 69.69
2k MoDs 39.94  46.67 53.10 77.67 54.34 54.10
2k Alpagasus 41.66  47.78 5142 76.66 54.38 64.16
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A APPENDIX

A.1 FULL-SCALE FINE-TUNING EXPERIMENT

At the 1k and 2k data scales, we performed full-parameter fine-tuning on the datasets produced
by each selection method to assess their performance under more exhaustive training. The setup
employed two H20 GPUs, a learning rate of le-5, a batch size of 64, and three training epochs.
Results are summarized in Table[6]

After full fine-tuning, every method achieved noticeably higher scores on all five benchmarks than
with LoRA-only tuning, demonstrating that updating the entire set of model weights can further
unlock data value. Notably, the dataset selected by our algorithm led in both average score and
AlpacaEval at both the 1k and 2k scales, confirming its clear performance advantage.

A.2 ADDITIONAL EXPERIMENTS ON DATASET FILTERING EFFECTIVENESS

We conducted additional experiments on the Llama2-7B model using the TULU-3-SFT-mixture
dataset, comparing results from filtering 930K samples down to 10K samples. As shown in Table([7]
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our method outperforms other algorithms on both open-ended large model evaluation benchmarks
and AlpacaEval (notably, the MoDs algorithm was excluded from comparison due to GPU memory
limitations with larger sample sizes). Our approach achieved an average score of 53.27 on the open-
ended evaluation benchmarks and 52.37 on AlpacaEval.

Table 7: Comparative Evaluation of Llama2-7B Models Trained with Different Data Selection Al-
gorithms on TULU-3-SFT-mixture (Filtered to 10K Samples) Across MMLU, ARC (Challenge),
TruthfulQA, HellaSwag, and AlpacaEval Benchmarks.

Model MMLU ARC TruthfulQA HellaSwag Avg. AlpacaEval
Self 4454  45.05 46.42 77.08 53.27 52.37
Superfiltering ~ 42.98  45.56 43.49 76.87 52.23 45.90
Alpagasus 4295 4644 44.42 76.39 52.55 32.19

We further evaluated pairwise model comparisons using AlpacaEval to measure the win rates be-
tween different approaches. As demonstrated in Table [8] our method shows significant advantages
over other dataset filtering techniques.

Table 8: Pairwise Model Comparison Results (AlpacaEval)

Model Comparison ~ Win Rate (%) Loss Rate (%)
Self vs Superfliting 52.25 47.74
Self vs Alpagasus 68.36 31.49

A.3 EXPERIMENT ON ITERATIVE MODEL TRAINING AND DATA SELECTION

We conducted experiments to assess the iterativeness of our algorithm. First, we trained a CNN
model using our algorithm on the Qwen2.5-7B-Instruct dataset. This trained model was then used
to predict and rank the Alpaca.GPT4 dataset. Based on the ranking, we extracted the top 5,000
and the last 10,000 data samples. We then retrained another CNN model using this subset to further
filter 1,000 samples from the Alpaca_GPT4 dataset for additional training. As shown in Figure[5] the
performance of the newly trained model demonstrated a significant improvement over the previous
version. For example, the green sections in the figure represent the number of wins by the newly
trained model, which show a clear advantage across multiple datasets.

Self1.0 wins

B Self2.0 wins

e T
v R

Figure 5: Comparison of Model Performance After Two-Stage Data Selection.

A.4 IMPACT OF HIDDEN LAYER SELECTION AND DATASET PREFERENCES
A.4.1 THE IMPACT OF DIFFERENT HIDDEN LAYERS ON MODEL PERFORMANCE

In this section, we investigate the impact of different hidden layers of the model on data selec-
tion performance. To this end, we chose the Qwen 2.5-7B-Instruct model for experimentation and
focused on analyzing the contribution of each layer’s hidden states to the selection performance.
Specifically, we used the hidden states from the first 9 layers, the middle 9 layers, the last 11 layers,
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and the final layer to train separate CNN models, and validated them on the GSMS8K dataset and
Magicoder-Evol-Instruct-110K Dataset (Wei et al., 2024)).

As shown in Table@], on the GSM8K Dataset (Cobbe et al.,|2021])), the model trained using the hidden
states from the first 9 layers performed the best, with a score of 84.23. However, its performance
was still not as good as the model trained with hidden states from all layers. On the Magicoder-Evol-
Instruct-110K Dataset (Wei et al., [2024), the model trained with the hidden states from the last 11
layers performed the best, with an average score of 76.55. Overall, we conclude two points. 1. The
later hidden layers provide more information and lead to more accurate data filtering performance.
2. Utilizing a subset of layers still lagged behind the performance of the model trained with all
layers.

Table 9: Comparison of CNN Model Performance Trained on Different Hidden Layer Parts of
Qwen2.5-7B-Instruct Model.

Full Early (9) Middle (9) last(11) final (1)

GSMS8K 84.91 84.23 83.85 83.70 83.70
HumEval(pass@1) 80.0 75.0 77.4 79.3 78.7
HumanEval-Plus(pass@1)  74.4 70.1 71.3 73.8 72.6

A.4.2 PREFERENCES OF DIFFERENT MODELS FOR HIGH-QUALITY DATASETS

In this section, we explore whether different LLMs have distinct preferences for high-quality
datasets. To this end, we trained the models on high-quality datasets selected from the GSM8K
dataset and Magicoder_Evol_ Instruct-110K Dataset using Llama 2-7B-Chat and Qwen 2.5-7B-
Instruct. We then compared the performance of these models when exchanging datasets. Specif-
ically, we trained Qwen 2.5-7B-Instruct and Llama 2-7B-Chat on each other’s selected datasets and
compared their performance with training on their own selected datasets.

As shown in Tables @] and@ whether in the mathematical or coding domains, the models trained
after swapping datasets did not perform as well as those trained on their original datasets. For both
Llama 2-7B-Chat and Qwen 2.5-7B-Instruct, the high-quality dataset considered by one model did
not yield the same results when used by the other model. Therefore, our experiment shows that
different models exhibit significant differences in selecting high-quality datasets, with each model
having its own definition of what constitutes a “high-quality dataset.”

Table 10: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their
Own and Swapped Datasets on the GSM8K Dataset (Cobbe et al., 2021)).

Training Method Llama 2-7B-Chat Qwen2.5-7B-Instruct
Self Training 25.25 84.91
Dataset Swapping 23.58 83.24

Table 11: Performance of Llama 2-7B-Chat and Qwen2.5-7B-Instruct Models Trained on Their
Own and Swapped Datasets on the HumanEval Dataset.

Training Method HumanEval pass@1 HumanEval-Plus pass@1 Average
Llama 2-7B-Chat (Self) 16.5 134 14.95
Llama 2-7B-Chat (Swapped) 11.2 11.0 11.1
Qwen2.5-7B-Instruct (Self) 80.0 74.4 77.2
Qwen?2.5-7B-Instruct (Swapped) 72.0 67.1 69.55

Furthermore, we explored whether large models of different sizes have distinct preferences for high-
quality datasets. To this end, we selected a larger model (such as Qwen 2.5-32B-Instruct) and
a smaller model (such as BitCPM4-1B), and conducted experiments on the Reasoning-DeepSeek
dataset. Specifically, we trained a CNN for each model to predict and filter the dataset, and then
swapped the datasets selected by different models, retraining the models and evaluating their perfor-
mance differences.
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The experimental results, as shown in Table [I2] indicate that the models performed better when
using their own selected datasets. This was true across the GSM8K, Math_500, HuanEval, and
GPQA datasets, where the models consistently achieved better average scores. This further validates
the differences in how each model defines and selects "high-quality data.”

Table 12: Performance of CNN Models Trained on Their Own and Swapped Datasets on Four
Datasets: GSM8K, Math_500, HuanEval, and GPQA.

Training Method GSMSK Math 500 HuanEval GPQA Average
BitCPM4-1B (self) 38.06 33.00 54.88 28.79 38.68
BitCPM4-1B (swapped) 42.00 32.80 48.78 24.24 36.96
Qwen 2.5-32B (self) 85.52 81.40 56.10 46.46 67.36
Qwen 2.5-32B (swapped)  85.60 80.40 51.22 42.93 65.05

A.5 GENERALIZATION OF CPQS ACROSS ARCHITECTURES AND SCALES

To assess whether CPQS generalizes beyond the three LLMs reported in the main paper, we further
evaluated it on two additional model families at different parameter scales: a small BitCPM4-1B
model and a large Qwen2.5-32B-Instruct model. In both cases, CPQS was used to filter the Rea-
soning_DeepSeek corpus into high-quality subsets of varying sizes (10k, 20k, etc.). We compared
CPQS (self) against two strong data selection baselines, Superfliting and Alpagasus, and trained
models under identical settings per architecture. We report performance on GSMS8K, Math_500,
HuanEval, and GPQA, along with the simple average.

Across both the 1B and 32B regimes, CPQS-selected data consistently outperformed all baselines
at matched subset sizes. On BitCPM4-1B, CPQS delivered the best averages for 10k and 20k sub-
sets, exceeding Superfliting and the larger 113k Alpagasus subset despite using fewer samples. On
Qwen2.5-32B-Instruct, CPQS likewise led at 10k and 20k, with stronger averages than Superfliting
and the much larger Alpagasus set. These results indicate that CPQS’s selection criteria transfer
across architectures and scales, and that quality can outweigh quantity when curating reasoning-
focused training data. The detailed experimental results are presented in Table |13 and Table

A.6 ABLATION ON THE SELECTOR ARCHITECTURE: CNN vS. MLP vS. TRANSFORMER

To further validate the effectiveness of our selector design, we conducted an ablation study compar-
ing the CNN architecture used in our method with two alternative designs: a multi-layer percep-
tron (MLP) and a Transformer-based selector.

We evaluated all three architectures on the Reasoning-DeepSeek dataset (10k samples selected by
CPQS). As shown in Table the CNN-based selector consistently outperforms both MLP and
Transformer variants across GSM8K, Math_500, HuanEval, and GPQA benchmarks, achieving the
best overall average. We attribute this performance advantage to CNN'’s strong locality bias and
computational efficiency, which enable it to extract hierarchical spatial correlations from hidden
states and thus improve data-quality discrimination.

A.7 ADDITIONAL COMPARATIVE EVALUATIONS AND EFFICIENCY ANALYSIS
A.7.1 COMPARISON WITH RECENT DATA-SELECTION METHODS

We extend our comparative study by including several recent and representative data-selection ap-
proaches: SelectIT, DS2, and Deita, which are widely regarded as strong baselines for instruction-
tuning data curation. All methods were evaluated on the Reasoning-DeepSeek dataset using 10k
selected samples and fine-tuning a Qwen2.5-7B-Instruct model under identical conditions (maxi-
mum output token length set to 8000). Table [16|reports results on GSM8K, Math_500, HuanEval,
and GPQA, as well as the simple average.

As shown in Table [I6] our method achieves the highest average performance among all compared
baselines, indicating a stronger ability to identify samples that are most beneficial for the target
model.
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Table 13: Comparative evaluation of data-selection methods on BitCPM4-1B using Reason-
ing_DeepSeek subsets across GSM8K, Math_500, HuanEval, and GPQA.

Size Method GSMS8K Math 500 HuanEval GPQA Average
10k Self 38.06 33.00 54.88 28.79 38.68
10k Superfliting 39.35 30.20 52.44 2424 36.56
20k Self 37.00 32.00 53.66 29.80 38.12
20k Superfliting 36.92 30.09 54.27 27.27 37.14
113k Alpagasus 37.38 30.80 53.66 25.76 36.90

Table 14: Comparative evaluation of data-selection methods on QwenZ2.5-32B-Instruct using Rea-
soning_DeepSeek subsets across GSM8K, Math_500, HuanEval, and GPQA.

Size Method GSMS8K Math 500 HuanEval GPQA Average
10k Self 85.52 81.40 56.10 46.46 67.36
10k Superfliting 85.22 81.80 56.71 43.43 66.79
20k Self 84.76 81.60 53.66 46.46 66.62
20k Superfliting 84.99 81.40 49.39 42.93 64.68
113k Alpagasus 84.91 81.00 53.66 39.90 64.87

A.7.2 COMPUTATIONAL COST AND THROUGHPUT ANALYSIS

To provide a transparent accounting of efficiency, we report GPU memory consumption and through-
put (samples per second) under identical hardware constraints. All methods were executed on an
NVIDIA RTX PRO 6000 GPU. Throughput was computed over 146,224 samples using total wall-
clock processing time. Results are summarized in Table[T7] As shown in the table below, our method
ranks just behind Alpagasus and Superfliting in terms of GPU memory usage, and second only to
Superfliting in throughput.
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Table 15: Ablation on selector architectures (CNN, MLP, Transformer) using 10k CPQS-selected
Reasoning-DeepSeek samples. Metrics are reported on GSM8K, Math_500, HuanEval, and GPQA,
with the simple average.

Size Method GSM8K Math 500 HuanEval GPQA | Average
10k CNN 85.37 72.40 67.68 36.36 65.45
10k MLP 87.04 72.80 60.37 29.29 62.38
10k Transformer 84.15 73.20 67.07 30.81 63.81

Table 16: Comparison with recent data-selection methods on Reasoning-DeepSeek (10k selected
samples) using Qwen2.5-7B-Instruct. All methods are evaluated under identical generation settings

Size Method | GSM8K Math 500 HuanEval GPQA | Average
10k Self 85.37 72.40 67.68 36.36 65.45
10k DS2 84.15 72.80 62.80 29.80 62.39
10k  SelectIT 85.67 73.60 59.76 31.82 62.71
10k Deita 82.56 76.00 62.80 30.81 63.04

Table 17: GPU memory usage and throughput under identical hardware (NVIDIA RTX PRO 6000).
Throughput is measured in samples per second over 146,224 samples. Best values per column are

in bold.

Method GPU Memory (GB) Throughput (samples/s)
Self 18 4.78

MoDs 24 1.40
Alpagasus 0 1.45
Superfliting 2 34.82

DS2 30 1.44

Deita 50 2.03

SelectIT 26 1.13
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