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Abstract
In single-cell and spatial sequencing analysis, several computational methods
have been developed to map the cellular state space, but little has been done
to map or create embeddings of the gene space. Here we formulate the gene
embedding problem, design tasks with simulated single-cell data to evaluate
representations, and establish relevant baselines. We then present gene signal
pattern analysis (GSPA), a graph signal processing approach that learns rich gene
representations from single-cell data using a dictionary of diffusion wavelets
on the cell–cell graph. This approach embeds genes based on their patterning
and localization on the cellular manifold, enabling characterization of genes for
diverse biological tasks, including identifying gene coexpression modules and
gene subnetworks associated with patient phenotypes.

1 Introduction
Techniques to map the cellular state space in single-cell RNA sequencing (scRNA-seq) embed
cells in low-dimensional spaces based on transcriptional similarity, revealing clusters of cells or
trajectories along phenotypic continuums. Gene expression is also highly organized, coordinated into
complexes and pathways, but existing cell embedding methods cannot capture this gene landscape
due to biological and technical noise (e.g. dropout due to sampling inefficiency) [1, 2].

We address this by framing genes as signals on a cell-cell graph and applying graph signal processing
to learn their representations [3]. We first construct a cell-cell graph and diffusion operator P, where
powering P to t gives the transition probabilities of a t-step random walk. We then construct a
dictionary of multiscale diffusion wavelets [4], which power P to multiple t, and decompose each gene
into a set of graph diffusion wavelet coefficients. We reduce the dimensionality of this representation
with an autoencoder, enabling downstream tasks while preserving gene-gene relationships. We
demonstrate this on simulated [5], CD8+ T cell [6], and tumor-associated immune [7] single-cell
transcriptomic data, as well as lymph node [8] and hepatocellular carcinoma [9] spatial transcriptomic
data. Our approach enables analysis of gene coexpression modules, localized signatures, perturbation-
specific networks, spatial variability, cell communication, and patient response. This work extends
our recently published study [10] with new comparisons and insights into GSPA for identifying gene
subnetworks linked to patient phenotypes from spatial transcriptomics (Figure 1). These results
demonstrate the utility of learning multiscale representations of graph signals.
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Figure 1: Overview of Gene Signal Pattern Analysis. a. Construction of a cell–cell graph. b.
Demonstrative gene signals, where signals are functions defined on nodes of cell–cell graph. c.
Construction of diffusion wavelet dictionary W, or QR-factorized dictionary Ŵ, consisting of
diffusion wavelets for scales 1, ..., J . Gene signals are projected onto dictionary and embeddings are
learned via autoencoder. d. Demonstrative gene embedding. e. Example downstream applications.

2 Background
Single-cell transcriptomics measures thousands of genes (features) per cell (observation), yet cellular
behavior is constrained to a limited set of fates, motivating the manifold assumption that high m-
dimensional observations lie upon a low d-dimensional manifold (i.e., a d-dimensional subset of
Rm that is locally equivalent to Rd) for some d ≪ m (see [11] for review of manifold learning for
single-cell data). To approximate the unknown manifold, most manifold learning approaches first
construct a graph Gcell = (Vcell, Ecell) with adjacency matrix A and diffusion operator P = AD−1,
where D is the diagonal degree matrix (Di,i =

∑
j Ai,j , Di,j = 0 if i ̸= j). P describes the

transition probabilities of a lazy random walker, and powering P to diffusion time t corresponds to
averaging signal x over t-step random walks.

From these observations, [12] introduced diffusion maps to embed datapoints into a low-dimensional
Euclidean space Rd, d ≪ m, parameterized by scale t. Formally, we take the eigenvalues 1 =
λ1 ≥ λ2 ≥ · · · ≥ λN and corresponding eigenvectors {ϕj}Nj=1 of P and map each point xi ∈ X

to a d-dimensional vector Φt(xi) = [λt
1ϕ1(xi), . . . , λ

t
Nϕd(xi)]

T . Small values of t capture local
representations and large t capture global representations. Inspired by classical wavelet constructions
(e.g., [13]), diffusion wavelets [4] extend diffusion maps for multiscale data representations by
computing the difference in powered diffusion operators, e.g. Ψj = P2j−1 −P2j . Diffusion wavelets
have played a powerful role in graph signal processing [3] and in geometric deep learning [14, 15].

3 Problem Setup
Given a single-cell sequencing dataset consisting of m genes and their measurements in n cells,
organized into an m× n matrix X, with the insight that gene measurements, like cell measurements,
may also be compressed into a lower-dimensional space for analyzing gene-gene relationships, we
aim to obtain a low-dimensional representation of each gene which preserves the inherent structure
of the gene space with respect to the cellular manifold. In particular, we seek a reduced dimensional
map Θ : Rn → Rd, d ≪ n, which satisfies three desired properties: preservation of local and global
signal distances, noise robustness, and flexibility to downstream tasks (see Section A.1).

4 Related Work
Techniques to calculate gene-gene relationships, which can be used to construct gene embeddings,
fall into (1) diffusion-based manifold learning, (2) optimal transport between gene signals on the
graph, and (3) joint gene-cell embeddings (see Section A.2). (1) MAGIC [16] denoises the gene
expression matrix by left-multiplying X to Pt. Eigenscores [17] rank genes by alignment with first
r ≪ n left Laplacian eigenvectors. These methods map genes by their low-frequency patterning
on the cell-cell graph at a single scale. (2) DiffusionEMD [18] computes optimal transport with
multiscale diffusion kernels, and GFMMD [19] calculates signal distances by analytically solving for
a smooth optimal witness function. (3) siVAE [20] is a variational autoencoder with two encoders
(cell-wise and gene-wise) and a combined decoder which outputs each gene’s expression for each cell.
SIMBA [21] constructs and embeds a heterogeneous graph consisting of gene and cell nodes, where
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genes are connected to cells they are expressed in. In experiments, we embed high-dimensional gene
representations with an autoencoder for accurate comparison, and we compare GSPA to additional
baselines: embedding the raw measurements X with an autoencoder, and constructing a gene-gene
k-NN graph from X and embedding the graph with Node2Vec [22] or a graph autoencoder [23].

5 Gene Signal Pattern Analysis
5.1 Model overview
To construct the map Θ, we make the critical observation that the expression pattern Xi for gene i
can be described as a signal (function) defined on the nodes of a cell-cell similarity graph Gcell. We
thus compare how gene expression patterns are similar to and different from each other based on
distances along the cellular manifold, achieving gene embedding desiderata (see Section A.3).

5.1.1 Constructing a cell-cell similarity graph from single-cell data
First, we build a graph Gcell = (Vcell, Ecell), where each node in Vcell corresponds to a cell, and
each edge Ev1v2

in Ecell describes the similarity between cell v1 and cell v2. To build Gcell, we
compute the Euclidean distances between all pairs of cells and apply an α-decaying kernel to

calculate affinities. The α-decaying kernel is defined as Kk,α(v1, v2) =
1
2 exp

(
−
(

∥v1−v2∥2

εk(v1)

)α)
+

1
2 exp

(
−
(

∥v1−v2∥2

εk(v2)

)α)
, where v1 and v2 are cells ∈ Vcell, viewed as points in Rm corresponding to

columns of X, εk(v1), εk(v2) are the distance from v1, v2 to their k-th nearest neighbors, respectively,
and α controls the decay rate [24]. We describe scalability for large graphs in Section A.4.

5.1.2 Building dictionary of graph diffusion wavelets for gene representation
Given cellular graph Gcell, we construct a multiscale representation with diffusion wavelets. We first
define P = AD−1 as the diffusion operator. Then, each wavelet of scale j centered at vertex v can
be calculated by Ψj = P2j−1 −P2j for 1 ≤ j ≤ J (and Ψ0 = I−P) and extracting the v-th row
via δTv Ψj , where δv is the Kronecker delta centered at the v-th vertex. Then {ΨT

j δv}v∈Vcell,j∈0,1...J

defines our wavelet dictionary W of shape n × Jn, where small j capture local representations,
and large j capture global. Number of scales J is defined as the log of the number of cells n based
on Lemma A.2 introduced and proven in [18]. Because the diffusion operator P is smoothing, we
assume the numerical rank decreases as we take powers of the operator [4], and a small set of large
wavelets can describe the graph at a coarse resolution. Therefore, to remove redundant wavelets, we

can perform QR factorization and get a compressed wavelet dictionary Ŵ = {Ψ̃
T

j δv}v∈Vcell,j∈0,1...J ,
where for each j, Ψ̃j is a set of linear combinations of wavelets at j that account for the most
variance. For large j, QR factorization naturally computes the numerical rank of Ψj by taking a
linear combination to form Ψ̃j such that the total error in projecting Ψj onto Ψ̃j is less than some ϵ
fraction of the norm of Ψj . We evaluate GSPA with (GSPA+QR) and without (GSPA) factorization.

5.1.3 Projecting gene signals onto wavelet dictionary
Each gene signal Xi of shape 1×n corresponds to the expression of the gene in the cellular state space.
Given all gene signals X and wavelet dictionary (Ŵ or W), we project X onto the dictionary (XŴ
or XW). This reveals each gene signal’s spatial and frequency information over the corresponding
cell-cell graph Gcell. Theorem A.1 shows that the wavelet projection X → XW is continuous with
respect to an Unbalanced Diffusion Earth Mover’s Distance (UDEMD) [25], which describes how
similar two gene signals Xi1 and Xi2 are in a manner informed by the geometry of the cellular graph.

5.1.4 Learning low-dimensional representation with autoencoder
To reduce redundancy and improve computational tractability for downstream analysis, we reduce the
dimensionality of XŴ with autoencoder D ◦E where the objective is to minimize the mean squared
error. That is, XŴ′ ≈ D(E(XŴ)), so that ∥XŴ −XŴ′∥22 =

∑
i∈X ∥XiŴ −XiŴ

′∥22 is as
small as possible. The latent representation E(XŴ) is the embedding we evaluate and characterize
in downstream analysis, i.e. GSPA(X) = E(XW) and GSPA+QR(X) = E(XŴ) where W
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Figure 2: Coexpression and localization experiments over three random seeds. a. Noiseless and noisy
cell embeddings of simulated linear trajectory, colored by pseudotime and example gene expression.
Experimental set-up and coexpression evaluation. b. Experimental set-up and localization evaluation.

and Ŵ are uncompressed and compressed wavelet dictionaries (respectively), E is the encoder
discussed above, and GSPA and GSPA+QR are taken to be the map Θ in the problem setup.

5.2 Differential localization reveals genes specific to populations without prior clustering
Beyond preserving relationships within the gene space, GSPA also preserves distances to any signal
defined on the cell–cell graph. This enables ranking genes based on informativeness for characterizing
cell-cell variation, termed differential localization, which proves useful in cases where it is difficult
to assign cluster labels and annotate cell types [26] (see Section A.6). Based on the observation that
uniformly expressed genes are least likely to be involved in cell state-defining biological processes
[27], the gene localization score is calculated as the distance between each gene embedding and an
embedding of a uniform (constant) signal u = 1√

n
1 (Definition A.1). Localized genes (with high

scores) can thus be used for pathway enrichment analysis and cluster-independent feature selection.

5.3 GSPA for multiple modalities (GSPA-multimodal)
Where we have datasets of the same datapoints with multiple modalities, we can construct a combined
representation using integrated diffusion [28], which constructs affinity graphs for each modality
(e.g., for two modalities, G1 and G2). Then, each graph has associated diffusion filters P1

t1 and
P2

t2 , where t1 may not equal t2 due to differing degrees of noise. Finally, the integrated diffusion
operator is calculated by multiplying diffusion filters, i.e. Pintegrated = P1

t1P2
t2 . We can use this

operator to construct an integrated wavelet dictionary and project signals for downstream analysis, as
described above. For spatial transcriptomic data, each spot has two measurements: spatial coordinates
and expression. Thus, using a version of integrated diffusion for spatial transcriptomic data [29],
gene embeddings from GSPA-multimodal are informed by both spatial and expression similarity.

6 Experiments
6.1 Comparison to alternative gene mapping strategies
We evaluated embeddings on three simulated single-cell datasets with differing latent structure
(linear, 2 branches, and 3 branches), where each dataset had corresponding noisy X and unseen
true (noiseless) X′ counts [5]. Defining coexpression between genes i1 and i2 as the correlation of
true counts X′

i1 and X′
i2 , we learned gene embeddings from the noisy counts X and compared the

anti-correlation between embedding distance and true coexpression for GSPA and baselines (Figures
2a, A.2, Table 1). We next benchmarked embeddings for their ability to capture gene localization,
generating simulated signals with “ground truth” localization and calculating each signal’s localization
score (Figures 2b, A.3, A.4, Table 1). GSPA+QR outperformed baselines irrespective of normalization
and graph construction (Figure A.5a-b), and methods using the cell-cell graph showed better overall
performance, supporting our assertion that the graph can improve gene-gene analysis (Figure A.5c).
Finally, both QR factorization and the autoencoder contributed to performance gains (Table 2).
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6.2 Coexpression in CD8+ T cells with gene embeddings

Figure 3: GSPA for CD8+ T cells. a. Antigen-specific
CD8+ T cells colored by condition and marker gene ex-
pression. b. Gene embedding, colored by gene module
assignment. c. Gene embedding, colored by localiza-
tion score. d. Enrichment of top localized genes of
GSPA+QR gene module 5, and type 1 interferon sig-
naling enrichment for top genes from all comparisons.

To investigate CD8+ T cell plasticity in
response to infection [30], we analyzed a
newly developed dataset comprising antigen-
specific CD8+ T cells sequenced at three
timepoints from acute and chronic LCMV in-
fections [6] (Figure 3a). Cluster-derived dif-
ferentially expressed genes, including mark-
ers of interest, showed expression in multiple
clusters, (Figure A.6a-b), motivating map-
ping the gene space to capture distinct T cell
signatures. GSPA+QR gene embeddings or-
ganize genes by these signatures, with gene
modules corresponding to memory, naive-
ness, proliferation, effector, exhaustion, and
type 1 interferon response (Figure 3b, Fig-
ure A.6c). Localized genes within each mod-
ule showed significantly higher interaction
than expected in STRINGdb [31] (Figure 3c,
Figure A.6c). Furthermore, re-embedding
cells with localized genes preserved overall
manifold structure, highlighting localization
for topologically-informed feature selection
(Figure A.7). To evaluate how well baselines
capture subtle but known type 1 interferon signaling in chronic conditions [32, 33], we identified
gene modules in each baseline and compared gene set enrichment [34] of the gene module with type 1
interferon marker Irf7. Cell clusters and baseline gene modules showed low to no enrichment of type
1 interferon signaling, suggesting GSPA and GSPA+QR uniquely identify this signature. By capturing
strong gene coexpression patterns, GSPA additionally enables derivation of perturbation-specific
gene-gene networks (Figure A.6d) and shows improved classification of patient immunotherapy
response (Figure A.8) compared to traditional single-cell response prediction baselines.

6.3 Spatially-organized gene networks with GSPA-multimodal

Figure 4: GSPA-multimodal overview. a. Schematic
for spatial transcriptomics. b. H&E stain. c. Gene
embedding with gene module assignment. d. Visual-
ization of two gene modules and localized genes. e.
GSPA-multimodal for HCC response.

GSPA-multimodal derives gene embeddings
from multimodal data via an integrated diffu-
sion operator Pintegrated [28, 29], such that
we can construct an integrated wavelet dictio-
nary informed by all modalities (Figure 4a).
Applied to 10x Visium lymph node data (Fig-
ure 4b, [8]), GSPA-multimodal calculates
gene embeddings and localized genes rep-
resenting distinct tissue substructures (Figure
4c-d), enabling spatially variable gene and
cell communication analysis (Figure A.9).

To assess how gene networks locally rewire
with patient phenotypes, we extended GSPA-
multimodal by constructing patient-specific
gene-gene k-NN networks from GSPA em-
beddings. Then, for each gene in each net-
work, we extracted the local gene neigh-
borhood and embedded it with attributed
Graph2Vec [35], such that each point rep-

resents the local network for a given patient gene expression profile. We then rank genes based on
the difference in structural similarity within versus between phenotypic groups, identifying genes
with stronger inter-group differences (Definition A.2, Figure 4e). Analyzing four responder and
three non-responder samples from patients with hepatocellular carcinoma (HCC) [9] (Figure 4e),
this revealed genes enriched for adhesion, immune regulation, and plasticity pathways, implicating
structural and microenvironmental remodeling in HCC response [34].
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A Appendix
A.1 Defining desired gene embedding properties

Our goal is to obtain a low-dimensional representation of each gene which preserves the inherent
structure of the gene space with respect to the cellular manifold. In particular, we seek a reduced
dimensional map Θ : Rn → Rd, d ≪ n, which satisfies the desired properties enumerated below.

1. Preserving local and global distances between signals: A good gene embedding should
produce similar representations of genes Xi1 and Xi2 (viewed as rows of X) if they have similar
measurement profiles. In order to ensure that we capture meaningful information, we aim to
preserve distances based on the geometry of the underlying cell-cell graph Gcell, rather than the
naive pointwise distance, between gene signals.

2. Noise robustness: Addressing biological noise, such as cell-to-cell variation, and technical
noise, such as dropout, have been longstanding concerns in single-cell analysis and best practices
[1, 2, 16]. Due to variability in noise between genes with different expression levels [1], noise
robustness is especially relevant for constructing gene embeddings. We thus seek a representation
Θ such that ∥Θ(Xi1)−Θ(Xi2)∥2 ≈ ∥Θ(Xi1 + ϵi1)−Θ(Xi2 + ϵi2)∥2 where ϵi1 and ϵi2 are
measurement noise associated with genes Xi1 and Xi2 .

3. Flexibility to downstream tasks: Finally, we want to ensure our embedding Θ is flexibly defined
for training on various additional tasks, whether concurrently with the learned embedding or
downstream of the embedding.

A.2 Related work and baselines

Here, we describe in detail related work and comparisons for our experiments with GSPA:

• Raw measurements approach embeds X.
• GAEno-att(Ggene) embeds Ggene, representing a gene-gene similarity graph based on the scRNA-

seq data.
• GAEatt(Ggene) embeds Ggene.
• Node2Vec(Ggene) embeds Ggene.
• MAGIC(X) embeds X after denoising with Gcell.
• DiffusionEMD(X, Gcell) embeds X via optimal transport on Gcell, representing a cell-cell

similarity graph based on the scRNA-seq data.
• GFMMD(X, Gcell) embeds X via MMD on Gcell.
• Eigenscore(X, Gcell) embeds X via alignment to Laplacian eigenvectors of Gcell.
• SIMBA co-embeds X and XT via heterogeneous graph embedding.
• siVAE co-embeds X and XT via jointly trained cell-wise and feature-wise VAEs.

A.2.1 Direct embedding of gene expression measurements

The simplest and most intuitive approach to map the gene space is with the original measurements.
X consists of values where each cell is measured as a vector of gene expression counts, so we
can consider the case where the genes are observations, and each gene is measured as a vector of
expression counts in each cell. We use autoencoder D ◦ E to reduce the dimensionality, where
X ≈ D(E(X)) and E(X) is the embedding.

A.2.2 Embedding constructed gene-gene graph

Another approach is to construct a gene-gene k-NN graph Ggene = (Vgene, Egene) from X, where
each node in Vgene corresponds to a gene and each edge Eij in E describes the similarity be-
tween gene i and gene j based on Euclidean distance. We can then leverage graph representa-
tion learning to propagate information between gene-gene relationships and learn node embed-
dings. We test one shallow embedding Node2Vec(Ggene), and two graph autoencoder embed-
dings. The graph autoencoder Dno−att ◦ Eno−att consists of graph convolutional layers, where
Ggene ≈ Dno−att(Eno−att(Ggene)). The graph autoencoder Datt ◦Eatt consists of graph attention
layers, where Ggene ≈ Datt(Eatt(Ggene)). Eno−att(Ggene) and Eatt(Ggene) correspond to the
embeddings without and with attention, respectively.
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A.2.3 Imputing gene signals with cell-cell graph

The above methods do not use information from the cell-cell graph for the computation of gene
representations. Based on our desired properties, we hypothesized that incorporating cellular
affinities would enable the comparison of non-overlapping gene signals across local and global
distances on the cellular manifold.

First, we compare against MAGIC [16], which imputes missing gene expression via data diffusion.
MAGIC calculates a diffusion operator P powered to t, and left-multiplies Pt to XT as a low-
pass filter. For comparison, we left-multiply X to Pt, which practically denoises gene signals and
performs comparatively to MAGIC (data not shown). We then employ an autoencoder D ◦ E, where
XPt ≈ D(E(XPt)) and E(XPt) is the embedding.

A.2.4 Optimal transport distances between gene signals

Due to the relationship between GSPA and Wasserstein distance (i.e. optimal transport), we compare
GSPA against approaches for fast optimal transport that have been developed and used for gene
signals on the cellular graph.

Diffusion Earth Mover’s Distance (DiffusionEMD) [18] computes optimal transport based on
multiscale diffusion kernels. Between two genes i1, i2 ∈ X, DiffusionEMDβ,J (i1, i2) :=∑J

j=0 ∥Tβ,j (i1)− Tβ,j (i2)∥1, where 0 < β < 1/2 is a meta-parameter used to balance
long- and short-range distances and J is the maximum scale considered here. Tβ,j (Xi) :=2−(J−j−1)β

(
µ
(2j+1)
i − µ

(2j)
i

)
j < J

µ
(2J)
i j = J

, where µ
(t)
i := 1

ni
Pt1Xi is a kernel density estimate

over Gcell. Graph Fourier Mean Maximum Discrepancy (GFMMD) [19] is defined via an optimal
witness function that is smooth on the graph and maximizes the difference in expectation between the
pair of gene distributions. GFMMD(Xi1 ,Xi2) := maxf :fTLf≤1 EXi1

(f)− EXi2
(f), holding for

any construction of a positive semi-definite Laplacian matrix L and chosen threshold T = 1.

For these approaches, multiscale signal features X̂ are computed prior to distance calculation. We
reduce the dimensionality of these features via an autoencoder D ◦ E, where X̂ ≈ D(E(X̂)) and
E(X̂) is the embedding.

A.2.5 Computing eigenscores

Eigenscores were proposed as a topologically motivated mathematical method for feature selection,
and they were also shown to be useful for mapping the gene space to distinguish cell types [17].
Eigenscores rank signals or genes based on their alignment to low-frequency patterns in the data,
identified through spectral decomposition of the graph Laplacian. Specifically, given the first r
left eigenvectors of the normalized Laplacian (where r ≪ n to preserve low-frequency patterning),

Eigenscore(i) := concat(
⟨D1/2Xi,e1⟩
∥D1/2Xi∥ ,

⟨D1/2Xi,e2⟩
∥D1/2Xi∥ , ...,

⟨D1/2Xi,er⟩
∥D1/2Xi∥ ). We let Eigenscore(X), of

shape m x r represent the eigenscores for each gene i in X. We finally reduce the dimensionality for
gene space mapping via an autoencoder D ◦ E, where Eigenscore(X) ≈ D(E(Eigenscore(X)))
and E(Eigenscore(X)) is the embedding.

A.2.6 Co-embedding of cells and genes

Finally, recent approaches incorporate cell-cell affinities through simultaneously learning embeddings
for cells and genes. This methodology has the benefit of learning the pairwise similarities between
cells, rather than constructing the cell-cell graph a priori, and training this module in tandem with
gene-gene similarity training. siVAE [20] is a neural network consisting of cell-wise and gene-wise
encoder-decoders. The cell-wise encoder takes each cell’s measurement across all features and maps
cell embeddings similarly to a classical VAE, which computes an approximate posterior distribution
over the location of the cell. The gene-wise encoder takes a gene’s measurement across all cells
and maps gene embeddings. The decoders of both VAEs combine to output the expresion level of
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each feature in each particular cell, ensuring that each mapping has semantic structure. SIMBA
[21] constructs a heterogeneous graph, where the nodes are cells and genes, and edge type are
determined through expression level. SIMBA first bins the continuous gene expression values into a
discrete distribution that preserves the shape of the original distribution, then encodes different bins
as different relation types. A node embedding for each node in the graph is then learnt via stochastic
gradient descent optimization of a link prediction objective. For both procedures, we evaluated only
the gene space embeddings in our comparisons.

A.3 Achieving desired gene embedding properties with GSPA

A.3.1 Distance preservation

Our first desired property is an embedding that preserves distances (quantified in a manner informed
by the geometry of the cellular state space). Theorem A.1, defined below, shows that GSPA is able to
achieve this goal since it guarantees we will have GSPA(Xi) ≈ GSPA(Xj) whenever Xi is close
to Xj with respect to the Unbalanced Diffusion Earth Mover’s Distance (UDEMD). This distance, a
variant of traditional earth mover’s distance (EMD), views the signals Xi (when properly normalized)
as probability distributions on the graph.

Earth Mover’s Distances (EMDs), alternatively referred to as Monge-Kantorovich or Wasserstein
Distances, are a useful way of computing the distances between two signals. In the case where
the signals correspond to probability distributions µ and ν, these distances can be thought of as
the “cost" of moving a collection of points distributed according to µ to a collection of points
distributed according to ν, where the cost of moving each point depends on the distance it must
travel (defined with respect to some ground distance). In [25] (see also [18]), it was shown that the
Wasserstein distance (with a truncated geodesic distance as ground distance) could be approximated
by the Unbalanced Diffusion Earth Mover’s Distance (UDEMD) defined below. Here, we will
show that the metric induced by our wavelets is continuous with respect to this UDEMD, i.e.,
∥Xi1W −Xi2W∥2 ≲ UDEMD(Xi1 ,Xi2).

In [25], the UDEMD [25] between two signals (genes) Xi1 ,Xi2 is defined as

UDEMDβ,J (Xi1 ,Xi2) :=

J∑
j=0

∥Tβ,k (Xi1)− Tβ,k (Xi2)∥1 , .

where 0 < β < 1/2 is a meta-parameter used to balance long- and short-range distances and J is the
maximum scale considered here, and Tβ,j is defined by

Tβ,j (Xi) := 2−(J−j)β

(
µ
(2j)
i − µ

(2j−1)
i

)
, µ

(t)
i := PtXi,

for 1 ≤ j ≤ J and Tβ,0(Xi) = 2−Jβ(P− I)Xi.

Theorem A.1 For 0 < β < 1/2, the diffusion wavelet transform W (with maximal scale J) is
Lipschitz continuous with respect to UDEMDβ,J , that is there exists a constant C > 0 (depending
on β and J and the ratio between the largest and smallest vertex degrees) such that

∥Xi1W −Xi2W∥2 ≤ C · UDEMDβ,J(Xi1 ,Xi2).
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Let Xi1 ̸= Xi2 . (The inequality holds trivially in the case where Xi1 = Xi2 .) We may compute

∥Xi1W −Xi2W∥22 = ∥WTXT
i1 −WTXT

i2∥
2
2

=

n∑
v=1

J∑
j=0

|δTv ΨjX
T
i1 − δTv ΨjX

T
i2 |

2

=

J∑
j=0

∥ΨjX
T
i1 −ΨjX

T
i2∥

2
2

≤
J∑

j=0

∥ΨjX
T
i1 −ΨjX

T
i2∥2∥ΨjX

T
i1 −ΨjX

T
i2∥1

≤ C max
0≤j≤J

∥ΨjX
T
i1 −ΨjX

T
i2∥2

J∑
j=0

2−(J−j)β∥ΨjX
T
i1 −ΨjX

T
i2∥1

= C max
0≤j≤J

∥ΨjX
T
i1 −ΨjX

T
i2∥2 UDEMD(Xi1 ,Xi2),

where C is a constant depending on J and β. It follows from Proposition 2.2 of [14] that

∥ΨjX
T
i1 −ΨjX

T
i2∥2 ≤ C∥XT

i1 −XT
i2∥2,

where C is a constant depending only on the ratio between the maximal vertex degree and minimal
vertex degree. ([14] considers the wavelets on a weighted inner product space where vertices are
weighted by degree. Transferring this result to the unweighted ℓ2 space induces dependence on the
ratio between the maximal and minimal degrees.) Therefore, we have

∥Xi1W −Xi2W∥22 ≤ C ·UDEMD(Xi1 ,Xi2)∥Xi1 −Xi2∥2,
which in turn implies

∥Xi1W −Xi2W∥2 ≤ C ·UDEMD(Xi1 ,Xi2)
∥Xi1 −Xi2∥2

∥Xi1W −Xi2W∥2
.

The lower bound in Proposition 2.2 of [14] implies that
∥XT

i1
−XT

i2
∥2

∥Xi1W−Xi2W∥2
is bounded above by a

constant (depending on the ratio between the maximal and minimal vertex degrees). Therefore, we
have

∥Xi1W −Xi2W∥2 ≤ C ·UDEMD(Xi1 ,Xi2)

as desired.

A.3.2 Noise robustness

Robustness to biological and technical noise is a key feature of diffusion-based single-cell analysis
approaches [11]. Note that raising the diffusion operator P to the power t is equivalent to powering
the eigenvalues of the diffusion operator by t, i.e., P = ΣΛΣ−1, where the columns of Σ contain the
(right) eigenvectors of P and Λ is a diagonal matrix whose entries are the corresponding eigenvalues.
Thus, Pt = ΣΛtΣ−1 and powering P effectively results in powering the eigenvalues contained
in Λ. The eigenvectors are decreasingly ordered by their “frequency", a notion of how rapidly a
signal oscillates over the graph. It is known that 1 = λ1 > λ2 ≥ λ3 ≥ . . .. Therefore, powering P
preserves the lead eigenspace and suppresses the subsequent spaces by a factor of λt

i. Acting on a
signal Xi by Pt preserves the portion of the signal aligned with the first eigenvector and depresses
the portion of the signal corresponding to the other eigenvectors by a factor of λt

i. As t increases, the
high-frequency (small eigenvalue) portion of the signal is suppressed. Naturally occurring signals
tend to vary slowly and smoothly over the graph (and thus lie in the low-frequency eigenspaces),
whereas noise is not related to the structure of the graph and therefore will often lie in the higher
frequencies. In this manner, acting on the signal Xi by Pt has a denoising effect since it suppresses
the high-frequency (noisy) portion of the signal. Therefore, we can restrict the dictionary to wavelets
that decompose only the lower frequencies by initially multiplying each wavelet by Pt. Additionally,
we note that the distance preservation result in Theorem A.1 shows that the wavelet projection is
continuous with respect to the UDEMD, which may be viewed as a form of noise robustness.
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A.3.3 Flexibility to downstream tasks

We demonstrate flexibility through learning a low-dimensional representation generalizable for
diverse downstream tasks, as represented in our case studies.

A.4 Runtime analysis and GSPA for large graphs

Figure A.1: Scalability and performance with coarse-grained cell-cell graph. a. Diagram of diffusion
condensation and identification of persistent resolutions. b. Runtime of GSPA and GSPA+QR.
c. Comparison of pairwise gene-gene distances between exact GSPA and fast GSPA embeddings.
d. Experiment with simulated dataset comprising of 95% cell type 1 and 5% cell type 2. Gene
embedding visualization colored by ground truth differential expression factor, i.e. how associated a
gene is with each cell type, for varying degrees of condensation.

For large graphs, Gene Signal Pattern Analysis utilizes diffusion condensation, a coarse-graining
process which iteratively condensing datapoints toward local centers of gravity and is shown to
approximate heat diffusion over the time-varying manifold [36]. Over the condensation time, the
original coordinate functions are smoothed by a cascade of diffusion operators, which adaptively
removes high-frequency variations. At each iteration, points closer than a given threshold collapse to
the same barycenter. This technique allows GSPA to summarize the underlying topology of the data
manifold. We use a version of diffusion condensation designed for single-cell analysis, Multiscale
PHATE [37], which uses the potential representation of datapoints from PHATE [24] as the initial
features. By smoothly condensing nodes and choosing the resolution with persistent (i.e. stable)
condensation, this process better preserves the graph topology, including subtle or rare patterns, and
shows improvement over clustering-based approaches while remaining highly scalable [37] (Figure
A.1a).
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For graphs larger than threshold ncondense, we use Multiscale PHATE to iteratively condense
datapoints to a small number of nodes. GSPA then filters for iterations with ncondense or fewer
nodes, where each node represents a condensation of one or more cells. Finally, GSPA selects the
iteration with a node count closest to ncondense to balance coarse- and fine-grained information.
This represents a smaller cell-cell graph representing the same underlying manifold as the initial
(larger) dataset, and GSPA computes a wavelet dictionary based on this graph. Then, gene signals
are defined on the nodes of the condensed graph as the mean expression of all the cells in each node.
By default, ncondense = 10, 000 cells. Due to the smaller size of the graph, computation becomes
much more tractable (100,000 cells in 33.17 minutes and 30.18 minutes with GSPA and GSPA+QR,
respectively) with comparable results, where pairwise distances between genes from exact versus
GSPA showed high correlation (R=0.900 for GSPA and R=0.713 for GSPA+QR) (Figure A.1b-c).
We show that this condensation process preserves subtle patterns that exist in even a small number of
cells. In a simulated dataset with two cell types, where cell type 1 comprises 95% of the cells and
cell type 2 comprises 5%, GSPA gene embeddings derived with no condensation, 1%, 50% and 90%
condensation all preserve the differential gene signature associated with each cell type (Figure A.1d).

A.5 Choosing the number of scales J

The number of scales for the wavelet dictionary J is defined as the log of the number of cells n based
on the following lemma introduced by Tong et al. [18] and proven in the original work:

Lemma A.2 There exists a K = O(log|V |) such that µ(2K)
i ⋍ ϕ0 for every i = 1 . . . , n, where ϕ0

is the trivial eigenvector of P associated with the eigenvalue λ0 = 1.

This is based on the reasoning that if the Markov process converges in polynomial time with respect
the number of nodes |V |, then one can ensure that beyond O(log|V |), all density estimates would be
indistinguishable from each other.

A.6 Computation of differential localization

Characterizing differentially expressed genes between clusters is not feasible for many biological
systems. For example, for datasets that have trajectory-like structure, consist of subtypes within cell
types, or do not organize into discrete populations, there is utility in identifying genes localized to
particular areas of the cellular manifold without prior cell type identification. To this end, we naturally
extend GSPA to a framework called differential localization. We calculate the specificity, termed
gene localization score l(i), of a given gene signal i by calculating the multiscale representation of
a uniform signal u and computing the distance between this and each gene signal representation.
Genes are then ranked, where those that are most differentially localized are farthest from the uniform
signal representation.

The gene localization score, l(i) for each gene Xi, with normalized uniform signal u = 1√
n
1 and

wavelet representation Ŵ, is defined as:

l(i) := ∥XiŴ − uŴ∥22 (A.1)

Genes with a high localization score are considered more relevant for describing cell-cell variation
and can be used for feature selection or characterization of gene programs and networks without the
underlying assumption of discrete clusters.
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A.7 Extended simulated data experiments and robustness to normalization and graph
construction

Figure A.2: GSPA preserves coexpression in two alternative single-cell simulations. a. Experi-
mental setup. b. Simulated dataset with two branches schematic. PHATE embedding of cells from
noiseless simulation and noisy simulation, colored by pseudotime. Spearman correlation evaluating
performance for all comparisons across 3 runs. c. Simulated dataset with three branches schematic.
PHATE embedding of cells from noiseless simulation and noisy simulation, colored by pseudotime.
Spearman correlation evaluating performance for all comparisons. d. PHATE embedding of genes
from two branch simulation, colored by gene module assignments. Cells colored by gene module
enrichment score. e. PHATE embedding of genes from three branch simulation, colored by gene
module assignments. Cells colored by gene module enrichment score.

For the coexpression experiment with a linear trajectory (Figure 2a) and two and three branches
(Figure A.2), we generated simulated data, then defined signals as the gene features from the
simulation experiment. Because of the simulation design, this meant we have both noisy X and
noiseless X′ versions of the same gene signals. This allows us to compute “ground truth" coexpression
as the Spearman correlation between all noiseless pairs of genes. Given the large number of genes
and the nature of biological data, the large majority of gene-gene pairs had a near-zero correlation.
The correlation also was associated with the library size of the genes in the pair. Therefore, we
stratified the labels based on correlation and the mean library size of the pair within each correlation
bin. We learned unsupervised gene embeddings for all comparisons as described above, then, for an
equal number of pairs per stratification bin, we computed the distance between gene embedding pairs
and the anti-correlation with the true coexpression.

For the localization experiment with a linear trajectory (Figure 2b) and two and three branches (Figure
A.4), we generated simulated data as previously described. However, instead of using the genes as
signals, we designed signals with “ground truth" localization labels (Figure A.3). We intuited that
more localized signals are not defined by where they are enriched in the trajectory, but rather by how
spread out that enrichment is. Thus, we aimed to constrain the size of the region where each signal
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could be defined, termed “window", where the window can be defined anywhere on the trajectory
and is only defined by its size.

Figure A.3: Schematic of generation of signals for localization experiment. a. Noisy simulated data
with pseudotime. b. Selection of windows of size δ, where ground truth localization is 1 − δ. c.
Examples of generated signals of different δ.

To generate signals and associated localization scores with these properties, we used the ground truth
pseudotime label (provided by Splatter) scaled to be between 0 and 1, and we defined window size δ.
Then, we randomly selected a timepoint t between [δ/2, 1− δ/2] and defined a pseudotime window
[t− δ/2, t+ δ/2]. Next, we sampled 500 cells from all cells within this pseudotime window, and we
let the signal equal 1 on these cells and 0 on all other cells (Figure A.3).

For each of five window sizes δ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, we generated 50 signals, resulting in 250
signals total. As smaller δ corresponds to a higher localization score, we defined the true localization
score for each signal to be 1 − δ. This score is unrelated to where the signal is defined based on
randomly selected t. Furthermore, all signals are defined on exactly 500 cells, so the localization
score is not associated with the number of cells expressing the gene.

For GSPA+QR, GSPA, and MAGIC, computing signal localization involved projecting the uniform
signal onto the cell representation/dictionary and calculating the distance between the projected
uniform signal and all other projected signals. Eigenscore and GFMMD defined a version of this
localization based on the L2 norm of their embeddings, so we evaluated localization using this
measure. For DiffusionEMD, we learned a multiscale representation of the uniform signal, and we
computed the distance to all other signals before dimensionality reduction. For the raw measurements,
we took the distance of the uniform signal to all other signals before dimensionality reduction. For
Node2Vec and the GAE approaches, we built a signal-signal graph with the uniform signal and
embedded these graphs, then computed the L2 distance between the uniform embedding and the
other signals. For SIMBA and siVAE, which learn a low-dimensional representation of the genes
directly, we learned a low-dimensional embedding of the uniform signal and computed the distance
to all other signals in this latent space.

16



Mapping the Gene Space at Single-Cell Resolution with Gene Signal Pattern Analysis

Figure A.4: GSPA captures localized genes in alternative single-cell simulations. a. Diagram
of generated signals based on pseudotime window and anti-correlation between window size and
localization. b. Two branch noisy simulated dataset, visualized with PHATE and colored by
pseudotime. Spearman correlation evaluating performance for all comparisons. c. Three branch
noisy simulated dataset, visualized with PHATE and colored by pseudotime. Spearman correlation
evaluating performance for all comparisons across 3 runs.

To evaluate robustness to steps to process the cellular measurements before mapping the gene space,
we ran our coexpression experiment and localization experiment for all comparisons over each
combination of the following: two runs, two single-cell dataset transformations (log and sqrt),
four choices for k in construction of k nearest neighbors graph (5, 15, 25, 50), and three choices for
construction of nearest neighbors graph (k nearest neighbors (kNN), shared nearest neighbors (SNN),
and construction with an adaptive α-decaying kernel). Together, this resulted in 48 runs for each
method (Figure A.5a).

On average across all hyperparameters and preprocessing choices, GSPA and GSPA+QR outper-
formed all other approaches (Figure A.5b). Furthermore, despite potential sensitivity to graph
construction, approaches that leveraged the cell-cell graph to calculate gene-gene relationships out-
ranked approaches that used pointwise gene measurements on both experiments (Figure A.5c). For
the coexpression experiments, approaches with the cell-cell graph had an average rank of 2.929, and
approaches without the cell-cell graph had an average rank of 8.071. For the localization experiments,
approaches with the cell-cell graph had an average rank of 2.686, and approaches without the cell-cell
graph had an average rank of 8.314. This result reinforces the desired distance preservation and noise
robustness properties garnered from using the cell-cell graph and further supports our assertion that
considering genes as signals on the cell-cell graph can improve analysis of gene-gene relationships.
Additionally, as most single-cell sequencing analysis tools and pipelines construct a cell-cell graph,
including for visualization, clustering, and trajectory inference [38], using the same graph can ensure
consistent biological analysis with GSPA.
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Figure A.5: GSPA robust to transformation and graph construction. a. Schematic of grid search of
2 transformations, 4 kNN choices, 3 kernels, and 2 replicates (48 runs total). b. Coexpression and
localization experiment performance across all runs. c. Comparison of performance rank of methods
that use cell-cell graph versus without cell-cell graph.

A.8 Evaluating autoencoder contribution to GSPA

The median performance on the three datasets and two benchmarks is as follows:

linear 2 branches 3 branches
model coex. (↓) loc. (↓) coex. (↓) loc. (↓) coex. (↓) loc. (↓)
% improvement over
best baseline 7.33% 10.55% 7.05% 151.02% 8.64% 134.88%
% improvement over
best non-graph baseline 230.65% 12471.40% 37.02% 2852% 105.82% 4225%
GSPA+QR -0.615 ± 0.003 -0.880 ± 0.004 -0.607 ± 0.006 -0.738 ± 0.006 -0.566 ± 0.004 -0.660 ± 0.022
GSPA -0.539 ± 0.009 -0.843 ± 0.008 -0.569 ± 0.001 -0.529 ± 0.013 -0.547 ± 0.002 -0.294 ± 0.032
Eigenscore -0.573 ± 0.010 -0.796 ± 0.014 -0.567 ± 0.006 -0.232 ± 0.074 -0.521 ± 0.005 0.020 ± 0.043
MAGIC -0.296 ± 0.016 -0.678 ± 0.106 -0.541 ± 0.017 -0.122 ± 0.090 -0.467 ± 0.008 -0.051 ± 0.047
DiffusionEMD -0.192 ± 0.094 -0.187 ± 0.046 -0.247 ± 0.043 -0.233 ± 0.080 -0.141 ± 0.044 -0.281 ± 0.063
Raw -0.186 ± 0.010 -0.007 ± 0.000 -0.443 ± 0.052 -0.007 ± 0.000 -0.275 ± 0.014 0.071 ± 0.000
GFMMD -0.122 ± 0.017 -0.603 ± 0.055 -0.019 ± 0.004 -0.294 ± 0.075 0.031 ± 0.009 -0.157 ± 0.007
siVAE -0.059 ± 0.003 0.518 ± 0.024 -0.144 ± 0.045 0.516 ± 0.028 -0.015 ± 0.005 0.475 ± 0.047
Node2Vec -0.113 ± 0.138 0.006 ± 0.060 0.081 ± 0.060 0.032 ± 0.019 0.019 ± 0.050 0.083 ± 0.117
SIMBA -0.068 ± 0.021 0.014 ± 0.019 0.009 ± 0.008 -0.025 ± 0.019 -0.100 ± 0.010 0.016 ± 0.039
GAE (att) -0.037 ± 0.025 0.674 ± 0.053 -0.005 ± 0.035 0.692 ± 0.037 -0.010 ± 0.040 0.716 ± 0.057
GAE (no-att) 0.045 ± 0.010 0.510 ± 0.046 -0.026 ± 0.007 0.455 ± 0.127 0.017 ± 0.020 0.556 ± 0.034

Table 1: Median performance ± 1 standard deviation across 3 runs for coexpression and localization
experiments (visualized in figures). Top performance bolded, second best underlined.

To assess how the autoencoder component of GSPA contributes to performance gains, we repeat our
coexpression experiment on three simulated benchmarks (linear trajectory, two branch trajectory,
and three branch trajectory) with two ablations: GSPA+QR without the autoencoder (GSPA +QR
-AE) and GSPA without the autoencoder (GSPA -QR -AE). We replace the autoencoder with SVD
to maintain the same low dimensionality across all comparisons. We report the median correlation

18



Mapping the Gene Space at Single-Cell Resolution with Gene Signal Pattern Analysis

between gene-gene coexpression and gene-gene distance (where -1.0 is optimal performance) over
three seeds.

model linear coex. (↓) 2 branches coex. (↓) 3 branches coex. (↓)
GSPA +QR +AE -0.615 ± 0.003 -0.607 ± 0.006 -0.566 ± 0.004
GSPA +QR -AE -0.562 ± 0.001 -0.566 ± 0.003 -0.554 ± 0.001
GSPA -QR +AE -0.539 ± 0.009 -0.569 ± 0.001 -0.547 ± 0.002
GSPA -QR -AE -0.505 ± 0.003 -0.556 ± 0.003 -0.547 ± 0.002

Table 2: QR factorization and autoencoder (AE) ablation study of coexpression experiment.

GSPA +QR +AE performs the best on all three benchmarks. The no-AE versions of both methods
overall perform worse than the +AE versions, and the +QR versions overall outperform the -QR
versions. These results demonstrate that both QR factorization and the autoencoder contribute to the
strong performance of GSPA. Additionally, all of the GSPA variants outperform "Raw measurements",
for which we take the gene expression matrix and reduce dimensionality also with matrix factorization
and an autoencoder, but without taking into the cell-cell graph structure. We note that the localization
experiment computes localization using the wavelet dictionary, not the autoencoder, so performance
is the same on this experiment with and without it.

A.9 Extended CD8+ T cell experiments

Figure A.6: Extended CD8+ T cell analysis. a. Cells clustered with top DEGs identified. b. Mean
expression of top DEGs Rps19 and Rps20 and key CD8+ T cell marker genes per cluster, highlighting
how differentially enriched genes and T cell markers do not show cluster-specific expression. c.
Coexpression networks of top localized genes in each gene cluster. d. Klf2 KO network, constructed
from gene-gene k-NN graph of negative control and Klf2 KO, then visualizing only those connections
that do not exist in the KO network.
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Figure A.7: Biologically-relevant gene patterns from data with GSPA. Cell embeddings visualized
with PHATE, with (i) all genes (ii) top 25% localized highly variable genes, and (iii) bottom 25%
localized highly variable genes. (v). Spearman correlation between random subset of 100,000
pairwise geodesic distances (chosen in two runs) in full cell-cell graph and feature-selected cell-cell
graphs.

A.9.1 Computing and comparing type 1 interferon signaling signature

To determine the enrichment of the type 1 interferon signaling gene signature, we constructed gene
embeddings for all approaches designed to map the gene space. Then, we identified gene modules
using Leiden clustering, chose the gene module containing canonical type 1 interferon marker
Irf7, and selected the top 10% localized genes within the gene module. This allowed us to choose
genes that were both related to type 1 interferon signaling, through similarity to Irf7, but were also
unbiasedly selected based on the calculated gene modules and localization score. We next wanted
to add additional comparisons to other canonical approaches for identifying gene signatures. To
compare against analysis done by clustering cells and identifying differentially expressed genes,
we selected the top 100 DEGs from each cell cluster. Finally, to compare against factor analysis
approach cNMF [39], we extracted the gene program for which Irf7 had the highest loading, then
selected the genes with the highest 10% loading score to that program. To compare the biological
relevance of selected genes from each comparison, we performed gene set enrichment analysis using
Enrichr [34] and the BioPlanet gene set resource [40], and visualized enrichment scores for a type 1
interferon-related gene set.

A.9.2 Building module-specific gene coexpression networks

While gene modules group genes based on relatively similar expression profiles, the localization
score determines how specific that expression profile is. For example, Rps20 and Tcf7 both belong to
gene module 1, but, because Rps20 shows high expression in other cells, whereas Tcf7 shows almost
no expression in other cells, Tcf7 has a higher localization score. Therefore, to build module-specific
gene coexpression networks, we identified the top 10% localized genes in each gene module, then
built a k-NN graph with k = 5 from the GSPA+QR gene representations. Networks were then
visualized with Cytoscape [41]. We performed protein-protein interaction analysis with STRINGdb
[31] by testing if each module showed significantly higher interaction than expected for a random set
of proteins of the same size and degree distribution.

A.9.3 Building perturbation-specific gene coexpression networks

First, we identified genes that were in the top 25% localized in both the negative control and the
knockout (KO). Then, we built a k-NN graph with k = 5 for the negative control genes, and a k-NN
graph with k = 100 for the KO genes from the GSPA+QR representations. We subtracted the KO
adjacency matrix from the negative control adjacency matrix and built a new graph from the positive
entries, visualizing this graph with Cytoscape. This effectively identifies coexpression edges that are
in the negative control that are not in the KO gene-gene graph. Notably, the difference in k was in
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order to emphasize connections that were very similar in the negative control and very different in
the KO. For visualization, we removed disconnected subgraphs consisting of 2 or fewer nodes.

A.10 Predicting immunotherapy treatment response with GSPA gene embeddings

Figure A.8: Response trajectories and biomarkers revealed by multiscale GSPA patient manifold. a.
Schematic of GSPA-Pt. b. PHATE visualization of patient embeddings based on GSPA+QR gene
embeddings and comparisons. c. AUROC evaluation of response classification (logistic regression).
d. Top genes predictive of response and non-response based on highest and lowest logistic regression
coefficients. e. Patient embedding colored by percent of total cells annotated as B cells.

We hypothesized GSPA gene embeddings could enable response prediction by capturing key features
of the gene coexpression and coregulation in the tumor microenvironment. Given immune cells
from 48 melanoma patients from [7] treated with immune blockade checkpoint inhibitors, we tested
the ability to classify if the patient is a responder or a non-reponder. We first derive an approach
to construct patient vectors from GSPA gene embeddings, where, as features of the patient vector
correspond to genes, we can explore genes predictive of response (Figure A.8a). We compared
this approach to GSPA embeddings of patient set indicator signals on the cell-cell graph, as well as
standard single-cell patient comparison approaches: patient vectors based on cell type proportions,
CD8+ T cell subtype proportions, pseudobulked mean gene expression. We then trained a logistic
regressor to classify responders versus non-responders. GSPA gene embeddings achieved the highest
classification performance (Figure A.8b-c). As patient embeddings comprise gene features, the
coefficients of the logistic regressor reflect the importance of different genes for prediction (Figure
A.8d). Many important genes were related to T cell function, reflecting their role in tumor recognition
and control. Genes most associated with non-response include NKG7 (rank 1), GZMA (rank 5)
and CD38 (rank 28), resembling known terminal differentiation programs. Genes associated with
response include IL7R (rank 3), CCR7(rank 4) and TCF7 (rank 16), linked to T cell progenitor states
such as stemness, memory, activation and survival, and reflecting the known role of progenitor T
cell states as immunotherapy targets. While mean expression-based embeddings showed comparable
gene rankings for some markers (NKG7 (rank 3), IL7R (rank 17) and CCR7 (rank 3)), other markers
are ranked lower, including GZMA (rank 115), CD38 (rank 176) and TCF7 (rank 499). Finally,
GSPA gene embeddings reveal a distinct group of patients with significantly higher proportion of B
cells, revealing information beyond T cells not captured by other methods (Figure A.8e). This result
demonstrates that using GSPA gene embeddings enables interpretable and improved prediction on
perturbation-based independent benchmarks.
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A.10.1 GSPA-Pt framework

In the GSPA-Pt framework, we first consider XPtp as a single-cell dataset for patient p for p ∈ 1...P .
We then concatenate all samples to build a shared cell-cell graph Gcell, which we use to build the
wavelet dictionary Ŵ as before. As each entry in Ŵ is associated with a patient p ∈ 1...P , we can
split Ŵ into patient-specific dictionaries ŴPt1 , ŴPt2 ,...,ŴPtP . Then, for each p, we project XPtp

onto ŴPtp and learn a reduced patient-specific gene representation. Each patient is represented by a
gene embedding, which is flattened into a vector for downstream analysis.

We performed PCA with 5 components and flattened these gene representations into a single vector
of size 1 x 5m to represent the patient. We used the first five PCs to represent the patient rather than
the autoencoder embedding (as in previous analysis) because the PCs allowed for more interpretable
analysis of the coefficients of the classifier. A single dimension of the latent space of the autoencoder
may not necessarily capture the major axes of variation for a gene, but the first dimension of the gene
PC definitionally captures the major (linear) axis of variation.

For comparison, we performed GSPA using the patient indicator signals on the cell-cell graph. We
also computed the mean expression across all cells for each patient. Finally, we computed the
proportion of all clusters (representing immune cell types) and all CD8 clusters (representing CD8
cell states). Using these as unsupervised patient representations, we then classified response using
a ridge classifier, comparing based on AUROC of classification. Given that the ridge classifier is a
linear model, the coefficients represent the features of the patient representation most important for
prediction. The features correspond to five components for each gene, so we can map the coefficients
to genes relevant for prediction. We visualize all patient embeddings with PHATE.

A.11 Human lymph node spatially variable genes and cell-cell communication

Figure A.9: Expanded case study of human lymph node to spatial transcriptomics tasks. a. Alignment
between spatially localized genes and spatially variable genes, with opportunity for new insight
into stromal cell subset. b. Cell2location-based mapping of Visium spots to cell types based on
enrichment of cell type signature from reference map. Visualization map of gene modules enriched
for each cell type. c. Cell-cell communication based on GSPA and cell type mapping.
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Often we aim to identify genes with spatial expression variation across the tissue, where analysis
based on cell annotations or clusters only detect variations between discrete groups and often do not
incorporate spatial information [42]. This has motivated the development of approaches, including
SpatialDE, to identify spatially variable genes, or genes that are localized in space. GSPA naturally
lends itself to identifying spatially variable genes through computing localization scores informed by
both expression and spatial distribution of expression (Figure A.9a). We show spatially variable genes
identified by SpatialDE have a significantly higher localization score than non-spatially variable genes.
Additionally, by using both the expression graph and the spatial graph to determine localization,
GSPA is further empowered to identify relevant biology. Two example genes that are considered
localized but insignificant by SpatialDE, CD34 and MMRN2, are enriched in the adventitia of the
vasculature and have been previously implicated as progenitor cells that may give rise to other
fibroblast subsets [43].

We next show we can use GSPA gene modules to perform gene module-based cell-cell communication
analysis. As the human lymph node data is from 10X Visium, each spot is not at single-cell resolution
and instead consists of 3-10 cells, which may comprise multiple cell types. Thus, we first map the
spatial data to cell types using a reference lymph node atlas with Cell2location [44]. We then visualize
how each cell type is enriched for each gene module (Figure A.9b). This reveals expected patterns of
colocalized cell types in space based on shared gene modules. For example, gene module 1, which
captures the germinal center based on the tissue structure in the H&E, is enriched in B_GC_LZ
(B cells in the germinal center light zone), B_GC_DZ (B cells in the germinal center dark zone),
T_CD4+_TfH_GC (CD4+ T follicular helper cells in the germinal center), and cycling B cells.

We can thus leverage this to predict cell type to cell type signaling (Figure A.9c). For genes within a
given gene module, we construct a k-NN gene-gene network and determine the cell types enriched
for the gene module. Then, we prune the network to only those edges with high confidence in
OmniPathDB [45], a resource that captures prior knowledge interactions from multiple intercellular
and intracellular databases, and we add directionality between genes and annotation of whether
the edge is intracellular or intercellular. We repeat the following for each gene module graph: for
each directed edge (gene_s, gene_t), for all pairs of cell types enriched for the gene module (cell
type_a, cell type_b), if gene_s is differentially expressed in cell type_a and gene_t is differentially
expressed in cell type_b, we add a directed edge from cell type_a to cell type_b. We finally visualize
intercellular communication edges in blue and intracellular communication edges within the same
cell types (that is, (gene_s, gene_t) is intracellular and cell type_a = cell type_b) in red. This captures
complex, multicellular networks.

A.12 Identifying gene subnetworks associated with patient phenotypes

We hypothesized GSPA would be useful to explore how the local gene interaction landscape changes
between patient phenotypic groups from spatial transcriptomic data. As these datasets are independent
and not batch-integrated, we could not directly compare the gene embeddings derived from each
patient dataset. Thus, we devised a new approach for constructing patient-specific gene-gene networks
and comparing these networks directly.

First, for each patient dataset, we compute gene embeddings with GSPA and subsetted to highly
expressed genes across all patients, such that analyses are driven by network-based differences rather
than the presence or absence of genes. Then, we construct gene-gene k-NN graphs from the gene
embeddings for each patient.

As each patient-specific gene-gene network consists of the same genes with different edges, we next
aimed to identify genes with the most consistent local network structure within phenotypic groups
and most dissimilar network structure between phenotype groups. For example, in the case study
of spatial transcriptomic data from patients with hepatocellular carcinoma, we aimed to identify
genes with consistent local network structure within responders and within non-responders to cancer
immunotherapy, but strong dissimilar structure between responders and non-responders. These genes
represent biomarkers for predicting immunotherapy responders and understanding the molecular
pathways underlying response.

To this end, for each network, we extracted ego subgraphs centered at each gene and comprised of
its 2-hop neighbors. This results in nsamples x ngenes subgraphs overall, such that each subgraph
corresponds to a gene from a given sample. We then applied attributed Graph2Vec to compute
embeddings for all ego subgraphs. To compare similarity of local network structure between genes,
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we computed the differential phenotype score, where, given two phenotypes phen1 and phen2 and a
gene g, let Ephen1

g = {e1, . . . , em} and Ephen2
g = {e1, . . . , ek} be the embeddings of subgraphs

centered at gene g for phen1 and phen2 patients, respectively. Then, we computed the mean pairwise
distance between all embeddings within Ephen1

g , within Ephen2
g , and between Ephen1

g and Ephen2
g to

get Sphen1
, Sphen2

, and Sphen1,phen2
, respectively. Then, the differential phenotype score for gene g

is as follows:

Differential Phenotype Score(g) =
1

2
(Sphen1 + Sphen2)− Sphen1,phen2 (A.2)

A negative score indicates that the gene’s subgraph is more consistent within each group than it is
between the groups. As a result, we selected the genes with a negative differential score for analysis
of enriched molecular pathways.

A.13 Training Details

A.13.1 Default GSPA hyperparameter selection and training details

The cell-cell graph was built with PHATE using default parameters (k=5 and α decay=40) from
the PCA space, as common for cell-cell graph construction. The power was set by default to 2 to
mimic the dyadic scales in [4] and J was set by default to log(n) based on [18] (see Lemma A.2
and surrounding discussion above). For GSPA+QR, the epsilon parameter was set to 1e-3. The data
was first dimensionality reduced with PCA to 2048 components (which captures the majority of
variation), and then an autoencoder nonlinearly reduced the dimensionality further to latent dimension
of 128. The autoencoder was designed with 2 layers with bias in the encoder and decoder, with a relu
activation function between layers. The models were trained for an MSE objective with an Adam
optimizer with learning rate of 0.001 for 100 epochs, with early stopping (patience of 10) using
the loss of a validation set 5% of the size of the training set. For all analyses, signals are first L2
normalized before projection.

A.13.2 Comparison hyperparameter and training details

For method comparisons in Figure 2, we ran each method three times, including reconstructing the
graph with new seeds. All signals were first L2 normalized, and, where applicable, dimensionality
reduced using PCA with 2048 components and an autoencoder (AE) with latent dimension of 128
(PCA+AE; same configuration as for GSPA). For raw measurements, we ran PCA+AE on X. For
MAGIC(X), we compute the diffusion operator with default parameters. We then project the signals
onto this diffusion operator and run PCA+AE. We compute eigenscores based on the approach
described in [17], then dimensionality-reduced with PCA+AE. We learned multiscale representations
with DiffusionEMD and GFMMD, then dimensionality reduced with PCA+AE. For signal-signal
graphs, k-NN graphs were generated from the signals with k = 5. Node2Vec was run on this
graph with latent dimensionality of 128, walk length of 80, and 10 walks. GAEno-att was run with
graph convolutional layers, and GAEatt was run with graph attention layers on this graph. The GAE
configuration matched the previous AE configuration. For SIMBA, we constructed a heterogeneous
cell-gene graph using default parameters, without highly variable genes. We then trained the graph
embedding with 128 dimensions, auto-estimating weight decay. For siVAE, we constructed the
encoder-decoder architecture with the same number and size of layers as our GSPA autoencoder. We
additionally employed 2000 iterations, mbsize of 0.2, l2scale of 1e-3, learning rate of 1e-4, decay rate
of 0.9, and early stopping with a patience of 100 iterations. We used relu activations between layers.

A.14 Datasets and Pre-processing

A.14.1 Simulated datasets with Splatter

Three datasets were simulated using Splatter [5] with one (linear) trajectory, two branches, and
three branches. All datasets were simulated with 10,000 cells and 10,000 genes, where cells were
distributed equally between branches (where applicable). The dropout probability was set to 0.95
to generate “noisy" datasets, and each dataset had associated “true" noiseless counts from the same
experiment. This dropout level is comparable to true single-cell data (84.3–85.3% sparse). After
simulation, genes expressed in less than 50 cells were removed, and the matrix was L1 normalized for
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library size and square-root transformed (or log-transformed for robustness analysis). This resulted in
8821 genes in the linear simulation, 8820 genes in the two-branch simulation, and 8823 genes in the
three-branch simulation. Cells were then visualized with PHATE.

For the rare cell type experiment, we simulated a dataset with two clusters, one abundant (95%) and
one rare (5%), using Splatter [5] and preprocessed the data the same as above.

A.14.2 CD8+ T cell scRNA-seq dataset

Mice were infected with lymphocytic choriomeningitis virus (LCMV) Armstrong (Acute) and Clone
13 (Chronic), and CD8+ CD44+ Tetramer+ T cells were FACS sorted prior to 10X Chromium
5p single-cell RNA sequencing at day 4, day 8, and day 40 [6]. 3-5 mice were infected for each
timepoint/condition in a staggered manner to enable same day take down of each timepoint. Spleens
from mice were pooled for each timepoint/condition and sorted prior to their loading on the Chromium
instrument. 10,000 cells were loaded into a lane of the instrument for each timepoint/condition. The
resulting 10X libraries were sequenced on an Illumina NovaSeq with an approximate read depth of
20,000 reads per cell. We then processed the data using CellRanger before further filtering. Cells
expressing less than 200 genes, with less than 500 counts or more than 25000 counts, were removed.
Genes expressed in less than 3 cells were removed. Cells with mitochondrial percentage greater than
6% were removed. We then L1 normalized for library size, log-transformed, and clustered cells using
Leiden clustering, removing contaminating populations enriched for non-CD8+ T cell markers. The
acute and chronic datasets were combined, and highly variable genes were detected as the top 10%
of genes using scprep (https://scprep.readthedocs.io/en/stable/). This resulted in 14,152 genes and
39,704 cells detected across datasets, with 6,811 cells from Acute Day 4; 7,418 cells from Acute Day
8; 6,740 cells from Acute Day 40; 6,205 cells from Chronic Day 4; 7,553 cells from Chronic Day 8;
and 4,977 cells from Chronic Day 40. The combined datasets were then visualized with PHATE, and
key marker genes were visualized on the PHATE embedding with MAGIC. Graphs for PHATE and
MAGIC were built with default parameters, except k for the k-NN graph construction was set to 30
due to the larger number of cells.

A.14.3 Immunotherapy response in melanoma patients scRNA-seq dataset

We obtained pre-processed scRNA-seq data with annotated cell types and other relevant
metadata (e.g. sample labels, patient response) from [7] and the Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell). From this data, there were 48 samples, which
corresponds to 19 pre-therapy samples and 29 post-therapy samples, as well as 31 nonresponder
samples and 17 responder samples. There were 15,300 cells and 12,364 genes detected across all
samples, with 10,190 cells from nonresponders and 5,110 from responders.

A.14.4 10x Human Lymph Node Spatial Transcriptomics Dataset

10x Genomics data was obtained from the 10x website [8] and downloaded via the scanpy package
[38]. According to their website, 10x obtained fresh frozen human lymph node tissue from BioIVT
Asterand Human Tissue Specimens. The tissue was embedded and cryosectioned as described in
the Visium Spatial Protocols Tissue Preparation Guide (Demonstrated Protocol CG000240). Tissue
sections of 10 µm thickness were placed on Visium Gene Expression Slides. We removed spots with
less than 5000 counts, more than 35000 counts, and over 20% mitochondrial counts. We removed
genes detected in fewer than 10 cells, L1 normalized for library size, and log-transformed the data.
After the above pre-processing, there were 3861 spots and 19,685 genes detected. The top 2000
highly variable genes were selected following the scanpy tutorial for this dataset.

A.14.5 Hepatocellular carcinoma Spatial Transcriptomics Dataset

To compare responder and nonresponder HCC microenvironments, we collected ST data from a
study conducted by [9] that investigated the effects of two cancer treatment drugs, cabozantinib and
nivolumab, in neoadjuvant therapy on advanced HCC. Specifically, we obtained 10x Visium data from
seven patient samples (4 responder, 3 nonresponder) that were acquired through R0 resection. For
pre-processing, we removed spots with less than 200 detected genes, applied cell-depth normalization
and log transformation.
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