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Abstract

We present a lightweight variant of Boltzmann machines via sample space trun-
cation, called a truncated Boltzmann machine (TBM), which has not been inves-
tigated before while can be naturally introduced from the log-linear model view-
point. TBMs can alleviate the massive computational cost of exact training of
Boltzmann machines that requires exponential time evaluation of expected values
and the partition function of the model distribution. To analyze the learnability
of TBMs, we theoretically provide bias-variance decomposition of the log-linear
model using dually flat structure of statistical manifolds.

1 Introduction

A Boltzmann machine (BM) (Ackley et al., 1985), an instance of the log-linear model (Agresti, 2012)
and a representative of Markov Random Fields (MRFs) (Kindermann and Snell, 1980), models a
joint distribution of multiple binary variables. BMs are a fundamental of deep learning, and have
been used for various tasks such as density estimation, missing value imputation, and sampling.
However, since the number of possible configurations is exponential to the number of variables, its
exact training is usually intractable. In particular, exact training of BMs requires exponential time
evaluation of the expected values and the partition function of the model distribution. To overcome
this issue, approximation techniques have been proposed, for example, Gibbs sampling (Casella and
George, 1992; Geman and Geman, 1984) and contrastive divergence (Hinton, 2002; Tieleman, 2008)
for evaluation of the expected values and annealed importance sampling (AIS) (Salakhutdinov and
Murray, 2008) and tracking (Desjardins et al., 2011) for computing the partition function, while
exact training of BMs is still a challenging problem.

We tackle this problem by truncating the sample space. We propose truncated Boltzmann machines
(TBMs), which is a lightweight energy-based model on a sample space adaptively constructed from
a given dataset. Its training is efficient; the time complexity is linear to the number of variables
and the sample size and quadratic to the number of parameters, hence no approximation technique
is needed. Moreover, since TBMs do not have any hidden variables, their training is formulated
as convex optimization. Furthermore, we theoretically perform bias-variance decomposition of the
Kullback–Leibler (KL) divergence using information geometry (Amari, 2016). Since TBMs belong
to a class of the log-linear model on partially ordered sets (Sugiyama et al., 2016, 2017), the resulting
statistical manifold has the dually flat structure (Amari, 2001), which allows us to apply Pythagorean
theorem to achieve bias-variance decomposition.

2 Log-Linear Model

First we introduce the log-linear model, which models discrete distributions. We assume that the
domain S of distributions is the set {0, 1, 2, . . . , n} without loss of generality, hence a discrete
distribution P over S can be treated as a probability vector p = (p1, p2, . . . , pn) ∈ (0, 1)n as
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the degree of freedom is n. Each probability vector p should satisfy pT1 < 1 so that pT1 +
p0 = 1. To simplify the notation, we always treat each vector as a column vector. Uppercase
letters P,Q,R, . . . denote distributions and lowercase letters p, q, r, . . . denote the corresponding
probability mass functions. We use the notation [n] = {1, 2, . . . , n}.
In the log-linear model (Agresti, 2012), a discrete distribution P over S represented as a probability
vector p ∈ (0, 1)n, is modeled via an n-dimensional parameter vector θ = (θ1, θ2, . . . , θn) ∈ Rn

and a model matrix F ∈ Rn×n, which encodes a relationship between elements and is usually given
beforehand. The assumption here is that F must be non-singular to construct a regular statistical
model (Agresti, 2012). The general form of the log-linear model is given as

log p = Fθ −ψ, (1)

where log is an element-wise operation, ψ = (ψ(θ), . . . , ψ(θ)) ∈ Rn with ψ(θ) = − log p0.
Equation (1) is often used as a general form of the log-linear model (Coull and Agresti, 2003). For
example, when the model matrix F is the n × n identity matrix, we obtain the standard discrete
distribution, where there is no interaction between elements in S. In such a case, θi = log(pi/p0)
for each i ∈ [n]. We also introduce an expectation parameter η ∈ (0, 1)n defined as η = FTp.
In information geometry, it is well known that (θ,η) gives the dual coordinate system of the set of
(n + 1)-dimensional discrete distributions, or a dually flat manifold (Amari, 2001, 2016), where θ
and η are orthogonal with each other.

The Boltzmann machine (BM) (Ackley et al., 1985), a well known energy-based model that treats
combinatorial interaction between binary variables, is realized as a special case of the log-linear
model. For a d-dimensional binary vector b ∈ {0, 1}d, the fully connected BM, modeled as a graph
G = (V,E) with V = {1, 2, . . . , d} and E = V × V , is given as

log p(b) = λ⊥ +
∑

i∈[d] λ{i}bi +
∑

i∈[d]

∑
j∈[d] λ{i,j}bibj , (2)

with a parameter vector λ = (λ⊥, λ{1}, . . . , λ{d}, λ{1,2}, . . . , λ{d−1,d}). Higher order BMs are
defined similarly (Sejnowski, 1986). To clarify the relationship between Equation (2) and the gen-
eral form in Equation (1), first we prepare a one-to-one indexing mapping ι:S = {0, 1, . . . , 2d} →
{0, 1}d that gives a natural number to each d-dimensional binary vector b ∈ {0, 1}d, and we assume
that ι(0) = (0, 0, . . . , 0). Thus each probability pi in Equation (1) corresponds to p(ι(i)) in Equa-
tion (2). In addition, we use an auxiliary function σ:{0, 1}d → 2{1,...,d} that returns indices of “1”
of an input binary vector, e.g., σ((0, 1, 1, 0)) = {2, 3}. Then one can see that the log-linear model
in Equation (1) coincides with (2) if we let p0 = p( (0, . . . , 0) ), ψ(θ) = −λ⊥, and

fij =

{
1 if σ(ι(j)) ⊆ σ(ι(i)),
0 otherwise, θi =

{
λσ(ι(i)) if |σ(ι(i))| ≤ 2,
0 otherwise. (3)

Therefore combinatorial structure of the binary log-linear model in Equation (2), which is realized
as the inclusion relationship σ(b) ⊆ σ(b′) for a pair of binary vectors b, b′ ∈ {0, 1}d, is encoded as
a the binary value of the model matrix F. In addition, the binary log-linear model in Equation (2)
implicitly perform regularization using the restriction to θ such that θi = 0 if |σ(ι(i))| > 2.

3 Truncated Boltzmann Machines

Here we formulate TBMs. As we have shown in the previous section, BMs model joint distribu-
tions over d binary variables, where the sample space S is always fixed to {0, 1}d, resulting in the
exponentially larger sample space |S| = 2d. This is problematic as the computational cost of com-
puting η and ψ(θ) is O(2d), which is required to compute the gradient of the KL divergence in each
iteration of gradient descent to train BMs.

An interesting observation of the log-linear model is that the fixed sample space {0, 1}d is not
necessarily, and it is possible to truncate unnecessary states from the sample space S. Assume that
a sample D ⊆ [n] is given as data and a parameter domain B ⊆ [n] is fixed. From the definition of
log-linear model in Equation (1), the minimum requirement of S is obtained as

S = D ∪B ∪ {0}. (4)

This is why the model matrix F becomes singular if we choose S′ ⊂ S as a sample space. In
contrast, Sugiyama et al. (2017) showed that F is always regular if S is a partially ordered set and
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each entry is given as fij = 1j≤i, where i ≤ j ⇐⇒ σ(ι(j)) ⊆ σ(ι(i)) in our case. Our proposal
is to set S in Equation (4) as the sample space of the log-linear model; that is, truncate unnecessary
space {0, 1}d \ S, and learn the distribution on the space, where the model matrix is also given
by Equation (3). Surprisingly, this truncated sample space has not been investigated before in the
literature of Boltzmann machines or Ising models.

Learning is achieved by convex optimization, where the objective is to minimize the KL divergence
from the empirical distribution P̂ given by D to the model distribution R. An algorithm for the
first-order optimization (gradient descent) is summarized in Algorithm 1 in Appendix. Since we
have ∇DKL(P̂ , R) = ηR − ηP̂ in each iteration, an update formula of a subvector θRB = (θi)i∈B

of θR with respect to B of a current distribution R is given as θRB ← θRB − ε(ηR
B − ηP̂

B), where
ε ∈ R is a learning rate. The time complexity of each update in the first order optimization is
O(|S||B|) = O(|D||B|+|B|2) in the worst case as we need to compute ηR = F exp(FT

Bθ
R
B−ψ

R )

to obtain the next gradient from the updated θR, where FB is the |D ∪ B| × |B| matrix composed
of columns of F with respect to B.

In the following, we empirically examine the efficiency and the effectiveness of TBMs compared
with two representative models: fully visible Boltzmann machines (BMs) and restricted Boltzmann
machines (RBMs).

Environment and Implementation. We used Amazon Linux AMI release 2018.03 and ran all
experiments on 2.50 GHz Intel Xeon Platinum 8175M CPU and 384 GB of memory. All methods,
TBMs, BMs, and RBMs, were implemented in C++ and compiled with gcc 4.8.5. All experiments
are conducted on R version 3.6.0. We used contrastive divergence with a single step of alternating
Gibbs sampling (persistent CD-1) (Hinton, 2002; Tieleman, 2008) in learning of BMs and RBMs.
RBMs and BMs use mini-batch with the size 20 in training. Throughout our experiments, the
number of iterations were up to 104 for all methods to ensure the convergence.

Datasets. We have collected two dataset, MNIST (LeCun et al., 2007), which is a collection of
images of handwritten digits and popularly used as a benchmark dataset of image classification, and
ret-1 (Zhang et al., 2014), which is a neural spiking dataset and originally obtained by Lefebvre et al.
(2008). In the MNIST dataset, each 28×28 image is represented as a 784-dimensional vector. Since
each image v ∈ R784 is not originally a binary vector, we binarized each pixel such that b(vi) = 1
if vi > 0 and b(vi) = 0 otherwise.

Protocol. We train each model (TBM, RBM, and BM) on a dataset randomly sampled form each
class of our datasets. To measure the quality of learned distributions, we extract feature represen-
tations from each trained model and apply classification to them. More precisely, first we collect
50 samples with the sample size N = 100 from each class of a dataset, hence in total there are
500 samples in MNIST and 350 samples in ret-1. Then we train each model on each sample. For
the TBM and the BM, let (λ{1}, . . . , λ{d}) be bias parameters and (λ{1,1}, . . . , λ{d−1,d}) be weight
parameters in Equation (2). To obtain a feature vector representation of a sample from each trained
model, we construct f = (f1, . . . , fd) such that each fi = |λ{i}| +

∑
j∈[d] |λ{i,j}| since the ab-

solute value of each parameter represents the intensity of the corresponding variable (or variable
interaction) in the model. Similarly, for RBMs with weight parameters (λ{1,1}, . . . , λ{d,h}) with h
hidden variables, we obtain f by fi = |λ{i}| +

∑
j∈[h] |λ{i,j}|. We varied the number of weight

parameters and examined the scalability and performance sensitivity. To do this, weight parameters
are randomly chosen and λ{i,j} = 0 if it is not selected. After obtaining such feature representations
for all samples, we perform classification for them. We use kNN (k = 10) and obtained the accuracy
via leave-one-out cross validation. Therefore, high classification accuracy means that the quality of
the learned representation of a distribution is high.

Results & Discussion Results of running time and classification accuracy are plotted in Figure 1(a)
and (b). We present average running time of learning for each sample in Figure 1(a). It is clear
that TBMs are much faster than the BMs and RBMs. In particular, if the number of parameters
is less than 1,000, it is two and four orders of magnitude faster than RBMs and BMs, respectively.
The efficiency of TBMs becomes smaller if we use massive parameters (∼ 105), which is predicted
from the complexity analysis that TBMs requires the quadratic complexity and BMs and RBMs
require linear complexity, while it is still an order of magnitude faster than BMs. This result means
that our sample space truncation enables us to perform efficient distribution learning without any
approximation techniques such as contrastive divergence and mini-batch selection.
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Figure 1: Experimental results of (a) running time (mean±s.d.) and (b) classification accuracy.

Figure 1(b) shows that the classification accuracy of TBMs is almost 1 if we use the reasonable
amount of parameters (higher than 100) in both datasets. Hence the loss of information due to sample
space truncation can remain at low level, which shows a good trade-off between the effectiveness
and the efficiency of TBMs. In addition, we illustrate distribution of feature representations in
Figure 3 in Appendix by projecting them onto 2D space by t-SNE (van der Maaten and Hinton,
2008). Classes are clearly separated, which also indicates the effectiveness of TBMs despite the fact
that it achieves massive speedup.

3.1 Bias-Variance Decomposition

Using the geometric structure of the log-linear model, we analyze its learnability by providing bias-
variance decomposition of the KL divergence, which is a fundamental analysis of learning models.
In a dually flat manifold, learning of a distribution on S is realized as e-projection, which coincides
with maximum likelihood estimation (MLE) or KL divergence minimization (Amari, 2016, Chap-
ter 2.8.3). In the following, for each distribution P , let θP and ηP be its θ- and η-coordinates,
respectively, to clarify that they represent the same distribution P . Let Smodel be an e-flat model
submanifold given as

Smodel =
{
P ∈ S

∣∣ θPi = 0 for all i ̸∈ B
}

(5)
with a predetermined parameter domainB ∈ [n]. Since Smodel is determined by the linear constraint
on the θ-coordinate, it is a convex set with respect to θ-coordinate. The parameter domain B de-
termines the representation power of the model; overfitting occurs if B is too large and underfitting
occurs if B is too small. More precisely, for a series of parameter domains ∅ = B0 ⊆ B1 ⊆ B2 ⊆
· · · ⊆ Bh = [n], we obtain the hierarchy of manifolds: {P0} = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sh = S,
where each Sj = {P ∈ S | θPi = 0 for all i ∈ S \Bj} and P0 is the uniform distribution such that
θ = 0. For an empirical distribution P̂ , we obtain an m-flat data submanifold Sdata given as

Sdata =
{
P ∈ S

∣∣∣ ηPi = ηP̂i for all i ∈ B
}
. (6)

Similarly to Smodel, Sdata is a convex set with respect to η-coordinate. The learning procedure is
formulated as a projection of some initial distribution R ∈ Smodel onto the data submanifold Sdata,
which means that it is convex optimization and there exists a unique global solution; that is, the set
Smodel ∩ Sdata is always a singleton, thanks to the dually flat structure (Amari, 2009).

Here we perform bias-variance decomposition of the KL-divergence. Our idea is to decompose the
expectation of the KL divergence E[DKL(P

∗, P̂B)] from the true (unknown) distribution P ∗ to the
MLE (maximum likelihood estimation) P̂B of an empirical distribution P̂ with a fixed parameter
domain B, and decompose it using the information geometric property. More precisely, let S∗

data
be the m-flat submanifold that is obtained by replacing P̂ with P ∗ in Sdata. Since P ∗ ∈ S∗

data
and P̂B ∈ Smodel, we can apply orthogonal decomposition (Amari, 2001) to the KL divergence
DKL(P

∗, P̂B), also known as (generalized) Pythagorean theorem, and obtain the following:

E
[
DKL(P

∗, P̂B)
]
= DKL(P

∗, P ∗
B)︸ ︷︷ ︸

bias

+E
[
DKL(P

∗
B , P̂B)

]
︸ ︷︷ ︸

variance

.

The first term corresponds to the bias of the model and measures its representation power, which
becomes smaller when the model manifold gets larger. For the variance term, we can lower bound it
as |B|/2N using (Barron et al., 1998), which suggests that the variance is independent of the model
structure F even if we have combinatorial structure of variables like BMs or TBMs in it.

4



References
D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.

Cognitive Science, 9(1):147–169, 1985.

A. Agresti. Categorical Data Analysis. Wiley, 3 edition, 2012.

S. Amari. Information geometry on hierarchy of probability distributions. IEEE Transactions on
Information Theory, 47(5):1701–1711, 2001.

S. Amari. Information geometry and its applications: Convex function and dually flat manifold.
In F. Nielsen, editor, Emerging Trends in Visual Computing: LIX Fall Colloquium, ETVC 2008,
Revised Invited Papers, pages 75–102. Springer, 2009.

S. Amari. Information Geometry and Its Applications. Springer, 2016.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal
of Machine Learning Research, 6:1705–1749, 2005.

A. Barron, N. Hengartner, and Florence d’Alché Buc. Information theory and superefficiency. The
Annals of Statistics, 26(5):1800–1825, 1998.

G. Casella and E. I. George. Explaining the Gibbs sampler. The Americal Statistician, 46(3):167–
174, 1992.

B. A. Coull and A. Agresti. Generalized log-linear models with random effects, with application to
smoothing contingency tables. Statistical Modelling, 3(4):251–271, 2003.

G. Desjardins, Y. Bengio, and A. C. Courville. On tracking the partition function. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2501–2509. 2011.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721–741,
1984.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computa-
tion, 14(8):1771–1800, 2002.

R. Kindermann and J. L. Snell. Markov Random Fields and Their Applications. American Mathe-
matical Society, 1980.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. J. Huang. Energy-based models. In G. Bakir,
T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan, editors, Predicting
Structured Data, pages 191–246. The MIT Press, 2007.

J. L. Lefebvre, Y. Zhang, M. Meister, X. Wang, and J. R. Sanes. Gamma-Protocadherins regulate
neuronal survival but are dispensable for circuit formation in retina. Development, 135:4141–
4151, 2008.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In Proceedings
of the 25th International Conference on Machine learning, pages 872–879, 2008.

T. J. Sejnowski. Higher-order Boltzmann machines. In AIP Conference Proceedings, volume 151,
pages 398–403, 1986.

M. Sugiyama, H. Nakahara, and K. Tsuda. Information decomposition on structured space. In IEEE
International Symposium on Information Theory, pages 575–579, 2016.

M. Sugiyama, H. Nakahara, and K. Tsuda. Tensor balancing on statistical manifold. In Proceedings
of the 34th International Conference on Machine Learning, pages 3270–3279, 2017.

5



T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradi-
ent. In Proceedings of the 25th International Conference on Machine Learning, pages 1064–1071,
2008.

L. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

Y.-F. Zhang, H. Asari, and M. Meister. Multi-electrode recordings from retinal ganglion cells. CR-
CNS.org., 2014. URL http://dx.doi.org/10.6080/K0RF5RZT.

A Information Geometry of Log-Linear Model

We study information geometric structure of the log-linear model. Although more general results are
already known in analysis of the exponential family (Amari, 2016) or for graphical models (Wain-
wright and Jordan, 2008), we explicitly describe it for the better understanding of the geometric
structure of the log-linear model.

As we will show in this section, the set of distributions represented by a log-linear model always
forms a dually flat manifold, which is a statistical manifold with a pair of coordinate systems mainly
studied in the area of information geometry (Amari, 2016). A dually flat manifold is generated by a
convex function, which is the partition function ψ(θ) in our case. From the condition pT1 + p0 =
pT1+ exp(−ψ(θ)) = 1,

ψ(θ) = log
(
exp

(
Fθ

)T
1+ 1

)
. (7)

This is the well-known LogSumExp function and therefore is convex. Let us apply Legendre trans-
formation to ψ(θ), which is defined as φ(η) = maxθ(θ

Tη − ψ(θ)), We have its closed form
solution as follows:

Proposition 1 (Legendre dual). The Legendre dual φ(η) of ψ(θ) = − log p0 is given as

φ(η) = log p′Tp′, (8)

where p′ = (p0,p) = (p0, p1, . . . , pn).

Proof. From the Legendre transformation given as

φ(η) = max
θ

(
θTη − ψ(θ)

)
, (9)

we have

θTη − ψ(θ) = θTη + log p0 = θTFp+ log p0 = (FTθ)Tp+ log p0

= (log p+ ψ(θ))Tp+ log p0 = log pTp+ ψ(θ)
∑

x∈S+
p(x) + log p0

= log pTp+ log p0

(
1−

∑
x∈S+

p(x)
)
= log pTp+ p0 log p0 = log p′Tp′.

Since it follows that maxq′ log q′Tp′ = log p′Tp′, Equation (8) holds.

Note that we have φ(η) = log(F−1η′)F−1η′ with η′ = (1,η), hence we can see that φ(η) is a
function of η.

Now we consider the geometric structure of the statistical manifold S = {P | p ∈ (0, 1)n,pT1 <
1}, which is the set of (n + 1)-dimensional discrete distributions. In information geometry, it is
known that a pair of coordinate systems is obtained as the gradient of ψ(θ) and φ(η)), respec-
tively (Rockafellar, 1970; Banerjee et al., 2005). As we show in the following proposition, the
coordinates interestingly coincide with θ and η.
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Proposition 2 (dual coordinate). For the partition function ψ(θ) of the log-linear model in Equa-
tion (1) and its Legendre dual φ(η) given in Equation (8), the dual coordinate system of the statisti-
cal manifold S is obtained as

∇φ(η) = θ, ∇ψ(θ) = η. (10)

Proof. First we prove that the parameter vector θ coincides with ∇φ(η). Since we have

∂pj
∂ηj

=
∂

∂ηj

∑
k∈[n]

f−1
kj ηk = f−1

ij ,

∂

∂ηi
p0 log p0 =

∂

∂ηi

1−
∑
j∈[n]

pj

 log

1−
∑
j∈[n]

pj

 = −
(
1 + log p0

) ∑
j∈[n]

f−1
ij ,

where f−1
ij is the (i, j) entry of F−1, it follows that

∂φ(η)

∂ηi
=

∂

∂ηi

∑
j∈[n]

pj log pj + p0 log p0

 =
∑
j∈[n]

f−1
ij log pj +

∑
j∈[n]

f−1
ij − (1 + log p0)

∑
j∈[n]

f−1
ij

=
∑
j∈[n]

f−1
ij log pj +

∑
j∈[n]

f−1
ij ψ(θ) = θi.

The last equality comes from θ = F−1 log p+ F−1ψ.

Next, we prove η = Fp. From Equation (7),

∂ψ(θ)

∂θi
=

1

exp(ψ(θ))

∑
k∈[n]

exp

∑
j∈[n]

fkjθj

 fki =
∑
k∈[n]

fkip(x) = ηi.

Hence Equation (10) follows.

The resulting manifold S with the pair of coordinate systems (θ,η) is said to be dually flat.

In any dually flat manifold, the Fisher information matrix coincides with Riemannian metric, which
is defined as ∇∇ψ(θ) and ∇∇φ(η) for θ- and η-coordinates, respectively. We firstly obtain the
closed form solution of the Riemannian metric in the general case of the log-linear model.

Theorem 1 (Riemannian metric). Riemannian metric for θ- and η-coordinates gij(θ) and gij(η)
of the log-linear model are obtained as

gij(θ) =
∑
k∈[n]

fkifkjpk − ηiηj , (11)

gij(η) =
∑
k∈[n]

f−1
ik f

−1
jk

1

pk
+

∑
k∈[n]

∑
l∈[n]

f−1
ik f

−1
jl

1

p0
. (12)

Proof. In the log-linear model, the Riemannian metric for the θ-coordinate is obtained as

∂2

∂θi∂θj
ψ(θ) =

∂ηi
∂θj

=
∂

∂θj

∑
k∈[n]

fkipk =
∂

∂θj

∑
k∈[n]

fki exp

∑
l∈[n]

fklθl − ψ(θ)


=

∑
k∈[n]

fki exp

∑
l∈[n]

fklθl − ψ(θ)

 (fkj − ηj)

=
∑
k∈[n]

fkifkjpk − ηj
∑
k∈[n]

fkipk =
∑
k∈[n]

fkifkjpk − ηiηj .
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Figure 2: Empirical evaluation of variance. Empirically estimated variances (blue, dotted lines) and
theoretically obtained lower bounds (red, solid lines) for (a) n = 50 and (b) N = 100,000.

The Riemannian metric for η-coordinate is obtained as

∂2

∂ηi∂ηj
φ(η) =

∂θi
∂ηj

=
∂

∂ηj

∑
k∈[n]

f−1
ik log pk +

∑
k∈[n]

f−1
ik ψ(θ)

 ,

where we have

∂

∂ηj

∑
k∈[n]

f−1
ik log pk =

∂

∂ηj

∑
k∈[n]

f−1
ik log

∑
l∈[n]

flkηl

 =
∑
k∈[n]

f−1
ik f

−1
jk

1

pk
,

∂

∂ηj

∑
k∈[n]

f−1
ik ψ(θ) = −

∂

∂ηj

∑
k∈[n]

f−1
ik log

1−
∑
l∈[n]

pl


= − ∂

∂ηj

∑
k∈[n]

f−1
ik log

1−
∑
l∈[n]

∑
l′∈[n]

f−1
l′l ηl′

 =
∑
k∈[n]

∑
l∈[n]

f−1
ik f

−1
jl

1

p0
.

Hence it follows that
∂2

∂ηi∂ηj
φ(η) =

∂θi
∂ηj

=
∑
k∈[n]

f−1
ik f

−1
jk

1

pk
+

∑
k∈[n]

∑
l∈[n]

f−1
ik f

−1
jl

1

p0
,

yielding Equation (12).

Moreover, two coordinates θ and η are orthogonal with each other, that is,
∂2

∂θi∂ηj
ψ(θ) =

∂ηi
∂ηj

= δij ,
∂2

∂ηi∂θj
φ(η) =

∂θi
∂θj

= δij ,

where δij is the Kronecker delta and δij = 1 if i = j and δij = 0 otherwise. Equivalently, we have

Ek

[
∂

∂ηi
log pk

∂

∂θj
log pk

]
= δij . (13)

B Empirical Validation of Variance

We empirically demonstrate the tightness of the lower bound |B|/2N of the variance. To obtain the
variance var(P ∗

B) = E[DKL(P
∗
B , P̂B)], first we fix a true distribution P ∗ generated from the uniform

distribution with its sample space S with |S| = 1, 000 and getP ∗
B estimated by a TBM with σ = 0.37

and k = 2, which gives a reasonable amount of parameters B. Then the lower bound is obtained
as |B|/2N . In each trial, we repeat 100 times generating a sample D with the size N from P ∗ and
generated P̂B with fixing S and B to directly estimate the variance (± its standard deviation). In
Figure 2(a) the sample size N is varied from 100 to 1,000,000 with fixing the number of variables
n = |V | = 50 while in Figure 2(b) n is varied from 10 to 1,000 with fixing N = |D| = 100,000.
These plots clearly show that our lower bound is tight enough across all settings. The lower bound
exceeds the actual variance in some cases, which is due to the approximation error of the Taylor
series expansion or fluctuation of random sampling.
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Algorithm 1: Learning of TBM.
1 Input: Sample D, Parameter domain B, learning rate ε;
2 S ← D ∪B ∪ {0};
3 Construct FB ∈ {0, 1}|D∪B|×|B| using Equation (3);
4 Compute empirical distribution P̂ from D;
5 ηP̂

B ← FT
Bp̂;

6 Initialize θRB ∈ R|B| of R satisfying R ∈ Smodel, e.g., θRB = 0;
7 repeat
8 r ← exp(FBθ

R
B ); // r is unnormalized

9 ψ(θR)← log(rT1+ 1); // partition function from Equation (7)
10 r ← r/ exp(ψ(θR)); // r is normalized
11 ηR

B ← FT
Br;

12 θRB ← θRB − ε(ηR
B − ηP̂

B);
13 until convergence of θRB ;
14 r ← exp(FBθ

R
B );

15 ψ(θR)← log(rT1+ 1);
16 r ← r/ exp(ψ(θR));
17 Output (r,θRB);
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Figure 3: Distribution of feature representations projected on 2D space by tSNE on (a) MNIST
and (b) ret-1. Each point corresponds to each sample and colors represents classes. Number of
parameters is 1000 for (a) and 100 for (b).
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