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Abstract

Large vision-language models (VLMs) have become state-of-the-art for many com-
puter vision tasks, with in-context learning (ICL) as a popular adaptation strategy
for new ones. But can VLMs learn novel concepts from visual demonstrations
with ambiguous text queries, or are they limited to adapting to the output format of
ICL examples? We propose a new benchmark we call Spatial Visual Ambiguity
Tasks (SVAT) that challenges state-of-the-art VLMs to learn new visuospatial tasks
in-context. We find that VLMs fail to do this zero-shot, and sometimes continue to
fail after finetuning. However, adding simpler data to the training by curriculum
learning leads to improved ICL performance. We release our benchmark generation,
training, and evaluation code1 to facilitate future research.

1 Introduction

Pretrained large vision language models (VLMs) have become essential tools and set new state-of-
the-art in many general-purpose vision tasks [8, 18, 20, 34]. Extensive pretraining data allow VLMs
to operate in novel domains without fine-tuning, either zero-shot, or with few-shot in-context learning
(ICL) [36, 37, 39]. However, as spatial information can be ambiguous in language [33], it remains
unclear what it takes to get VLMs to learn a novel visuospatial concept from visual demonstrations.

We focus specifically on the ambiguity of visual referent in the text input to the VLMs, as AI-naive
users of computer vision systems in novel domains may assume background knowledge or context
that the VLMs would be missing [15]. For example, the word “fiducial” in a novel industrial domain
could refer to any number of markings on a piece of equipment to be aligned, and can only be
disambiguated with context. Including visual information in the form of labeled ICL examples with
images should lead to the desired disambiguation, but only if VLMs are able to correctly analyze
the information within the example images. Existing research has demonstrated that large language
models only learn the task’s expected output format described in the ICL examples [21]. Recent work
has also probed VLMs and found them incapable of solving straightforward tasks that specifically
require visual information processing, where answers cannot be guessed from text alone [22].

In this paper, we explore how this combination of VLM and ICL limitations prevents quick adaptation
of VLMs to novel tasks where the core concept of the task is introduced in the vision modality, and
the query text is ambiguous. Specifically, we propose a new benchmark for ambiguous visual-spatial
tasks called Spatial Visual Ambiguity Tasks (SVAT). It is a set of tasks of varying degrees of difficulty,
where each task is to identify the correct spatial decision boundary in a synthesized image based
on very limited ambiguous text and a number of visual demonstrations. Degrees of difficulty are
achieved by varying the complexity level of the objects in the foreground and the image background,
as well as the number of distracting objects (ambiguous visual referents) present in the image.

1https://github.com/groundlight/vlm-visual-demonstrations

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: The dataset construction pipeline of SVAT using the task family φ = (I5,Chard, 3,Tguide) as
an example. For this task family, we sample the background from industrial photographs (I5) where
the foreground objects are industrial tools Chard. Each image contains three objects (M = 3), and the
question in the prompt mentions the target object’s name (Tguide).

We evaluate state-of-the-art VLMs through tasks in SVAT in three settings: zero-shot, directly
finetuned, or finetuned through a curriculum learning (CL) [4] approach. Our experiments show that
state-of-the-art VLMs fail at tasks in SVAT in the zero-shot setup without finetuning. While simply
finetuning VLMs on SVAT can boost their performance by 5.8%-27.3% across different models,
we show that curriculum learning SVAT enables VLMs to achieve better accuracy on the most
challenging SVAT task, with 14.2% to 34.2% relative accuracy gains compared to direct fine-tuning.

2 SVAT Benchmark

We propose the SVAT benchmark to study the capabilities of VLMs on ambiguous visual-spatial
reasoning through ICL. The benchmark consists of a series of classification tasks. Intuitive examples
are shown in Fig. 1, where the core task in SVAT is to answer whether a foreground object is present
within the image’s “correct” location. The unusual challenge is that the “correct” location is not
explicitly defined but must be inferred by the model using the in-context demonstrations. Task
difficulty is varied by the information provided in the text input, the complexity of the object of
interest, the number of distracting objects present in the image, and the complexity of the image
background. In detail, Section 2.1 presents the dataset construction process, and Section 2.2 details
the curriculum learning (CL) setup we use to improve VLMs’ performance on SVAT.

2.1 Generating SVAT Datasets

To achieve the goal of examining whether VLMs can infer whether an object o presents on the
“correct” place of the image v, each instance in SVAT dataset e = (t, v, y) ∈ E contains a question t
paired with image v, while y is the answer (either “Yes” or “No”). The image v = (i, o1, ..., oM ) ∈ V
consists of a background image i and several foreground objects o. Among the foreground objects,
o1 is the object of interest while the rest are visual distractors for the model (details can be found in
Appendix C). The sampling process of e ∈ E, especially images v ∈ V is not trivial. Since we want to
examine VLMs’ ambiguous spatial reasoning capabilities at different difficulty levels, SVAT should
be built in a manner where the fine-grained complexity of each example is controllable, ranging
from one naive shape on a solid background to multiple realistic objects on a complex photograph.
Therefore, we parameterize the sampling process by φ, which comprises a set of hyperparameters
related to the choice of question, background, objects, and decision boundary. Each specific value of
φ defines a task family Eφ ⊂ E where each example is of a similar nature and similar difficulty level.

We parameterize the difficulty φ = (I,C,M,T) with a known set of background images i ∈ I and a
known set of categories of images to be used as foreground objects cj ∈ C, as well as the number of
distracting foreground objects M and the set of possible text inputs T. Text can be uninformative
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(Tnone), such as “Is everything okay?”, or guiding the VLM (Tguide) by including the name of the
target object c1 in the question. To avoid making SVAT tasks overly challenging, we simplify the
decision boundary to be either a horizontal or vertical line on the image v, as shown in Fig. 1.

For all choices of φ, we keep the labels balanced. The in-context examples always include an equal
number of YES and NO examples, although the order is random. Also, during training, the query
image is equally likely to be from either class. Appendix C.3 describes the input prompt generation
procedure in detail. In the experiments shown in this paper we choose φ among five different
background image sets (I1 to I5) and five foreground object category sets (Ceasy, Cshape, Ctshape, Ctool,
Chard), and we set the M in our task families to be either 1 or 3. Thus, we curate 5 × 5 × 2 = 50
task families in SVAT. Each factor (I, C, and M ) would influence the difficulty level of the task to
be generated. For each task family in SVAT, we generate 1,000 training, 200 validation, and 1,000
testing examples. More details of each task family’s characteristics can be found in Appendix D.

2.2 Curriculum Learning on SVAT

The different choices of φ form a set of task families in SVAT with varying levels of difficulty. We
will show in Table 1 that state-of-the-art VLMs struggle to tackle complex task families, both in a
zero-shot setting and after finetuning. However, progressively increasing task difficulty during CL
finetuning increases VLM performance. This section formalizes CL on SVAT.

We define a task family Eφ which is a subset of all possible examples parameterized by φ, thus
a curriculum C(φ) = (Eφ1 , ...,Eφ|C|) is an ordered sequence of task parameterizations. Unless
explicitly mentioned, we train VLMs in two stages when using CL, starting with an easier task family
Eφ1

, and then a harder task family Eφ2
. We design four CL strategies corresponding to the three

perspectives in φ that affect the task difficulty, namely CI for background complexity, CC for object
category variety, CM for the number of distracting objects, and Call for all aspects where we start to
train VLMs from the simplest task, thus for φ2 = (Ii,Ci,Mi,Ti):

CI(φ2) = (E(I1,Ci,M,Tt),Eφ2), C
C(φ2) = (E(Ii,Ceasy,M,Tt),Eφ2)

CM (φ2) = (E(Ii,Ci,1,Tt),Eφ2), C
all(φ2) = (E(I1,Ceasy,1,Tt),Eφ2)

(1)

3 Experiments

We evaluate the capacity of VLMs to learn in-context novel visuospatial concepts in our SVAT
benchmark in this section. We report the performance of several current VLMs in zero-shot, finetuned,
and curriculum learning (CL) settings. We leave the discussion and limitation of SVAT in Appendix G.

3.1 Experimental Setup

Backbone VLMs. We evaluate and finetune the following VLMs pretrained on different corpora:
LLaVA-1.6-Mistral-7B [20], VILA-1.5-8B [18], Idefics2-8B [16], InternVL2-8B [8], and MiniCPM-
V-2.6 [34] from Huggingface. All of these models, except LLaVA-1.6, were either pretrained on
image-text-interleaved datasets (VILA and Idefics2), or are known to excel on existing multi-image
benchmarks (InternVL2 and MiniCPM-V-2.6). We evaluate only the 7B (or 8B) parameter versions
of each backbone for experiment efficiency and comparison fairness.

Task Selection. As SVAT consists of numerous task families with different selections of the parame-
terization φ, it would be infeasible if we enumerate every task selection throughout SVAT. Therefore,
we only consider two main sets of task families (I5,C, 1,Tnone) and (I5,C, 3,Tguide) in Table 1, as
the former one tests whether a VLM can do spatial reasoning without the help of texts, and the latter
one investigates if a VLM can identify the target object with the help of the guiding texts. We also
show the performance of VLMs on a simpler task (I5,C, 1,Tguide) in Appendix F, where the question
explicitly mentions the target object’s category but there is no distractor in the image.

Training. We use ModelScope’s swift library [38] to finetune VLMs on SVAT. We use LoRA [13] to
finetune the VLMs, either on a single task or in stages via CL. When using CL, within each difficulty
level Eφi

, we shuffle the order of training examples and use the finetuned LoRA parameters to
initialize the training for the subsequent difficulty level. After the last and most difficult finetuning step,
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Table 1: Main results of VLMs’ performance on SVAT. M denotes the number of objects per example,
and the second row on the header indicates the foreground object category set C in task family φ.
The complexity of the background images is fixed at level 5 (I5). Accuracy significantly better than
random guessing is in green , and each task’s best model’s result is in bold.

M = 1, T = Tnone M = 3, T = Tguide
(no distractors, useless text) (distractors, text names objects)

Category Model easy shape tshape tool hard easy shape tshape tool hard

Zero-shot

LLaVA-1.6-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Idefics2-8B 50.4 49.6 49.8 50.7 52.3 51.1 53.7 52.7 49.2 49.7
VILA-1.5-8B 49.3 48.9 49.9 47.6 47.7 49.8 52.4 51.8 52.3 48.7
InternVL2-8B 46.8 49.9 48.2 47.7 46.1 50.2 54.0 49.3 49.8 50.1
MiniCPM-V-2.6 59.5 57.3 56.5 58.0 55.0 52.6 51.9 51.1 50.8 50.4

Finetuned
(FT)

LLaVA-1.6-7B 52.8 47.9 52.0 49.2 49.3 80.3 53.4 51.1 49.3 52.3
Idefics2-8B 65.6 53.9 51.2 54.6 62.1 49.0 54.1 50.0 49.7 48.6
VILA-1.5-8B 72.9 49.9 49.9 77.3 66.6 49.1 54.5 50.6 49.6 50.6
InternVL2-8B 70.4 74.7 55.0 52.9 49.8 77.9 76.9 52.4 65.6 50.9
MiniCPM-V-2.6 73.4 80.0 68.6 74.2 71.8 52.8 72.0 58.4 52.2 62.1

we merge LoRA parameters with the frozen VLM backbone for evaluation. Across all experiment
setups, we finetune VLMs on each task family Eφi with three epochs unless explicitly mentioned.
More details of our finetuning setup, including hyperparameters, can be found in Appendix B.

Evaluation. Because all SVAT tasks are simple yes/no binary tasks with 50-50 class balance, we
simply report the exact-match accuracy for all tasks. Additionally we conduct one-sample z-tests
on our results to see whether a VLM performs significantly better than random guessing. We set
the significance level α as 0.05, so the threshold of any VLM performing significantly better than
random guessing on each task’s test set with 1,000 examples would be 52.7%.

3.2 Results

Figure 2: VLMs’ performance on (I5,Chard, 3,Tguide) and
(I5,Ctshape, 3,Tguide) using CL and finetuning (FT).
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Figure 3: Ablation on MiniCPM
for the task (I5,Chard, 3,Tguide).

We demonstrate the performance of VLMs in zero-shot and finetuned settings on SVAT in Table 1.
In zero-shot settings, pretrained VLMs struggle at ambiguous spatial reasoning regardless of their
pretraining and instruction-tuning recipes. Among the evaluated VLMs, MiniCPM performs the
best across all tasks with an average accuracy of 54.3%. It is also the only VLM that consistently
achieves significantly better than random guessing on (M = 1,T = Tnone) under zero-shot settings.
In the meantime, some models perform better in (M = 3,T = Tguide), e.g., Idefics2 on Ctshape and
InternVL2 on Cshape. The reason could be that textual prompts are clearer in M = 3, T = Tguide
settings where the target object’s category is explicitly mentioned in the prompt. We conclude
that these models might be more sensitive to language rather than vision prompts at inference.
Furthermore, most models can correctly follow the format of the ICL examples to answer with either
“Yes” or “No”, except for LLaVA-1.6. We conjecture that LLaVA-1.6 cannot follow multi-image ICL
examples due to not being pretrained on image-text-interleaved datasets.
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Finetuning VLMs directly on tasks in SVAT improves their performance (bottom section of Ta-
ble 1), regardless of how the model was pretrained. MiniCPM still performs best with 66.6%
accuracy on average after finetuning. Surprisingly, LLaVA-1.6 achieves extremely-high accuracy on
(I5,Ceasy, 3,Tguide) after finetuning, while performing poorly on (I5,Ceasy, 1,Tnone). We conjecture
that mentioning the target object’s category in the query is essential for LLaVA-1.6 to learn the
objects’ spatial relationship within the images. Similar to this phenomenon, we see that InternVL2
performs better on most M = 3,Tguide tasks than their M = 1,Tnone counterparts. However, when
the foreground object’s vocabulary becomes larger (for Ctool and Chard), VLMs consistently get
worse results on has-distractor settings, whereas only InternVL2 and MiniCPM achieve non-trivial
performance on Ctool and Chard, respectively.

Although task families in SVAT with a larger object vocabulary, complex background, and some
distractors are challenging for VLMs, Fig. 2 shows that applying CL to VLMs effectively improves
model performance. Across different models with varied curriculum setups, 34 out of 40 (85%)
trained models’ performance increases compared to straightforward finetuning. Furthermore, all
models can achieve significantly better accuracy after CL than random guessing (> 52.7%). We also
notice that different VLMs benefit most from different CL strategies. For example, CC increases the
performance of LLaVA-1.6 and InternVL the most, whereas MiniCPM barely gains improvements.
Our further analysis shows that succeeding in the first task Eφ1 after the first-stage finetuning is a
necessary factor for the performance improvements using CL. The improvement of the final model
can also be reflected after the first training stage. We leave the analysis details in Appendix I.

3.3 Ablation Study

As the improvements in VLM performance can be due not (or not only) to CL but to a greater diversity
of data during finetuning or a larger number of training steps, we examine these possibilities through
ablations. We only apply ablations to MiniCPM for simplicity, as it is one of the most efficient
VLM for training and inference among the models listed above. We run ablations on the task family
φ = (I5,Chard, 3,Tguide) with curriculum CM , where the model gains the most performance through
CL. We conduct the ablation study based on the following three strategies:

1) Mixing Data. We naively combine and randomly shuffle the data from all the datasets in CL.

2) More Epochs. Simply training the VLM with six epochs to match the total training steps in CL.

2) More Data. As SVAT is a synthetic dataset, we generate more training data for the task family
φ = (I5,Chard, 3,Tguide). We finetune the VLM with one epoch to ensure there are no repeated
examples in training to eliminate overfitting and also three epochs to match CL.

Fig. 3 indicates simply training VLMs with more steps on the same examples (#examples = 1,000)
does not improve the model performance. However, increasing the quantity of novel training
data might help, yet the performance cannot match CL unless all examples are unique in training
(#examples = 6,000), mainly because more combinations of the target object’s spatial information in
demonstration and query examples are presented to the model. Meanwhile, mixing the data from easy
and complex tasks can help, yet the trained VLMs’ performance is slightly worse than CL. Therefore,
we conclude that CL is essential for empowering VLMs on ambiguous spatial reasoning, especially
in data-limited scenarios where the target complex task’s training example quantity is low.

4 Conclusion

We introduce a benchmark of ambiguous visual-spatial reasoning tasks, namely Spatial Visual
Ambiguity Tasks (SVAT), and use it to evaluate a set of current VLMs on their ability to learn novel
visuospatial concepts via in-context learning. We find that current VLMs cannot solve these tasks
exclusively in context without specific training, and some still fail to learn by finetuning the tasks
directly. However, they can learn the more difficult tasks from in-context visual demonstrations if
they have previously been finetuned on easier tasks through a curriculum learning approach. Our
analysis shows that curriculum learning presents a data-efficient and more robust way of training
VLMs on SVAT. These results demonstrate more evidence of the power of curriculum learning to
adapt large models. Despite the performance gained from curriculum learning, state-of-the-art VLMs
require further development to reliably solve ambiguous tasks with vision prompts or demonstrations.
We hope our work will facilitate future research in this direction.
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A Related Works

A.1 VLMs for Spatial Reasoning

Despite the rapid development of vision language models (VLMs) [8, 18, 20, 34], today’s best VLMs
are very limited in their ability to solve seemingly simple spatial reasoning tasks [22, 25]. Challenging
benchmarks have been proposed to examine and improve VLMs’ performance in spatial reasoning,
including but not limited to spatial relationship detection [7, 9, 14, 19], object localization [23],
navigation [29], distance measuring [9], etc. However, such tasks are delicately defined with
engineered prompts so that VLMs can understand the question, yet SVAT focuses on tasks that
are ambiguous in words but can be properly defined by visual demonstrations. Moreover, existing
methods in tackling spatial reasoning tasks with VLMs often rely on prompt engineering [26, 29]
and explicit spatial modeling [3, 32], but our analysis with SVAT finds that curriculum learning can
be a more efficient way of enabling VLMs’ ability in spatial reasoning.

A.2 In-Context Learning

In-context Learning (ICL) was first introduced in Brown et al. [5], which found that pretrained large
language models can be adapted to novel tasks given several demonstration examples at inference
time, rather than using them to update the model’s parameters. Research found that such ICL learning
process can be seen as linear regression [11], Bayesian models [30], gradient descent [10], etc.
However, research also pointed out that ICL might only help language models shift to a new input
and output distribution rather than deeper reasoning capabilities [21, 28].

Besides language models, recent advancements in multi-image multimodal learning addressed the
fact that VLMs can also learn novel tasks through ICL [18]. Many benchmarks have been developed
to specifically examine existing VLMs’ ICL capabilities with multi-image inputs [37, 40], while
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recent research also stressed that ICL can be adapted to VLMs to tackle visual-related reasoning
tasks [39]. Nonetheless, such performance improvements highly rely on the text modality of the task
rather than the image modality [2], leaving the ICL’s effect in vision-oriented tasks under-explored.

A.3 Curriculum Learning

Curriculum learning (CL) was first proposed in Bengio et al. [4], suggesting training machine
learning models from easier to harder task examples could achieve better model convergence and
robustness. In the area of language modeling, CL also shows its effectiveness in both pertaining [6] and
finetuning [12, 31] stages. In multimodal learning, especially with VLMs, research also demonstrated
that CL can improve model performance in navigation [35] and vision-language alignment [24].

B Experiment Details

We set the learning rate as 1e-4 for finetuning, while LoRA r and alpha are set as 8 and 32, respectively.
The full hyperparameters we use for all VLMs finetuning are shown in Table 2.

Table 2: Hyperparameters used in finetuning VLMs on SVAT

Hyperparameter Value
Learning rate 1e-4

Batch size 16
#Epochs 3

Warmup ratio 0.05
Weight decay 0.1

Optimizer AdamW
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1e-8

Gradient clipping 1.0
LoRA r 8
LoRA α 32

LoRA dropout 0.1

When training and evaluating with Idefics2 models, we set do_image_splitting to True to reach
the full potential of the model’s capabilities. For the InternVL2 model, we leave the input image size
as (448, 448) by default and set the maximum number of crops generated from its processor to 12.
For MiniCPM-V-2.6, we set the max_slice_nums to None in both training and evaluation stages.
At inference, as tasks in SVAT are all binary question answering problems that expect the VLM to
respond with either “Yes” or “No”, we set the max_new_tokens as 5. We do not set it to 1 because
we want to see whether a pretrained VLM can directly follow the ICL demonstrations’ output format
in zero-shot settings (details introduced in Appendix F). Meanwhile, we do not use sampling or beam
search at inference time.

C SVAT Data Generation Details

C.1 Background: Visual In-context Learning

We first formulate the problem of visual ICL. Formally, under the vision question-answering (VQA)
setting, we define an input prompt x that consists of a set of in-context examples together with a new
question and image:

x = (E, tq, vq), where E = {ei|ei = (tdi , v
d
i , y

d
i ) ∈ E, tdi ∈ T, vdi ∈ V}Ni=1, t

q ∈ T, vq ∈ V (2)

where T is a finite set of textual questions the VLM should answer, V is the set consisting of all
possible images given a specific task, and ydi is the ground-truth label for the image-question pair
ydi = l(tdi , v

d
i ). Thus, a VLM is expected to tackle the task that yq = VLM(E, tq, vq) = l(vq, tq).
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C.2 SVAT Problem Formulation

SVAT fits into the visual ICL formulation in Eq. (2) by specifying a generation process for the
text query t, image v and label y. As shown in Fig. 1, each demonstration or query image v =
(i, o1, ..., oM ) consists of a background image i and M foreground objects o1, ..., oM , while all
examples share the same text question t. Moreover, each foreground object oj = (cj , ξj) is defined
by c, the category of the object, and a low-dimensional vector ξ that defines the pose of the object
(position, size, orientation, etc.). Within each input x and sharing across examples E and eq , we have
a decision function P that maps an orientation of an object ξ to a label: P : ξ → {0, 1}. When there
is more than one object, i.e., M > 1, only the first object, o1 is needed to find the example’s label,
while the rest are left as visual distractors. Overall, an SVAT dataset DSVAT is defined as:

DSVAT = {(x, P, yq)|x = (E, t, vq), yq = lSVAT(v
q, t, P ) = P (ξ1)} (3)

where P is the decision boundary that must be inferred by the VLM from ICL examples. Note that no
visual or textual clues in the image and question show P . The same question t and decision boundary
P are shared across demonstration examples and the query example.

C.3 Input Prompt Generation in SVAT

We demonstrate an example of full prompt in SVAT under the task family φ = (I5,Chard, 3,Tguide) in
Table 3. For a detailed algorithmic description of the input prompt and image generation process, see
Algorithm 1. We also demonstrate some of the sampled data from different task families in SVAT on
Fig. 4.

Please answer the following question based on the provided examples.

Example 1:
<image>
Question: Is the Heat Guns in the right position?
Answer: Yes

Example 2:
<image>
Question: Is the Heat Guns in the right position?
Answer: No

Example 3:
<image>
Question: Is the Heat Guns in the right position?
Answer: No

Example 4:
<image>
Question: Is the Heat Guns in the right position?
Answer: Yes

Query:
<image>
Question: Is the Heat Guns in the right position?
Answer:

Table 3: Sampled prompt from the task family φ = (I5,Chard, 3,Tguide) in SVAT.

D Dataset Characteristics Details

As described in Section 2.1, the images in SVAT are synthesized based on different sets of background
images and foreground objects which makes the difficulty of each task family φ = (I,C,M,T)
controllable.

In detail, we have five different complexity level defined for the background images, ranging from I1
to I5, including
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Algorithm 1 Input Prompt Generation Algorithm
Input: φ = (I,C,M,T)
Input: N ▷ Number of examples, including query. We use N = 5
Input: ε ▷ Difficulty threshold. We use ε = 0.05

1: D ← dim(ξ) ▷ Dimensionality of the pose vector. We use D = 2
2: δ ∼ Uniform{1, . . . , D} ▷ Pick a dimension for decision boundary
3: τ ∼ Uniform[2ε, 1− 2ε] ▷ Threshold for decision boundary
4: s ∼ Uniform{−1, 1} ▷ Direction of decision boundary
5: P (ξ) := I[s(ξδ − τ) > 0] ▷ Define decision boundary function

6: i ∼ I ▷ Shared background image for all examples
7: tq ∼ T ▷ Sample text query (may be Tnone or Tguide)
8: c∗ ∼ C ▷ Sample a target object class

9: Yinit ← [0, 1]× ⌊N/2⌋ ▷ Initialize balanced labels
10: Yquery ∼ Uniform{0, 1} ▷ Sample final label
11: Y ← Shuffle(Yinit) ∪ Yquery ▷ Shuffle ICL examples

12: E ← [] ▷ Initialize list of examples
13: for j = 1 to N do ▷ Create N examples
14: y ← Y [j] ▷ Use pre-generated label
15: O ← ∅ ▷ Initialize set of objects for this example
16: for k = 1 to M do ▷ Create M objects per example
17: repeat
18: ξ ∼ Uniform[0, 1]D ▷ Sample pose
19: until P (ξ) = y and |ξδ − τ | > ε ▷ Check label and difficulty
20: if k = 1 then
21: c← c∗ ▷ Use target class for first object
22: else
23: repeat
24: c ∼ C ▷ Sample class for distractor objects
25: until c ̸= c∗

26: end if
27: O ← O ∪ {(c, ξ)} ▷ Add object to example
28: end for
29: V ← (i, O) ▷ Build the image with a background and foreground objects
30: if j = N then
31: vq ← V ▷ Assign the query example’s image
32: else
33: E ← E ∪ [(tq, V, y)] ▷ Add example to the demonstration list
34: end if
35: end for
36: x← (E, tq, vq)
37: return (x, P, Yquery) ▷ Finish constructing an instance in DSVAT
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(a) Trivial background (b) Complex background (c) Distracting objects

Figure 4: Examples of SVAT tasks where the object of interest is a simple shape. In (a) the colors and
textures are trivial with φ = (I2,Cshape, 1,Tnone), while in (b) there is more visual complexity with
φ = (I5,Cshape, 1,Tnone). In (c) there are distractor shapes, and the model must identify the object of
interest using the text of the query, with φ = (I3,Ctshape, 3,Tguide)

• I1: empty (solid white) background;
• I2: solid background but with varied RGB colors randomly sampled from (0, 0, 0) to
(255, 255, 255);

• I3: simple, realistic textured images, like grass field, snow, wood, sheet, etc.;
• I4: simple photographs taken consisting of few objects, e.g., a desk, ceiling, wall, etc.;
• I5: complex images that contain multiple realistic objects from industrial scenes.

As for the foreground objects, we have defined the following sets:

• Ceasy: contains five objects, including a bolt, a chain, a hardhat, a pickup truck, and a tree;
• Cshape: consisting of five naive shapes, namely circle, pentagon, rectangle, square, and

triangle. Each object is filled with a solid RGB color randomly sampled from (0, 0, 0)
to (255, 255, 255);

• Ctshape: same shapes in Cshape, but filled with random textures from I3;
• Ctool: a set of 87 tools commonly seen in industrial scenes, like hammer, saw, carpet knife,

drill, heat gun, etc., where each category of tool has only one image;
• Chard: 3,437 industrial tool images from 328 categories in total.

Finally, T in φ controls the construction or sampling process of questions t in SVAT datasets based
on the formulation in Eq. (2). t is built based on the following templates shown in Table 4. The
{fiducial} in the template is randomly replaced with a set of synonyms (including the word
“fiducial”) if T = Tnone, like “marker”, “landmark”, “beacon”, etc. When T = Tguide, {fiducial} is
replaced with the target object’s category name c1. The variable {description} in the template is
randomly replaced with a set of adjectives and phrases representing the status of “Yes” or “No”, like
“aligned”, “in position”, “out of place”, etc. Since the same question t is consistent within each input
x’s demonstration examples and query example, and all questions in SVAT task families are binary,
the actual choice of the variable {description} here does not affect the ground truth label of the
query example, as long as the query example’s decision boundary is consistent with the demonstration
examples.

E Additional Results: More Backbone Models

We introduce the experimental results of the following models here: Phi-3.5 [1], LLaVA-
OneVision [17], and Qwen2-VL [27]. We do not add these models’ results to the main table
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Table 4: Question templates in SVAT

Templates
Is the {fiducial} {description}?
Are the {fiducial} {description}?
Are the {fiducial} {description}?
Can you see if the {fiducial} is {description}?
Is there a problem with the {fiducial}?
Look at the {fiducial}. Is it {description}?
Find the {fiducial}. Is it {description}?
Can you see the {fiducial}? Is it {description}?
Is the {fiducial} properly positioned?
Is the {fiducial} correctly aligned?
Is the {fiducial} in the correct position?
Can you see if the {fiducial} is in the correct position?
Is the {fiducial} in the right place?
Find the {fiducial}. Is it in the right place?
Can you see the {fiducial}? Is it in the right place?
Is the {fiducial} in the right position?

Table 5: Zero-shot and finetuned VLMs’ performance on φ = (I5,C, 1,Tnone) and φ =
(I5,C, 3,Tguide) for additional models. Accuracy significantly better than random guessing is in
green .

M = 1, T = Tnone M = 3, T = Tguide
no distractors, useless text distractors, text names objects

Category Model easy shape tshape tool hard easy shape tshape tool hard
Zero-shot Qwen2-VL-2B 48.4 50.2 50.1 51.0 48.0 49.3 52.7 51.3 49.9 50.5

Qwen2-VL-7B 56.3 52.7 53.8 57.1 55.6 53.4 52.9 52.6 50.8 54.0
LLaVA-OneVision 49.2 50.5 47.9 48.0 48.9 50.7 53.3 46.8 49.0 49.2
Phi-3.5 49.9 50.1 50.2 48.2 48.7 51.7 50.9 50.3 50.9 47.7

Finetuned
(FT) Qwen2-VL-2B 50.6 52.2 51.6 48.6 55.1 73.2 63.9 52.3 64.0 51.8

Qwen2-VL-7B 74.6 61.4 63.0 72.7 71.4 74.4 75.2 60.3 71.0 55.0
LLaVA-OneVision 75.3 52.3 51.2 60.5 63.9 73.9 75.5 56.7 72.5 55.1
Phi-3.5 67.0 72.2 63.3 66.4 60.6 50.6 49.8 54.3 49.7 54.0

since some of them are recently released, while the scales of Phi-3.5 and Qwen2-VL-2B models
are smaller than the 7-8B scaled models we show in Table 1. Results show that all models perform
better after finetuning compared to zero-shot inference. Moreover, Qwen2-VL-7B models achieve
better performance than the rest of the models. In the meantime, we notice that Qwen2-VL-2B series
models do not get significant performance improvement after finetuning on the φ = (I5,C, 1,Tnone)
task. We assume that smaller-scaled models cannot capture visual features without the guidance of
textual prompts.

F Additional Results: Guided Texts without Distractors

We demonstrate VLMs’ performance on the task family φ = (I5,C, 1,Tguide) under zero-shot and
finetuned settings in Table 6. Despite this task should be empirically simpler than the ones shown
in Table 1, we still find that VLMs struggle at tackling it under zero-shot settings, where only the
MiniCPM model shows its performance significantly better than random guessing on Ceasy, Cshape,
Ctool, and Chard. Besides, VILA’s performance is much worse than random guessing because it does
not follow the output format given in the ICL demonstrations, i.e., answering with either “Yes” or
“No”. 2,907 out of 5,000 answers (58.1%) from VILA fail to follow the ICL output format.

At the same time, after finetuning, we see that in 18 out of 25 (72%) settings, the model performs
significantly better than random guessing. MiniCPM, again, performs the best across most of
the settings except for Ctshape. The averaged accuracy across all models on all foreground object
selection C after finetuning achieves 64.5, which is better than that of (I5,C, 1,Tnone) (61.0) and
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Table 6: Zero-shot and finetuned VLMs’ performance on φ = (I5,C, 1,Tguide). Accuracy signifi-
cantly better than random guessing is in green , and each task’s best model’s result is in bold.

M = 1, T = Tguide
(no distractors, text names objects)

Category Model easy shape tshape tool hard

Zero-shot

LLaVA-1.6-7B 0.0 0.0 0.0 0.0 0.0
VILA-1.5-8B 14.7 28.4 26.3 14.2 20.2
Idefics2-8B 46.5 49.6 51.8 50.3 48.4
InternVL2-8B 48.8 51.0 50.3 49.2 49.4
MiniCPM-V-2.6 55.4 56.7 52.3 56.0 53.7

Finetuned

LLaVA-1.6-7B 46.8 76.8 50.9 50.7 50.2
VILA-1.5-8B 70.5 53.5 52.5 68.3 67.5
Idefics2-8B 61.3 61.8 51.0 49.9 57.3
InternVL2-8B 79.3 77.8 74.8 72.3 55.0
MiniCPM-V-2.6 81.7 81.1 73.1 77.5 70.8

(I5,C, 3,Tguide) (56.5) shown in Table 1, indicating that prompting with VLMs with objects’ category
names make the task easier even if there is no distractor in the image.

G Discussion and Limitations
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Figure 5: Correlations between the
accuracy improvements after CL
to the VLMs’ performance on Eφ1

and Eφ2
after training with Eφ1

.

Even though our experiment demonstrated in Section 3 has
covered various settings in SVAT, we cannot enumerate every
possible combination regarding the task parameterization φ
to examine VLMs’ ambiguous spatial reasoning abilities in
extreme details. However, our code can easily be adapted to
include tasks with more combinations or choices of φ. Fur-
thermore, the core components in SVAT, namely the decision
boundary P , the background image i, foreground objects o, and
even natural language questions t can be easily extended based
on our released code. We would like to leave the exploration
of applying more challenging tasks on VLMs as future work.

Besides extending task variety and difficulty, this paper only
examines VLMs with a scale of 7B to 8B due to the limitation
of our computational capabilities. In theory, larger models have
more potential for conducting visuospatial reasoning, especially
under in-context learning setups. Nonetheless, we argue that
models can already perform relatively well by applying curricu-
lum learning to VLMs at the 7-8B parameter scale, with the
accuracy reaching about 75%. Therefore, a larger parameter
scale might not be necessary for VLMs to do ambiguous spatial
reasoning with decent accuracy.

Finally, as foundation models get more powerful, they are increasingly good at solving real-world
tasks zero-shot, without any specific training. However, for many real-world tasks, the specific
nature of the goal is somewhat ambiguous, and humans struggle to clearly articulate the exact criteria
necessary to define a desired outcome. Oftentimes, it is easier for a person to give examples showing
"this is good" and "this is bad" than to explicitly list the exact characteristics of each example that
make one good or bad. SVAT only considers ambiguous spatial reasoning tasks with synthetic
data, yet no realistic data for training or evaluation is considered. We want to leave the research of
combining SVAT and ambiguous, realistic multimodal data as a future direction. What knowledge
can be transferred between synthetic datasets like SVAT and real-world datasets and benchmarks for
VLMs remains under-explored.
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H Impact Statement

Since SVAT proposes a novel paradigm to prompt VLMs with visual demonstrations in a tuning-free
manner, it can lead to more efficient leverage of large VLMs. Specifically, this can lead to positive
environmental impacts, resource-saving, and democratization of the usage of VLMs. In the meantime,
SVAT does not introduce new ethical concerns. However, the use of SVAT VLMs can inherit existing
issues in pretrained VLMs, including but not limited to bias in decision-making, unfair response,
etc. Misusing harmful vision demonstrations at inference time on SVAT-finetuned models could also
result in unsafe outputs of existing VLMs.

I Details of Improvement Analysis in Curriculum Learning

In Fig. 5, we show that the VLM’s performance on both Eφ1
and Eφ2

2 after the first-stage finetuning
substantially affects the model’s final performance on Eφ2

after CL. We see that all models that
do not achieve significantly better accuracy on Eφ1

cannot improve their performance through CL.
Meanwhile, a positive correlation with R2 = 0.77 exists between the VLMs’ Eφ2 performance after
the first and second-stage training. We conclude that learning to tackle Eφ1 with spatial reasoning
capabilities is necessary for succeeding on Eφ2

throughout CL, while the final VLM’s performance
of CL is predictable based on the intermediate models’ performance.

J VLM Training and Evaluation Efficiency on SVAT

Table 7: Training time and peak memory consumption on the task (I5,Chard, 3,Tguide) in SVAT.

Model Training Time (s) Training Memory (GiB)

LLaVA-Next 7,602.1 43.8
Idefics2 3,113.9 53.1
VILA 1,379.4 46.3
InternVL2 12,208.4 75.4
MiniCPM-V-2.6 1,138.7 34.3
Qwen2-VL 1,448.3 49.0

We use ModelScope’s swift library to finetune and evaluate the following models: LLaVA-Next,
InternVL2, and MiniCPM-V-2.6. We implement the training and evaluation pipeline of Idefics2 and
VILA by ourselves as swift lacks the support for these models. We run our training with two sets of
setups, either with 2 NVIDIA A100 80GB GPUs or 4 NVIDIA RTX 3090 GPUs. As for inference,
VILA, MiniCPM, and LLaVA-Next can be fit on a single RTX 3090 or RTX 4090 GPU. Idefics2
models require more memory at inference time, so we evaluate them on a single A100 80GB GPU.
For InternVL2, we use four RTX 3090 GPUs for inference. The detailed training time and memory
consumption for Table 1 is demonstrated in Table 7. Since different task families in SVAT share
similar text length, image quantity, and resolutions, we only report the time and memory consumption
for the task family (I5,Chard, 3,Tguide) in Table 7 for simplicity.

2We use Eφ1 and Eφ2 to represent the two tasks used in CL as defined in Eq. (1), i.e., C(φ2) = (φ1, φ2)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We conclude that state-of-the-art VLMs perform poorly on ambiguous spatial
reasoning tasks, and curriculum learning can help VLMs achieve success on such tasks. Our
main experimental results and ablation studies support the conclusion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations and potential future directions of our work in
Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have theoretical results in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will release our code to construct the SVAT dataset, together with VLM
training and evaluation pipelines. The detailed hyperparameters we use are also included in
the paper.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our code and data after the double-blind review stage.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The hyperparameters details are mentioned in Table 2, and the details of dataset
construction and split are mentioned in Section 2.1, Appendix C, and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have done statistical significance tests for the main results, as mentioned in
Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computational resources of training and evaluating VLMs on SVAT are
mentioned in Appendix J, together with the training time and memory consumption recorded
in Table 7.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms with the NuerIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact in Appendix H, introducing that SVAT proposes
a lightweight paradigm of using VLMs and does not bring new ethical conerns, yet it might
inherit existing negative concerns from VLMs.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

20

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, as the data to be released are synthesized with
safe abstract or realistic images.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original assets (tools like ms-swift and pretrained VLMs) are properly
cited in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets (code and data) introduced in this paper are well-documented
and will be released after the double-blind review period.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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