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ABSTRACT

Visual geolocalization, the task of predicting where an image was taken, remains
challenging due to global scale, visual ambiguity, and the inherently hierarchi-
cal structure of geography. Existing paradigms rely on either large-scale retrieval,
which requires storing a large number of image embeddings, grid-based classifiers
that ignore geographic continuity, or generative models that diffuse over space but
struggle with fine detail. We introduce an entity-centric formulation of geoloca-
tion that replaces image-to-image retrieval with a compact hierarchy of geographic
entities embedded in Hyperbolic space. Images are aligned directly to country, re-
gion, subregion, and city entities through Geo-Weighted Hyperbolic contrastive
learning by directly incorporating haversine distance into the contrastive objec-
tive. This hierarchical design enables interpretable predictions and efficient infer-
ence with 240k entity embeddings instead of over 5 million image embeddings on
the OSV5M benchmark, on which our method establishes a new state-of-the-art
performance. Compared to the current methods in the literature, it reduces mean
geodesic error by 19.5%, while improving the fine-grained subregion accuracy
by 43%. These results demonstrate that geometry-aware hierarchical embeddings
provide a scalable and conceptually new alternative for global image geolocation.

1 INTRODUCTION

Visual geolocalization, inferring where an image was taken from its content alone, is a fundamental
challenge with applications in biodiversity monitoring (Van Horn et al., 2021), cultural heritage
preservation (DeLozier et al., 2016), news verification (Tahmasebzadeh et al., 2023), and augmented
reality (Mercier et al., 2023). However, many real-world images lack geotags in their metadata
(Flatow et al., 2015), making automated solutions increasingly important. The task remains difficult
due to its scale and ambiguity (Dufour et al., 2025). The search space spans the entire globe; visual
patterns such as beaches or skylines recur across continents; language similarities in the street view
images span continents; and geographic space itself is structured hierarchically from continents
down to cities.

Most existing methods follow one of three paradigms: retrieval-based, classification, and more re-
cently, generative methods. Retrieval-based approaches index millions of image embeddings and
return nearest neighbors (Haas et al., 2023), which capture fine-grained similarity but do not scale
gracefully and provide limited interpretability. Classification methods (Astruc et al., 2024; Haas
et al., 2024) tackle this task by predicting a discrete cell, respecting geography but failing to cap-
ture cross-continental visual relationships. Generative models, such as diffusion, can model spatial
uncertainty, but underperform retrieval methods at fine scales (Dufour et al., 2025).

We present a geolocation architecture that models the world as a hierarchy of entities such as coun-
tries, regions, subregions, and cities, and learns embeddings for each entity instead of indexing
individual images. Images are aligned to entity embeddings via a contrastive loss weighted by the
scaled haversine distance. Conventional retrieval methods scale linearly, requiring O(N) compar-
isons against millions of images; approximate nearest neighbor methods reduce runtime but still
incur large memory and indexing overheads. Our approach instead operates on a fixed, compact set
of entity embeddings which scale sub-linearly, enabling faster inference through hierarchical traver-
sal: predictions are resolved coarsely at higher levels and refined only where needed. This allows
for beam search over the hierarchy, allowing efficient exploration of plausible paths. This yields
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scalable inference, interpretable outputs, and even potential for client-side deployment. By refram-
ing geolocation as “image-to-entity alignment” rather than “image-to-image retrieval,” the method
makes the structure of geography central to the task.

To encode the geographic hierarchy effectively, we represent entities in hyperbolic space. In Eu-
clidean space, hierarchical structures become increasingly compressed as depth grows: the number
of entities expands roughly exponentially from country → region → subregion → city, but Euclidean
distances grow only linearly. This mismatch causes deeper-level entities to crowd together, reduc-
ing discriminative power during inference. Hyperbolic geometry, by contrast, naturally provides
exponential volume growth and therefore allocates proportionally more space to represent large
branching factors in deep hierarchies (Nickel & Kiela, 2017; Chen et al., 2021). As a result, related
entities can remain close, while fine-grained locations can still be well separated, making hyper-
bolic space a more faithful and expressive embedding space for geographic hierarchies. This effect
can be observed visually in the Figure 2 in the Appendix A.2. To our knowledge, this is the first
application of Hyperbolic embeddings to represent hierarchical geographic entities for geolocation
explicitly. In addition to expected continental clusters, Figure 6 in the Appendix shows the semantic
relationships between entities directly leveraging strong semantics of modern image encoders such
as DINOV3 (Siméoni et al., 2025). To couple this geometry with geographic structure, we introduce
a Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE) loss that weights negative logits using the
haversine formula. This objective materially improves fine-scale discrimination while preserving
global structure.

We evaluate our method on OSV5M (Astruc et al., 2024), comprising 4.8 million training and
200k test images, and on MediaEval’16 (Larson et al., 2017) with 4.7 million training images. On
OSV5M, our approach establishes a new state of the art, yielding consistent gains across all hier-
archical levels: country (+8.8%), region (+20.1%), subregion (+43.2%), and city (+16.8%), while
reducing mean geodesic error by 19.5% relative to the strongest baselines. We further confirm ro-
bustness on IM2GPS (Hays & Efros, 2008), IM2GPS3K (Vo et al., 2017), and YFCC4K (Vo et al.,
2017). Beyond these benchmarks, our findings highlight that Hyperbolic embedding spaces provide
a principled advantage for multimodal representation learning wherever data exhibit inherent hier-
archical structure, with geolocation serving as a particularly suitable testbed. The following are our
contributions:

• Reduce search complexity by reformulating geolocation as image-to-entity alignment in
Hyperbolic space, cutting the search from millions of images to 240k entities while im-
proving accuracy.

• Demonstrate that Hyperbolic geometry captures multi-scale geographic relationships for
hierarchical representation.

• Introduce Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE), which incorporates
great-circle distance to emphasize geographically proximal negatives.

• Achieve state-of-the-art results on OSV5M across all levels (country +8.8%, subregion
+43.2%), validating the effectiveness of geometry-aware learning.

2 RELATED WORKS

Global visual geolocation. Classical work framed geolocation as image retrieval against large gal-
leries, e.g. IM2GPS (Hays & Efros, 2008), later revisited with stronger deep learning baselines (Vo
et al., 2017). An alternative line casts the task as geocell classification, as in PlaNet (Weyand et al.,
2016) and CPlaNet (Seo et al., 2018), while recent methods emphasize scalability (SC retrieval
(Haas et al., 2023), PIGEON (Haas et al., 2024)) or generative modeling of geodesic uncertainty
(Dufour et al., 2025). This trend continues with the work of LocDiff (Wang et al., 2025) with multi-
scale latent diffusion. Benchmarks such as MediaEval’16 and OSV5M (Astruc et al., 2024) further
standardized evaluation. The emergence of foundational models also resulted in works such as Geo-
Reasonser (Li et al., 2025) and Img2Loc (Zhou et al., 2024), which push the boundary forward. Sev-
eral hybrid approaches combine retrieval and classification, such as Translocator (Pramanick et al.,
2022) and GeoDecoder (Clark et al., 2023), but these methods generally assume Euclidean label
spaces. Although hierarchy is central to these protocols (e.g., country/region/city splits, quadtrees),
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prior work has used hierarchy mainly for evaluation or partitioning. By contrast, we treat the hierar-
chy itself as the object of representation, aligning images directly to entities across levels.

Hyperbolic deep learning and vision. Hyperbolic spaces such as the Poincaré disk and Lorentz
model are well-suited to tree-like structures due to exponential volume growth (Nickel & Kiela,
2017; Ganea et al., 2018). Poincaré embeddings (Nickel & Kiela, 2017) and hyperbolic neural net-
works (Ganea et al., 2018) established this line of work, with applications in vision showing advan-
tages over Euclidean and spherical embeddings for hierarchical classification (Khrulkov et al., 2020).
However, to our knowledge, no prior work has embedded a global geolocation hierarchy (continent
→ city) in hyperbolic space or evaluated such embeddings on standard geolocation benchmarks.
Our approach adapts the Lorentz model for stable training and cross-modal alignment.

Location encoders. Compact embeddings of raw geographic coordinates support geo-aware per-
ception, e.g. Space2Vec (Mai et al., 2020), Sphere2Vec (Mai et al., 2023), and GeoCLIP (Cepeda
et al., 2023). These methods treat coordinates directly as prediction targets. In contrast, we embed
geographic entities enriched with multimodal features (image, text, coordinates) into hyperbolic
space, yielding interpretable prototypes that unify hierarchical structure with cross-modal signals.

3 METHODOLOGY

3.1 HYPERBOLIC GEOMETRY

We operate in the Lorentz (hyperboloid) model of Hyperbolic space Hd
K with constant curvature

−1/K (Ganea et al., 2018; Ratcliffe, 2019). All neural operations are performed in the tangent
space at the canonical origin o = (

√
K, 0, . . . , 0), using the exponential and logarithmic maps.

expO(v) =
(
R cosh

(∥v∥
R

)
, R sinh

(∥v∥
R

)
v

∥v∥

)
, logO(x) =

R arcosh
(
x0

R

)√
x2
0 −R2

x⃗, (1)

dH(x, y) = arcosh
(
− ⟨x,y⟩L

K

)
(2)

with R =
√
K, and x = (x0, x⃗). This decomposition of x is due to the Lorentz model’s different

treatment of the first component compared to the subsequent ones, see Appendix A.2 for more
information. Also, dH(x, y) denotes the geodesic distance. More details about the general forms
are presented in Appendix A.2. Since neural layers rely on vector-space operations (linear maps,
bias additions), they are not directly well-defined on Hd

K (Ganea et al., 2018). Our model therefore
performs all such operations in the flat tangent space at the origin: inputs x ∈ Hd

K are mapped to
logO(x), transformed in Rd, and lifted back via expO(x). Fixing the base point to o provides (i)
a unique, global reference shared across all entities, (ii) closed-form exp/log maps with efficient
implementation, and (iii) stable training without introducing additional learnable base points. This
choice is standard in Hyperbolic neural networks and ensures outputs remain valid points on Hd

K .
Some libraries (e.g. geoopt1) parametrize the hyperboloid as ⟨x, x⟩L = −k. Our K corresponds
exactly to this k, so curvature is −1/K and radius R =

√
K.

3.2 CONSTRUCTION OF HIERARCHY AND ENTITIES

We construct a hierarchical tree of geographic entities directly from the training metadata (Algo-
rithm 1 in Appendix A.3). The hierarchy spans four levels: Country, Region, Subregion, and City.
At each level h, we define the entity set Eh as the collection of unique geographic units observed in
the metadata (e.g., ISO2 codes for countries, canonical region names within countries, etc.). Entities
are assigned stable identifiers by concatenating ISO2 codes with sanitized region, subregion, and city
tokens. Each training image is then mapped to a tuple of four entities (ecountry, eregion, esubregion, ecity).
For OSV5M, we use the official quadtree-aligned labels provided with the dataset. For Medi-
aEval’16, where only coordinates are available, we obtain labels through deterministic reverse
geocoding with Nominatim2 and apply canonicalization rules for consistent identifiers (details in

1https://github.com/geoopt/geoopt
2https://github.com/osm-search/Nominatim
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Figure 1: HierLoc. Overall architecture. Images are encoded and mapped with exp0 into the
Lorentz model of Hyperbolic space, while entities (countries, regions, subregions, cities) combine
image, text, and location features. In the tangent space at the origin, cross-modal attention aligns
each image with entities per hierarchy level; the resulting attention outputs are fused and projected
back via expO. Entity embeddings are not updated with cross-attention context, while image em-
beddings are updated using the context of cross-modal attention. Training employs our proposed
Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE), which reweights negatives with the haver-
sine formula between image and negative entity coordinates.

Appendix A.3). Each entity ei ∈ E is associated with three multimodal features: an image embed-
ding Imgi ∈ Rdimg, a text embedding Texti ∈ Rdtext, and geographic coordinates Coordsi ∈ R2.
The image embedding Imgi and coordinate features Coordsi are computed as averages over all
training images linked to the entity, using a frozen image encoder fimg (DINOV3 (Siméoni et al.,
2025), unless otherwise specified) and their latitude/longitude metadata. The text embedding is de-
rived from the entity name via a pretrained CLIP text encoder (Radford et al., 2021) represented
by ftext. While averaging may seem like a crude choice, at the entity level it produces stable and
discriminative prototypes: the mean embedding captures the dominant visual signal of an entity and
is sufficient to distinguish it from other entities in a contrastive learning setup. The role of an entity
representation is not to distinguish among all the images assigned to it, but to capture enough shared
signal to reliably separate it from other entities at the same hierarchical level. This construction also
yields a dramatic compression of the training metadata. Across both datasets, roughly 9.6 million
image records are distilled into about 240k entities: 233 countries, 4,946 regions, 29,214 subregions,
and 209,894 cities. This reduces the search space from millions of raw images to a compact set of
entity prototypes without sacrificing discriminative power. The result is a compact, interpretable,
and computationally efficient representation of the geographic hierarchy. Low-level implementation
details such as sanitization, key construction, and reverse-geocoding policies are deferred to Ap-
pendix A.3. Please note that we train two different models seperately please see section 4 for more
details.
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3.3 ENTITY EMBEDDINGS

We fix the tangent space dimension to d = 128, so all update vectors lie in R128. Each entity
ei is assigned an anchor embedding Ai ∈ Hd

K , initialized by sampling ϵi ∼ N (0, σ2Id) in the
tangent space at the origin T0Hd

K
∼= Rd, and mapping with Ai = expO(ϵi). This anchor serves

as a stable reference point for the entity on the hyperboloid. Each entity is also associated with
multimodal features from Section 3.2: an averaged image embedding Imgi, a text embedding Texti,
and normalized coordinates Coordsi ∈ [0, 1]2. The coordinates are passed into the SphereM+
location encoder (Mai et al., 2023), yielding ϕloc

i = floc(Coordsi). Together with ϕimg
i = Imgi

and ϕtext
i = Texti, these features are concatenated and mapped to the tangent space by a three-layer

MLP with Dropout and GELU activations (except after the last layer):

ui = MLPent([ϕ
loc
i ∥ϕimg

i ∥ϕtext
i ]), ∆i = W∆ui + b∆ ∈ Rd.

Here ∆i is a learnable tangent-space update vector, while W∆ and b∆ are the weights and biases
of a linear projection. The final entity embedding is then obtained by updating the anchor in the
tangent space:

Hi = expO
(
log0(Ai) + αnode∆i

)
∈ Hd

K ,

where αnode is a learnable scalar controlling update strength. Thus, Ai defines a stable initialization,
while ∆i injects multimodal evidence to adapt the entity embedding. Entities therefore reside in the
128-dimensional Hyperbolic manifold H128

K , represented in Lorentz coordinates in R129. Distances
are computed via the Lorentz inner product in this (d+ 1)-dimensional ambient space.

3.4 IMAGE EMBEDDINGS

Each input image is encoded by fimg into a Euclidean feature vector ϕimg ∈ Rdimg . This represen-
tation is mapped into the tangent space at the origin by a projection MLP with two linear layers
(Dropout and GELU applied after the first layer):

uimg = MLPimg(ϕ
img), ∆img = Wimgu

img + bimg ∈ Rd.

We then prepend a zero to ∆img to respect the (d+ 1)-dimensional Lorentz structure, and project it
to the hyperboloid using the mapping in Eq. 1:

Z img = expO
(
αimg∆

img) ∈ Hd
K ,

where αimg is a learnable scale. Unlike entities, image embeddings from a frozen backbone are
projected to the tangent space at the origin of the Lorentz model with an MLP layer, fi. They are
then mapped onto the Lorentz model with expO and later refined through a cross-modal attention
module (Section 3.5) with entity embeddings. Both image embeddings Z img and entity embeddings
Hi therefore reside in H128

K , a 128-dimensional Hyperbolic manifold, and are represented in R129,
for distance computations we use Eq. 2.

3.5 CROSS-MODAL ATTENTION

As shown in Figure 1, cross-modal attention operates in the tangent space at the origin, with images
as queries, and entity features as keys/values. All cross-modal interactions are carried out in the
tangent space at the origin. For each hierarchy level ℓ ∈ {country, region, subregion, city}, entity
embeddings Hℓ

j ∈ Hd
K are mapped to hℓ

j = log0(H
ℓ
j ) and each image Zimg to zimg = log0(Zimg). At

level ℓ, multihead attention is applied with the image as queries, and the entities as keys and values,
yielding z̃ℓimg = Attnℓ(zimg, {hℓ

j}j). We use a multihead attention block with 8 heads for each level.
The four level-wise contexts are concatenated, fused by a small MLP, and added back to the original
feature.

z⋆img = zimg +MLPfuse([z̃
country
img ∥z̃region

img ∥z̃subregion
img ∥z̃city

img]),

which is then lifted back via Z⋆
img = expO(z

⋆
img) ∈ Hd

K . Only the image stream is updated with
attention outputs; entity embeddings remain fixed, an asymmetry that prevents the overfitting of
entity embeddings on the training data while still providing hierarchical geographic context.
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3.6 GWH-INFONCE LOSS

We propose Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE), a novel contrastive objective that
incorporates geographic structure into Hyperbolic alignment. For an image embedding Z⋆

img ∈ Hd
K ,

the entity at level ℓ provides the positive H+
ℓ , while all other entities in that level serve as negatives

{H−
ℓ,k}k. Distances are measured directly on the Lorentz manifold using Eq. 2:

d+ℓ = dH(Z
⋆
img, H

+
ℓ )2, d−ℓ,k = dH(Z

⋆
img, H

−
ℓ,k)

2. (3)

To emphasize geographical spatial proximity in the embedding space, we reweight each negative ac-
cording to its great-circle distance gℓ,k from the image location, computed via the haversine formula
(Appendix A.4). The per-level loss is

Lℓ = − log
exp(−d+ℓ /τ)

exp(−d+ℓ /τ) +
∑

k wℓ,k exp(−d−ℓ,k/τ)
, wℓ,k = 1 + λ exp(−gℓ,k/σ). (4)

We use Laplace decay for geo-weighting with exp(−gℓ,k/σ), which can also be ablated using other
decaying functions such as Gaussian and Inverse kernels. We determine the optimal kernel for
weight decay through experiments (see Appendix A.7 for more details). Here τ, λ, σ are learn-
able hyperparameters, with τ representing the temperature scaling, λ and σ control the strength of
geographic weighting and geographic distance scaling, respectively. The total training objective
aggregates across hierarchy levels to minimize,

L =
∑
ℓ∈H

βℓ Lℓ,

where βℓ trades off supervision across levels, allowing for finer or coarser granularity. We optimize
entity and image parameters in Euclidean and Hyperbolic space, respectively (details in Section 4).

4 DATASETS AND EXPERIMENTS

4.1 DATASETS

We evaluate our method using two large-scale training datasets and several standard benchmarks.
Specifically, we train two separate models on the OSV5M and MediaEval’16 datasets respectively.
OSV5M (Astruc et al., 2024) contains 4.8 million street-view images for training and 210,000 im-
ages for testing; we follow the official split and report results on the test set for direct comparison
with published baselines. MediaEval’16 (Larson et al., 2017) provides 4.7 million geo-tagged im-
ages, all of which we use for training since no official split is publicly available, and we evaluate
on external benchmarks. Specifically, we test a model trained on MediaEval’16 with YFCC4K (Vo
et al., 2017), IM2GPS (Hays & Efros, 2008), and IM2GPS3K (Vo et al., 2017), which are widely
used standard datasets in visual geolocation.

4.1.1 METRICS

On OSV5M, we follow the official evaluation protocol and report five metrics: classification accu-
racy at the country, region, subregion, and city levels; the mean geodesic error (computed as the
average great-circle distance δ between predicted and ground-truth coordinates); and the GeoScore,
inspired by the GeoGuessr game3, defined as 5000 × exp(−δ/1492.7) (Dufour et al., 2025). The
possible range of values for GeoScore is from 0 to 5000. For YFCC4K, IM2GPS, and IM2GPS3K,
we report the standard “% @ km” recall statistics used in prior geolocalization work (Haas et al.,
2024). This measures the percentage of predictions within fixed distance radii of the ground-truth:
1 km (street-level), 25 km (city-level), 200 km (region-level), 750 km (country-level), and 2500 km
(continent-level). We also report the median distance error for these datasets.

4.1.2 EXPERIMENTS

Given a query image and its embedding, we retrieve predictions using a beam search procedure
over entity embeddings at each hierarchy level. At each step, candidates are ranked by the Hy-
perbolic geodesic distance defined in Section 3.1, and the top-k candidates are retained, allowing

3https://www.geoguessr.com/
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Table 1: Geolocation performance comparison on OSV5M with official training and test splits with
current baselines. Best results are reported in bold, second-best results are underlined.

Method GeoScore ↑ Dist. (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

SC 0-shot (Haas et al., 2023) 2273 2854 38.4 20.8 9.9 14.8
Regression (Astruc et al., 2024) 3028 1481 56.5 16.3 1.5 0.7
ISNs (Muller-Budack et al., 2018) 3331 2308 66.8 39.4 – 4.2
Hybrid (Astruc et al., 2024) 3361 1814 68.0 39.4 10.3 5.9
SC Retrieval (Haas et al., 2023) 3597 1386 73.4 45.8 28.4 19.9
RFM S2 (Dufour et al., 2025) 3767 1069 76.2 44.2 – 5.4
LocDiff (Wang et al., 2025) - - 77.0 46.3 – 11.0

HierLoc (VITL-14) (ours) 3850 1067 80.1 52.9 39.0 22.2
HierLoc (DINOV3) (ours) 3963 861 82.9 55.0 40.7 23.3

exploration of multiple plausible locations. The final prediction is selected from the best-scoring
beam. This retrieval strategy leverages the hierarchical structure of our entity embeddings, making
beam search computationally feasible. We use a beam width of k = 10 throughout. The procedure
yields classification accuracies at the country, region, subregion, and city levels on OSV5M. At the
city level, the coordinates of the predicted entity serve as the image’s location estimate, from which
we compute mean geodesic error and GeoScore on OSV5M, and distance-based recall and median
error on YFCC4K, IM2GPS, and IM2GPS3K. All nearest-neighbor lookups use FAISS FlatIP with
a time-coordinate flip, ensuring Lorentz inner products can be ranked efficiently without explicit dis-
tance computation (for more details see Appendix A.8). For training, we use AdamW for Euclidean
parameters and RiemannianAdam (Bécigneul & Ganea, 2019) for manifold parameters, with gra-
dient clipping for stability. Models are trained with a batch size of B = 16 images, a learning
rate of 2 × 10−4, and run on 6×NVIDIA L40S GPUs for 5 epochs. Each full training run requires
approximately 60 hours.

4.1.3 RESULTS

Table 1 summarizes the results for the large-scale OSV5M benchmark. HierLoc is trained on
OSV5M dataset and tested on OSV5M test set. HierLoc achieves a GeoScore of 3963 and re-
duces the mean geodesic error to 861 km, a significant improvement over retrieval-based baselines
such as SC Retrieval (1386 km) and even the generative RFM S2 model (1069 km). At the same
time, HierLoc sets new state-of-the-art classification accuracies across all hierarchy levels, reaching
82.93% at the country level and 23.26% at the city level. These gains highlight the effectiveness of
combining Hyperbolic embeddings with beam search retrieval to exploit the hierarchical structure
of geographic entities. Since all of the current baselines use the VITL-14 backbone for fair compari-
son, we also train HierLoc with the VITL-14 backbone and report the results, surpassing the current
baselines on all the metrics. This proves our results are not only because of the DINOV3 backbone
but also because of our framework. To ensure further fair comparisons with baselines since the
model RFM S2 is trained on StreetCLIP (Haas et al., 2023) backbone, we have ablated the choice
of backbone and show HierLoc’s performance boost does not depend on the choice of the Encoder.
We have included these ablations in the tables 4, 5.

Table 2 extends the evaluation to the long-standing IM2GPS, IM2GPS3K, and YFCC4K bench-
marks for the model trained on MediaEval’16. On IM2GPS, HierLoc achieves a median error of
21.4 km while maintaining strong recall at large scales (92.4% @ 2500 km). On IM2GPS3K, Hi-
erLoc balances fine-grained and coarse performance, cutting the median error nearly in half relative
to PIGEON (72.7 km vs. 147.3 km) and yielding +7.1 points improvement at 25 km recall. On
YFCC4K, our model lowers the median error to 341.9 km and improves recall at the city (30.2% @
25 km) and regional (43.3% @ 200 km) levels, demonstrating robustness beyond landmark-centric
datasets.

Finally, Table 3 compares HierLoc against the generative RFM S2 models (Dufour et al., 2025) on
YFCC4K. Despite being trained on only 4.7M images, HierLoc outperforms the 1M-iteration RFM
S2 variant and matches the mean geodesic error of the much larger 10M-iteration model trained on
48M images (2058 km). Although slightly behind in GeoScore and continent-scale recall, HierLoc
achieves competitive city and region level performance, highlighting the efficiency of our approach
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Table 2: Comparison of HierLoc model with DinoV3 Bbackbone trained on MediaEval’16 data to
baselines on benchmark datasets. Median distance error (km, lower is better) and recall (% within
radius, higher is better) best results are in bold, and the second-best results are underlined.

IM2GPS (Hays & Efros, 2008)
Method Median (km) ↓ 1 km↑ 25 km↑ 200 km↑ 750 km↑ 2500 km↑
PlaNet (Weyand et al., 2016) > 200 8.4 24.5 37.6 53.6 71.3
CPlaNet (Seo et al., 2018) > 200 16.5 37.1 46.4 62.0 78.5
ISNs (M,f*,S3) (Muller-Budack et al., 2018) > 25 16.9 43.0 51.9 66.7 80.2
Translocator (Pramanick et al., 2022) > 25 19.9 48.1 64.6 75.6 86.7
GeoDecoder (Clark et al., 2023) ∼ 25 22.1 50.2 69.0 80.0 89.1
PIGEON (Haas et al., 2024) 70.5 14.8 40.9 63.3 82.3 91.1
GeoReasoner (Li et al., 2025) - 13.0 44.0 - 86.0 -

HierLoc (ours) 21.4 10.5 51.9 67.5 83.1 92.4
IM2GPS3K (Vo et al., 2017)

PlaNet (Weyand et al., 2016) > 750 8.5 24.8 34.3 48.4 64.6
CPlaNet (Seo et al., 2018) > 750 10.2 26.5 34.6 48.6 64.6
ISNs (M,f*,S3) (Muller-Budack et al., 2018) ∼ 750 10.5 28.0 36.6 49.7 66.0
Translocator (Pramanick et al., 2022) > 200 11.8 31.1 46.7 58.9 80.1
GeoCLIP (Cepeda et al., 2023) - 14.1 34.5 50.6 69.7 83.8
GeoDecoder (Clark et al., 2023) > 200 12.8 33.5 45.9 61.0 76.1
PIGEON (Haas et al., 2024) 147.3 11.3 36.7 53.8 72.4 85.3
Img2Loc (Zhou et al., 2024) - 17.1 45.1 57.8 72.9 84.6
GeoReasoner (Li et al., 2025) - 10.0 38.0 - 83.0 -

HierLoc (ours) 73.4 11.3 43.8 58.4 74.1 85.1

YFCC4K (Vo et al., 2017)
PlaNet (Weyand et al., 2016) > 750 5.6 14.3 22.2 36.4 55.8
CPlaNet (Seo et al., 2018) > 750 7.9 14.8 21.9 36.4 55.5
ISNs (M,f*,S3) (Muller-Budack et al., 2018) > 750 6.7 16.5 24.2 37.5 54.9
Translocator (Pramanick et al., 2022) > 750 8.4 18.6 27.0 41.1 60.4
GeoDecoder (Clark et al., 2023) ∼ 750 10.3 24.4 33.9 50.0 68.7
PIGEON (Haas et al., 2024) 383.0 10.4 23.7 40.6 62.2 77.7
Img2Loc (Zhou et al., 2024) - 14.1 29.5 41.4 59.2 76.8

HierLoc (ours) 341.9 8.4 30.2 43.3 61.7 75.8

Table 3: Comparison of HierLoc with RFM S2, a generative model on YFCC4K. RFM S2 is trained
on 48 million YFCC dataset; in contrast, HierLoc is trained on MediaEval’16 with 4.7 million
images (10x fewer images). Median distance error (km, lower is better) and recall (% within radius,
higher is better). Best results are in bold, second-best results are underlined.

YFCC4K (Vo et al., 2017)
Method GeoScore ↑ Mean Distance (km) ↓ 25 km↑ 200 km↑ 750 km↑ 2500 km↑
RFM S2 (Dufour et al., 2025) 2889 2461 23.7 36.4 54.5 73.6
RFM10M S2 (Dufour et al., 2025) 3210 2058 33.5 45.3 61.1 77.7
HierLoc (ours) 3189 2058 30.2 43.3 61.7 75.9

relative to generative models trained on 10 times more data. To further isolate the affect of DinoV3
backbone choice of HierLoc, we provide experiments in the Ablations section 4.2. In summary,
across OSV5M and standard benchmarks, HierLoc consistently reduces geolocation error relative to
previous baselines, setting new state-of-the-art results, especially on OSV5M. These results validate
our design choices of hyperbolic entity embeddings, multimodal fusion, and beam search retrieval
as a scalable alternative to current geolocation models.

4.2 ABLATIONS

Table 4 reports OSV5M results for three different visual backbones (DINOv3, StreetCLIP, ViT-
L/14). All encoders produce highly consistent rankings across the hierarchical accuracy levels, and
their absolute performance remains stable, with each backbone outperforming all non-HierLoc base-
lines. This indicates that the gains do not originate from a particular choice of vision model but from
the hierarchical hyperbolic design itself. To also isolate the cross-dataset hierarchy construction, we
construct the hierarchies only using OSV5M dataset and train a model on OSV5M with StreetCLIP
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Table 4: Encoder ablation of models trained and tested on OSV5M. We compare the effect of dif-
ferent vision backbones on the HierLoc framework.

Backbone GeoScore ↑ Dist. (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

HierLoc (DINOv3) 3963 861 82.9 55.0 40.7 23.3
HierLoc (StreetCLIP) 3862 1051 80.3 53.1 39.2 22.5
HierLoc (ViT-L/14) 3850 1067 80.1 52.9 39.0 22.2

Table 5: Encoder ablation of models trained on MP16 and tested on YFCC4K.
Method GeoScore ↑ Mean Distance (km) ↓ 25 km↑ 200 km↑ 750 km↑ 2500 km↑
HierLoc (DINOv2) 3106 2211 28.2 42.2 59.8 74.0
HierLoc (DINOv3) 3189 2058 30.2 43.3 61.7 75.9

Table 6: Ablation study on the choice of embedding space in HierLoc, evaluated on the OSV5M
dataset. Results are reported in terms of GeoScore, mean localization error, and hierarchical classi-
fication accuracy.

Method GeoScore ↑ Mean Dist (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

HierLoc (Euclidean) 3865 968 81.0 51.5 37.5 21.1
HierLoc (Spherical) 3364 1258 75.2 31.3 15.9 4.3

HierLoc (Hyperbolic) 3963 861 82.9 55.0 40.7 23.3

Table 7: Ablation study of HierLoc on OSV5M, demonstrating the importance of GWH-InfoNCE
loss and cross attention for fine-grained localization.

Method GeoScore ↑ Mean Dist (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

DINOV3 zero shot 2962 1999 58.7 25.8 17.1 9.6
HierLoc w/ InfoNCE 3840 949 80.5 49.9 35.7 19.4
HierLoc w/o attention 2904 1366 71.5 35.6 23.5 11.4
HierLoc w/o squared distance 3752 1043 79.5 47.3 33.1 17.5
HierLoc w/o text and location 3890 1029 81.8 52.1 37.9 21.1

HierLoc (full) 3963 861 82.9 55.0 40.7 23.3

Table 8: Comparison of inference strategies on OSV5M (top-1 accuracy). Flat search ignores hi-
erarchy, while beam search enforces path-consistency. Beam width k=10 achieves the best accu-
racy–efficiency trade-off.

Method Country Region Subregion City

Flat per-level (no hierarchy) 79.6 50.8 39.4 22.1
Hierarchical (beam=1) 79.4 48.9 36.4 21.9
Hierarchical (beam=10) 82.9 55.0 40.7 23.3

backbone. The results in the table 4 for StreetCLIP show that cross-dataset hierarchy construction
does not have any influence with the performance of HierLoc. Table 5 presents the corresponding
analysis on MP16, comparing HierLoc using DINOv2 and DINOv3. There is a drop in perfor-
mance with DinoV2 but not significant enough to outperform RFM S2 model, further reinforcing
that HierLoc’s improvements generalize across encoders and datasets.

Table 6 reports on ablation studies in OSV5M, isolating the independent impact of the main compo-
nents of HierLoc. Replacing the Lorentz model of HierLoc architecture with Euclidean embedding
space increases the mean geodesic error to 968 km and lowers accuracy across all hierarchy levels,
confirming the advantage of Hyperbolic space for the geolocation task. Moreover, the Spherical
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embedding space performs worse than both the Euclidean and Hyperbolic embedding spaces. This
can be attributed to higher distance distortions in the Spherical manifold. We further validate this
finding on the YFCC4K, IM2GPS, and IM2GPS3K benchmarks (Appendix, Table 9), where Hy-
perbolic embeddings consistently reduce median error and improve recall compared to Euclidean
space.

Table 7 reports the performance of DINOV3 zero shot, without any training, by finding the nearest
neighbors from its image embeddings to entities that have been initialized with only mean image
embeddings. Substituting our Geo-Weighted Hyperbolic InfoNCE with the standard InfoNCE ob-
jective also degrades performance (949 km), particularly at the region and subregion levels, showing
that reweighting negatives by geographic distance provides more effective supervision. Removing
cross-modal attention between images and entity prototypes leads to the largest error (1366 km),
highlighting that hierarchical context and cross-modal attention are critical for fine-grained localiza-
tion. Finally, replacing the squared distance in Eq. 3 without the square of the distance also shows a
worse performance at all levels.

The final ablation of removing the text and location modalities does reduce the performance a little
across all levels, but it is not significant, and the image signal is the most important modality for this
task. Together, these results validate our design choices: each component contributes meaningfully,
and their combination yields the strongest performance. Furthermore, other ablations such as role of
mean image embeddings, hyper parameter sensitivity, curvature choice for the Lorentz model and
the choice of weight decaying function for the geo-weights in the loss are reported in the Appendix
A.5. Further analysis of the computational efficiency of our framework against retrieval and egenra-
tive methods is also reported in the Appendix A.8, which quantifies the improvements over existing
retrieval methods.

5 DISCUSSION

Our experiments demonstrate that HierLoc provides a principled and scalable solution to visual ge-
olocation. By reformulating the task from image-to-image retrieval into image-to-entity alignment in
Hyperbolic space, HierLoc consistently outperforms prior methods across large-scale benchmarks.
The improvements are most pronounced at fine-grained levels (subregion and city), where modeling
hierarchical structure together with geographically weighted contrastive learning delivers signifi-
cant gains. Moreover, HierLoc remains competitive with recent generative approaches trained on
an order of magnitude more data (e.g.,RFM10M S2 ), highlighting the efficiency of our formulation.
Beyond accuracy, HierLoc offers several key advantages. First, predictions are interpretable: images
are aligned to explicit geographic entities, enabling structured error analysis and clearer insights into
model behavior. Second, inference is computationally efficient, as the number of entities is vastly
smaller than the number of training images required for large-scale retrieval. Third, the framework
naturally integrates multimodal signals such as text and coordinates improving performance. While
Hyperbolic embeddings have been studied extensively, our contributions lie in extending them to
planet-scale geolocation, introducing a geo-aware loss in Hyperbolic space, and reformulating re-
trieval as learnable entity representation learning, a shift that improves performance, scalability, and
interpretability.

Several limitations remain. On datasets such as IM2GPS, YFCC4K, and IM2GPS3K, the absence
of dense street-level entities constrains performance at the 1 km threshold. Our evaluation in Ap-
pendix A.9 further demonstrates difficulties in performance generalization between regions with
less number of training samples. Looking ahead, the broader promise of HierLoc lies in its gen-
erality. Any task with hierarchically structured data such as taxonomies in biodiversity, linguistic
families, or knowledge graphs could benefit from the same principles of Hyperbolic entity embed-
dings, multimodal fusion, and structured retrieval. Visual geolocation thus serves as a challenging
and high-impact testbed, but the underlying methodology extends beyond it.

6 ETHICS STATEMENT

This work relies exclusively on publicly available datasets for visual geolocation, including OSV5M,
MediaEval’16, YFCC4K, IM2GPS, and IM2GPS3K, which do not contain personally identifiable
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information beyond image content already released for research purposes. No additional human
subjects were involved, and no private or sensitive data were collected.

We acknowledge that geolocation technologies may pose privacy and security risks if misapplied,
for example in surveillance, tracking individuals, or identifying sensitive locations. Our work is
intended solely for scientific benchmarking and methodological advancement in large-scale repre-
sentation learning. All datasets are cited from their original sources and used under their research
licenses.

We encourage future research to consider fairness and bias issues, particularly regarding underrep-
resented geographic regions, and to assess societal impacts of deploying such models.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. All datasets used are publicly
available and are described in Section 4 and Appendix A.3, with preprocessing steps (e.g., entity
construction, reverse geocoding) detailed in Algorithm 1 and Appendix A.3. Model architecture,
hyperparameters, and training schedules are described in Sections 3 and 4, with additional abla-
tions (e.g., curvature sensitivity, kernel functions) reported in Appendix A.5. Evaluation protocols
strictly follow prior work and official benchmarks. We also detail how FAISS can be leveraged with
Hyperbolic nearest neighbor search in the Appendix A.8.

We will release the source code in an anonymous repository for the camera-ready version of the
paper, should it be accepted. This will include entity construction scripts, training pipelines, and
evaluation scripts to enable exact replication of our results.

REFERENCES

Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronssohn, Nacim Bouia, Stephanie
Fu, Romain Loiseau, Van Nguyen Nguyen, Charles Raude, Elliot Vincent, Lintao XU, Hongyu
Zhou, and Loic Landrieu. Openstreetview-5m: The many roads to global visual geolocation,
2024. URL https://arxiv.org/abs/2404.18873.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods, 2019.
URL https://arxiv.org/abs/1810.00760.

Vicente Vivanco Cepeda, Gaurav Kumar Nayak, and Mubarak Shah. Geoclip: Clip-inspired
alignment between locations and images for effective worldwide geo-localization, 2023. URL
https://arxiv.org/abs/2309.16020.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully hyperbolic neural networks, 2021.

Brandon Clark, Alec Kerrigan, Parth Parag Kulkarni, Vicente Vivanco Cepeda, and Mubarak Shah.
Where we are and what we’re looking at: Query based worldwide image geo-localization using
hierarchies and scenes, 2023. URL https://arxiv.org/abs/2303.04249.

Grant DeLozier, Ben Wing, Jason Baldridge, and Scott Nesbit. Creating a novel geolocation corpus
from historical texts. In Annemarie Friedrich and Katrin Tomanek (eds.), Proceedings of the 10th
Linguistic Annotation Workshop held in conjunction with ACL 2016 (LAW-X 2016), pp. 188–198,
Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/
W16-1721. URL https://aclanthology.org/W16-1721/.

Nicolas Dufour, Vicky Kalogeiton, David Picard, and Loic Landrieu. Around the world in 80
timesteps: A generative approach to global visual geolocation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23016–23026, June 2025.

David Flatow, Mor Naaman, Ke Eddie Xie, Yana Volkovich, and Yaron Kanza. On the accuracy of
hyper-local geotagging of social media content. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, pp. 127–136, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450333177. doi: 10.1145/2684822.
2685296. URL https://doi.org/10.1145/2684822.2685296.

11

https://arxiv.org/abs/2404.18873
https://arxiv.org/abs/1810.00760
https://arxiv.org/abs/2309.16020
https://arxiv.org/abs/2303.04249
https://aclanthology.org/W16-1721/
https://doi.org/10.1145/2684822.2685296


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks, 2018.
URL https://arxiv.org/abs/1805.09112.

Lukas Haas, Silas Alberti, and Michal Skreta. Learning generalized zero-shot learners for open-
domain image geolocalization, 2023.

Lukas Haas, Michal Skreta, Silas Alberti, and Chelsea Finn. Pigeon: Predicting image geoloca-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12893–12902, June 2024.

James Hays and Alexei A. Efros. im2gps: estimating geographic information from a single image.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2008.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings, 2020. URL https://arxiv.org/abs/1904.02239.

Martha Larson, Mohammad Soleymani, Guillaume Gravier, Bogdan Ionescu, and Gareth Jones.
The benchmarking initiative for multimedia evaluation: Mediaeval 2016. IEEE MultiMedia, 24:
93–96, 01 2017. doi: 10.1109/MMUL.2017.9.

Ling Li, Yu Ye, Yao Zhou, and Wei Zeng. Georeasoner: Geo-localization with reasoning in street
views using a large vision-language model, 2025. URL https://arxiv.org/abs/2406.
18572.

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale rep-
resentation learning for spatial feature distributions using grid cells, 2020. URL https:
//arxiv.org/abs/2003.00824.

Gengchen Mai, Yao Xuan, Wenyun Zuo, Yutong He, Jiaming Song, Stefano Ermon, Krzysztof
Janowicz, and Ni Lao. Sphere2vec: A general-purpose location representation learning over a
spherical surface for large-scale geospatial predictions, 2023. URL https://arxiv.org/
abs/2306.17624.

Mapillary Team. 10 years, 2 billion images. https://blog.mapillary.com/update/
2024/01/12/Mapillary-10-Years-2-Billion-Images.html, 2024. Accessed:
2025-09-13.

J. Mercier, N. Chabloz, G. Dozot, C. Audrin, O. Ertz, E. Bocher, and D. Rappo. Impact of
geolocation data on augmented reality usability: A comparative user test. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-
4/W7-2023:133–140, 2023. doi: 10.5194/isprs-archives-XLVIII-4-W7-2023-133-2023. URL
https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/
133/2023/.

Eric Muller-Budack, Kader Pustu-Iren, and Ralph Ewerth. Geolocation estimation of photos using
a hierarchical model and scene classification. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.
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Jégou, Patrick Labatut, and Piotr Bojanowski. Dinov3, 2025. URL https://arxiv.org/
abs/2508.10104.

Golsa Tahmasebzadeh, Sherzod Hakimov, Ralph Ewerth, and Eric Müller-Budack. Multimodal ge-
olocation estimation of news photos. In Jaap Kamps, Lorraine Goeuriot, Fabio Crestani, Maria
Maistro, Hideo Joho, Brian Davis, Cathal Gurrin, Udo Kruschwitz, and Annalina Caputo (eds.),
Advances in Information Retrieval, pp. 204–220, Cham, 2023. Springer Nature Switzerland.
ISBN 978-3-031-28238-6.

Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin MacAodha.
Benchmarking representation learning for natural world image collections. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12879–12888, 2021. doi:
10.1109/CVPR46437.2021.01269.

Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era, 2017.

Zhangyu Wang, Zeping Liu, Jielu Zhang, Zhongliang Zhou, Qian Cao, Nemin Wu, Lan Mu, Yang
Song, Yiqun Xie, Ni Lao, and Gengchen Mai. Locdiff: Identifying locations on earth by diffusing
in the hilbert space, 2025. URL https://arxiv.org/abs/2503.18142.

Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet - photo geolocation with convolutional
neural networks. In European Conference on Computer Vision (ECCV), 2016.

Zhongliang Zhou, Jielu Zhang, Zihan Guan, Mengxuan Hu, Ni Lao, Lan Mu, Sheng Li, and
Gengchen Mai. Img2loc: Revisiting image geolocalization using multi-modality foundation mod-
els and image-based retrieval-augmented generation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2749–2754.
ACM, July 2024. doi: 10.1145/3626772.3657673. URL http://dx.doi.org/10.1145/
3626772.3657673.

A APPENDIX

A.1 LLM USAGE

During the preparation of this paper, large language models (LLMs) were used as assistive tools for
writing and polishing text. Specifically, they were employed to improve the clarity, grammar, and
style of certain sections, and to suggest alternative phrasings in accordance with the ICLR author
guidelines. LLMs were not involved in research ideation, implementation, experimental design, or
analysis of results. All technical content, including methodology, experiments, and conclusions,
were designed, implemented, and validated by the authors. The authors take full responsibility for
the correctness and originality of the content.

A.2 PRELIMINARIES ON HYPERBOLIC GEOMETRY

We use the Lorentz (hyperboloid) model of d-dimensional Hyperbolic space (Ratcliffe, 2019). This
is a Riemannian manifold Hd

K with constant negative sectional curvature (-1/K) (Ganea et al., 2018).

Hd
K =

{
x ∈ Rd+1 : ⟨x, x⟩L = −K, x0 > 0

}
, K > 0,

with Minkowski bilinear form

⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi.
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Figure 2: Illustration of expO and logO projection functions projecting points from Tangent space
to Hyperbolic space and vice versa.

The geodesic distance between x, y ∈ Hd
K is

dH(x, y) = arcosh
(
− ⟨x,y⟩L

K

)
. (5)

It is often convenient to write the radius as R =
√
K, with curvature K = −1/R2.

For any base point p ∈ Hd
K , the tangent space is TpHd

K = {v ∈ Rd+1 : ⟨p, v⟩L = 0}. Let
∥v∥L :=

√
⟨v, v⟩L denote the (spacelike) Lorentz norm on TpHd

K . With R =
√
K, the exponential

and logarithmic maps at p are

expp(v) = cosh
(∥v∥L

R

)
p + R sinh

(∥v∥L
R

) v

∥v∥L
, v ∈ TpHd

K , (6)

logp(x) =
dH(p, x)

sinh
(dH(p,x)

R

) (
x− cosh

(dH(p,x)
R

)
p
)
, x ∈ Hd

K , (7)

with the continuous extensions expp(O) = p and logp(p) = O. Let the canonical origin be o =

(R, 0, . . . , 0) = (
√
K, 0, . . . , 0) ∈ Hd

K , so T0Hd
K = {(0, v1, . . . , vd)} ∼= Rd. Replacing p = o in

Eqs. 6–7 gives

expO(v) =
(
R cosh

(∥v∥
R

)
, R sinh

(∥v∥
R

)
v

∥v∥

)
, v ∈ Rd, (8)

logO(x) =
R arcosh

(
x0

R

)√
x2
0 −R2

x⃗, x = (x0, x⃗) ∈ Hd
K , (9)

where ∥v∥ is the Euclidean norm of v, and x⃗ ∈ Rd are the ”spacelike” coordinates of x. Note that
logO(x) is not simply the Euclidean projection of x⃗; the prefactor ensures exact agreement with the
Riemannian logarithm. Figure 2 illustratively shows the process of projecting points from Rd to
Hd

K using expO function, conversely, the process of projecting points from Hd
K to Rd using log0

function.

A.3 FURTHER DETAILS ON CONSTRUCTION OF ENTITIES

We construct the entity hierarchy directly from the metadata of the train splits of OSV5M and Me-
diaEval’16 datasets. For each dataset, we first resolve schema columns (country, region, subregion,
city, latitude, longitude, image embedding) in a format-agnostic way. Each row is then normal-
ized: the country field is mapped to ISO2 code, canonical name; missing labels country, region,
subregion, and city labels are filled by reverse geocoding the coordinates with Nominatim4 in the

4https://github.com/osm-search/Nominatim
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case of MediaEval’16; and all region, subregion, and city names are sanitized to ensure consistent
identifiers.

The hierarchy is built incrementally: for every row, we traverse from country to region, subregion,
and city, creating nodes as needed. Each node accumulates a count of images, the sum of coordi-
nates, and the sum of image embeddings, which are returned from a frozen image encoder backbone
such as DINOV3 or VITL-14. After all rows are processed, entity features are finalized by averaging
accumulated values: the mean image embedding, the mean latitude/longitude coordinates, and a text
embedding computed from the entity name (via a frozen pretrained text encoder such as CLIP Text
Encoder).

Finally, the tree is serialized. The construction runs in linear time in the num-
ber of rows and requires memory proportional to the number of unique entities.

Algorithm 1: BuildHierarchyFromMetadata(dataset)
Input: Training metadata of a dataset dataset
Output: Hierarchy tree T

1 Initialize: T ← ∅ (hierarchy starts at countries);
2 foreach record (c, r, s, ci, ϕ, λ, v) in metadata do
3 Map country→ (ISO2, canonical name);
4 if dataset = MediaEval’16 and labels missing then
5 (c, r, s, ci)← ReverseGeocode(ϕ, λ) via Nominatim;

6 Sanitize (r, s, ci) to canonical tokens;
7 foreach level ∈ [country, region, subregion, city] do
8 u← CreateOrGetNode(T , level, identifiers);
9 Update counts and coordinate sums at u;

10 Accumulate image embedding v at u (from frozen encoder);

11 foreach node n ∈ T do
12 Imgn ← mean of image embeddings;
13 Coordsn ← mean of lat/lon;
14 Textn ← ftext(Name(n)) (frozen text encoder);

15 Serialize T to JSON;
16 Complexity: O(N) over records N ; memory ∝ number of unique entities;

A.4 HAVERSINE DISTANCE

We compute the geographic distances gℓ,k used in Eq. 4. For two locations (φ1, λ1) and (φ2, λ2) in
radians (latitude, longitude), define

a = sin2
(

φ2−φ1

2

)
+ cosφ1 cosφ2 sin2

(
λ2−λ1

2

)
.

The haversine formula yields the central angle (great-circle distance in radians) as

gfull = 2 arcsin
(√

a
)

= 2 arctan 2
(√

a,
√
1− a

)
.

In our implementation, we omit the constant factor of 2 and work with

g = arcsin
(√

a
)
,

since both the factor 2 and the Earth’s mean radius R = 6371 km simply rescale distances with-
out changing their relative ordering or gradient directions. These constants are absorbed into the
bandwidth parameter σ of our loss. For reporting physical distances, we reintroduce them as

d = 2Rg (in kilometers).

A.5 FURTHER ABLATIONS

Manifold sensitivity In addition to the OSV5M ablation (Table 6), we also compare Euclidean and
Hyperbolic variants of HierLoc on three widely used recall-at-km benchmarks: YFCC4K, IM2GPS,
and IM2GPS3K (Table 9). The Hyperbolic manifold consistently outperforms Euclidean space
across datasets, reducing median localization error by 23–45% and improving recall at city- and
region-level thresholds (25–200 km). This confirms that the advantages of Hyperbolic embeddings
are robust and not specific to OSV5M.
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Table 9: Manifold sensitivity on recall-at-km benchmarks (YFCC4K, IM2GPS, IM2GPS3K). Same
backbone, loss, and training schedule; only the embedding manifold differs. Hyperbolic space con-
sistently reduces median localization error and improves recall across scales.

Dataset Median (km) ↓ 1 km ↑ 25 km ↑ 200 km ↑ 750 km ↑ 2500 km ↑
YFCC4K (Vo et al., 2017)

HierLoc (Euclidean) 445.3 7.0 25.9 39.7 58.2 73.4
HierLoc (Hyperbolic) 341.9 8.4 30.2 43.3 61.7 75.8

IM2GPS (Hays & Efros, 2008)
HierLoc (Euclidean) 47.3 8.4 45.9 64.9 81.8 91.1
HierLoc (Hyperbolic) 21.4 10.5 51.9 67.5 83.1 92.4

IM2GPS3K (Vo et al., 2017)
HierLoc (Euclidean) 121.6 10.2 41.2 55.1 71.6 83.3
HierLoc (Hyperbolic) 73.4 11.3 43.8 58.4 74.1 85.1

Table 10: Ablation study of removing mean image embeddings for each hierarchy level sequentially
Ablation (Removed Mean Embeddings) Country (%) Region (%) Sub-region (%) City (%)
None 82.93 55.03 40.68 23.26
Country 81.59 54.27 39.97 22.63
Country & Region 79.96 50.40 36.61 20.59
Country & Region & Sub-region 77.12 44.34 30.76 16.32
Country & Region & Sub-region & City 70.46 30.00 14.06 3.58

Table 11: Ablation study of HierLoc on OSV5M subset of 100k training set and 10k test set for
search of the best curvature, K for Lorentz model.

Curvature (K) Mean Dist (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

0.25 1719 64.7 28.8 17.7 8.36
0.50 1603 67.4 31.6 19.9 9.51
0.75 1534 69.1 33.5 21.1 10.0
0.80 1462 69.2 33.7 22.3 11.0
1.00 1687 67.4 30.2 19.3 9.1

Mean Image Embeddings Sensitivity To quantify the contribution of mean image embeddings
across spatial scales, we progressively remove them in a coarse-to-fine order (country → region →
subregion → city). Table 10 shows that removing country-level means yields only a minor accuracy
drop, indicating that coarse aggregates provide limited discriminative signal. The impact grows
as we remove means from finer levels, with the largest decline at the city level where local visual
context is most informative. Importantly, the model remains stable and does not collapse even when
all mean embeddings are removed. This demonstrates that HierLoc is not dependent on any single
level’s mean representation; rather, its performance stems from the hierarchical architecture and the
multi-level integration of visual cues.

Table 11 shows the search of the best curvature, K, of the Lorentz model on the OSV5M subset of
100k training images and 10k test images. Owing to the size of the dataset, we perform this search on
a smaller subset. Through the experiments, we find that curvature 0.8 best fits the OSV5M dataset,
given that it is the primary dataset we are focusing on. We keep the same curvature for both models
on the OSV5M dataset and also the MediaEval’16 dataset.

A.6 HYPERPARAMETER SENSITIVITY ANALYSES

We extend our analysis to two further hyperparameters of HierLoc’s training objective: the tem-
perature τ and the geographic weighting coefficient λ used in the GWH-InfoNCE loss. All experi-
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ments are conducted on a 100k/10k OSV5M split. Table 12 reports the performance of HierLoc for
τ ∈ {0.07, 0.10, 0.15, 0.30}. The model exhibits stable behavior across a broad range, with τ = 0.1
yielding the best overall accuracy

Table 12: Temperature sensitivity of the GWH-InfoNCE loss on OSV5M (100k/10k split).
τ Country (%) Region (%) Sub-region (%) City (%)

0.07 68.72 32.76 20.62 10.31
0.10 69.20 33.70 22.30 11.00
0.15 69.00 32.50 20.50 9.80
0.30 67.80 32.30 20.00 9.67

Table 13 varies the geographic weighting coefficient λ in the GWH-InfoNCE loss. The model
reaches peak performance at λ = 1.0, but accuracy degrades smoothly as λ moves away from this
value, demonstrating that the method is not overly sensitive to the choice of weighting strength.
Across both hyperparameters, HierLoc maintains stable performance and does not exhibit collapse
within a wide range of settings. The smooth variation in accuracy further confirms that the method
is robust to moderate deviations from the default τ = 0.1 and λ = 1.0, and does not rely on finely
tuned hyperparameter values.

Table 13: Sensitivity to the geographic weighting parameter λ in GWH-InfoNCE.
λ Country (%) Region (%) Sub-region (%) City (%)

0.0 63.90 27.80 16.20 7.30
0.5 67.80 32.00 20.20 9.60
1.0 69.20 33.70 22.30 11.00
2.0 65.00 29.50 17.70 8.20

A.7 GEOGRAPHIC WEIGHTING KERNELS.

Our loss defined in the Eq. 4 can incorporate a family of distance-dependent kernels k(d) that
transform geographic distance d (in kilometers) into a similarity weight. Let d denote the great-
circle distance in kilometers between the image and a negative entity, σ > 0 a scale parameter,
λ > 0 a weight strength, and p > 0 an exponent. We support three kernel families:

• Laplace kernel (default): Exponential decay in distance:

kLaplace(d) = exp
(
− d

σ

)
,

• Gaussian kernel: Squared-distance decay, producing a narrower band of influence:

kGauss(d) = exp

(
−
(

d
σ

)2
)
,

• Inverse kernel: Power-law decay, yielding long-range tails:

kInv(d) =
(
1 + d

σ

)−p

.

The final geographic weight for a negative sample, which upweights negatives that are geographi-
cally close to the positive is

w(d) = 1 + λ k(d).

We observe in Table 14 that the choice of kernel has a measurable effect on geolocation perfor-
mance. The Gaussian kernel, which decays very rapidly with squared distance, yields reasonable
accuracy at coarse levels (country and region) but underperforms at finer scales, since moderately
close negatives receive almost no weight and thus provide little contrastive pressure. The Inverse
kernel, with its heavy-tailed power-law form, performs slightly better at coarse levels but fails to
emphasize fine-scale discrimination, as distant negatives retain substantial weight and dominate the
denominator.
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Table 14: Ablation study of HierLoc on OSV5M subset of 100k training set and 10k test set for
search of the best geoweighting decay kernel for GWH-InfoNCE

kernel (k(d)) Mean Dist (km) ↓ Classification Accuracy (%) ↑
Country Region Subregion City

Gauss 1525 69.7 33.7 21.1 10.1
Inverse 1529 69.8 34.1 21.7 10.3
Laplace 1462 69.2 33.7 22.3 11.0

In contrast, the Laplace kernel achieves the best trade-off: it decays exponentially with distance, pre-
serving emphasis on geographically nearby negatives without entirely discarding moderately distant
ones. This balance leads to superior performance at finer levels (subregion and city), where dis-
tinguishing between visually similar but geographically close entities is most critical. Moreover,
Laplace also reduces the mean geodesic error, showing that its weighting improves localization pre-
cision overall.

We therefore adopt the Laplace kernel as the default geo-weighting strategy for GWH-InfoNCE, as
it provides the most effective compromise between local discrimination and global robustness in the
hierarchical geolocation setting.
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Figure 3: Comparison of accuracy and search time tradeoff with different beam widths.

A.8 COMPUTATIONAL AND STORAGE EFFICIENCY

Modern retrieval systems typically use libraries such as FAISS5 for fast nearest-neighbor search, and
this can be leveraged for Hyperbolic distances in the Lorentz model as well. Figure 4 highlights
the efficiency advantages of HierLoc over standard image-based retrieval. While most research
benchmarks rely on datasets with millions of images, real-world platforms can be orders of magni-
tude larger: for example, Mapillary reports more than 2 billion street-level images (Mapillary Team,
2024). At such scales, SC Retrieval, which grows linearly with database size, becomes compu-
tationally and storage prohibitive. By contrast, HierLoc scales sublinearly because the number of
geographic entities expands far more slowly than the number of raw images. This structural dif-
ference translates into significant savings: HierLoc reduces wall-clock inference time by more than
10×, achieves over 20× lower storage requirements, and cuts FLOPs per query by two orders of
magnitude, all while sustaining higher throughput. Although beam search introduces a slight over-
head relative to flat entity search due to sequential parent–child expansion, it yields higher accuracy
at all levels with negligible additional cost. Overall, HierLoc achieves a favorable trade-off between
scalability and precision, enabling efficient billion-scale deployment that is infeasible with standard
retrieval pipelines.

5https://github.com/facebookresearch/faiss
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Figure 4: Comparison of computational efficiency across methods. We report wall-clock search
time, throughput (queries per second), storage footprint, and FLOPs per query. Arrows indicate
whether lower or higher values are better.

FAISS for Hyperbolic (Lorentz) search and beam expansion. In the Lorentz model, geodesic
distance and the Lorentz inner product are monotone-equivalent:

cosh
(
dH(x, y)/R

)
= − 1

K ⟨x, y⟩L, ⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi, R =
√
K.

Thus minimizing dH is equivalent to maximizing ⟨·, ·⟩L. We convert Lorentz MIPS into stan-
dard Euclidean inner-product search supported by FAISS via a one-line linear map on the query
only: for Z = (z0, z) define Z̃ = (−z0, z). Then Z̃⊤H = ⟨Z,H⟩L, so a FAISS FlatIP (or
IVF-FlatIP/HNSW-IP) index over entity embeddings returns the same ranking as sorting by in-
creasing Hyperbolic distance, without evaluating arcosh at search time. We do not ℓ2-normalize
Lorentz vectors (normalization would distort the geometry). Beam-search integration. We build
one FAISS IP index per hierarchy level (country→city) in Lorentz coordinates and: (i) seed the
beam at the top level with the top-k entities from a single FAISS query using the time-coordinate
flip; (ii) for each deeper level, query the corresponding FAISS index and parent-filter candidates so
only children of the previous-level beam are retained; (iii) accumulate a path score (e.g., 1 − IP or,
for exact scoring of a small shortlist, the true dH) and prune to the fixed beam width. This hybrid
“FAISS-guided, parent-constrained” expansion amortizes most work into a few high-throughput IP
calls while enforcing path consistency. On GPU, GpuIndexFlatIP provides the best throughput;
approximate variants (IVF/HNSW) can be enabled at larger scales with no change to the sign-flip
trick. We batch queries, reuse indices across batches, and maintain per-level indices to avoid rebuilds
during inference.

To directly assess inference-time efficiency against other diffusion based methods, we compare Hi-
erLoc against the strongest non-retrieval baseline, RFMS2, under identical hardware conditions. Ta-
ble 15 reports the latency breakdown. HierLoc achieves substantially lower forward-pass time and
adds only a negligible retrieval cost due to its compact hierarchical search, resulting in an overall
6.56× speedup relative to RFMS2. This demonstrates that the hierarchical entity-based formula-
tion not only improves accuracy, but also yields a highly efficient inference pipeline suitable for
large-scale deployment.
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Table 15: Inference latency comparison on the same GPU. HierLoc provides a 6.56× speedup over
RFMS2.

Model Inference (ms) Retrieval (ms) Total (ms) Speedup
RFM S2 14.17 – 14.17 1×
HierLoc (ours) 2.09 0.075 2.16 6.56×
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Figure 5: Mean geographic error distribution of HierLoc on the OSV5M dataset.

A.9 QUALITATIVE ANALYSIS

Figure 5 shows the global distribution of localization errors on OSV5M. Unlike smaller benchmarks
such as YFCC4K, IM2GPS, or IM2GPS3K, OSV5M provides a geographically diverse test set with
over 200k images, enabling systematic analysis at global scale. Urban regions in Europe and North
America exhibit relatively low errors due to dense training coverage, while sparsely imaged regions
such as inland Asia and central Africa show higher mean errors, reflecting persistent data imbal-
ance. Because OSV5M is more geographically balanced and diverse than prior datasets (Astruc
et al., 2024), performance on this benchmark offers a stronger measure of robustness and gener-
alization. Figure 6 demonstrates that Hyperbolic embeddings, trained solely from image–location
pairs, capture meaningful geographic, cultural, and linguistic relationships. Clusters emerge without
explicit supervision, reflecting both geographic proximity and cultural ties. Notably, island nations
form a distinct peripheral cluster, suggesting that their embedding geometry encodes the same struc-
tural differences reflected in their error statistics. Taken together, these qualitative analyses reveal
three systematic error modes: (i) data imbalance, where underrepresented regions (e.g., inland Asia,
central Africa) yield higher error; (ii) cultural and linguistic clustering, where embeddings align
geographically distant but historically linked nations; and (iii) recurring visual ambiguity in island
environments, where beaches and coastlines lack distinctive geographic context and drive long-tail
errors. Understanding these modes highlights both the strengths and the remaining challenges for
scalable global geolocation.
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Figure 6: UMAP projection of country embeddings learned in Hyperbolic space. Colors denote
continents, with insets highlighting emergent clusters. Geographically distant but culturally linked
nations (e.g., Australia, New Zealand, UK, US, Canada) cluster together, while regions with shared
history (e.g., the Mediterranean basin) form coherent cross-continental groups. Island nations con-
sistently appear at the periphery of the embedding space.
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Figure 7: Comparison of geolocation performance across island and non-island territories. Left:
Scatter plot of mean error versus training samples per country. Both groups benefit from more
samples, but islands (blue) show higher variance and extreme outliers. Right: Error distributions
by group. Although island territories achieve a comparable median error to non-islands (84.3 km
vs. 91.9 km), their mean error is nearly twice as high (1368 km vs. 763 km), indicating a heavier
long-tail. This reflects the difficulty of disambiguating visually repetitive environments such as
coastlines and beaches, where recurring patterns provide weak geographic cues. These challenges
are consistent with the peripheral island clusters observed in Figure 6.
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