

000 001 002 003 004 005 HIERLOC: HYPERBOLIC ENTITY EMBEDDINGS FOR 006 HIERARCHICAL VISUAL GEOLOCATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 Visual geolocalization, the task of predicting where an image was taken, remains
012 challenging due to global scale, visual ambiguity, and the inherently hierarchical
013 structure of geography. Existing paradigms rely on either large-scale retrieval,
014 which requires storing a large number of image embeddings, grid-based classifiers
015 that ignore geographic continuity, or generative models that diffuse over space but
016 struggle with fine detail. We introduce an entity-centric formulation of geoloca-
017 tion that replaces image-to-image retrieval with a compact hierarchy of geographic
018 entities embedded in Hyperbolic space. Images are aligned directly to country, re-
019 gion, subregion, and city entities through Geo-Weighted Hyperbolic contrastive
020 learning by directly incorporating haversine distance into the contrastive objec-
021 tive. This hierarchical design enables interpretable predictions and efficient infer-
022 ence with 240k entity embeddings instead of over 5 million image embeddings on
023 the OSV5M benchmark, on which our method establishes a new state-of-the-art
024 performance. Compared to the current methods in the literature, it reduces mean
025 geodesic error by 19.5%, while improving the fine-grained subregion accuracy
026 by 43%. These results demonstrate that geometry-aware hierarchical embeddings
027 provide a scalable and conceptually new alternative for global image geolocation.
028

1 INTRODUCTION

031 Visual geolocalization, inferring where an image was taken from its content alone, is a fundamental
032 challenge with applications in biodiversity monitoring (Van Horn et al., 2021), cultural heritage
033 preservation (DeLozier et al., 2016), news verification (Tahmasebzadeh et al., 2023), and augmented
034 reality (Mercier et al., 2023). However, many real-world images lack geotags in their metadata
035 (Flatow et al., 2015), making automated solutions increasingly important. The task remains difficult
036 due to its scale and ambiguity (Dufour et al., 2025). The search space spans the entire globe; visual
037 patterns such as beaches or skylines recur across continents; language similarities in the street view
038 images span continents; and geographic space itself is structured hierarchically from continents
039 down to cities.

040 Most existing methods follow one of three paradigms: retrieval-based, classification, and more re-
041 cently, generative methods. Retrieval-based approaches index millions of image embeddings and
042 return nearest neighbors (Haas et al., 2023), which capture fine-grained similarity but do not scale
043 gracefully and provide limited interpretability. Classification methods (Astruc et al., 2024; Haas
044 et al., 2024) tackle this task by predicting a discrete cell, respecting geography but failing to cap-
045 ture cross-continental visual relationships. Generative models, such as diffusion, can model spatial
046 uncertainty, but underperform retrieval methods at fine scales (Dufour et al., 2025).

047 We present a geolocation architecture that models the world as a hierarchy of entities such as coun-
048 tries, regions, subregions, and cities, and learns embeddings for each entity instead of indexing
049 individual images. Images are aligned to entity embeddings via a contrastive loss weighted by the
050 scaled haversine distance. Conventional retrieval methods scale linearly, requiring $O(N)$ compari-
051 sons against millions of images; approximate nearest neighbor methods reduce runtime but still
052 incur large memory and indexing overheads. Our approach instead operates on a fixed, compact set
053 of entity embeddings which scale sub-linearly, enabling faster inference through hierarchical trav-
054 ersal: predictions are resolved coarsely at higher levels and refined only where needed. This allows
055 for beam search over the hierarchy, allowing efficient exploration of plausible paths. This yields

scalable inference, interpretable outputs, and even potential for client-side deployment. By reframing geolocation as “image-to-entity alignment” rather than “image-to-image retrieval,” the method makes the structure of geography central to the task.

To encode the geographic hierarchy effectively, we represent entities in hyperbolic space. In Euclidean space, hierarchical structures become increasingly compressed as depth grows: the number of entities expands roughly exponentially from country → region → subregion → city, but Euclidean distances grow only linearly. This mismatch causes deeper-level entities to crowd together, reducing discriminative power during inference. Hyperbolic geometry, by contrast, naturally provides exponential volume growth and therefore allocates proportionally more space to represent large branching factors in deep hierarchies (Nickel & Kiela, 2017; Chen et al., 2021). As a result, related entities can remain close, while fine-grained locations can still be well separated, making hyperbolic space a more faithful and expressive embedding space for geographic hierarchies. This effect can be observed visually in the Figure 2 in the Appendix A.2. To our knowledge, this is the first application of Hyperbolic embeddings to represent hierarchical geographic entities for geolocation explicitly. In addition to expected continental clusters, Figure 6 in the Appendix shows the semantic relationships between entities directly leveraging strong semantics of modern image encoders such as DINOv3 (Siméoni et al., 2025). To couple this geometry with geographic structure, we introduce a *Geo-Weighted Hyperbolic InfoNCE* (GWH-InfoNCE) loss that weights negative logits using the haversine formula. This objective materially improves fine-scale discrimination while preserving global structure.

We evaluate our method on OSV5M (Astruc et al., 2024), comprising 4.8 million training and 200k test images, and on MediaEval’16 (Larson et al., 2017) with 4.7 million training images. On OSV5M, our approach establishes a new state of the art, yielding consistent gains across all hierarchical levels: country (+8.8%), region (+20.1%), subregion (+43.2%), and city (+16.8%), while reducing mean geodesic error by 19.5% relative to the strongest baselines. We further confirm robustness on IM2GPS (Hays & Efros, 2008), IM2GPS3K (Vo et al., 2017), and YFCC4K (Vo et al., 2017). Beyond these benchmarks, our findings highlight that Hyperbolic embedding spaces provide a principled advantage for multimodal representation learning wherever data exhibit inherent hierarchical structure, with geolocation serving as a particularly suitable testbed. The following are our contributions:

- Reduce search complexity by reformulating geolocation as image-to-entity alignment in Hyperbolic space, cutting the search from millions of images to 240k entities while improving accuracy.
- Demonstrate that Hyperbolic geometry captures multi-scale geographic relationships for hierarchical representation.
- Introduce Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE), which incorporates great-circle distance to emphasize geographically proximal negatives.
- Achieve state-of-the-art results on OSV5M across all levels (country +8.8%, subregion +43.2%), validating the effectiveness of geometry-aware learning.

2 RELATED WORKS

Global visual geolocation. Classical work framed geolocation as image retrieval against large galleries, e.g. IM2GPS (Hays & Efros, 2008), later revisited with stronger deep learning baselines (Vo et al., 2017). An alternative line casts the task as geocell classification, as in PlaNet (Weyand et al., 2016) and CPlaNet (Seo et al., 2018), while recent methods emphasize scalability (SC retrieval (Haas et al., 2023), PIGEON (Haas et al., 2024)) or generative modeling of geodesic uncertainty (Dufour et al., 2025). This trend continues with the work of LocDiff (Wang et al., 2025) with multi-scale latent diffusion. Benchmarks such as MediaEval’16 and OSV5M (Astruc et al., 2024) further standardized evaluation. The emergence of foundational models also resulted in works such as GeoReasonser (Li et al., 2025) and Img2Loc (Zhou et al., 2024), which push the boundary forward. Several hybrid approaches combine retrieval and classification, such as Translocator (Pramanick et al., 2022) and GeoDecoder (Clark et al., 2023), but these methods generally assume Euclidean label spaces. Although hierarchy is central to these protocols (e.g., country/region/city splits, quadtrees),

108 prior work has used hierarchy mainly for evaluation or partitioning. By contrast, we treat the hierarchy
 109 itself as the object of representation, aligning images directly to entities across levels.
 110

111 **Hyperbolic deep learning and vision.** Hyperbolic spaces such as the Poincaré disk and Lorentz
 112 model are well-suited to tree-like structures due to exponential volume growth (Nickel & Kiela,
 113 2017; Ganea et al., 2018). Poincaré embeddings (Nickel & Kiela, 2017) and hyperbolic neural net-
 114 works (Ganea et al., 2018) established this line of work, with applications in vision showing advan-
 115 tages over Euclidean and spherical embeddings for hierarchical classification (Khrulkov et al., 2020).
 116 However, to our knowledge, no prior work has embedded a global geolocation hierarchy (continent
 117 → city) in hyperbolic space or evaluated such embeddings on standard geolocation benchmarks.
 118 Our approach adapts the Lorentz model for stable training and cross-modal alignment.

119 **Location encoders.** Compact embeddings of raw geographic coordinates support geo-aware per-
 120 ception, e.g. Space2Vec (Mai et al., 2020), Sphere2Vec (Mai et al., 2023), and GeoCLIP (Cepeda
 121 et al., 2023). These methods treat coordinates directly as prediction targets. In contrast, we embed
 122 *geographic entities* enriched with multimodal features (image, text, coordinates) into hyperbolic
 123 space, yielding interpretable prototypes that unify hierarchical structure with cross-modal signals.
 124

125 3 METHODOLOGY

127 3.1 HYPERBOLIC GEOMETRY

129 We operate in the Lorentz (hyperboloid) model of Hyperbolic space \mathbb{H}_K^d with constant curvature
 130 $-1/K$ (Ganea et al., 2018; Ratcliffe, 2019). All neural operations are performed in the tangent
 131 space at the canonical origin $o = (\sqrt{K}, 0, \dots, 0)$, using the exponential and logarithmic maps.
 132

$$133 \exp_O(v) = \left(R \cosh\left(\frac{\|v\|}{R}\right), R \sinh\left(\frac{\|v\|}{R}\right) \frac{v}{\|v\|} \right), \quad \log_O(x) = \frac{R \operatorname{arccosh}\left(\frac{x_0}{R}\right)}{\sqrt{x_0^2 - R^2}} \vec{x}, \quad (1)$$

$$136 d_{\mathbb{H}}(x, y) = \operatorname{arccosh}\left(-\frac{\langle x, y \rangle_{\mathcal{L}}}{K}\right) \quad (2)$$

137 with $R = \sqrt{K}$, and $x = (x_0, \vec{x})$. This decomposition of x is due to the Lorentz model's different
 138 treatment of the first component compared to the subsequent ones, see Appendix A.2 for more
 139 information. Also, $d_{\mathbb{H}}(x, y)$ denotes the geodesic distance. More details about the general forms
 140 are presented in Appendix A.2. Since neural layers rely on vector-space operations (linear maps,
 141 bias additions), they are not directly well-defined on \mathbb{H}_K^d (Ganea et al., 2018). Our model therefore
 142 performs all such operations in the flat tangent space at the origin: inputs $x \in \mathbb{H}_K^d$ are mapped to
 143 $\log_O(x)$, transformed in \mathbb{R}^d , and lifted back via $\exp_O(x)$. Fixing the base point to o provides (i)
 144 a unique, global reference shared across all entities, (ii) closed-form exp/log maps with efficient
 145 implementation, and (iii) stable training without introducing additional learnable base points. This
 146 choice is standard in Hyperbolic neural networks and ensures outputs remain valid points on \mathbb{H}_K^d .
 147 Some libraries (e.g. `geoopt`¹) parametrize the hyperboloid as $\langle x, x \rangle_{\mathcal{L}} = -k$. Our K corresponds
 148 exactly to this k , so curvature is $-1/K$ and radius $R = \sqrt{K}$.
 149

150 3.2 CONSTRUCTION OF HIERARCHY AND ENTITIES

151 We construct a hierarchical tree of geographic entities directly from the training metadata (Algo-
 152 rithm 1 in Appendix A.3). The hierarchy spans four levels: *Country*, *Region*, *Subregion*, and *City*.
 153 At each level h , we define the entity set \mathcal{E}_h as the collection of unique geographic units observed in
 154 the metadata (e.g., ISO2 codes for countries, canonical region names within countries, etc.). Entities
 155 are assigned stable identifiers by concatenating ISO2 codes with sanitized region, subregion, and city
 156 tokens. Each training image is then mapped to a tuple of four entities ($e_{\text{country}}, e_{\text{region}}, e_{\text{subregion}}, e_{\text{city}}$).
 157 For OSV5M, we use the official quadtree-aligned labels provided with the dataset. For Medi-
 158 aEval'16, where only coordinates are available, we obtain labels through deterministic reverse
 159 geocoding with Nominatim² and apply canonicalization rules for consistent identifiers (details in

1`https://github.com/geoopt/geoopt`

2`https://github.com/osm-search/Nominatim`

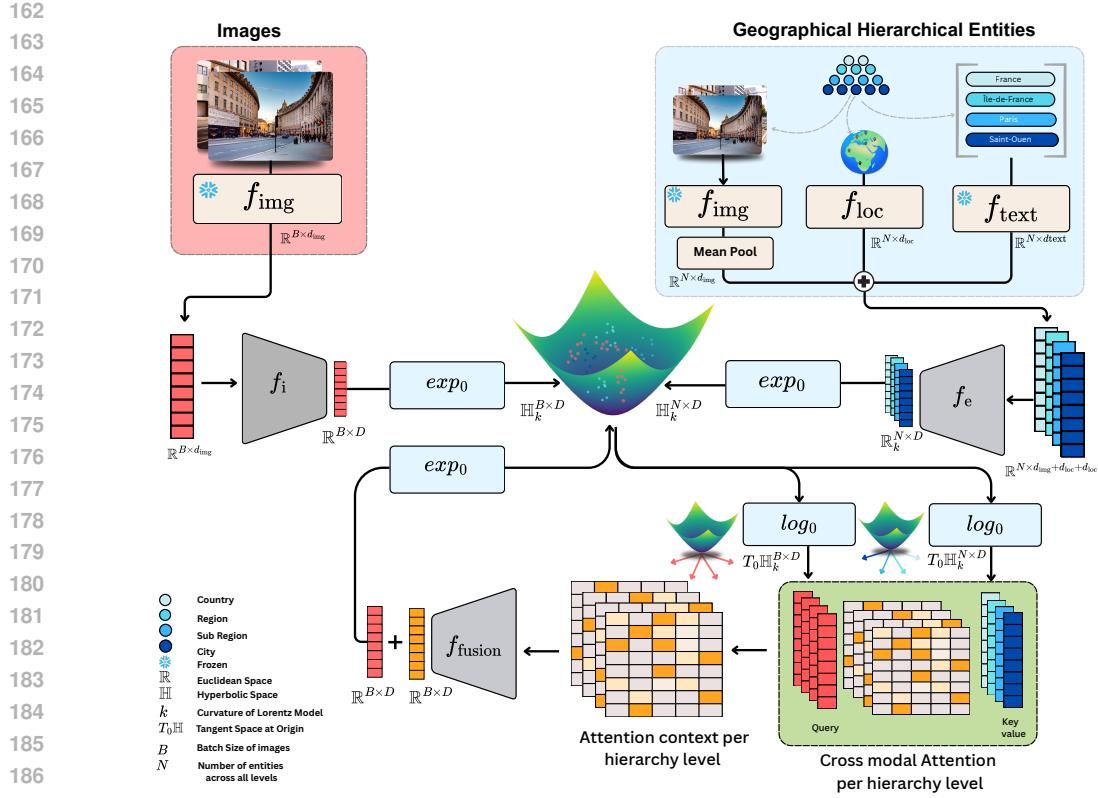


Figure 1: **HierLoc.** Overall architecture. Images are encoded and mapped with exp_0 into the Lorentz model of Hyperbolic space, while entities (countries, regions, subregions, cities) combine image, text, and location features. In the tangent space at the origin, cross-modal attention aligns each image with entities per hierarchy level; the resulting attention outputs are fused and projected back via exp_0 . Entity embeddings are not updated with cross-attention context, while image embeddings are updated using the context of cross-modal attention. Training employs our proposed Geo-Weighted Hyperbolic InfoNCE (GWH-InfoNCE), which reweights negatives with the haversine formula between image and negative entity coordinates.

Appendix A.3). Each entity $e_i \in \mathcal{E}$ is associated with three multimodal features: an image embedding $Img_i \in \mathbb{R}^{d_{img}}$, a text embedding $Text_i \in \mathbb{R}^{d_{text}}$, and geographic coordinates $Coords_i \in \mathbb{R}^2$. The image embedding Img_i and coordinate features $Coords_i$ are computed as averages over all training images linked to the entity, using a frozen image encoder f_{img} (DINOv3 (Siméoni et al., 2025), unless otherwise specified) and their latitude/longitude metadata. The text embedding is derived from the entity name via a pretrained CLIP text encoder (Radford et al., 2021) represented by f_{text} . While averaging may seem like a crude choice, at the entity level it produces stable and discriminative prototypes: the mean embedding captures the dominant visual signal of an entity and is sufficient to distinguish it from other entities in a contrastive learning setup. The role of an entity representation is not to distinguish among all the images assigned to it, but to capture enough shared signal to reliably separate it from other entities at the same hierarchical level. This construction also yields a dramatic compression of the training metadata. Across both datasets, roughly 9.6 million image records are distilled into about 240k entities: 233 countries, 4,946 regions, 29,214 subregions, and 209,894 cities. This reduces the search space from millions of raw images to a compact set of entity prototypes without sacrificing discriminative power. The result is a compact, interpretable, and computationally efficient representation of the geographic hierarchy. Low-level implementation details such as sanitization, key construction, and reverse-geocoding policies are deferred to Appendix A.3. **Please note that we train two different models separately please see section 4 for more details.**

216 3.3 ENTITY EMBEDDINGS
217

218 We fix the tangent space dimension to $d = 128$, so all update vectors lie in \mathbb{R}^{128} . Each entity
219 e_i is assigned an *anchor embedding* $A_i \in \mathbb{H}_K^d$, initialized by sampling $\epsilon_i \sim \mathcal{N}(0, \sigma^2 I_d)$ in the
220 tangent space at the origin $T_0 \mathbb{H}_K^d \cong \mathbb{R}^d$, and mapping with $A_i = \exp_O(\epsilon_i)$. This anchor serves
221 as a stable reference point for the entity on the hyperboloid. Each entity is also associated with
222 multimodal features from Section 3.2: an averaged image embedding Img_i , a text embedding Text_i ,
223 and normalized coordinates $\text{Coords}_i \in [0, 1]^2$. The coordinates are passed into the SphereM+
224 location encoder (Mai et al., 2023), yielding $\phi_i^{\text{loc}} = f_{\text{loc}}(\text{Coords}_i)$. Together with $\phi_i^{\text{img}} = \text{Img}_i$
225 and $\phi_i^{\text{text}} = \text{Text}_i$, these features are concatenated and mapped to the tangent space by a three-layer
226 MLP with Dropout and GELU activations (except after the last layer):
227

$$228 \quad u_i = \text{MLP}_{\text{ent}}([\phi_i^{\text{loc}} \parallel \phi_i^{\text{img}} \parallel \phi_i^{\text{text}}]), \quad \Delta_i = W_{\Delta} u_i + b_{\Delta} \in \mathbb{R}^d.$$

229 Here Δ_i is a learnable tangent-space update vector, while W_{Δ} and b_{Δ} are the weights and biases
230 of a linear projection. The final entity embedding is then obtained by updating the anchor in the
231 tangent space:
232

$$H_i = \exp_O(\log_0(A_i) + \alpha_{\text{node}} \Delta_i) \in \mathbb{H}_K^d,$$

233 where α_{node} is a learnable scalar controlling update strength. Thus, A_i defines a stable initialization,
234 while Δ_i injects multimodal evidence to adapt the entity embedding. Entities therefore reside in the
235 128-dimensional Hyperbolic manifold \mathbb{H}_K^{128} , represented in Lorentz coordinates in \mathbb{R}^{129} . Distances
236 are computed via the Lorentz inner product in this $(d + 1)$ -dimensional ambient space.
237

238 3.4 IMAGE EMBEDDINGS
239

240 Each input image is encoded by f_{img} into a Euclidean feature vector $\phi^{\text{img}} \in \mathbb{R}^{d_{\text{img}}}$. This represen-
241 tation is mapped into the tangent space at the origin by a projection MLP with two linear layers
242 (Dropout and GELU applied after the first layer):
243

$$244 \quad u^{\text{img}} = \text{MLP}_{\text{img}}(\phi^{\text{img}}), \quad \Delta^{\text{img}} = W_{\text{img}} u^{\text{img}} + b_{\text{img}} \in \mathbb{R}^d.$$

245 We then prepend a zero to Δ^{img} to respect the $(d + 1)$ -dimensional Lorentz structure, and project it
246 to the hyperboloid using the mapping in Eq. 1:
247

$$248 \quad Z^{\text{img}} = \exp_O(\alpha_{\text{img}} \Delta^{\text{img}}) \in \mathbb{H}_K^d,$$

249 where α_{img} is a learnable scale. Unlike entities, image embeddings from a frozen backbone are
250 projected to the tangent space at the origin of the Lorentz model with an MLP layer, f_i . They are
251 then mapped onto the Lorentz model with \exp_O and later refined through a cross-modal attention
252 module (Section 3.5) with entity embeddings. Both image embeddings Z^{img} and entity embeddings
253 H_i therefore reside in \mathbb{H}_K^{128} , a 128-dimensional Hyperbolic manifold, and are represented in \mathbb{R}^{129} ,
254 for distance computations we use Eq. 2.
255

256 3.5 CROSS-MODAL ATTENTION
257

258 As shown in Figure 1, cross-modal attention operates in the tangent space at the origin, with images
259 as queries, and entity features as keys/values. All cross-modal interactions are carried out in the
260 tangent space at the origin. For each hierarchy level $\ell \in \{\text{country, region, subregion, city}\}$, entity
261 embeddings $H_j^{\ell} \in \mathbb{H}_K^d$ are mapped to $h_j^{\ell} = \log_0(H_j^{\ell})$ and each image Z_{img} to $z_{\text{img}} = \log_0(Z_{\text{img}})$. At
262 level ℓ , multihead attention is applied with the image as queries, and the entities as keys and values,
263 yielding $\tilde{z}_{\text{img}}^{\ell} = \text{Attn}_{\ell}(z_{\text{img}}, \{h_j^{\ell}\}_j)$. We use a multihead attention block with 8 heads for each level.
264 The four level-wise contexts are concatenated, fused by a small MLP, and added back to the original
265 feature.
266

$$z_{\text{img}}^* = z_{\text{img}} + \text{MLP}_{\text{fuse}}([\tilde{z}_{\text{img}}^{\text{country}} \parallel \tilde{z}_{\text{img}}^{\text{region}} \parallel \tilde{z}_{\text{img}}^{\text{subregion}} \parallel \tilde{z}_{\text{img}}^{\text{city}}]),$$

267 which is then lifted back via $Z_{\text{img}}^* = \exp_O(z_{\text{img}}^*) \in \mathbb{H}_K^d$. Only the image stream is updated with
268 attention outputs; entity embeddings remain fixed, an asymmetry that prevents the overfitting of
269 entity embeddings on the training data while still providing hierarchical geographic context.
270

270 3.6 GWH-INFONCE LOSS
271

272 We propose *Geo-Weighted Hyperbolic InfoNCE* (GWH-InfoNCE), a novel contrastive objective that
273 incorporates geographic structure into Hyperbolic alignment. For an image embedding $Z_{\text{img}}^* \in \mathbb{H}_K^d$,
274 the entity at level ℓ provides the positive H_ℓ^+ , while all other entities in that level serve as negatives
275 $\{H_{\ell,k}^-\}_k$. Distances are measured directly on the Lorentz manifold using Eq. 2:

$$276 \quad d_\ell^+ = d_{\mathbb{H}}(Z_{\text{img}}^*, H_\ell^+)^2, \quad d_{\ell,k}^- = d_{\mathbb{H}}(Z_{\text{img}}^*, H_{\ell,k}^-)^2. \quad (3)$$

277 To emphasize geographical spatial proximity in the embedding space, we reweight each negative ac-
278 cording to its great-circle distance $g_{\ell,k}$ from the image location, computed via the haversine formula
279 (Appendix A.4). The per-level loss is

$$280 \quad \mathcal{L}_\ell = -\log \frac{\exp(-d_\ell^+/\tau)}{\exp(-d_\ell^+/\tau) + \sum_k w_{\ell,k} \exp(-d_{\ell,k}^-/\tau)}, \quad w_{\ell,k} = 1 + \lambda \exp(-g_{\ell,k}/\sigma). \quad (4)$$

281 We use Laplace decay for geo-weighting with $\exp(-g_{\ell,k}/\sigma)$, which can also be ablated using other
282 decaying functions such as Gaussian and Inverse kernels. We determine the optimal kernel for
283 weight decay through experiments (see Appendix A.7 for more details). Here τ, λ, σ are learn-
284 able hyperparameters, with τ representing the temperature scaling, λ and σ control the strength of
285 geographic weighting and geographic distance scaling, respectively. The total training objective
286 aggregates across hierarchy levels to minimize,

$$287 \quad \mathcal{L} = \sum_{\ell \in \mathcal{H}} \beta_\ell \mathcal{L}_\ell,$$

288 where β_ℓ trades off supervision across levels, allowing for finer or coarser granularity. We optimize
289 entity and image parameters in Euclidean and Hyperbolic space, respectively (details in Section 4).

290 4 DATASETS AND EXPERIMENTS
291292 4.1 DATASETS
293

294 We evaluate our method using two large-scale training datasets and several standard benchmarks.
295 Specifically, we train two separate models on the OSV5M and MediaEval’16 datasets respectively.
296 OSV5M (Astruc et al., 2024) contains 4.8 million street-view images for training and 210,000 im-
297 ages for testing; we follow the official split and report results on the test set for direct comparison
298 with published baselines. MediaEval’16 (Larson et al., 2017) provides 4.7 million geo-tagged im-
299 ages, all of which we use for training since no official split is publicly available, and we evaluate
300 on external benchmarks. Specifically, we test a model trained on MediaEval’16 with YFCC4K (Vo
301 et al., 2017), IM2GPS (Hays & Efros, 2008), and IM2GPS3K (Vo et al., 2017), which are widely
302 used standard datasets in visual geolocation.

303 4.1.1 METRICS
304

305 On OSV5M, we follow the official evaluation protocol and report five metrics: classification accu-
306 racy at the country, region, subregion, and city levels; the mean geodesic error (computed as the
307 average great-circle distance δ between predicted and ground-truth coordinates); and the GeoScore,
308 inspired by the GeoGuessr game³, defined as $5000 \times \exp(-\delta/1492.7)$ (Dufour et al., 2025). The
309 possible range of values for GeoScore is from 0 to 5000. For YFCC4K, IM2GPS, and IM2GPS3K,
310 we report the standard “% @ km” recall statistics used in prior geolocalization work (Haas et al.,
311 2024). This measures the percentage of predictions within fixed distance radii of the ground-truth:
312 1 km (street-level), 25 km (city-level), 200 km (region-level), 750 km (country-level), and 2500 km
313 (continent-level). We also report the median distance error for these datasets.

314 4.1.2 EXPERIMENTS
315

316 Given a query image and its embedding, we retrieve predictions using a beam search procedure
317 over entity embeddings at each hierarchy level. At each step, candidates are ranked by the Hy-
318 perbolic geodesic distance defined in Section 3.1, and the top- k candidates are retained, allowing

3³<https://www.geoguessr.com/>

324
 325 Table 1: Geolocation performance comparison on OSV5M with official training and test splits with
 326 current baselines. Best results are reported in bold, second-best results are underlined.

327 Method	328 GeoScore \uparrow	329 Dist. (km) \downarrow	330 Classification Accuracy (%) \uparrow			
			331 Country	332 Region	333 Subregion	334 City
335 SC 0-shot (Haas et al., 2023)	336 2273	337 2854	338 38.4	339 20.8	340 9.9	341 14.8
342 Regression (Astruc et al., 2024)	343 3028	344 1481	345 56.5	346 16.3	347 1.5	348 0.7
349 ISNs (Muller-Budack et al., 2018)	350 3331	351 2308	352 66.8	353 39.4	354 –	355 4.2
356 Hybrid (Astruc et al., 2024)	357 3361	358 1814	359 68.0	360 39.4	361 10.3	362 5.9
363 SC Retrieval (Haas et al., 2023)	364 3597	365 1386	366 73.4	367 45.8	368 28.4	369 19.9
370 RFM S_2 (Dufour et al., 2025)	371 3767	372 1069	373 76.2	374 44.2	375 –	376 5.4
377 LocDiff (Wang et al., 2025)	378 –	379 –	380 77.0	381 46.3	382 –	383 11.0
385 HierLoc (VITL-14) (ours)	386 <u>3850</u>	387 <u>1067</u>	388 <u>80.1</u>	389 <u>52.9</u>	390 <u>39.0</u>	391 <u>22.2</u>
393 HierLoc (DINOV3) (ours)	394 <u>3963</u>	395 <u>861</u>	396 <u>82.9</u>	397 <u>55.0</u>	398 <u>40.7</u>	399 <u>23.3</u>

337 exploration of multiple plausible locations. The final prediction is selected from the best-scoring
 338 beam. This retrieval strategy leverages the hierarchical structure of our entity embeddings, making
 339 beam search computationally feasible. We use a beam width of $k = 10$ throughout. The procedure
 340 yields classification accuracies at the country, region, subregion, and city levels on OSV5M. At the
 341 city level, the coordinates of the predicted entity serve as the image’s location estimate, from which
 342 we compute mean geodesic error and GeoScore on OSV5M, and distance-based recall and median
 343 error on YFCC4K, IM2GPS, and IM2GPS3K. All nearest-neighbor lookups use FAISS FlatIP with
 344 a time-coordinate flip, ensuring Lorentz inner products can be ranked efficiently without explicit dis-
 345 tance computation (for more details see Appendix A.8). For training, we use AdamW for Euclidean
 346 parameters and RiemannianAdam (Bécigneul & Ganea, 2019) for manifold parameters, with
 347 gradient clipping for stability. Models are trained with a batch size of $B = 16$ images, a learning
 348 rate of 2×10^{-4} , and run on 6×NVIDIA L40S GPUs for 5 epochs. Each full training run requires
 349 approximately 60 hours.

351 4.1.3 RESULTS

352 Table 1 summarizes the results for the large-scale OSV5M benchmark. HierLoc is trained on
 353 OSV5M dataset and tested on OSV5M test set. HierLoc achieves a GeoScore of 3963 and re-
 354 duces the mean geodesic error to 861 km, a significant improvement over retrieval-based baselines
 355 such as SC Retrieval (1386 km) and even the generative RFM S_2 model (1069 km). At the same
 356 time, HierLoc sets new state-of-the-art classification accuracies across all hierarchy levels, reaching
 357 82.93% at the country level and 23.26% at the city level. These gains highlight the effectiveness of
 358 combining Hyperbolic embeddings with beam search retrieval to exploit the hierarchical structure
 359 of geographic entities. Since all of the current baselines use the VITL-14 backbone for fair compari-
 360 son, we also train HierLoc with the VITL-14 backbone and report the results, surpassing the current
 361 baselines on all the metrics. This proves our results are not only because of the DINOV3 backbone
 362 but also because of our framework. **To ensure further fair comparisons with baselines since the**
 363 **model RFM S_2 is trained on StreetCLIP (Haas et al., 2023) backbone, we have ablated the choice**
 364 **of backbone and show HierLoc’s performance boost does not depend on the choice of the Encoder.**
 365 We have included these ablations in the tables 4, 5.

366 Table 2 extends the evaluation to the long-standing IM2GPS, IM2GPS3K, and YFCC4K bench-
 367 marks for the model trained on MediaEval’16. On IM2GPS, HierLoc achieves a median error of
 368 21.4 km while maintaining strong recall at large scales (92.4% @ 2500 km). On IM2GPS3K, Hi-
 369 erLoc balances fine-grained and coarse performance, cutting the median error nearly in half relative
 370 to PIGEON (72.7 km vs. 147.3 km) and yielding +7.1 points improvement at 25 km recall. On
 371 YFCC4K, our model lowers the median error to 341.9 km and improves recall at the city (30.2% @
 372 25 km) and regional (43.3% @ 200 km) levels, demonstrating robustness beyond landmark-centric
 373 datasets.

374 Finally, Table 3 compares HierLoc against the generative RFM S_2 models (Dufour et al., 2025) on
 375 YFCC4K. Despite being trained on only 4.7M images, HierLoc outperforms the 1M-iteration RFM
 376 S_2 variant and matches the mean geodesic error of the much larger 10M-iteration model trained on
 377 48M images (2058 km). Although slightly behind in GeoScore and continent-scale recall, HierLoc
 achieves competitive city and region level performance, highlighting the efficiency of our approach

378
 379 Table 2: Comparison of HierLoc model with DinoV3 Bbackbone trained on MediaEval’16 data to
 380 baselines on benchmark datasets. Median distance error (km, lower is better) and recall (%) within
 381 radius, higher is better) best results are in bold, and the second-best results are underlined.

IM2GPS (Hays & Efros, 2008)						
Method	Median (km) ↓	1 km↑	25 km↑	200 km↑	750 km↑	2500 km↑
PlaNet (Weyand et al., 2016)	> 200	8.4	24.5	37.6	53.6	71.3
CPlaNet (Seo et al., 2018)	> 200	16.5	37.1	46.4	62.0	78.5
ISNs (M,f*,S3) (Muller-Budack et al., 2018)	> 25	16.9	43.0	51.9	66.7	80.2
Translocator (Pramanick et al., 2022)	> 25	<u>19.9</u>	48.1	64.6	75.6	86.7
GeoDecoder (Clark et al., 2023)	<u>~ 25</u>	22.1	<u>50.2</u>	69.0	80.0	89.1
PIGEON (Haas et al., 2024)	70.5	14.8	40.9	63.3	82.3	<u>91.1</u>
GeoReasoner (Li et al., 2025)	-	13.0	44.0	-	86.0	-
HierLoc (ours)	21.4	10.5	51.9	<u>67.5</u>	<u>83.1</u>	92.4
IM2GPS3K (Vo et al., 2017)						
PlaNet (Weyand et al., 2016)	> 750	8.5	24.8	34.3	48.4	64.6
CPlaNet (Seo et al., 2018)	> 750	10.2	26.5	34.6	48.6	64.6
ISNs (M,f*,S3) (Muller-Budack et al., 2018)	~ 750	10.5	28.0	36.6	49.7	66.0
Translocator (Pramanick et al., 2022)	> 200	11.8	31.1	46.7	58.9	80.1
GeoCLIP (Cepeda et al., 2023)	-	<u>14.1</u>	34.5	50.6	69.7	83.8
GeoDecoder (Clark et al., 2023)	> 200	12.8	33.5	45.9	61.0	76.1
PIGEON (Haas et al., 2024)	<u>147.3</u>	11.3	36.7	53.8	72.4	85.3
Img2Loc (Zhou et al., 2024)	-	17.1	45.1	<u>57.8</u>	72.9	84.6
GeoReasoner (Li et al., 2025)	-	10.0	38.0	-	83.0	-
HierLoc (ours)	73.4	11.3	43.8	58.4	74.1	<u>85.1</u>
YFCC4K (Vo et al., 2017)						
PlaNet (Weyand et al., 2016)	> 750	5.6	14.3	22.2	36.4	55.8
CPlaNet (Seo et al., 2018)	> 750	7.9	14.8	21.9	36.4	55.5
ISNs (M,f*,S3) (Muller-Budack et al., 2018)	> 750	6.7	16.5	24.2	37.5	54.9
Translocator (Pramanick et al., 2022)	> 750	8.4	18.6	27.0	41.1	60.4
GeoDecoder (Clark et al., 2023)	~ 750	10.3	24.4	33.9	50.0	68.7
PIGEON (Haas et al., 2024)	<u>383.0</u>	<u>10.4</u>	23.7	<u>40.6</u>	62.2	77.7
Img2Loc (Zhou et al., 2024)	-	14.1	<u>29.5</u>	41.4	59.2	<u>76.8</u>
HierLoc (ours)	341.9	8.4	30.2	43.3	<u>61.7</u>	75.8

408
 409 Table 3: Comparison of HierLoc with RFM S_2 , a generative model on YFCC4K. RFM S_2 is trained
 410 on 48 million YFCC dataset; in contrast, HierLoc is trained on MediaEval’16 with 4.7 million
 411 images (10x fewer images). Median distance error (km, lower is better) and recall (%) within radius,
 412 higher is better). Best results are in bold, second-best results are underlined.

YFCC4K (Vo et al., 2017)						
Method	GeoScore ↑	Mean Distance (km) ↓	25 km↑	200 km↑	750 km↑	2500 km↑
RFM S_2 (Dufour et al., 2025)	2889	2461	23.7	36.4	54.5	73.6
RFM _{10M} S_2 (Dufour et al., 2025)	3210	2058	<u>33.5</u>	45.3	<u>61.1</u>	77.7
HierLoc (ours)	3189	2058	<u>30.2</u>	<u>43.3</u>	61.7	<u>75.9</u>

418 relative to generative models trained on 10 times more data. To further isolate the affect of DinoV3
 419 backbone choice of HierLoc, we provide experiments in the Ablations section 4.2. In summary,
 420 across OSV5M and standard benchmarks, HierLoc consistently reduces geolocation error relative to
 421 previous baselines, setting new state-of-the-art results, especially on OSV5M. These results validate
 422 our design choices of hyperbolic entity embeddings, multimodal fusion, and beam search retrieval
 423 as a scalable alternative to current geolocation models.

4.2 ABLATIONS

427 Table 4 reports OSV5M results for three different visual backbones (DINOv3, StreetCLIP, ViT-
 428 L/14). All encoders produce highly consistent rankings across the hierarchical accuracy levels, and
 429 their absolute performance remains stable, with each backbone outperforming all non-HierLoc base-
 430 lines. This indicates that the gains do not originate from a particular choice of vision model but from
 431 the hierarchical hyperbolic design itself. To also isolate the cross-dataset hierarchy construction, we
 432 construct the hierarchies only using OSV5M dataset and train a model on OSV5M with StreetCLIP

432
 433 **Table 4: Encoder ablation of models trained and tested on OSV5M. We compare the effect of dif-
 434 ferent vision backbones on the HierLoc framework.**

435 Backbone	436 GeoScore \uparrow	437 Dist. (km) \downarrow	Classification Accuracy (%) \uparrow			
			438 Country	439 Region	440 Subregion	441 City
HierLoc (DINOv3)	3963	861	82.9	55.0	40.7	23.3
HierLoc (StreetCLIP)	3862	1051	80.3	53.1	39.2	22.5
HierLoc (ViT-L/14)	3850	1067	80.1	52.9	39.0	22.2

442 **Table 5: Encoder ablation of models trained on MP16 and tested on YFCC4K.**

443 **Table 6: Ablation study on the choice of embedding space in HierLoc, evaluated on the OSV5M
 444 dataset. Results are reported in terms of GeoScore, mean localization error, and hierarchical classi-
 445 fication accuracy.**

446 Method	447 GeoScore \uparrow	448 Mean Distance (km) \downarrow	Classification Accuracy (%) \uparrow			
			449 Country	450 Region	451 Subregion	452 City
HierLoc (DINOv2)	3106	2211	28.2	42.2	59.8	74.0
HierLoc (DINOv3)	3189	2058	30.2	43.3	61.7	75.9

453 **Table 7: Ablation study of HierLoc on OSV5M, demonstrating the importance of GWH-InfoNCE
 454 loss and cross attention for fine-grained localization.**

455 Method	456 GeoScore \uparrow	457 Mean Dist (km) \downarrow	Classification Accuracy (%) \uparrow			
			458 Country	459 Region	460 Subregion	461 City
HierLoc (Euclidean)	3865	968	81.0	51.5	37.5	21.1
HierLoc (Spherical)	3364	1258	75.2	31.3	15.9	4.3
HierLoc (Hyperbolic)	3963	861	82.9	55.0	40.7	23.3

462 **Table 8: Comparison of inference strategies on OSV5M (top-1 accuracy). Flat search ignores hi-
 463 erarchy, while beam search enforces path-consistency. Beam width $k=10$ achieves the best accu-
 464 racy-efficiency trade-off.**

465 Method	466 Country	467 Region	468 Subregion	469 City
Flat per-level (no hierarchy)	79.6	50.8	39.4	22.1
Hierarchical (beam=1)	79.4	48.9	36.4	21.9
Hierarchical (beam=10)	82.9	55.0	40.7	23.3

470 backbone. The results in the table 4 for StreetCLIP show that cross-dataset hierarchy construction
 471 does not have any influence with the performance of HierLoc. Table 5 presents the corresponding
 472 analysis on MP16, comparing HierLoc using DINOv2 and DINOv3. There is a drop in performance
 473 with DINOv2 but not significant enough to outperform RFM S_2 model, further reinforcing
 474 that HierLoc’s improvements generalize across encoders and datasets.

475 Table 6 reports on ablation studies in OSV5M, isolating the independent impact of the main compo-
 476 nents of HierLoc. Replacing the Lorentz model of HierLoc architecture with Euclidean embedding
 477 space increases the mean geodesic error to 968 km and lowers accuracy across all hierarchy levels,
 478 confirming the advantage of Hyperbolic space for the geolocation task. Moreover, the Spherical
 479

embedding space performs worse than both the Euclidean and Hyperbolic embedding spaces. This can be attributed to higher distance distortions in the Spherical manifold. We further validate this finding on the YFCC4K, IM2GPS, and IM2GPS3K benchmarks (Appendix, Table 9), where Hyperbolic embeddings consistently reduce median error and improve recall compared to Euclidean space.

Table 7 reports the performance of DINOv3 zero shot, without any training, by finding the nearest neighbors from its image embeddings to entities that have been initialized with only mean image embeddings. Substituting our Geo-Weighted Hyperbolic InfoNCE with the standard InfoNCE objective also degrades performance (949 km), particularly at the region and subregion levels, showing that reweighting negatives by geographic distance provides more effective supervision. Removing cross-modal attention between images and entity prototypes leads to the largest error (1366 km), highlighting that hierarchical context and cross-modal attention are critical for fine-grained localization. Finally, replacing the squared distance in Eq. 3 without the square of the distance also shows a worse performance at all levels.

The final ablation of removing the text and location modalities does reduce the performance a little across all levels, but it is not significant, and the image signal is the most important modality for this task. Together, these results validate our design choices: each component contributes meaningfully, and their combination yields the strongest performance. Furthermore, other ablations such as role of mean image embeddings, hyper parameter sensitivity, curvature choice for the Lorentz model and the choice of weight decaying function for the geo-weights in the loss are reported in the Appendix A.5. Further analysis of the computational efficiency of our framework against retrieval and generative methods is also reported in the Appendix A.8, which quantifies the improvements over existing retrieval methods.

5 DISCUSSION

Our experiments demonstrate that HierLoc provides a principled and scalable solution to visual geolocation. By reformulating the task from image-to-image retrieval into image-to-entity alignment in Hyperbolic space, HierLoc consistently outperforms prior methods across large-scale benchmarks. The improvements are most pronounced at fine-grained levels (subregion and city), where modeling hierarchical structure together with geographically weighted contrastive learning delivers significant gains. Moreover, HierLoc remains competitive with recent generative approaches trained on an order of magnitude more data (e.g., RFM_{10M}, S₂), highlighting the efficiency of our formulation. Beyond accuracy, HierLoc offers several key advantages. First, predictions are interpretable: images are aligned to explicit geographic entities, enabling structured error analysis and clearer insights into model behavior. Second, inference is computationally efficient, as the number of entities is vastly smaller than the number of training images required for large-scale retrieval. Third, the framework naturally integrates multimodal signals such as text and coordinates improving performance. While Hyperbolic embeddings have been studied extensively, our contributions lie in extending them to planet-scale geolocation, introducing a geo-aware loss in Hyperbolic space, and reformulating retrieval as learnable entity representation learning, a shift that improves performance, scalability, and interpretability.

Several limitations remain. On datasets such as IM2GPS, YFCC4K, and IM2GPS3K, the absence of dense street-level entities constrains performance at the 1 km threshold. Our evaluation in Appendix A.9 further demonstrates difficulties in performance generalization between regions with less number of training samples. Looking ahead, the broader promise of HierLoc lies in its generality. Any task with hierarchically structured data such as taxonomies in biodiversity, linguistic families, or knowledge graphs could benefit from the same principles of Hyperbolic entity embeddings, multimodal fusion, and structured retrieval. Visual geolocation thus serves as a challenging and high-impact testbed, but the underlying methodology extends beyond it.

6 ETHICS STATEMENT

This work relies exclusively on publicly available datasets for visual geolocation, including OSV5M, MediaEval’16, YFCC4K, IM2GPS, and IM2GPS3K, which do not contain personally identifiable

540 information beyond image content already released for research purposes. No additional human
 541 subjects were involved, and no private or sensitive data were collected.
 542

543 We acknowledge that geolocation technologies may pose privacy and security risks if misapplied,
 544 for example in surveillance, tracking individuals, or identifying sensitive locations. Our work is
 545 intended solely for scientific benchmarking and methodological advancement in large-scale repre-
 546 sentation learning. All datasets are cited from their original sources and used under their research
 547 licenses.

548 We encourage future research to consider fairness and bias issues, particularly regarding underrep-
 549 resented geographic regions, and to assess societal impacts of deploying such models.
 550

551 7 REPRODUCIBILITY STATEMENT

553 We have taken several steps to ensure reproducibility of our results. All datasets used are publicly
 554 available and are described in Section 4 and Appendix A.3, with preprocessing steps (e.g., entity
 555 construction, reverse geocoding) detailed in Algorithm 1 and Appendix A.3. Model architecture,
 556 hyperparameters, and training schedules are described in Sections 3 and 4, with additional abla-
 557 tions (e.g., curvature sensitivity, kernel functions) reported in Appendix A.5. Evaluation protocols
 558 strictly follow prior work and official benchmarks. We also detail how FAISS can be leveraged with
 559 Hyperbolic nearest neighbor search in the Appendix A.8.
 560

We will release the source code in an anonymous repository for the camera-ready version of the
 561 paper, should it be accepted. This will include entity construction scripts, training pipelines, and
 562 evaluation scripts to enable exact replication of our results.
 563

564 REFERENCES

- 566 Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronsson, Nacim Bouia, Stephanie
 567 Fu, Romain Loiseau, Van Nguyen Nguyen, Charles Raude, Elliot Vincent, Lintao XU, Hongyu
 568 Zhou, and Loic Landrieu. Openstreetview-5m: The many roads to global visual geolocation,
 569 2024. URL <https://arxiv.org/abs/2404.18873>.
- 570 Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods, 2019.
 571 URL <https://arxiv.org/abs/1810.00760>.
- 572 Vicente Vivanco Cepeda, Gaurav Kumar Nayak, and Mubarak Shah. Geoclip: Clip-inspired
 573 alignment between locations and images for effective worldwide geo-localization, 2023. URL
 574 <https://arxiv.org/abs/2309.16020>.
- 576 Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
 577 Fully hyperbolic neural networks, 2021.
- 588 Brandon Clark, Alec Kerrigan, Parth Parag Kulkarni, Vicente Vivanco Cepeda, and Mubarak Shah.
 589 Where we are and what we’re looking at: Query based worldwide image geo-localization using
 590 hierarchies and scenes, 2023. URL <https://arxiv.org/abs/2303.04249>.
- 598 Grant DeLozier, Ben Wing, Jason Baldridge, and Scott Nesbit. Creating a novel geolocation corpus
 600 from historical texts. In Annemarie Friedrich and Katriin Tomanek (eds.), *Proceedings of the 10th*
 601 *Linguistic Annotation Workshop held in conjunction with ACL 2016 (LAW-X 2016)*, pp. 188–198,
 602 Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/
 603 W16-1721. URL <https://aclanthology.org/W16-1721/>.
- 611 Nicolas Dufour, Vicky Kalogeiton, David Picard, and Loic Landrieu. Around the world in 80
 612 timesteps: A generative approach to global visual geolocation. In *Proceedings of the IEEE/CVF*
 613 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 23016–23026, June 2025.
- 621 David Flatow, Mor Naaman, Ke Eddie Xie, Yana Volkovich, and Yaron Kanza. On the accuracy of
 622 hyper-local geotagging of social media content. In *Proceedings of the Eighth ACM International*
 623 *Conference on Web Search and Data Mining*, WSDM ’15, pp. 127–136, New York, NY, USA,
 624 2015. Association for Computing Machinery. ISBN 9781450333177. doi: 10.1145/2684822.
 625 2685296. URL <https://doi.org/10.1145/2684822.2685296>.

- 594 Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks, 2018.
 595 URL <https://arxiv.org/abs/1805.09112>.
 596
- 597 Lukas Haas, Silas Alberti, and Michal Skreta. Learning generalized zero-shot learners for open-
 598 domain image geolocalization, 2023.
- 599 Lukas Haas, Michal Skreta, Silas Alberti, and Chelsea Finn. Pigeon: Predicting image geoloca-
 600 tions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 601 (CVPR), pp. 12893–12902, June 2024.
- 602 James Hays and Alexei A. Efros. im2gps: estimating geographic information from a single image.
 603 In *Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2008.
 604
- 605 Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
 606 Hyperbolic image embeddings, 2020. URL <https://arxiv.org/abs/1904.02239>.
 607
- 608 Martha Larson, Mohammad Soleymani, Guillaume Gravier, Bogdan Ionescu, and Gareth Jones.
 609 The benchmarking initiative for multimedia evaluation: Mediaeval 2016. *IEEE MultiMedia*, 24:
 610 93–96, 01 2017. doi: 10.1109/MMUL.2017.9.
- 611 Ling Li, Yu Ye, Yao Zhou, and Wei Zeng. Georeasoner: Geo-localization with reasoning in street
 612 views using a large vision-language model, 2025. URL <https://arxiv.org/abs/2406.18572>.
 613
- 614 Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale rep-
 615 resentation learning for spatial feature distributions using grid cells, 2020. URL <https://arxiv.org/abs/2003.00824>.
 616
- 617 Gengchen Mai, Yao Xuan, Wenyun Zuo, Yutong He, Jiaming Song, Stefano Ermon, Krzysztof
 618 Janowicz, and Ni Lao. Sphere2vec: A general-purpose location representation learning over a
 619 spherical surface for large-scale geospatial predictions, 2023. URL <https://arxiv.org/abs/2306.17624>.
 620
- 621 Mapillary Team. 10 years, 2 billion images. <https://blog.mapillary.com/update/2024/01/12/Mapillary-10-Years-2-Billion-Images.html>, 2024. Accessed:
 622 2025-09-13.
 623
- 624 J. Mercier, N. Chablot, G. Dozot, C. Audrin, O. Ertz, E. Bocher, and D. Rappo. Impact of
 625 geolocation data on augmented reality usability: A comparative user test. *The International
 626 Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLVIII-
 627 4/W7-2023:133–140, 2023. doi: 10.5194/isprs-archives-XLVIII-4-W7-2023-133-2023. URL
 628 <https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/133/2023/>.
 629
- 630 Eric Muller-Budack, Kader Pustu-Iren, and Ralph Ewerth. Geolocation estimation of photos using
 631 a hierarchical model and scene classification. In *Proceedings of the European Conference on
 632 Computer Vision (ECCV)*, September 2018.
 633
- 634 Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
 635 tions. In *Proceedings of the 31st International Conference on Neural Information Processing
 636 Systems*, NIPS’17, pp. 6341–6350, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
 637 9781510860964.
 638
- 639 Shraman Pramanick, Ewa M. Nowara, Joshua Gleason, Carlos D. Castillo, and Rama Chellappa.
 640 Where in the world is this image? transformer-based geo-localization in the wild, 2022. URL
 641 <https://arxiv.org/abs/2204.13861>.
 642
- 643 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 644 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 645 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
 646 <https://arxiv.org/abs/2103.00020>.
 647
- John G. Ratcliffe. *Foundations of Hyperbolic Manifolds*, volume 149 of *Graduate Texts in Mathe-
 648 matics*. Springer, 3rd edition, 2019. ISBN 978-3-030-31597-9. doi: 10.1007/978-3-030-31597-9.

- 648 Paul Hongsuck Seo, Tobias Weyand, Jack Sim, and Bohyung Han. Cplanet: Enhancing image
 649 geolocalization by combinatorial partitioning of maps, 2018. URL <https://arxiv.org/abs/1808.02130>.
 650
- 651 Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 652 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
 653 Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darct, Théo Moutakanni, Lionel Sentana,
 654 Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
 655 Jégou, Patrick Labatut, and Piotr Bojanowski. Dinov3, 2025. URL <https://arxiv.org/abs/2508.10104>.
 656
- 657 Golsa Tahmasebzadeh, Sherzod Hakimov, Ralph Ewerth, and Eric Müller-Budack. Multimodal ge-
 658 ololocation estimation of news photos. In Jaap Kamps, Lorraine Goeuriot, Fabio Crestani, Maria
 659 Maistro, Hideo Joho, Brian Davis, Cathal Gurrin, Udo Kruschwitz, and Annalina Caputo (eds.),
 660 *Advances in Information Retrieval*, pp. 204–220, Cham, 2023. Springer Nature Switzerland.
 661 ISBN 978-3-031-28238-6.
 662
- 663 Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, and Oisin MacAodha.
 664 Benchmarking representation learning for natural world image collections. In *2021 IEEE/CVF
 665 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12879–12888, 2021. doi:
 666 10.1109/CVPR46437.2021.01269.
- 667 Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era, 2017.
 668
- 669 Zhangyu Wang, Zeping Liu, Jielu Zhang, Zhongliang Zhou, Qian Cao, Nemin Wu, Lan Mu, Yang
 670 Song, Yiqun Xie, Ni Lao, and Gengchen Mai. Locdiff: Identifying locations on earth by diffusing
 671 in the hilbert space, 2025. URL <https://arxiv.org/abs/2503.18142>.
 672
- 673 Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet - photo geolocation with convolutional
 674 neural networks. In *European Conference on Computer Vision (ECCV)*, 2016.
 675
- 676 Zhongliang Zhou, Jielu Zhang, Zihan Guan, Mengxuan Hu, Ni Lao, Lan Mu, Sheng Li, and
 677 Gengchen Mai. Img2loc: Revisiting image geolocalization using multi-modality foundation mod-
 678 els and image-based retrieval-augmented generation. In *Proceedings of the 47th International
 679 ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2749–2754.
 680 ACM, July 2024. doi: 10.1145/3626772.3657673. URL <http://dx.doi.org/10.1145/3626772.3657673>.
 681

682 A APPENDIX

683 A.1 LLM USAGE

684 During the preparation of this paper, large language models (LLMs) were used as assistive tools for
 685 writing and polishing text. Specifically, they were employed to improve the clarity, grammar, and
 686 style of certain sections, and to suggest alternative phrasings in accordance with the ICLR author
 687 guidelines. LLMs were not involved in research ideation, implementation, experimental design, or
 688 analysis of results. All technical content, including methodology, experiments, and conclusions,
 689 were designed, implemented, and validated by the authors. The authors take full responsibility for
 690 the correctness and originality of the content.
 691

693 A.2 PRELIMINARIES ON HYPERBOLIC GEOMETRY

694 We use the Lorentz (hyperboloid) model of d -dimensional Hyperbolic space (Ratcliffe, 2019). This
 695 is a Riemannian manifold \mathbb{H}_K^d with constant negative sectional curvature (-1/K) (Ganea et al., 2018).
 696

$$697 \mathbb{H}_K^d = \{ x \in \mathbb{R}^{d+1} : \langle x, x \rangle_{\mathcal{L}} = -K, x_0 > 0 \}, \quad K > 0,$$

698 with Minkowski bilinear form

$$700 \langle x, y \rangle_{\mathcal{L}} = -x_0 y_0 + \sum_{i=1}^d x_i y_i.$$

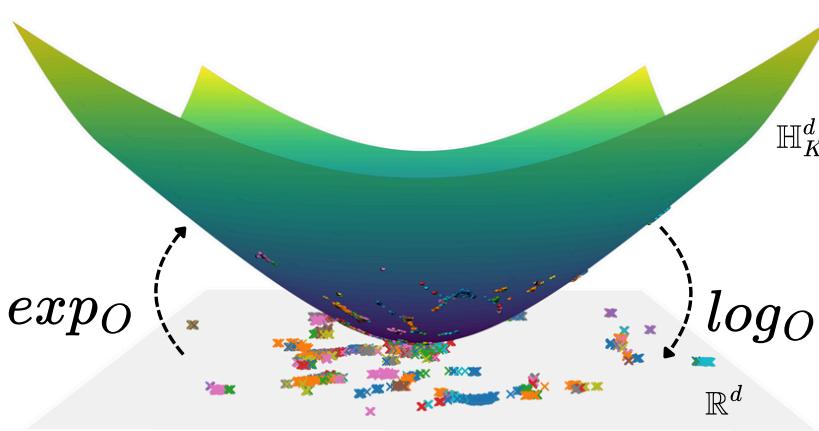


Figure 2: Illustration of \exp_O and \log_O projection functions projecting points from Tangent space to Hyperbolic space and vice versa.

The geodesic distance between $x, y \in \mathbb{H}_K^d$ is

$$d_{\mathbb{H}}(x, y) = \text{arcosh}\left(-\frac{\langle x, y \rangle_{\mathcal{L}}}{K}\right). \quad (5)$$

It is often convenient to write the radius as $R = \sqrt{K}$, with curvature $K = -1/R^2$.

For any base point $p \in \mathbb{H}_K^d$, the tangent space is $T_p \mathbb{H}_K^d = \{v \in \mathbb{R}^{d+1} : \langle p, v \rangle_{\mathcal{L}} = 0\}$. Let $\|v\|_{\mathcal{L}} := \sqrt{\langle v, v \rangle_{\mathcal{L}}}$ denote the (spacelike) Lorentz norm on $T_p \mathbb{H}_K^d$. With $R = \sqrt{K}$, the *exponential* and *logarithmic* maps at p are

$$\exp_p(v) = \cosh\left(\frac{\|v\|_{\mathcal{L}}}{R}\right)p + R \sinh\left(\frac{\|v\|_{\mathcal{L}}}{R}\right) \frac{v}{\|v\|_{\mathcal{L}}}, \quad v \in T_p \mathbb{H}_K^d, \quad (6)$$

$$\log_p(x) = \frac{d_{\mathbb{H}}(p, x)}{\sinh\left(\frac{d_{\mathbb{H}}(p, x)}{R}\right)} \left(x - \cosh\left(\frac{d_{\mathbb{H}}(p, x)}{R}\right)p \right), \quad x \in \mathbb{H}_K^d, \quad (7)$$

with the continuous extensions $\exp_p(O) = p$ and $\log_p(p) = O$. Let the canonical origin be $o = (R, 0, \dots, 0) = (\sqrt{K}, 0, \dots, 0) \in \mathbb{H}_K^d$, so $T_0 \mathbb{H}_K^d = \{(0, v_1, \dots, v_d)\} \cong \mathbb{R}^d$. Replacing $p = o$ in Eqs. 6–7 gives

$$\exp_O(v) = \left(R \cosh\left(\frac{\|v\|}{R}\right), R \sinh\left(\frac{\|v\|}{R}\right) \frac{v}{\|v\|} \right), \quad v \in \mathbb{R}^d, \quad (8)$$

$$\log_O(x) = \frac{R \text{arcosh}\left(\frac{x_0}{R}\right)}{\sqrt{x_0^2 - R^2}} \vec{x}, \quad x = (x_0, \vec{x}) \in \mathbb{H}_K^d, \quad (9)$$

where $\|v\|$ is the Euclidean norm of v , and $\vec{x} \in \mathbb{R}^d$ are the "spacelike" coordinates of x . Note that $\log_O(x)$ is not simply the Euclidean projection of \vec{x} ; the prefactor ensures exact agreement with the Riemannian logarithm. Figure 2 illustratively shows the process of projecting points from \mathbb{R}^d to \mathbb{H}_K^d using \exp_O function, conversely, the process of projecting points from \mathbb{H}_K^d to \mathbb{R}^d using \log_O function.

A.3 FURTHER DETAILS ON CONSTRUCTION OF ENTITIES

We construct the entity hierarchy directly from the metadata of the train splits of OSV5M and MediaEval'16 datasets. For each dataset, we first resolve schema columns (country, region, subregion, city, latitude, longitude, image embedding) in a format-agnostic way. Each row is then normalized: the country field is mapped to ISO2 code, canonical name; missing labels country, region, subregion, and city labels are filled by reverse geocoding the coordinates with Nominatim⁴ in the

⁴<https://github.com/osm-search/Nominatim>

756 case of MediaEval’16; and all region, subregion, and city names are sanitized to ensure consistent
 757 identifiers.

758 The hierarchy is built incrementally: for every row, we traverse from country to region, subregion,
 759 and city, creating nodes as needed. Each node accumulates a count of images, the sum of coordi-
 760 nates, and the sum of image embeddings, which are returned from a frozen image encoder backbone
 761 such as DINOV3 or VITL-14. After all rows are processed, entity features are finalized by averaging
 762 accumulated values: the mean image embedding, the mean latitude/longitude coordinates, and a text
 763 embedding computed from the entity name (via a frozen pretrained text encoder such as CLIP Text
 764 Encoder).

765 Finally, the tree is serialized. The construction runs in linear time in the num-
 766 ber of rows and requires memory proportional to the number of unique entities.

Algorithm 1: BuildHierarchyFromMetadata(dataset)

769 **Input:** Training metadata of a dataset dataset
 770 **Output:** Hierarchy tree T
 1 **Initialize:** $T \leftarrow \emptyset$ (hierarchy starts at countries);
 2 **foreach** record $(c, r, s, ci, \phi, \lambda, v)$ in metadata **do**
 3 Map country \rightarrow (ISO2, canonical name);
 4 **if** dataset = *MediaEval’16* and labels missing **then**
 5 $(c, r, s, ci) \leftarrow$ ReverseGeocode(ϕ, λ) via Nominatim;
 6 Sanitize (r, s, ci) to canonical tokens;
 7 **foreach** level \in [country, region, subregion, city] **do**
 8 $u \leftarrow$ CreateOrGetNode(T , level, identifiers);
 9 Update counts and coordinate sums at u ;
 10 Accumulate image embedding v at u (from frozen encoder);
 11 **foreach** node $n \in T$ **do**
 12 $Img_n \leftarrow$ mean of image embeddings;
 13 $Coords_n \leftarrow$ mean of lat/lon;
 14 $Text_n \leftarrow f_{text}(\text{Name}(n))$ (frozen text encoder);
 15 Serialize T to JSON;
 16 **Complexity:** $O(N)$ over records N ; memory \propto number of unique entities;

786 A.4 HAVERSINE DISTANCE

788 We compute the geographic distances $g_{\ell, k}$ used in Eq. 4. For two locations (φ_1, λ_1) and (φ_2, λ_2) in
 789 radians (latitude, longitude), define

$$791 \quad a = \sin^2\left(\frac{\varphi_2 - \varphi_1}{2}\right) + \cos \varphi_1 \cos \varphi_2 \sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right).$$

793 The haversine formula yields the central angle (great-circle distance in radians) as

$$794 \quad g_{\text{full}} = 2 \arcsin(\sqrt{a}) = 2 \arctan 2(\sqrt{a}, \sqrt{1-a}).$$

795 In our implementation, we omit the constant factor of 2 and work with

$$797 \quad g = \arcsin(\sqrt{a}),$$

798 since both the factor 2 and the Earth’s mean radius $R = 6371$ km simply rescale distances with-
 799 out changing their relative ordering or gradient directions. These constants are absorbed into the
 800 bandwidth parameter σ of our loss. For reporting physical distances, we reintroduce them as

$$801 \quad d = 2Rg \quad (\text{in kilometers}).$$

803 A.5 FURTHER ABLATIONS

805 **Manifold sensitivity** In addition to the OSV5M ablation (Table 6), we also compare Euclidean and
 806 Hyperbolic variants of HierLoc on three widely used recall-at-km benchmarks: YFCC4K, IM2GPS,
 807 and IM2GPS3K (Table 9). The Hyperbolic manifold consistently outperforms Euclidean space
 808 across datasets, reducing median localization error by 23–45% and improving recall at city- and
 809 region-level thresholds (25–200 km). This confirms that the advantages of Hyperbolic embeddings
 are robust and not specific to OSV5M.

810
 811 Table 9: Manifold sensitivity on recall-at-km benchmarks (YFCC4K, IM2GPS, IM2GPS3K). Same
 812 backbone, loss, and training schedule; only the embedding manifold differs. Hyperbolic space con-
 813 sistently reduces median localization error and improves recall across scales.

Dataset	Median (km) ↓	1 km ↑	25 km ↑	200 km ↑	750 km ↑	2500 km ↑
YFCC4K (Vo et al., 2017)						
HierLoc (Euclidean)	445.3	7.0	25.9	39.7	58.2	73.4
HierLoc (Hyperbolic)	341.9	8.4	30.2	43.3	61.7	75.8
IM2GPS (Hays & Efros, 2008)						
HierLoc (Euclidean)	47.3	8.4	45.9	64.9	81.8	91.1
HierLoc (Hyperbolic)	21.4	10.5	51.9	67.5	83.1	92.4
IM2GPS3K (Vo et al., 2017)						
HierLoc (Euclidean)	121.6	10.2	41.2	55.1	71.6	83.3
HierLoc (Hyperbolic)	73.4	11.3	43.8	58.4	74.1	85.1

827 **Table 10: Ablation study of removing mean image embeddings for each hierarchy level sequentially**

Ablation (Removed Mean Embeddings)	Country (%)	Region (%)	Sub-region (%)	City (%)
None	82.93	55.03	40.68	23.26
Country	81.59	54.27	39.97	22.63
Country & Region	79.96	50.40	36.61	20.59
Country & Region & Sub-region	77.12	44.34	30.76	16.32
Country & Region & Sub-region & City	70.46	30.00	14.06	3.58

835 Table 11: Ablation study of HierLoc on OSV5M subset of 100k training set and 10k test set for
 836 search of the best curvature, K for Lorentz model.

Curvature (K)	Mean Dist (km) ↓	Classification Accuracy (%) ↑			
		Country	Region	Subregion	City
0.25	1719	64.7	28.8	17.7	8.36
0.50	1603	67.4	31.6	19.9	9.51
0.75	1534	69.1	33.5	21.1	10.0
0.80	1462	69.2	33.7	22.3	11.0
1.00	1687	67.4	30.2	19.3	9.1

846 **Mean Image Embeddings Sensitivity** To quantify the contribution of mean image embeddings
 847 across spatial scales, we progressively remove them in a coarse-to-fine order (country → region →
 848 subregion → city). Table 10 shows that removing country-level means yields only a minor accuracy
 849 drop, indicating that coarse aggregates provide limited discriminative signal. The impact grows
 850 as we remove means from finer levels, with the largest decline at the city level where local visual
 851 context is most informative. Importantly, the model remains stable and does not collapse even when
 852 all mean embeddings are removed. This demonstrates that HierLoc is not dependent on any single
 853 level’s mean representation; rather, its performance stems from the hierarchical architecture and the
 854 multi-level integration of visual cues.

855 Table 11 shows the search of the best curvature, K , of the Lorentz model on the OSV5M subset of
 856 100k training images and 10k test images. Owing to the size of the dataset, we perform this search on
 857 a smaller subset. Through the experiments, we find that curvature 0.8 best fits the OSV5M dataset,
 858 given that it is the primary dataset we are focusing on. We keep the same curvature for both models
 859 on the OSV5M dataset and also the MediaEval’16 dataset.

A.6 HYPERPARAMETER SENSITIVITY ANALYSES

863 We extend our analysis to two further hyperparameters of HierLoc’s training objective: the tem-
 864 perature τ and the geographic weighting coefficient λ used in the GWH-InfoNCE loss. All experi-

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

ments are conducted on a 100k/10k OSV5M split. Table 12 reports the performance of HierLoc for $\tau \in \{0.07, 0.10, 0.15, 0.30\}$. The model exhibits stable behavior across a broad range, with $\tau = 0.1$ yielding the best overall accuracy

Table 12: Temperature sensitivity of the GWH-InfoNCE loss on OSV5M (100k/10k split).

τ	Country (%)	Region (%)	Sub-region (%)	City (%)
0.07	68.72	32.76	20.62	10.31
0.10	69.20	33.70	22.30	11.00
0.15	69.00	32.50	20.50	9.80
0.30	67.80	32.30	20.00	9.67

Table 13 varies the geographic weighting coefficient λ in the GWH-InfoNCE loss. The model reaches peak performance at $\lambda = 1.0$, but accuracy degrades smoothly as λ moves away from this value, demonstrating that the method is not overly sensitive to the choice of weighting strength. Across both hyperparameters, HierLoc maintains stable performance and does not exhibit collapse within a wide range of settings. The smooth variation in accuracy further confirms that the method is robust to moderate deviations from the default $\tau = 0.1$ and $\lambda = 1.0$, and does not rely on finely tuned hyperparameter values.

Table 13: Sensitivity to the geographic weighting parameter λ in GWH-InfoNCE.

λ	Country (%)	Region (%)	Sub-region (%)	City (%)
0.0	63.90	27.80	16.20	7.30
0.5	67.80	32.00	20.20	9.60
1.0	69.20	33.70	22.30	11.00
2.0	65.00	29.50	17.70	8.20

A.7 GEOGRAPHIC WEIGHTING KERNELS.

Our loss defined in the Eq. 4 can incorporate a family of distance-dependent kernels $k(d)$ that transform geographic distance d (in kilometers) into a similarity weight. Let d denote the great-circle distance in kilometers between the image and a negative entity, $\sigma > 0$ a scale parameter, $\lambda > 0$ a weight strength, and $p > 0$ an exponent. We support three kernel families:

- **Laplace kernel (default):** Exponential decay in distance:

$$k_{\text{Laplace}}(d) = \exp\left(-\frac{d}{\sigma}\right),$$

- **Gaussian kernel:** Squared-distance decay, producing a narrower band of influence:

$$k_{\text{Gauss}}(d) = \exp\left(-\left(\frac{d}{\sigma}\right)^2\right),$$

- **Inverse kernel:** Power-law decay, yielding long-range tails:

$$k_{\text{Inv}}(d) = \left(1 + \frac{d}{\sigma}\right)^{-p}.$$

The final geographic weight for a negative sample, which upweights negatives that are geographically close to the positive is

$$w(d) = 1 + \lambda k(d).$$

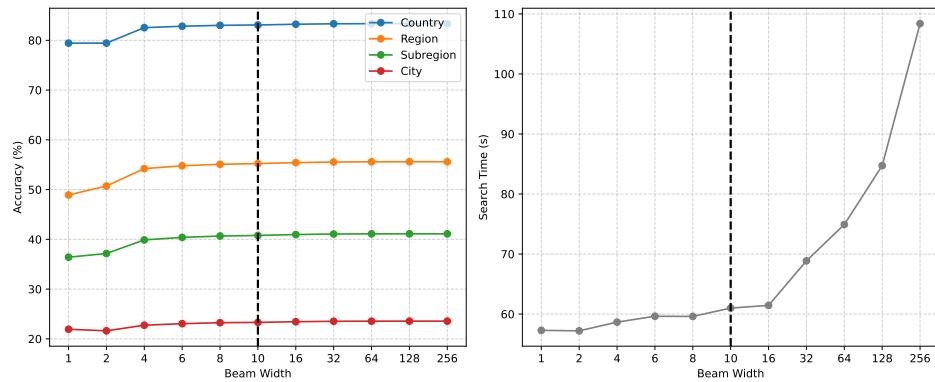
We observe in Table 14 that the choice of kernel has a measurable effect on geolocation performance. The Gaussian kernel, which decays very rapidly with squared distance, yields reasonable accuracy at coarse levels (country and region) but underperforms at finer scales, since moderately close negatives receive almost no weight and thus provide little contrastive pressure. The Inverse kernel, with its heavy-tailed power-law form, performs slightly better at coarse levels but fails to emphasize fine-scale discrimination, as distant negatives retain substantial weight and dominate the denominator.

918
 919 Table 14: Ablation study of HierLoc on OSV5M subset of 100k training set and 10k test set for
 920 search of the best geoweighting decay kernel for GWH-InfoNCE

kernel ($k(d)$)	Mean Dist (km) ↓	Classification Accuracy (%) ↑			
		Country	Region	Subregion	City
Gauss	1525	69.7	33.7	21.1	10.1
Inverse	1529	69.8	34.1	21.7	10.3
Laplace	1462	69.2	33.7	22.3	11.0

921
 922
 923
 924
 925
 926
 927
 928 In contrast, the Laplace kernel achieves the best trade-off: it decays exponentially with distance, pre-
 929 serving emphasis on geographically nearby negatives without entirely discarding moderately distant
 930 ones. This balance leads to superior performance at finer levels (subregion and city), where dis-
 931 tinguishing between visually similar but geographically close entities is most critical. Moreover,
 932 Laplace also reduces the mean geodesic error, showing that its weighting improves localization pre-
 933 cision overall.

934
 935 We therefore adopt the Laplace kernel as the default geo-weighting strategy for GWH-InfoNCE, as
 936 it provides the most effective compromise between local discrimination and global robustness in the
 937 hierarchical geolocation setting.



938
 939 Figure 3: Comparison of accuracy and search time tradeoff with different beam widths.
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951

A.8 COMPUTATIONAL AND STORAGE EFFICIENCY

952 Modern retrieval systems typically use libraries such as *FAISS*⁵ for fast nearest-neighbor search, and
 953 this can be leveraged for Hyperbolic distances in the Lorentz model as well. Figure 4 highlights
 954 the efficiency advantages of HierLoc over standard image-based retrieval. While most research
 955 benchmarks rely on datasets with millions of images, real-world platforms can be orders of magni-
 956 tude larger: for example, Mapillary reports more than 2 billion street-level images (Mapillary Team,
 957 2024). At such scales, SC Retrieval, which grows linearly with database size, becomes compu-
 958 tationally and storage prohibitive. By contrast, HierLoc scales sublinearly because the number of
 959 geographic entities expands far more slowly than the number of raw images. This structural dif-
 960 ference translates into significant savings: HierLoc reduces wall-clock inference time by more than
 961 10×, achieves over 20× lower storage requirements, and cuts FLOPs per query by two orders of
 962 magnitude, all while sustaining higher throughput. Although beam search introduces a slight over-
 963 head relative to flat entity search due to sequential parent-child expansion, it yields higher accuracy
 964 at all levels with negligible additional cost. Overall, HierLoc achieves a favorable trade-off between
 965 scalability and precision, enabling efficient billion-scale deployment that is infeasible with standard
 966 retrieval pipelines.

967
 968
 969
 970
 971 ⁵<https://github.com/facebookresearch/faiss>

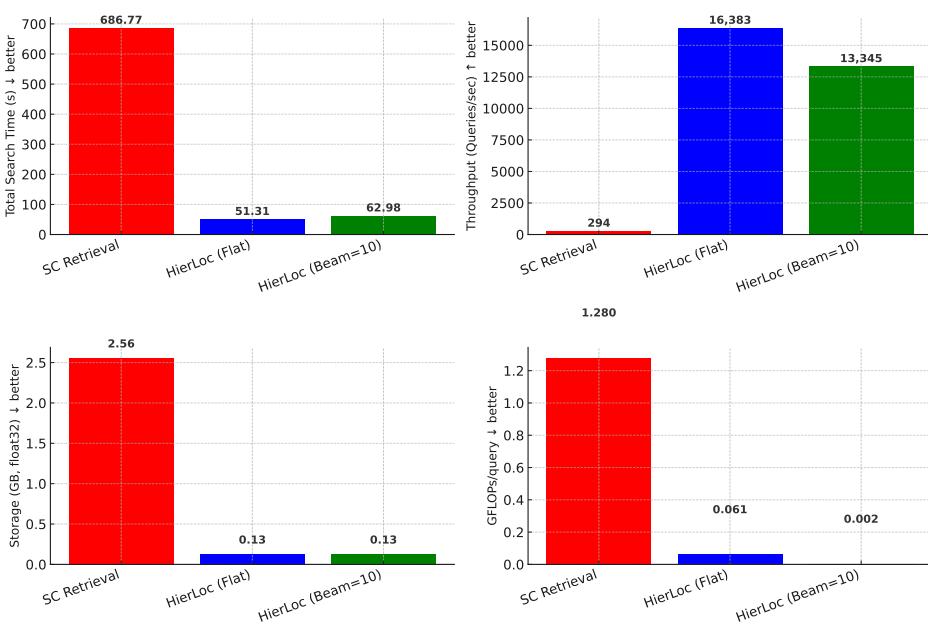


Figure 4: Comparison of computational efficiency across methods. We report wall-clock search time, throughput (queries per second), storage footprint, and FLOPs. Arrows indicate whether lower or higher values are better.

FAISS for Hyperbolic (Lorentz) search and beam expansion. In the Lorentz model, geodesic distance and the Lorentz inner product are monotone-equivalent:

$$\cosh(d_{\mathbb{H}}(x, y)/R) = -\frac{1}{K} \langle x, y \rangle_L, \quad \langle x, y \rangle_L = -x_0 y_0 + \sum_{i=1}^d x_i y_i, \quad R = \sqrt{K}.$$

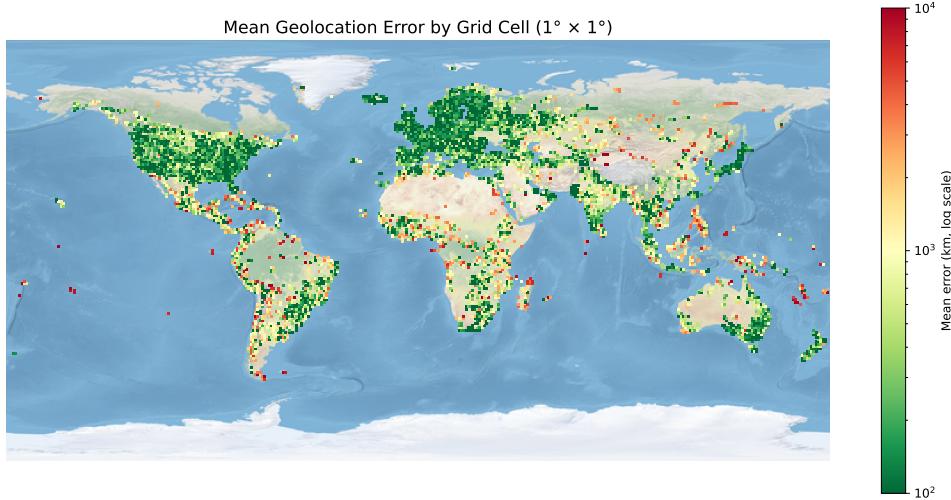
Thus minimizing $d_{\mathbb{H}}$ is equivalent to maximizing $\langle \cdot, \cdot \rangle_L$. We convert Lorentz MIPS into standard Euclidean inner-product search supported by FAISS via a one-line linear map on the *query* only: for $Z = (z_0, \mathbf{z})$ define $\tilde{Z} = (-z_0, \mathbf{z})$. Then $\tilde{Z}^\top H = \langle Z, H \rangle_L$, so a FAISS FlatIP (or IVF-FlatIP/HNSW-IP) index over entity embeddings returns the same ranking as sorting by increasing Hyperbolic distance, without evaluating arcosh at search time. We do *not* ℓ_2 -normalize Lorentz vectors (normalization would distort the geometry). *Beam-search integration.* We build one FAISS IP index per hierarchy level (country → city) in Lorentz coordinates and: (i) seed the beam at the top level with the top- k entities from a single FAISS query using the time-coordinate flip; (ii) for each deeper level, query the corresponding FAISS index and *parent-filter* candidates so only children of the previous-level beam are retained; (iii) accumulate a path score (e.g., $1 - \text{IP}$ or, for exact scoring of a small shortlist, the true $d_{\mathbb{H}}$) and prune to the fixed beam width. This hybrid “FAISS-guided, parent-constrained” expansion amortizes most work into a few high-throughput IP calls while enforcing path consistency. On GPU, GpuIndexFlatIP provides the best throughput; approximate variants (IVF/HNSW) can be enabled at larger scales with no change to the sign-flip trick. We batch queries, reuse indices across batches, and maintain per-level indices to avoid rebuilds during inference.

To directly assess inference-time efficiency against other diffusion based methods, we compare HierLoc against the strongest non-retrieval baseline, RFMS₂, under identical hardware conditions. Table 15 reports the latency breakdown. HierLoc achieves substantially lower forward-pass time and adds only a negligible retrieval cost due to its compact hierarchical search, resulting in an overall 6.56× speedup relative to RFMS₂. This demonstrates that the hierarchical entity-based formulation not only improves accuracy, but also yields a highly efficient inference pipeline suitable for large-scale deployment.

1026

1027 **Table 15: Inference latency comparison on the same GPU. HierLoc provides a $6.56\times$ speedup over**
1028 **RFMS₂.**

Model	Inference (ms)	Retrieval (ms)	Total (ms)	Speedup
RFM S2	14.17	—	14.17	1 \times
HierLoc (ours)	2.09	0.075	2.16	6.56\times

1034 **Figure 5: Mean geographic error distribution of HierLoc on the OSV5M dataset.**

1049

1050

1051

1052

1053

1054

A.9 QUALITATIVE ANALYSIS

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 5 shows the global distribution of localization errors on OSV5M. Unlike smaller benchmarks such as YFCC4K, IM2GPS, or IM2GPS3K, OSV5M provides a geographically diverse test set with over 200k images, enabling systematic analysis at global scale. Urban regions in Europe and North America exhibit relatively low errors due to dense training coverage, while sparsely imaged regions such as inland Asia and central Africa show higher mean errors, reflecting persistent data imbalance. Because OSV5M is more geographically balanced and diverse than prior datasets (Astruc et al., 2024), performance on this benchmark offers a stronger measure of robustness and generalization. Figure 6 demonstrates that Hyperbolic embeddings, trained solely from image–location pairs, capture meaningful geographic, cultural, and linguistic relationships. Clusters emerge without explicit supervision, reflecting both geographic proximity and cultural ties. Notably, island nations form a distinct peripheral cluster, suggesting that their embedding geometry encodes the same structural differences reflected in their error statistics. Taken together, these qualitative analyses reveal three systematic error modes: (i) data imbalance, where underrepresented regions (e.g., inland Asia, central Africa) yield higher error; (ii) cultural and linguistic clustering, where embeddings align geographically distant but historically linked nations; and (iii) recurring visual ambiguity in island environments, where beaches and coastlines lack distinctive geographic context and drive long-tail errors. Understanding these modes highlights both the strengths and the remaining challenges for scalable global geolocation.

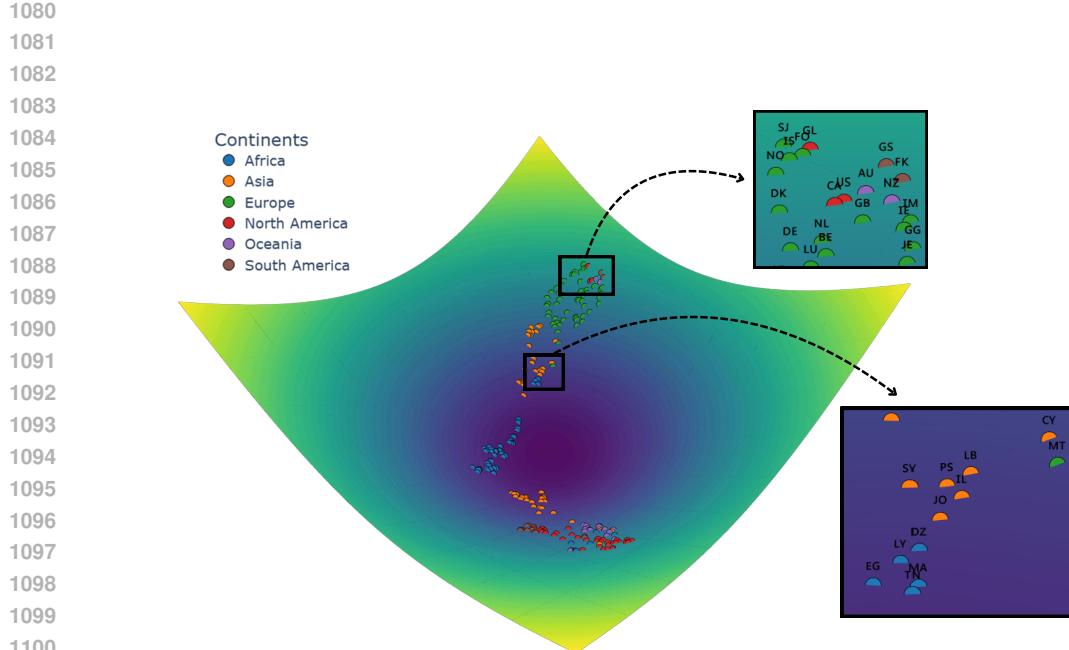


Figure 6: UMAP projection of country embeddings learned in Hyperbolic space. Colors denote continents, with insets highlighting emergent clusters. Geographically distant but culturally linked nations (e.g., Australia, New Zealand, UK, US, Canada) cluster together, while regions with shared history (e.g., the Mediterranean basin) form coherent cross-continental groups. Island nations consistently appear at the periphery of the embedding space.

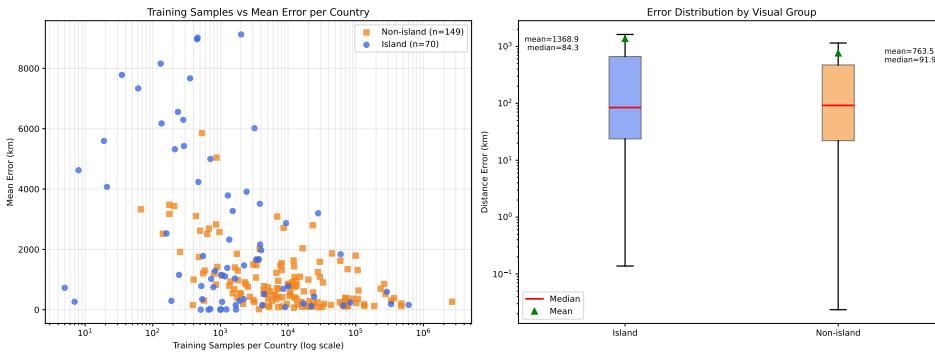


Figure 7: Comparison of geolocation performance across island and non-island territories. **Left:** Scatter plot of mean error versus training samples per country. Both groups benefit from more samples, but islands (blue) show higher variance and extreme outliers. **Right:** Error distributions by group. Although island territories achieve a comparable median error to non-islands (84.3 km vs. 91.9 km), their mean error is nearly twice as high (1368 km vs. 763 km), indicating a heavier long-tail. This reflects the difficulty of disambiguating visually repetitive environments such as coastlines and beaches, where recurring patterns provide weak geographic cues. These challenges are consistent with the peripheral island clusters observed in Figure 6.