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ABSTRACT

Measuring biodiversity is crucial for understanding ecosystem health. While prior
works have developed machine learning models for taxonomic classification of
photographic images and DNA separately, in this work, we introduce a multi-
modal approach combining both, using CLIP-style contrastive learning to align
images, barcode DNA, and text-based representations of taxonomic labels in a uni-
fied embedding space. This allows for accurate classification of both known and
unknown insect species without task-specific fine-tuning, leveraging contrastive
learning for the first time to fuse DNA and image data. Our method surpasses pre-
vious single-modality approaches in accuracy by over 8% on zero-shot learning
tasks, showcasing its effectiveness in biodiversity studies.

1 INTRODUCTION

As environmental change and habitat loss accelerate, monitoring biodiversity is crucial to understand
and maintain the health of ecosystems. Taxonomic classification of organisms at scale is especially
important for understanding regional biodiversity and studying species interactions.

To assist in this, researchers have used computer vision to identify organisms in images (Garcin
et al., 2021; Van Horn et al., 2018; Wei et al., 2022; Martineau et al., 2017) for a variety of appli-
cations such as ecological monitoring (Christin et al., 2019). However, relying solely on images for
identifying and classifying organisms fails to consider the rich evolutionary relationship between
species and may miss fine-grained differences. To better capture these distinctions, researchers have
used DNA sequences for genome understanding and taxonomic classification (Ji et al., 2021; Zhou
et al., 2024a; Mock et al., 2022; Cahyawijaya et al., 2022; Arias et al., 2023; Romeijn et al., 2024).
In particular, DNA barcodes (Hebert et al., 2003), short sections of DNA from specific genes such
as the mitochondrial COI gene (Lunt et al., 1996) in animals and ITS sequences in fungi, have
been shown to be particularly useful for species identification (Arias et al., 2023; Romeijn et al.,
2024). However, collecting DNA requires specialized equipment making it more expensive and less
accessible than images. In this work, we investigate whether we can leverage recent advances in
multi-modal representation learning (Radford et al., 2021; Jia et al., 2021) to use information from
DNA to guide the learning of image embeddings appropriate for taxonomic classification.

Recently, BioCLIP (Stevens et al., 2023) used CLIP-style contrastive learning (Radford et al., 2021)
to align images with common names and taxonomic descriptions to classify plants, animals, and
fungi. While they showed that aligning image representation to text can help improve classification
(especially for the few-shot scenario), their method requires taxonomic labels to be available in order
to obtain text descriptions. These labels can be expensive and time-consuming to obtain.

We propose CLIBD, which uses contrastive learning to map taxonomic labels, biological images
and barcode DNA to the same embedding space. By leveraging DNA barcodes, we eliminate the
reliance on manual taxonomic labels (as used for BioCLIP) while still incorporating rich taxonomic
information into the representation. This is advantageous since DNA barcodes can be obtained at
scale more readily than taxonomic labels, which require manual inspection from a human expert
(Gharaee et al., 2024a;b; Steinke et al., 2024). We also investigate leveraging partial taxonomic
annotations, when available, to build a trimodal latent space that aligns all three modalities for im-
proved representations. We demonstrate the power of using DNA as a signal for aligning image em-
beddings by conducting experiments for fine-grained taxonomic classification down to the species
level. Our experiments show that our pretrained embeddings that align modalities can 1) improve
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on the representational power of image and DNA embeddings alone by obtaining higher taxonomic
classification accuracy and 2) provide a bridge from image to DNA to enable image-to-DNA based
retrieval.

2 RELATED WORK

We review work using images, DNA, and multi-modal models for fine-grained taxonomic classifica-
tion of species and their application in biology. Prior work has primarily explored building unimodal
models for either images or DNA, and largely relied on fine-tuning classifiers on a set of known
species. This limits those approaches to a closed set of species, whereas we are concerned with
being able to identify unseen species, for which we have no examples in the modality of interest.

Taxonomic classification of images in biology. Many studies have explored image-based taxo-
nomic classification of organisms (Berg et al., 2014; Van Horn et al., 2018). However, visual identi-
fication of species remains difficult due to the abundance of fine-grained classes and data imbalance
among species. To improve fine-grained taxonomic classification, methods such as coarse and weak
supervision (Touvron et al., 2021; Ristin et al., 2015; Taherkhani et al., 2019) and contrastive learn-
ing (Cole et al., 2022; Xiao et al., 2021) have been developed. Despite these advances, image-based
species classification is still limited, so we leverage DNA alongside images to enhance representa-
tion learning while maintaining the relative ease of acquiring visual data for new organisms.

Representation learning for DNA. Much work has focused on machine learning for DNA, such as
for genome understanding (Li et al., 2023; Le et al., 2022; Avsec et al., 2021; Lee et al., 2022). Re-
cently, self-supervised learning has been used to develop foundation models on DNA, from masked-
token prediction with transformers (Ji et al., 2021; Cahyawijaya et al., 2022; Theodoris et al., 2023;
Dalla-Torre et al., 2023; Zhou et al., 2024a; Arias et al., 2023), to contrastive learning (Zhou et al.,
2024b) and next-character prediction with state-space models (Nguyen et al., 2023a). While much
of this work focuses on human DNA, models have also been trained on large multi-species DNA
datasets for taxonomic classification. BERTax (Mock et al., 2022) pretrained a BERT (Devlin
et al., 2019) model for hierarchical taxonomic classification but focused on coarser taxa like su-
perkingdom, phylum, and genus, which are easier than fine-grained species classification. Barcode-
BERT (Arias et al., 2023) showed that models pretrained on DNA barcodes rather than general DNA
can be more effective for taxonomic classification. Though some of these works use contrastive
learning, they do not align DNA with images. We extend these models by using cross-modal con-
trastive learning to align DNA and image embeddings, addressing the higher cost of obtaining DNA
samples while improving image-based classification and enabling cross-modal queries.

Multimodal models for biology. While most work on taxonomic classification has been limited
to single modalities, recent work started developing multimodal models for biological applica-
tions (Ikezogwo et al., 2023; Lu et al., 2023; Zhang et al., 2024; Li et al., 2024). Nguyen et al.
(2023b) introduced Insect-1M, applying contrastive learning across text and image modalities. Bio-
CLIP (Stevens et al., 2023) pretrained multimodal contrastive models on images and text encodings
of taxonomic labels in TreeOfLife-10M. However, these models focus only on images and text, lim-
iting their use with new species where taxonomic labels are unavailable. They also miss leveraging
the rich taxonomic knowledge from sources like the Barcode of Life Datasystem (BOLD), which
at the time of writing has nearly 19 M validated DNA barcodes. Although many records include
expert-assigned taxonomic labels, only 24% are labeled to the genus level and 9% to the species
level in BOLD-derived datasets like BIOSCAN-1M and BIOSCAN-5M (Gharaee et al., 2024a;b).
By aligning images to DNA barcodes, we can use precise information in the DNA to align the image
representations with the task of taxonomic classification, without requiring taxonomic labels.

One of the few works that uses both images and DNA is the Bayesian zero-shot learning (BZSL)
approach by Badirli et al. (2021). This method models priors for image-based species classification
by relating unseen species to nearby seen species in the DNA embedding space. Badirli et al. (2023)
similarly apply Bayesian techniques, with ridge regression to map image embeddings to the DNA
space to predict genera for unseen species. However, this approach assumes prior knowledge of all
genera and does not use taxonomic labels to learn its mapping, limiting its representational power. In
this work, we show that aligning image and DNA modalities using end-to-end contrastive learning
produces a more accurate model and useful representation space. By incorporating text during
pretraining, we can leverage available taxonomic annotations without relying on their abundance.
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Figure 1: Overview of CLIBD. (a) Our model consists of three encoders for processing images, DNA
barcodes, and text. During training, we use a contrastive loss to align the image, DNA, and text
embeddings. (b) At inference time, we embed a query image and match it to a database of existing
image and DNA embeddings (keys). We use cosine similarity to find the closest key embedding and
use its taxonomic label to classify the query image.

3 METHOD

To align representations of images, DNA barcodes, and textual taxonomic labels, we start with a
pretrained encoder for each modality and fine-tune them with a multimodal contrastive loss, illus-
trated in Figure 1. During inference, we use our fine-tuned encoders to extract features for a query
image and match them against a database of image and DNA embeddings (keys) with known taxo-
nomic information. To classify a query image, we take the taxonomic information associated with
the most closely matched key. Whilst we can also query against the taxonomic text embeddings, this
approach will only work for species labels seen during training. In contrast, the pretrained model
has the potential to match queries against embeddings of labelled images and barcodes acquired
after training. Thus, images and DNA barcodes comprise a more robust and comprehensive set of
records against which to query.

3.1 TRAINING

Contrastive learning. We base our approach on a contrastive learning scheme similar to CLIP (Rad-
ford et al., 2021), which uses large-scale pretraining to learn joint embeddings of images and text.
In contrastive learning, embeddings for paired samples are pulled together while non-paired sam-
ples are pushed apart, thus aligning the semantic spaces for cross-modal retrieval. Following prior
work (Ruan et al., 2024), we extend CLIP (Radford et al., 2021) to three modalities by considering
the modalities in pairs with the NT-Xent loss (Sohn, 2016) between two modalities to align their
representations. Let matrices X, D, and T represent the batch of ℓ2-normalized embeddings of the
image, DNA, and text modalities. The i-th row of each representation matrices corresponds to the
same physical specimen instance, thus rows Xi and Di are image and DNA features from the same
sample, forming a positive pair. Features in different rows Xi and Dj , i ̸= j, come from different
samples and are negative pairs. The contrastive loss for pair i is

L
(X−→D)
i = − log

exp
(
XT

i Di/τ
)∑n

j=1 exp
(
XT

i Dj/τ
) , L

(D−→X)
i = − log

exp
(
DT

i Xi/τ
)∑n

j=1 exp
(
DT

i Xj/τ
) ,

where τ is a trainable temperature initialized to 0.07 following Radford et al. (2021). The total
contrastive loss for a pair of modalities is the sum over the loss terms for each pairs of samples,

LXD =

n∑
i=1

(
L
(X−→D)
i + L

(D−→X)
i

)
,

wherein we apply the loss symmetrically to normalize over the possible paired embeddings for each
modality (Zhang et al., 2022; Ruan et al., 2024). We repeat this for each pair of modalities and sum
them to obtain the final loss, L = LXD + LDT + LXT .

Pretrained encoders. We use a pretrained model to initialize our encoders for each modality. Im-
ages: ViT-B1 pretrained on ImageNet-21k and fine-tuned on ImageNet-1k (Dosovitskiy et al., 2021).
DNA barcodes: BarcodeBERT (Arias et al., 2023) with 5-mer tokenization, pretrained on about
893 k DNA barcodes using masked language modelling. The training data for BarcodeBERT was

1Loaded as vit base patch16 224 in the timm library.
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Figure 2: Data partitioning. We split the BIOSCAN-1M data into training, validation, and test
partitions. The training set (used for contrastive learning) has records without any species labels as
well as a set of seen species. The validation and test sets include seen and unseen (not seen during
training) species. These images are further split into subpartitions of queries and keys for evaluation.
We ensure that the validation and test sets have different unseen species. Since the seen species are
common, we have one common set of records that we use as keys.

different from, but highly similar to, the DNA barcodes in the BIOSCAN-1M dataset, making it
ideal for our study. Text: we use the pretrained BERT-Small (Turc et al., 2019) for taxonomic labels.

3.2 INFERENCE

To use the model to predict taxonomic labels, we calculate the cosine similarity between the embed-
ded input image (query) and reference image or DNA embeddings (keys) sampled from available
species. We use the taxonomic label (order, family, genus, species) associated with the closest key
as our prediction. This method allows us to evaluate the model in a zero-shot setting on species
which were not seen by the model during training, provided we have appropriately labelled samples
to use as keys. The embedding space also provides the flexibility to be used for other downstream
tasks, such as a supervised classifier or a Bayesian model (Badirli et al., 2021; 2023).

4 TASK AND DATA

To evaluate our method, we perform taxonomic classification using different combinations of input
and reference modalities. The input may be a biological image or DNA sequence; this is matched
against a reference set of labelled DNA barcodes, labelled biological images, or known taxonomic
labels. We evaluate predictions at each taxonomic level by averaging accuracy over samples (micro)
and taxon groups (macro). Unlike training a classification head, our approach can identify unseen
species using labelled reference images or DNA, without needing to know all potential species at
training time. We split the BIOSCAN-1M data such that some species are “unseen” during training,
and report prediction accuracy for both seen and unseen species to study model generalization.

Dataset. We use the BIOSCAN-1M dataset (Gharaee et al., 2024a), a curated collection of over
one million insect data records. Each record in the dataset includes a high-quality insect image,
expert-annotated taxonomic label, and a DNA barcode. However, the dataset has incomplete taxo-
nomic labels, with fewer than 10% of records labelled at the species level. This poses a challenge
for conventional supervised methods, which require comprehensive species-level annotations, but
our method is able to flexibly leverage partial or missing taxonomic information during contrastive
learning. The dataset also possesses a long-tailed class imbalance, typical of real-world biologi-
cal data, presenting a challenge for modelling. Given the vast biodiversity of insects—for which
an estimated 80% is as-yet undescribed (Stork, 2018)—and the necessity to discern subtle visual
differences, this dataset offers a significant challenge and opportunity for our model.

Data partitioning. We split BIOSCAN-1M into train, validation, and test sets to evaluate zero-shot
classification and model generalization to unseen species. Records for well-represented species (at
least 9 records) are partitioned at an 80/20 ratio into seen and unseen, with seen records allocated
to each of the splits and unseen records allocated to validation and test. All records without species
labels are used in contrastive pretraining, and species with 2 to 8 records are added evenly to the
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Table 1: Top-1 macro-accuracy (%) on BIOSCAN-1M test set for different combinations of modal-
ity alignment (image, DNA, text) during contrastive training. Results using DNA-to-DNA, image-
to-image, and image-to-DNA query and key combinations. As a baseline, we also show results for
uni-modal pretrained models before cross-modal alignment. We report the accuracy for seen and
unseen species, and their harmonic mean (H.M.) (bold: highest acc, italic: second highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxa Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order ✗ ✗ ✗ 78.8 91.8 84.8 54.9 48.0 51.2 7.7 9.6 8.5
✓ ✗ ✓ — — — 99.6 97.4 98.5 — — —
✓ ✓ ✗ 100.0 100.0 100.0 89.5 97.6 93.4 99.7 71.8 83.5
✓ ✓ ✓ 100.0 100.0 100.0 99.7 94.4 97.0 99.4 88.5 93.6

Family ✗ ✗ ✗ 86.2 82.1 84.1 28.1 21.7 24.5 0.5 0.8 0.6
✓ ✗ ✓ — — — 90.7 76.7 83.1 — — —
✓ ✓ ✗ 99.1 97.6 98.3 89.1 81.1 84.9 90.2 44.6 59.7
✓ ✓ ✓ 100.0 98.3 99.1 90.9 81.8 86.1 90.8 50.1 64.6

Genus ✗ ✗ ✗ 82.1 69.4 75.2 14.2 10.3 11.9 0.2 0.0 0.0
✓ ✗ ✓ — — — 72.1 49.6 58.8 — — —
✓ ✓ ✗ 97.7 93.0 95.3 74.1 59.7 66.1 73.4 18.7 29.8
✓ ✓ ✓ 98.2 94.7 96.4 74.6 60.4 66.8 70.6 20.8 32.1

Species ✗ ✗ ✗ 76.4 63.6 69.4 7.2 5.0 5.9 0.1 0.0 0.0
✓ ✗ ✓ — — — 54.2 33.6 41.5 — — —
✓ ✓ ✗ 94.4 86.9 90.5 59.2 45.1 51.2 58.1 7.7 13.6
✓ ✓ ✓ 95.6 90.4 92.9 59.3 45.0 51.2 51.6 8.6 14.7

unseen splits in the validation and test sets. Importantly, we ensure that unseen species are mutually
exclusive between the validation and test sets and do not overlap with seen species for labelled
records. Finally, among each of the seen and unseen sub-splits within the validation and test sets,
we allocate equal proportions of records as queries, to be used as inputs during evaluation, and keys,
to be used as our reference database. See Figure 2 for split statistics and Appendix A for details.

Data preprocessing. During inference, we resize images to 256×256 and apply a 224×224 center
crop. For the DNA input, following Arias et al. (2023), we set a maximum length of 660 for each
sequence and tokenized the input into non-overlapping 5-mers. Similar to Stevens et al. (2023),
we concatenate the taxonomic levels of the insects together as text input. As we did not have the
common names of each record, we used the order, family, genus, and species, up to known labels.
With this approach, we can still provide the model with knowledge of the higher-level taxonomy,
even if some records do not have species-level annotations.

5 EXPERIMENTS

We evaluate the model’s ability to retrieve correct taxonomic labels using images and DNA barcodes
from the BIOSCAN-1M dataset (Gharaee et al., 2024a). This includes species that were either seen
or unseen during contrastive learning. We also experiment on the INSECT dataset (Badirli et al.,
2021) for Bayesian zero-shot learning (BZSL) species-level image classification. We report the
top-1 accuracy for the seen and unseen splits, as well as their harmonic mean (H.M.). In the main
paper, we focus on evaluating the model using various combinations of modalities on the test set.
Specifically, we assess the model’s performance when using images and DNA as inputs, matched
against their respective image and DNA reference sets, as well as the combination of image inputs
with DNA references. In addition, we visualize the attention roll-out of the vision transformer we
used as our image encoder to explore how the representation changes before and after contrastive
learning and how aligning with different modalities affects the focus of the image encoder.

Implementation details. Models were trained on four 80GB A100 GPUs for 50 epochs with batch
size 2000, using the Adam optimizer (Kingma & Ba, 2015) and one-cycle learning rate schedule
(Smith, 2018) with learning rate from 1e−6 to 5e−5. For efficient training, we use automatic mixed
precision (AMP). We study the impact of AMP and batch size in Appendix C.
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Figure 3: Example query-key pairs. Top-3 nearest specimens from the unseen validation-key dataset
retrieved based on the cosine-similarity for DNA-to-DNA, image-to-image, and image-to-DNA re-
trieval. Box color indicates whether the retrieved samples had the same species (green), genus
(light-green), family (yellow), or order (orange) as the query or else not matched (red).

5.1 RETRIEVAL BY IMAGE AND DNA

We conducted experiments on BIOSCAN-1M (Gharaee et al., 2024a) to study whether the accuracy
of taxonomic classification improves with contrastive learning, particularly with the inclusion of
barcode DNA as an additional modality. We compare the inference performance in embedding
spaces produced by models trained to align different combinations of modalities: image (I), DNA
(D), and text (T). We also consider different modalities as query (input at inference time) and key
(the embedding we match against). We focus more on querying by image since it is the more readily
available modality.

Taxonomic classification. In Table 1, we report the top-1 macro-accuracy on our BIOSCAN-1M
test set for seen and unseen species (see Table 5 for the top-1 micro accuracy averaged over samples).
We report the performance of the different alignment models at different taxonomic levels (order,
family, genus, species). As expected, the performance drops for more specific taxa (e.g., accuracy
for order is much higher than for species), due to both the increased number of possible labels and
the more fine-grained differences between them. When we consider unseen species, there is a drop in
accuracy compared to seen species, suggesting the model’s ability to generalize could be improved.

Are multimodal aligned embeddings useful? Our experiments show that by using contrastive learn-
ing to align images and DNA barcodes, we can 1) enable cross-modal querying and 2) improve
the accuracy of our retrieval-based classifier. Unsurprisingly, we find that DNA-to-DNA retrieval
provides the most accurate classification, especially for species-level classification. By using con-
trastive learning to align different modalities, we enhance the image representation’s ability to clas-
sify (image-to-image), especially at the genus and species level where the macro H.M. accuracy
jumps from 12.5% to 69% (for genus) and 6.27% to 52% (for species) for our best model (I+D+T).
Note that with alignment, the DNA-to-DNA retrieval performance also improves.

DNA is a better alignment target than taxonomic labels. We also see that using DNA provides a
better alignment target than using taxonomic labels. Comparing the model that aligns image and
text (I+T, row 2) vs. the one that aligns image and DNA (I+D, row 3), we see that the I+D model
consistently gives higher accuracy than the I+T model. At the species level, it sometimes can even
outperform the I+D+T model. This is likely because the I+T model relies on having taxonomic
labels and only about 3.36% pretraining data have been labeled down to the species level.

Cross-modal retrieval. Next we consider cross-modal retrieval performance from image to DNA.
Without any alignment, image-to-DNA performance is effectively at chance accuracy, scoring ex-
tremely low for levels more fine-grained than order. By using contrastive learning to align image
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to DNA, we improve performance at all taxonomic ranks. While the cross-modal performance is
still low compared to within-modal retrieval, we see that it is feasible to perform image-to-DNA
retrieval, which unlocks the ability to classify taxa for which no images exist in reference databases.

Retrieval examples. Figure 3 shows examples of intra-modality image and DNA retrieval as well as
image-to-DNA retrieval from our full model (aligning I+D+T), for which the retrieval is successful if
the taxonomy of the retrieved key matches the image’s. These examples show significant similarity
between query and retrieved images across taxa, suggesting effective DNA and image embedding
alignment despite differences in insect orientation and placement.

Table 2: Species-level top-1 macro-accuracy (%) of BioCLIP and our CLIBD model on the test
set, matching image embeddings (queries) against embeddings of different modalities for retrieval
(image, DNA, and text keys). Note: the BioCLIP model (Stevens et al., 2023) was trained on data
that included BIOSCAN-1M but used different species splits, so it may have seen most of the unseen
species during its training.

Aligned embeddings Image-to-Image Image-to-DNA Image-to-Text

Model Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

BioCLIP ✓ ✗ ✓ 20.4 14.8 17.1 — — — 4.2 3.1 3.6
CLIBD ✓ ✗ ✓ 54.2 33.6 41.5 — — — 57.6 4.6 8.5
CLIBD ✓ ✓ ✓ 59.3 45.0 51.2 51.6 8.6 14.7 59.1 5.6 10.2

5.2 COMPARISON WITH BIOCLIP

Next we compare our aligned embedding space with that of BioCLIP (Stevens et al., 2023) and
investigate how well using taxonomic labels as key would perform. We run experiments on
BIOSCAN-1M by adapting the BioCLIP zero-shot learning demo script to perform species-level
image classification. We use the BioCLIP pretrained model on the BIOSCAN-1M test set, with im-
age query and either image or text embeddings as keys. For the text input for BioCLIP, we combined
the four concatenated taxonomic levels with their provided openai templates as text input, while
for CLIBD, we used the concatenated labels only.

From Table 2, we see CLIBD consistently outperforms BioCLIP, regardless of whether images or
text is used as the key, and even for CLIBD trained only on images and text. Since BioCLIP was
trained on a much broader dataset, including but not limited to BIOSCAN-1M, it may perform
worse on insects as it was also trained on non-insect domains. CLIBD can also leverage DNA
features during inference, while BioCLIP is limited to image and text modalities.

Does matching image to taxonomic labels work better than matching to image or DNA embeddings?
The performance when using text as keys is much lower than using image or DNA keys. This shows
that it is more useful to labeled samples with images (most prefered) or DNA. Nevertheless, if no
such samples are available, it is possible to directly use text labels as matching keys.

5.3 ANALYSIS

How does class size influence performance? Since we use retrieval for taxonomic classification, it
is expected that performance is linked to the number of records in the key set. Figure 4 confirms this.
In general, accuracy is higher for seen species compared to unseen species in cross-modal retrieval,
but this difference is less noticeable in within-modality retrieval. This suggests that contrastive
training has better aligned the data it has been trained on, but it is less effective for unseen species.
The DNA-DNA retrieval performance remains high, regardless of number of records in the key set.

Attention visualization. To investigate how the contrastive training changed the model, we vi-
sualize the attention roll-out of the vision transformer for the image encoder (Abnar & Zuidema,
2020) in Figure 5. We reference the implementation method mentioned in (Dosovitskiy et al., 2021)
by registering forward hooks in the ViT’s attention blocks to capture attention outputs and using
the Rollout method to calculate attention accumulation. We then apply the processed mask to the
original image to generate an attention map of the image area. Inspire by (Darcet et al., 2023), we
inspect the mask of each attention block and remove attention maps containing artifacts. Ultimately,
we select the forward outputs of the second to sixth attention blocks to generate the attention map.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Number of records of the species in the key set

Av
er

ag
ed

 to
p-

1 
ac

cu
ra

cy

Image to Image Image to DNA Image to Text DNA to DNA

Figure 4: Average top-1 per-species accuracy, binned by count of species records in the key set, for
different query and key combinations. First: using images as the query and key, the accuracy for
both seen and unseen species increases as the number of records for the species in the key set rises.
Second: using image as the query and DNA barcodes as the key, the accuracy of unseen species
remains lower than seen species, even with the same number of records in the key set. Third: using
image as the query and text as the key. Similar to using image to DNA, the accuracy of unseen
species is lower than the seen species. Fourth: using DNA barcode as both the query and key. Since
the DNA barcodes of the same species are always similar, the accuracy is always higher.

Before After Input
No

Align
I+T I+D I+D+T Input

No
Align

I+T I+D I+D+T

✗ ✓
Glyphidocera

fidem
chryBioLep01
BioLep1705

Dichomeris
Janzen401

gelJanzen01
Janzen348

Glyphidocera
fidem

Stomphastis
DodonaeaOman

tinBioLep01
BioLep6535

Leucoptera
coffeella

pierMalaise64
Malaise7446

Stomphastis
DodonaeaOman

Musca
crassirostris

Phytomyptera
Malaise3317 Adia cinerella Adia cinerella cosmoMalaise01

MalaiseMetz1051
Phytomyptera
Malaise6385

Neodexiopsis
rufitibia

Chaetostigmoptera
Malaise9466

Phytomyptera
Janzen8087

Phytomyptera
Malaise6385

✓ ✗
Rachispoda

spuleri
Rachispoda

spuleri
Rachispoda

spuleri
Rachispoda

spuleri
Leptocera

erythrocera
Chironomus

lugubris
Chironomus

lugubris
Chironomus

pseudothummi
Chironomus

lugubris
Chironomus

harpi

✗ ✗
Megaselia

montywoodi Anagrus daanei Psychoda sp.
11GMK

Schwenckfeldina
carbonaria

Lepidopsocus
unicolor

Micropsectra
pallidula

Paratanytarsus
laccophilus

Psectrocladius
limbatellus

Micropsectra
polita

Tanytarsus
brundini

Seen Unseen
Figure 5: We visualize the attention for queries from seen and unseen species. The “Before” and
“After” columns indicate whether the prediction (at the species-level) was correct before (e.g. the
initial unaligned model) and after alignment (e.g. the I+D+T model). Note only a few samples were
predicted correctly before alignment and incorrect after (38 for seen, and 69 for unseen).

We show examples for both seen and unseen species. For examples where the aligned models are
able to predict correctly, we see that the attention is more clearly focused on the insect. We also
visualize the embedding space before and after align (see Appendix B.3) and show more attention
examples (Appendix B.4)

5.4 IMPROVING CROSS-MODAL CLASSIFICATION

We now more closely investigate how we can improve cross-modal classification, where during
inference time we have an image of an insect as a query, and we have a database of seen species (with
images and DNA), and unseen species (with just DNA). Badirli et al. (2021) proposed a hierarchical
Bayesian model to classify images, using training images to learn the distribution priors and DNA
embeddings to build surrogate priors for unseen classes. Here, we consider a similar zero-shot
learning (ZSL) setting using our embeddings from our pretrained model for Bayesian zero-shot
learning (BZSL), demonstrating its utility for unseen species classification.

We also consider a simpler strategy using the image embeddings for seen species, and DNA embed-
dings for unseen species. A two-stage approach first determines if a new image query represents a
seen or unseen species (see Figure 6). For seen, image-to-image matching determines the species,
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Figure 6: When we have DNA barcodes but not images of unseen species, we can use a combination
of image and DNA as key sets. We adapt CLIBD for using images as keys for seen species and
DNA for unseen species (i.e. the IS+DU strategy) to predict the species. We first classify the input
image query q against seen species, using either: (a) an 1-NN approach thresholding the cosine
similarity score s = maxk fik · fq; or (b) a supervised classifier predicting over all seen species
and thresholding the maximum softmax probability s = max yk by threshold t. If s < t, we
subsequently query with the image feature fq using 1-NN with the DNA keys flk of the unseen
species and predict the unseen species of the closest DNA feature. ∗During supervised classifier
training, the image encoder is finetuned only for use in the supervised pipeline.

Table 3: Top-1 accuracy (%) on our BIOSCAN-1M test set using the Image+DNA+Text model
with image query. We compare Nearest Neighbour using only DNA keys (NN DNA), vs. our two
strategies to use Image key for seen and DNA key for Unseen, either NN or a supervised linear
classifier. We also compare against BZSL (Badirli et al., 2021) with our embeddings.

Micro top-1 acc Macro top-1 acc

Taxa Method Strategy Seen Unseen H.M. Seen Unseen H.M.

Genus NN DNA 87.6 54.9 67.5 70.6 20.8 32.1
NN IS+DU 85.7 55.0 67.0 66.8 20.8 31.7
Linear IS+DU 83.6 55.6 66.8 61.4 21.1 31.5
BZSL IS+DU 86.8 46.5 60.6 75.7 14.4 24.2

Species NN DNA 74.2 27.8 40.4 51.6 8.6 14.7
NN IS+DU 76.1 26.2 39.0 54.8 8.5 14.8
Linear IS+DU 72.6 25.5 37.7 41.6 9.4 15.3
BZSL IS+DU 76.1 17.6 28.5 62.6 7.2 12.9

while for unseen, image-to-DNA matching (assuming a reference set of labeled DNA samples for
unseen species) determines the species. This is denoted by “IS-DU” (image seen - DNA unseen).

Determining seen vs. unseen. We frame the problem as an open-set recognition task (Vaze et al.,
2022) by using a classifier to determine whether an image query corresponds to a seen species
or an unseen species. This is useful for novel species detection as in practice we may not have
a reference set of labeled samples or even set of species labels for unseen species. We compare
using a 1-nearest neighbor (NN) classifier, and a linear supervised classifier with a fine-tuned image
encoder (see Figure 6 left). See Appendix B.2 for details. We evaluate the ability of our classifiers to
distinguish between seen and unseen in Table 9. Using the image-to-image NN classifier, we obtain
83% accuracy on seen, 77% on unseen and a harmonic mean of 80%. For our linear classifier, we
obtain lower performance on seen (73%), but higher on unseen (85%), with harmonic mean of 79%.

Evaluation on BIOSCAN-1M. We first conduct experiments on the BIOSCAN-1M test set to com-
pare our IS+DU strategy vs. incorporating our learned embeddings in BZSL. We also compare
against querying the seen and unseen DNA keys using 1-NN directly. Table 3 reports the top-1
micro and macro accuracy of at the genus and species level (see Table 10 for order and family level
classification). We find that at the genus and species level, BZSL obtains the good performance for
seen species but that our simple NN-based approach actually outperforms BZSL on unseen species.
Using our IS-DU strategy with the supervised linear classifier, we obtain the best macro top-1 accu-
racy on unseen species, demonstrating that the complexity of BZSL may not be necessary.

Evaluation on INSECT dataset with BZSL. We evaluate on the INSECT dataset (Badirli et al.,
2021), which contains 21,212 pairs of insect images and DNA barcodes from 1,213 species. We
compare different combinations of image and DNA encoders. As baselines, we use a ResNet-101
image encoder, pretrained on ImageNet-1K (used in Badirli et al., 2021), and the ViT-B (Dosovit-
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Table 4: Macro accuracy (%) for species classification in a Bayesian zero-shot learning task on the
INSECT dataset. We compare our CLIBD-D with several DNA encoders: CNN encoder (Badirli
et al., 2021), DNABERT-2 (Zhou et al., 2024a), BarcodeBERT (Arias et al., 2023). The baseline im-
age encoder ResNet-101 used in Badirli et al. (2021) is compared against our image encoder before
(ViT-B) and after (CLIBD-I) pretraining on BIOSCAN-1M (BS-1M). We indicate the pretraining
set for DNA (Pre-DNA) as the multi-species (M.S.) set from Zhou et al. (2024a), anthropods from
Arias et al. (2023), or BS-1M. We compare models both with and without supervised fine-tuning
(FT) for each encoder, except for CLIBD-D, where the comparison is with or without contrastive
learning for fine-tuning on the INSECT dataset. We highlight the baseline from Badirli et al. (2021)
and the variant with our fine-tuned encoders in gray.

Data sources Species-level acc (%)

DNA enc. Image enc. Pre-DNA FT-DNA FT-Img Seen Unseen H.M.

CNN encoder RN-101 – INSECT – 38.3 20.8 27.0
DNABERT-2 RN-101 M.S. – – 36.2 10.4 16.2
DNABERT-2 RN-101 M.S. INSECT – 30.8 8.6 13.4
BarcodeBERT RN-101 Arthro – – 38.4 16.5 23.1
BarcodeBERT RN-101 Arthro INSECT – 37.3 20.8 26.7
BarcodeBERT ViT-B Arthro INSECT – 42.4 23.5 30.2
BarcodeBERT ViT-B Arthro INSECT INSECT 54.1 20.1 29.3

CNN encoder CLIBD-I – INSECT – 37.7 16.0 22.5
BarcodeBERT CLIBD-I Arthro INSECT – 52.0 21.6 30.6
BarcodeBERT CLIBD-I Arthro INSECT INSECT 34.5 18.2 23.8
CLIBD-D RN-101 BS-1M – – 54.9 20.0 29.3
CLIBD-D RN-101 BS-1M INSECT – 32.8 25.0 28.4
CLIBD-D CLIBD-I BS-1M – – 34.2 22.1 26.9
CLIBD-D CLIBD-I BS-1M INSECT INSECT 57.9 25.1 35.0

skiy et al., 2021) image encoder, pretrained on ImageNet-21k and fine-tuned on ImageNet-1k. For
DNA encoders, we evaluate the baseline CNN from Badirli et al. (2021); DNABERT-2 (Zhou et al.,
2024a), a BERT-based model trained on multi-species DNA data; and BarcodeBERT (Arias et al.,
2023), which was pretrained on arthropodic DNA barcode data.

Table 4 shows that the baseline image encoder with CLIBD-D surpasses all baseline methods with-
out fine-tuning on the image encoder, and matches the performance of the fine-tuned BarcodeBERT
and ViT-B in harmonic mean, even without fine-tuning on the INSECT dataset, especially on un-
seen species. Furthermore, using CLIBD-I improves performance over the baseline image encoder,
with the highest performance after fine-tuning of 57.9% seen accuracy and 25.1% unseen accuracy.
This shows the benefits of learning a shared embedding space relating image and DNA data, both in
performance and the flexibility of applying to downstream tasks.

6 CONCLUSION

We introduced CLIBD, an approach for integrating biological images with barcode DNA and taxo-
nomic labels to enhance taxonomic classification by using contrastive learning to align embeddings
in a shared latent space. Our experiments show that, using DNA as an alignment target for image
representations, CLIBD outperforms models that only align images and text. We further demon-
strate the effectiveness of our aligned embedding in zero-shot image-to-DNA retrieval. While we
have demonstrated cross-modal retrieval from image to DNA, the performance still lags behind
intra-modal performance, suggesting an opportunity for improvement. Our experiments were also
limited to the BIOSCAN-1M and INSECT datasets. With the introduction of larger datasets, such
as BIOSCAN-5M, a promising direction is to apply our method on a larger scale. Additionally,
we only investigated CLIP-style contrastive pretraining. Investigating other multi-modal learning
schemes with images and DNA is another promising direction. We hope to extend our method to
other species beyond insects and apply our learned representations to other downstream tasks, such
as 3D model generation to better understand the characteristics of each species.
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APPENDICES

We provide additional details on how we obtain our data split (Appendix A), additional results
(Appendix B) on the validation set, using different image and text encoders, additional details about
the cross-modal experiments, and visualize the embedding space. We also include experiments with
hyperparameter settings such as the use of automatic mixed precision and batch size (Appendix C).

A ADDITIONAL DATA DETAILS

BIOSCAN-1M
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Figure 7: Data partitioning strategy. We first partition species among the splits based on the pres-
ence of a species label and the number of records per species, and then each species is designated
as seen or unseen. Records from each species are then partitioned among train (blue), validation
(orange), and test (green). For the validation and test sets, some records are used as queries, and the
rest are used as keys for the reference database for retrieval.

We use a multi-stage process to establish our split of BIOSCAN-1M (Gharaee et al., 2024a) for
our experiments (see Figure 7). Firstly, we separate records with and without species labels. Any
record without a species label is allocated for pretraining, as we cannot easily use them during
evaluation. Of the remaining records with labelled species, we partition species based on their
number of samples. Species with at least 9 records are allocated 80/20 to seen and unseen, with
unseen records split evenly between validation and test. Species with 2 to 8 records are used only
as unseen species, with a partition of 50/50 between validation and test. This allows us to simulate
real-world scenarios, in which most of our unseen species are represented only by a few records,
ensuring a realistic distribution of species sets. Species with only one record are excluded, as we
need at least one record each to act the query and the key, respectively.

Finally, we allocate the records within each species into designated partitions. For the seen species,
we subdivide the records at a 70/10/10/10 ratio into train/val/test/key, where the keys for the seen
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Figure 8: Distribution of species among the seen, validation unseen, and test unseen splits. Since all
of the train, validation, and test seen splits share the same species, we represent them collectively.
The coloured blocks within each bar represent the numbers of records available for that species,
demonstrating that most of the species in the unseen splits have few records.

species are shared across all splits. The unseen species for each of validation and test are split
evenly between queries and keys. The allocation of queries and keys ensures that we have clearly
designated samples as inputs and target references for inference. We note that some samples in our
data may have the exact same barcode even though the image may differ. Figure 8 shows the number
of species in our dataset and the distribution of records for each species. Note that we have a few
species with a many records, and many species with just a few records.

B ADDITIONAL EXPERIMENTS

In this section, we include additional experimental results and visualizations. We provide additional
results on BIOSCAN-1M (Appendix B.1) and image to DNA retrieval results (Appendix B.2). We
also visualize the aligned embedding space (Appendix B.3) to show the model’s capability in inte-
grating and representing diverse biological data, and more attention visualizations (Appendix B.4).

B.1 ADDITIONAL CLASSIFICATION RESULTS ON BIOSCAN-1M

Results for top-1 micro-accuracy and validation set. For completeness, we provide the top 1
micro-accuracy on the test set (Table 5), and results on the validation set (see Table 6 for macro
accuracy, and Table 7 for micro accuracy). Overall, we see a similar trend in results as for macro
accuracy on the test set (see Table 1 in the main paper), with the trimodal model that aligns image
(I), DNA (D), and text (T) performing the best, and the I+D model outperforming the I+T model.
We also observe that the micro averages (over individual samples) are much higher than the macro
averages (over classes). This is expected as the rare classes are more challenging and pulls down the
macro-average.

Experiments with OpenCLIP. We conduct experiments using OpenCLIP as our text and image
encoder, as well as larger ViT and BERT models. We train our full trimodal model (with image,
DNA, text alignment), and report the species-level top-1 macro accuracy on our validation set for
BIOSCAN-1M in Table 8.

We select OpenCLIP ViT-L/14 (Ilharco et al., 2021) as a representative of a pretrained vision-
language model that is trained with contrastive loss. As the OpenCLIP model requires a large
amount of memory, we use a batch size of 200. From Table 8, we see that using OpenCLIP (first
two rows), we do achieve better performance (especially for image to text) compared to our choice
of Timm VIT B/16 and BERT-small for the image and text encoder at batch size of 200 (row 3).
To disentangle whether the better performance is from the prealigned image and text embeddings or
from the larger model size, we compare with training with a larger batch size (with similar CUDA
memory usage, row 4) and larger unaligned image and text encoder, e.g. Timm ViT-L/16 and Bert-
Base (row 5). Using a larger batch size brings the image-to-image performance close to that of
the model with OpenCLIP (row 2), and can be improved even further with larger batch size (see
Table 14) However, the image-to-text performan is still lower, indicating that the pretrained aligned
image-to-text model is helpful despite the domain gap between the taxonomic labels and the text
that makes up most of the pretraining data for OpenCLIP.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Top-1 micro accuracy (%) on our test set for BIOSCAN-1M and different combinations
of aligned embeddings (image, DNA, text) during contrastive training. We show results for using
image-to-image, DNA-to-DNA, and image-to-DNA query and key combinations. As a baseline,
we show the results prior to contrastive learning (uni-modal pretrained models without cross-modal
alignment). We report the accuracy for seen and unseen species, and the harmonic mean (H.M.)
between these (bold: highest acc, italic: second highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxa Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order ✗ ✗ ✗ 99.1 98.5 98.8 88.8 90.8 89.8 10.5 11.0 10.7
✓ ✗ ✓ — — — 99.7 99.6 99.6 — — —
✓ ✓ ✗ 100.0 100.0 100.0 99.6 99.7 99.6 99.7 98.9 99.3
✓ ✓ ✓ 100.0 100.0 100.0 99.7 99.6 99.6 99.7 99.3 99.5

Family ✗ ✗ ✗ 96.2 93.8 95.0 52.9 60.0 56.2 1.0 1.1 1.0
✓ ✗ ✓ — — — 95.7 92.2 93.9 — — —
✓ ✓ ✗ 99.8 99.2 99.5 95.9 93.1 94.5 95.8 84.6 89.9
✓ ✓ ✓ 100.0 99.5 99.7 96.2 93.7 94.9 96.5 87.1 91.6

Genus ✗ ✗ ✗ 93.4 89.0 91.1 30.1 38.7 33.9 0.2 0.1 0.1
✓ ✗ ✓ — — — 87.2 77.1 81.8 — — —
✓ ✓ ✗ 99.2 96.9 98.0 88.6 82.1 85.2 87.8 51.3 64.8
✓ ✓ ✓ 99.5 97.9 98.7 89.3 82.3 85.7 87.6 54.9 67.5

Species ✗ ✗ ✗ 90.4 84.6 87.4 18.1 26.8 21.6 0.1 0.1 0.1
✓ ✗ ✓ — — — 76.2 61.9 68.3 — — —
✓ ✓ ✗ 97.9 94.8 96.3 79.2 70.0 74.3 75.1 25.2 37.7
✓ ✓ ✓ 98.4 96.3 97.3 79.6 69.7 74.3 74.2 27.8 40.4

Table 6: Top-1 macro accuracy (%) on our val set for BIOSCAN-1M and different combinations
of aligned embeddings (image, DNA, text) during contrastive training. We show results for using
image-to-image, DNA-to-DNA, and image-to-DNA query and key combinations. As a baseline,
we show the results prior to contrastive learning (uni-modal pretrained models without cross-modal
alignment). We report the accuracy for seen and unseen species, and the harmonic mean (H.M.)
between these (bold: highest acc, italic: second highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxa Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order ✗ ✗ ✗ 98.6 81.5 89.2 54.5 39.7 45.9 8.4 6.0 7.0
✓ ✗ ✓ — — — 89.2 85.9 87.5 — — —
✓ ✓ ✗ 100.0 100.0 100.0 99.5 94.1 96.7 99.5 72.0 83.5
✓ ✓ ✓ 100.0 100.0 100.0 98.6 96.1 97.3 99.2 76.0 86.1

Family ✗ ✗ ✗ 87.0 75.8 81.0 29.3 23.4 26.0 0.5 0.5 0.5
✓ ✗ ✓ — — — 90.1 74.7 81.7 — — —
✓ ✓ ✗ 99.9 96.4 98.1 89.6 78.6 83.7 92.2 48.5 63.6
✓ ✓ ✓ 100.0 97.9 98.9 92.9 79.7 85.8 88.6 54.5 67.5

Genus ✗ ✗ ✗ 81.2 67.4 73.7 13.8 11.4 12.5 0.1 0.0 0.0
✓ ✗ ✓ — — — 69.7 53.1 60.3 — — —
✓ ✓ ✗ 98.1 93.1 95.5 75.4 61.7 67.9 73.2 23.3 35.3
✓ ✓ ✓ 99.0 95.7 97.3 76.0 63.1 69.0 68.6 25.5 37.2

Species ✗ ✗ ✗ 76.4 62.2 68.6 7.8 5.3 6.3 0.0 0.0 0.0
✓ ✗ ✓ — — — 52.4 36.9 43.3 — — —
✓ ✓ ✗ 95.8 87.3 91.4 61.9 46.0 52.8 59.3 9.6 16.5
✓ ✓ ✓ 97.1 90.2 93.5 60.2 46.5 52.5 52.1 10.3 17.2
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Table 7: Top-1 micro accuracy (%) on our val set for BIOSCAN-1M and different combinations
of aligned embeddings (image, DNA, text) during contrastive training. We show results for using
image-to-image, DNA-to-DNA, and image-to-DNA query and key combinations. As a baseline,
we show the results prior to contrastive learning (uni-modal pretrained models without cross-modal
alignment). We report the accuracy for seen and unseen species, and the harmonic mean (H.M.)
between these (bold: highest acc, italic: second highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxa Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order ✗ ✗ ✗ 99.2 98.4 98.8 89.3 90.7 90.0 32.2 29.8 31.0
✓ ✗ ✓ — — — 99.7 99.6 99.6 — — —
✓ ✓ ✗ 100.0 100.0 100.0 99.7 99.6 99.6 99.6 98.9 99.2
✓ ✓ ✓ 100.0 100.0 100.0 99.7 99.5 99.6 99.7 99.0 99.3

Family ✗ ✗ ✗ 96.4 94.2 95.3 54.6 61.7 57.9 2.9 3.7 3.3
✓ ✗ ✓ — — — 95.9 92.9 94.4 — — —
✓ ✓ ✗ 99.8 99.4 99.6 95.9 93.3 94.6 95.9 85.7 90.5
✓ ✓ ✓ 100.0 99.7 99.8 96.5 94.3 95.4 96.5 86.8 91.4

Genus ✗ ✗ ✗ 92.9 89.0 90.9 30.3 41.4 35.0 0.4 0.3 0.3
✓ ✗ ✓ — — — 87.1 79.3 83.0 — — —
✓ ✓ ✗ 99.2 97.2 98.2 88.9 83.6 86.2 87.2 58.2 69.8
✓ ✓ ✓ 99.5 98.2 98.8 89.6 84.5 87.0 86.4 59.8 70.7

Species ✗ ✗ ✗ 89.5 84.8 87.1 18.1 31.6 23.0 0.1 0.1 0.1
✓ ✗ ✓ — — — 76.1 68.0 71.8 — — —
✓ ✓ ✗ 98.1 95.2 96.6 79.7 74.0 76.7 75.4 38.8 51.2
✓ ✓ ✓ 98.8 96.5 97.6 80.0 74.3 77.0 73.3 39.6 51.4

Table 8: Species-level top-1 macro accuracy (%) on our val set for BIOSCAN-1M with CLIBD us-
ing different image and text encoder. We compare using the OpenCLIP (OC) pretrained model
with other models. For these experiments, we used OpenCLIP ViT-L/14 (Ilharco et al., 2021)
which is pre-trained on OpenAI’s dataset that combines multiple pre-existing image datasets such
as YFCC100M (Thomee et al., 2016). For timm ViT-B/16 (vit base patch16 224) and timm
ViT-L/16 (vit large patch16 224) (Wightman, 2019) both are trained on ImageNet (Deng
et al., 2009). We also used bert-base-uncased as our pretrained text encoder which was pre-
trained on BookCorpus (Zhu et al., 2015). For the DNA encoder, we use BarcodeBERT (except for
the first row, where we do not align the DNA embeddings). We highlight in gray the setting that
uses the same vision and text encoder that we used in our other experiments. Results use image
embedding to match against different embeddings for retrieval (Image, DNA, and Text).

Batch
size

Training time
(per epoch)

Memory
CUDA

Aligned embeddings Image-to-Image Image-to-DNA Image-to-Text

OC Epoch Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

✓ 200 15 1.3 hour 70.1GB OpenCLIP(L/14) ✗ OpenCLIP 54.4 36.7 43.8 — — — 53.9 7.1 12.6
✓ 200 15 1.4 hour 84.1GB OpenCLIP(L/14) ✓ OpenCLIP 56.8 41.1 47.7 36.4 9.0 14.4 51.2 7.5 13.0
✗ 200 15 1.5 hour 37.4GB timm(B/16) ✓ BERT(small) 52.7 37.7 44.0 32.1 7.0 11.5 44.7 5.2 9.4
✗ 500 38 0.6 hour 82.1GB timm(B/16) ✓ BERT(small) 57.8 40.2 47.5 44.5 9.8 16.0 51.4 6.1 10.9
✗ 200 15 1.5 hour 72.5GB timm(L/16) ✓ BERT(base-uncased) 55.9 40.1 46.7 34.5 8.1 13.1 41.1 6.3 10.9
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Table 9: Accuracy (%) of our I+D+T model in predicting whether an image query corresponds to a
seen or unseen species, as a binary classification problem (evaluated on our BIOSCAN-1M test set).
For the “DNA” strategy with nearest neighbour (NN), we use the nearest DNA feature to classify
into seen or unseen. It serves as a form of “oracle” as it has access to the samples from unseen
species. For the “IS+DU” strategy and NN, we threshold the highest cosine similarity score against
image keys. For the supervised linear classifier (Linear), we threshold the confidence score of the
prediction over seen species. We report accuracy for seen and unseen species, and their harmonic
mean (H.M).

Method Strategy Seen Unseen H.M.

NN (oracle) DNA 82.16 76.21 79.07

NN IS+DU 83.29 76.83 79.93
Linear IS+DU 73.27 85.14 78.76

Table 10: Top-1 accuracy (%) on our BIOSCAN-1M test set using the Image+DNA+Text model
with image query. We compare nearest neighbour (NN) using only DNA keys, vs. our two strategies
to use Image key for seen and DNA key for Unseen, either NN or a supervised linear classifier. We
also compare against BZSL (Badirli et al., 2021) with our embeddings.

Micro top-1 acc Macro top-1 acc

Taxa Method Strategy Seen Unseen H.M. Seen Unseen H.M.

Order NN DNA 99.7 99.3 99.5 99.4 88.5 93.6
NN IS+DU 99.4 99.2 99.3 99.3 89.3 94.1
Linear IS+DU 99.5 99.2 99.3 99.3 88.3 93.5
BZSL IS+DU 99.4 98.2 98.8 98.9 59.6 74.4

Family NN DNA 96.5 87.1 91.6 90.8 50.1 64.6
NN IS+DU 94.6 87.1 90.7 83.0 52.6 64.4
Linear IS+DU 94.7 87.0 90.7 82.8 51.2 63.3
BZSL IS+DU 95.6 80.3 87.3 88.0 32.5 47.5

B.2 ADDITIONAL CROSS-MODAL RETRIEVAL RESULTS

Details about the seen/unseen classifier for the IS-DU strategy. For the NN classifier, we compute
the cosine similarity of the image query features with the image features of the seen species. If
the most similar image key has a similarity higher than threshold t1, it is considered seen. In the
supervised fine-tuning approach, we add a linear classifier after the image encoder and fine-tune the
encoder and classifier to predict the species out of the set of seen species. If the softmax probability
exceeds t2, the image is classified as seen.

We tuned t1 and t2 on the validation set using a uniform search over 1000 values between 0 and 1,
maximizing the harmonic mean of the accuracy for seen and unseen species. We report the binary
classification results on our BIOSCAN-1M test set in Table 9. In these experiments, we use the
I+D+T model with images as the queries.

Order and family results for BIOSCAN-1M. In Table 10, we report the performance of the direct
image-to-DNA matching (NN with DNA), as well as our IS+DU strategy (with the NN and linear
classifiers), as well as BZSL with embeddings from our CLIBD. In the IS-DU strategy, for both the
NN and linear classifier, if a image is classified as seen, we will use image-to-image matching to
identify the most similar key, and classify the species using that key. Otherwise, we match the image
query features with the DNA key features for unseen species.

Results show that at the order and family-level, direct image-to-DNA matching and NN with IS-DU
gives the highest performance, with BZSL being the worst performing.
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(a) No alignment (b) Align image and text

(c) Align image and DNA (d) Align all three modalities
order Diptera-image Diptera-dna Diptera-text Lepidoptera-image Lepidoptera-dna

Lepidoptera-text Hymenoptera-image Hymenoptera-dna Hymenoptera-text Hemiptera-image

Hemiptera-dna Hemiptera-text Coleoptera-image Coleoptera-dna Coleoptera-text

Psocodea-image Psocodea-dna Psocodea-text Thysanoptera-image Thysanoptera-dna

Thysanoptera-text Trichoptera-image Trichoptera-dna Trichoptera-text Plecoptera-image

Plecoptera-dna Plecoptera-text Neuroptera-image Neuroptera-dna Neuroptera-text

Figure 9: Embedding visualization. We visualize the embedding space with no alignment (a),
image and text aligned (b), image and DNA aligned (c), and all three modalities aligned (d) over
the seen validation set generated using UMAP on the image, DNA, and text embeddings, using a
cosine similarity distance metric. Marker hue: order taxon. Marker lightness: data modality.

B.3 EMBEDDING SPACE VISUALIZATION

To better understand the alignment of features in the embedding space, we visualize a mapping of
the image, DNA, and text embeddings in Figure 9. We use UMAP (McInnes et al., 2018) with a
cosine similarity metric applied to the seen validation set to map the embeddings down to 2D space,
and we mark points in the space based on their order classification. We show the embedding space
before alignment (a), with image and text (b), image and DNA (c), and all three modalities. We
see that after aligning the modalities, samples for the same order (indicated by hue), from different
modalities (indicated by lightness) tend to overlap each other. We observe that, for some orders,
there are numerous outlier clusters spread out in the space. However, overall the orders demonstrate
some degree of clustering together, with image and DNA features close to one another within their
respective clusters. Furthermore, we note the text embeddings tend to lie within the Image or (more
often) DNA clusters, suggesting a good alignment between text and other modalities.

B.4 ATTENTION MAP VISUALIZATION

We provide more attention map visualization samples in Figure 10, including both success cases and
failure cases.
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Input No Align I+T I+D I+D+T Input No Align I+T I+D I+D+T
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BioLep1703

tinBioLep01
BioLep9895

psychJanzen12
Malaise6378

psychJanzen20
Malaise4142 Triphleba aqualis Pachyneuron

groenlandicum Megaselia robusta Megaselia robusta Triphleba aqualis

geoMalaise01
Malaise9385

Cosmopterix
Malaise1744

cosmoMalaise01
Malaise4459

gelJanzen1
Janzen8426

geoMalaise01
Malaise9385

gelMalaise01
Malaise9957

elachBioLep01
BioLep210

Battaristis
MalaiseMetz3348

gelMalaise01
Malaise8081

gelMalaise01
Malaise9957

Drosophila calloptera
group sp. PMO-2008

Gymnopternus
aerosus

Drosophila calloptera
group sp. PMO-28

Drosophila calloptera
group sp. PMO-28

Drosophila calloptera
group sp. PMO-2008

Metriocnemus
albolineatus Themira annulipes Lotophila atra Metriocnemus

eurynotus
Metriocnemus
albolineatus

Taurodemus sharpi Harpactus pulchellus Xylosandrus
germanus Taurodemus sharpi Taurodemus sharpi Friseria Malaise4403 Cosmopterix

Malaise1744
gelMalaise01
Malaise6859 Friseria Malaise4403 Friseria Malaise4403

Frankliniella
occidentalis Thrips vulgatissimus Gymnopternus

aerosus
Frankliniella
occidentalis

Frankliniella
occidentalis

Meteorus
Malaise4973

Heterospilus
Malaise5778

Nealiolus
Malaise7920

Meteorus
Malaise4973

Meteorus
Malaise4973

Pegoplata infirma Siphona Malaise9235 Pegoplata infirma Delia pilifemur Pegoplata infirma crambidBioLep01
BioLep8231

acroBioLep01
BioLep17

crambidBioLep01
BioLep8231

tinBioLep01
BioLep5001

crambidBioLep01
BioLep8231

gelJanzen01
Janzen210 Plutella xylostella gelJanzen01

Janzen210
Steniodes

BioLep2469s
gelJanzen01
Janzen210

elachMalaise7530
Malaise7530

cosmoMalaise01
Malaise3563

elachMalaise7530
Malaise7530

Antaeotricha
Phillips01

elachMalaise7530
Malaise7530

Adia cinerella sarcJanzen1
Janzen2705 Spilogona pacifica Adia cinerella Adia cinerella gelBioLep01

BioLep1375 Crocidosema lantana gelBioLep1
BioLep743

gelBioLep01
BioLep1375

gelBioLep01
BioLep1375

Lycoriella inflata Elasmus Malaise8332 Lycoriella inflata Bradysia normalis Lycoriella inflata Coenosia campestris sarcJanzen1
Janzen3114 Coenosia campestris Neodexiopsis rufitibia Coenosia campestris

Tephrochlamys
rufiventris Delia platura Neoleria inscripta Neoleria inscripta Scoliocentra

brachypterna
gelMalaise01
Malaise7558 Hebichneutes tricolor gelMalaise01

Malaise5101
gelMalaise01
Malaise5101

cosmoBioLep01
BioLep15

Limonia trivittata Tersilochus
nitidipleuris Chamaepsila nigra Chamaepsila nigra Chamaepsila nigra Tomosvaryella sp.

ON16 Chamaepsila nigra Dorylomorpha
borealis

Dorylomorpha
borealis

Dorylomorpha
borealis

Seen Unseen
Figure 10: We visualize the attention for queries from seen and unseen species. It showcases that
in most cases, the attention map of the image encoder can well reflect the model’s prediction results,
but there are also some difficult samples where the effectiveness of the attention map does not equate
to the correctness of the prediction results.
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Table 11: Trainable temperature. Top-1 accuracy on the validation set for models contrastively
trained with either a fixed or trainable temperature. We consider the performance when training for
different durations (1 and 15 epochs).

Micro Top-1 Accuracy (%) Macro Top-1 Accuracy (%)

Temperature Epochs DNA-to-DNA Image-to-Image Image-to-DNA DNA-to-DNA Image-to-Image Image-to-DNA

Fixed 1 97.2 62.6 27.4 93.1 41.6 11.0
Trainable 1 96.8 63.5 24.2 92.0 42.8 10.4

Fixed 15 98.0 74.2 57.8 94.7 52.2 32.4
Trainable 15 98.4 76.9 56.5 94.1 57.8 35.7

Table 12: Automatic mixed precision. Top-1 micro and macro accuracy on the validation set with
models contrastively trained either with or without automatic mixed precision (AMP). We com-
pare micro and macro Top-1 accuracies across different embedding alignments (image-to-image,
DNA-to-DNA, and image-to-DNA). Both experiments have otherwise identical training conditions,
including a batch size of 300 and 15 training epochs.

Micro Top-1 Accuracy (%) Macro Top-1 Accuracy (%) Memory Training Time

DNA-to-DNA Image-to-Image Image-to-DNA DNA-to-DNA Image-to-Image Image-to-DNA CUDA (GB) ↓ per epoch↓
–AMP 98.07 74.97 57.38 95.18 54.47 32.22 75.54 4.03 hour
+AMP 97.85 74.31 56.23 97.85 53.65 30.99 60.64 1.15 hour

C IMPLEMENTATION DETAILS AND HYPERPARAMETER SELECTION

In this section, we provide experiments to validate the choice of hyperparameter settings and design
choices we made for efficient training of our model.

C.1 TRAINABLE VS FIXED TEMPERATURE

We compare using a fixed temperature for the contrastive loss vs using trainable temperature (Ta-
ble 11). We find that using the trainable temperature helps improve the performance, provided the
model is trained for enough epochs.

C.2 AUTOMATIC MIXED PRECISION

For efficient training with large batch sizes, we use automatic mixed precision (AMP) with the
bfloat16 data type. The bfloat16 data type gives a similar dynamic range as float32 at reduced
precision, and provides stable training with reduced memory usage.

We compare training with and without AMP in Table 12. By applying AMP, we achieve comparable
performance while using less memory. With AMP, the CUDA memory usage is reduced by about
15GB (∼20%) and the training time by 3 hour per epoch (∼75%). Although using full-precision (no
AMP) yields slightly better accuracies, the lower memory usage and faster training time of AMP
allows for more efficient experiments. Additionally, the lower memory usage with AMP enables us
to use larger batch sizes and is more effective for our experiments.

Table 13: Low-rank adaptation. Top-1 micro/macro accuracy on the validation set for models
contrastively trained with either with full fine-tuning or Low-Rank Adaptation (LoRA). We compare
micro and macro Top-1 accuracies across different embedding alignments (image-to-image, DNA-
to-DNA, and image-to-DNA). Both strategies use a batch size of 300 and are trained for a total of
15 epochs, allowing us to evaluate the impact of fine-tuning techniques on model performance and
CUDA memory usage.

Micro Top-1 Accuracy (%) Macro Top-1 Accuracy (%) Memory Training Time

Fine-tuning Method DNA-DNA Image-Image Image-DNA DNA-DNA Image-Image Image-DNA CUDA (GB) ↓ per epoch↓
Full Fine-Tuning 98.1 74.3 58.0 95.5 54.0 32.4 78.5GB 4.03 hour
LoRA 96.2 64.9 37.6 91.3 45.4 17.1 53.4GB 2.98 hour
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Table 14: Batch size. Top-1 accuracy on the validation set for models contrastively trained with
different batch sizes. Training at larger batch sizes helps improve accuracy at more fine-grained
taxonomic levels such as genus and species.

Micro top-1 accuracy Macro top-1 accuracy

Batch
size

Alignment DNA to DNA Image to Image Image to DNA DNA to DNA Image to Image Image to DNA

Taxa Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order 500 ✓ ✓ ✓ 100.0 100.0 100.0 99.6 99.6 99.6 99.6 99.2 99.4 100.0 92.9 96.3 99.6 98.5 99.0 99.1 75.8 85.9
1000 ✓ ✓ ✓ 100.0 100.0 100.0 99.7 99.6 99.6 99.7 99.2 99.4 100.0 100.0 100.0 99.0 93.7 96.3 99.1 75.3 85.6
1500 ✓ ✓ ✓ 100.0 100.0 100.0 99.7 99.6 99.7 99.7 99.2 99.4 100.0 92.8 96.3 99.5 94.3 96.8 99.6 73.6 84.6
2000 ✓ ✓ ✓ 100.0 100.0 100.0 99.7 99.7 99.7 99.7 99.2 99.4 100.0 100.0 100.0 99.1 95.9 97.5 99.2 73.9 84.7

Family 500 ✓ ✓ ✓ 99.9 99.6 99.8 95.6 93.9 94.7 94.8 86.2 90.3 100.0 97.6 98.7 88.8 79.3 83.8 83.5 52.5 64.5
1000 ✓ ✓ ✓ 100.0 99.7 99.8 96.3 94.2 95.2 96.0 86.9 91.2 99.9 98.0 99.0 90.2 80.5 85.1 87.9 56.1 68.5
1500 ✓ ✓ ✓ 100.0 99.6 99.8 96.5 94.3 95.4 96.7 87.3 91.8 100.0 97.3 98.6 92.0 81.3 86.3 91.7 53.9 67.9
2000 ✓ ✓ ✓ 100.0 99.7 99.9 96.6 94.5 95.5 96.6 87.4 91.8 100.0 98.6 99.3 92.0 81.2 86.3 90.0 56.2 69.2

Genus 500 ✓ ✓ ✓ 99.2 98.3 98.8 87.5 83.6 85.5 77.3 55.9 64.9 98.4 95.5 97.0 71.2 61.6 66.1 54.0 21.4 30.7
1000 ✓ ✓ ✓ 99.4 97.9 98.6 88.7 84.5 86.6 82.4 58.2 68.2 98.4 94.9 96.6 74.4 63.9 68.8 61.2 24.3 34.8
1500 ✓ ✓ ✓ 99.3 98.2 98.8 89.6 84.8 87.1 83.8 59.7 69.7 98.0 95.2 96.6 75.8 63.7 69.2 64.9 23.6 34.6
2000 ✓ ✓ ✓ 99.4 98.4 98.9 89.6 84.9 87.2 84.8 60.1 70.3 98.9 96.5 97.7 76.1 64.2 69.6 64.9 24.0 35.0

Species 500 ✓ ✓ ✓ 97.9 96.5 97.2 76.8 73.7 75.2 58.8 35.8 44.5 95.5 90.7 93.0 56.4 45.9 50.6 36.5 8.7 14.0
1000 ✓ ✓ ✓ 98.2 96.0 97.1 78.8 74.8 76.7 67.2 37.7 48.3 95.8 89.4 92.5 59.8 47.3 52.8 44.3 9.2 15.3
1500 ✓ ✓ ✓ 98.0 96.2 97.1 80.5 74.7 77.5 69.8 39.9 50.8 95.1 89.4 92.2 61.8 47.9 54.0 47.7 10.1 16.6
2000 ✓ ✓ ✓ 98.5 96.5 97.5 80.0 74.9 77.3 70.5 41.3 52.1 96.9 90.9 93.8 61.3 48.0 53.9 47.7 9.9 16.4

C.3 LORA VS FULL FINE-TUNING

For efficient training, we also investigate the performance of using LoRA Hu et al. (2022) vs full
fine-tuning. As shown in Table 13, we find that while LoRA does reduce the memory usage and
training time, the performance is also notably worse, and thus we use full fine-tuning for the rest of
our experiments.

C.4 BATCH SIZE EXPERIMENTS

We conducted additional experiments to investigate the impact of training batch size (from 500 to
2000) on model performance. The choice of batch size ordinarily does not have a major impact on
performance when using supervised learning, but can have larger impact when training using con-
trastive learning since each positive pair is normalized against the pool of negative pairs appearing
in the same training batch.

Our results, shown in Table 14, confirm that the classification accuracy improves as the batch size
increases. The effect on is more pronounced for the harder, more fine-grained, taxonomic levels.
Due to resource limitations, we were only able to train up to a batch size of 2000. We anticipate that
using larger batch sizes would further enhance the classification accuracy of CLIBD, especially on
more fine-grained taxonomic levels.
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