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ABSTRACT

Ensuring fairness in Federated Learning (FL) systems, i.e. a satisfactory perfor-
mance for all of the diverse clients in the systems, is an important and challenging
problem. There are multiple fair FL algorithms in the literature, which have been
relatively successful in providing fairness. However, these algorithms mostly em-
phasize on the loss functions of worst-off clients to improve their performance,
which often results in the suppression of well-performing ones. As a consequence,
they usually sacrifice the system overall average performance for achieving fair-
ness. Motivated by this and inspired by two well-known risk modeling methods
in Finance, Mean-Variance and Mean-Semi-Variance, we propose and study two
new fair FL algorithms, Variance Reduction (VRed) and Semi-Variance Reduc-
tion (Semi-VRed). VRed encourages equality between clients loss functions by
penalizing their variance. In contrast, Semi-VRed penalizes the discrepancy of
only the worst-off clients loss functions from the average loss. Through extensive
experiments on multiple vision and language datasets, we show that, Semi-VRed
achieves SoTA performance in scenarios with highly heterogeneous data distribu-
tions and improves both fairness and system overall average performance.

1 INTRODUCTION

Federated Learning McMahan et al. (2017) is a framework consisting of some clients and the private
data that is distributed among them, and it allows training of a shared or personalized model based
on the clients data. Since the invention of FL by proposing the well-known FedAvg algorithm
(McMahan et al., 2017), it has attracted an intensive amount of attention and much progress has
been made in its different aspects, including algorithmic innovations (Li et al., 2020b; Reddi et al.,
2020a; Pathak & Wainwright, 2020; Huo et al., 2020; Wang et al., 2020; Reddi et al., 2020b; Qu
et al., 2022), fairness (McMahan et al., 2017; Li et al., 2020c; Mohri et al., 2019; Li et al., 2020a;
Yue et al., 2021; Zhang et al., 2022a), convergence analysis (Khaled et al., 2020; Li et al., 2020;
Gorbunov et al., 2021), personalization (Zhang et al., 2021; Chen & Chao, 2022; Oh et al., 2022;
Zhang et al., 2022b; Bietti et al., 2022).

Due to heterogeneity in clients data and their resources, performance fairness is an important chal-
lenge in FL systems. There have been some previous works addressing this problem. For instance,
Mohri et al. (2019) proposed Agnostic Federated Learning (AFL), which aims at minimizing the
largest loss function among clients through a minimax optimization framework. Similarly, Li et al.
(2020a) proposed an algorithm called TERM using tilted losses. Ditto (Li et al., 2021) is another
existing algorithm based on model personalization for clients1. Also, q-Fair Federated Learning
(q-FFL) (Li et al., 2020c) is an algorithm inspired by α-fairness in wireless networks (Lan et al.,
2010). Recently, Zhang et al. (2022a) proposed PropFair based on the concept of Proportional
Fairness (PF). Interestingly, they also showed that all the aforementioned fair FL algorithms can be
unified into a generalized mean framework. GiFair (Yue et al., 2021) is another recent algorithm
which achieves fairness using a different mechanism than the previously mentioned algorithms:
by penalizing the discrepancy between clients loss functions, i.e. encouraging equality. FCFL (Cui
et al., 2021) uses a constrained version of AFL for achieving both algorithmic parity and perfor-
mance consistency in FL settings.

1In order to have fair comparison with our baseline algorithms, we do not use model personalization in this
work.
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Being designed for fair FL, the aforementioned algorithms usually result in the suppression of well-
performing clients, due to the lower weights that the algorithms place on them or due to the equality
that is encouraged between clients losses (GiFair). As a consequence, they achieve an overall
average performance which is either smaller than or close to that of vanilla FedAvg. This is our
motivation for proposing our two new algorithms.

Our inspiration in this paper is a concept in Finance called risk modeling used for portfolio selection.
There are two vastly used methodologies for risk modeling: Mean-Variance (MV) (Zhang et al., 2018;
Soleimani et al., 2009; Markowitz, 1952) and its expansion: Mean-Semi-Variance (MSV) (Boasson
et al., 2017; Plà-Santamaria & Bravo, 2013; Ballestero, 2005; Stuart & Markowitz, 1959), which
are used for quantifying investment return and investment risk. Motivated by the vast usage of these
methodologies and their great success in financial planning, we bring the MV and MSVmethods to FL
by proposing our Variance Reduction (VRed) and Semi-Variance Reduction (Semi-VRed) algo-
rithms, respectively. By conducting extensive experiments on popular vision and language datasets,
we show that our VRed algorithm achieves a performance competitive to existing baseline fair FL
algorithms. More importantly, Semi-VRed achieves state-of-the-art performance in terms of both
fairness and system overall average performance.

2 BACKGROUND

With formal notations, we consider an FL setting with n clients for the task of multi-class classifica-
tion. Let x ∈ X ⊆ Rp and y ∈ Y = {1, . . . , C} denote the input data point and its target label, re-
spectively. Each client i has its own private data with data distribution Pi(x, y). Let h : X×Θ → RC

be the used predictor function, which is parameterized by θ ∈ Θ ⊆ Rd shared among all clients.
Also, let ℓ : RC × Y → R+ be the loss function, which we choose to be the cross entropy loss.
Client i minimizes loss function fi(θ) = E(x,y)∼Pi(x,y)[ℓ(h(x, θ), y)] with minimum value of f∗

i .

There are various fair FL algorithms in the literature. In table 3 in the appendix, we have provided
details of the most recent algorithms with their formulations. The existing fair FL algorithms can be
grouped into two main categories:

2.1 ALGORITHMS BASED ON THE GENERALIZED MEAN

This category of algorithms includes FedAvg (McMahan et al., 2017), q-FFL (Li et al., 2020c),
AFL (Mohri et al., 2019), TERM (Li et al., 2020a), PropFair (Zhang et al., 2022a). It was shown
by Zhang et al. (2022a) that this set of existing fair FL algorithms can be unified into a generalized
mean framework (Kolmogorov, 1930), where more attention is paid to the clients with larger losses.

2.2 ALGORITHMS BASED ON ENCOURAGING EQUALITY

The second category of fair FL algorithms, which includes GiFair, is based on encouraging equal-
ity between clients loss functions. GiFair adds a regularization term to the objective of FedAvg
to penalize the discrepancy between clients loss functions (see table 3 in the appendix). In this way,
it encourages equality between clients loss functions.

A common feature of all the aforementioned algorithms is their emphasis on the clients with rel-
atively larger losses, which usually results in the suppression of the well-performing clients. This
might result in the degradation of the overall average performance (measured by the mean test ac-
curacy across clients). In the next sections, we will see that Semi-VRed can achieve fairness by
regularizing the semi-variance of clients loss functions and improves both fairness and the system
overall performance simultaneously. In the context of variance regularization, there have been some
works in the literature: Maurer & Pontil (2009); Namkoong & Duchi (2017) propose regularizing
the empirical risk minimization (ERM) by the empirical variance of losses across training samples to
balance bias and variance and improve out-of-sample (test) performance and convergence rate. Sim-
ilarly, Shivaswamy & Jebara (2010) propose boosting binary classifiers based on a variance penalty
applied to exponential loss. Variance regularization has also been used for out-of-distribution (do-
main) generalization: assuming having access to data from multiple training domains, Krueger et al.
(2021) propose penalizing variance of training risks across the domains, as a method of distribution-
ally robust optimization, to provide domain generalization.
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3 RISK MODELING METHODS IN FINANCE: Mean-Variance AND
Mean-Semi-Variance

Mean-Variance (MV) and Mean-Semi-Variance (MSV) have been the most popular methods for Mod-
eling risks and gains of an investment portfolio, which is a first step in financial planning.

Mean-Variance (MV) (Zhang et al., 2018; Soleimani et al., 2009; Markowitz, 1952). This method
treats the return of each security in an investment portfolio as a random variable and adopts its ex-
pected value and variance to quantify the return and risk of the portfolio, respectively. An investor
either minimizes the risk for a fixed expected return level or maximizes the return for a given ac-
ceptable risk level. For instance, in the former case, MV results in the following problem:

max
x1,...,xn

E[x1S1 + . . .+ xnSn] (1)

s.t. σ2[x1S1 + . . .+ xnSn] ≤ R,
∑
i

xi = 1, xi ≥ 0.

Here E and σ2 denote the expected value and variance operators, respectively. Also, Si and xi

denote the random return from security i and the proportion of total wealth invested in security i,
respectively. This example has provided a basic view of how MV model works. Other closely related
measures of risk in the MV model include the standard deviation (σ) and coefficient of variation
(σ/E). However, the Mean-Variance modeling of risk is debatable: any uncertain return above the
expectation is usually not considered as risk in the common sense, but the MV model does so. This
shortcoming is resolved by the Mean-Semi-Variance model.

Mean-Semi-Variance (MSV) (Boasson et al., 2017; Plà-Santamaria & Bravo, 2013; Ballestero, 2005;
Stuart & Markowitz, 1959). Having recognized the importance of the (often) one-side nature of risks,
MSV model proposed a downside risk measure known as semi-variance, which we denote by σ2

<.
Unlike variance, it is only concerned with the downside of the return. i.e. only the cases that the
return drops below a predefined threshold. With this risk modeling method, problem 1 changes to
the following:

max
x1,...,xn

E[x1S1 + . . .+ xnSn] (2)

s.t. σ2
<[x1S1 + . . .+ xnSn] ≤ R,

∑
i

xi = 1, xi ≥ 0,

where the operator semi-variance measures the downsides of the return: σ2
<[z] = E[(E[z] − z)2+].

MSV is a preferable alternative for the MV model as its modeling of the risk is more consistent with
our perception from an investment risk. Again, the problem above gives a basic understanding of
how the MSV model works. More complex variations of MV and MSV models have been developed
for complex and unpredictable financial markets (Rigamonti & Lučivjanská, 2022; Zhang et al.,
2018; Ballestero, 2005).

4 MV AND MSV MODELS FOR FAIR FL

In this section, we propose two fair FL algorithms based on the MV and MSV models. We use the two
models to quantify the inequality between clients performances. Inspired by Zhang et al. (2022a),
we take a simple approach and define ui(θ) = M − fi(θ) as the utility of client i, where M can
be treated as a utility baseline. The smaller the loss function of a client becomes, the larger its
utility becomes: the utility of a client can be used to roughly represent the test accuracy of the
shared model, parameterized by θ, on its local data. With this definition, we propose to model the
inequality between clients by the variance and semi-variance of their utilities, resulting in the VRed
and Semi-VRed algorithm, respectively.
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Algorithm 1: VRed and Semi-VRed
Input: global epoch T , client number n, loss function fi, number of samples ni for client i, ,

number of total samples N , initial global model θ0, local step number Ki for client i,
learning rate η

1 Let pi = ni

N for i ∈ {0, 1, . . . , n− 1}
2 for t = 0, 1 . . . T − 1 do
3 randomly select St ⊆ [n]

4 θ
(i)
t = θt for i ∈ St, N =

∑
i∈St

ni

5 for i in St do // in parallel

6 starting from θ
(i)
t , take Ki local SGD steps on fi(θ

(i)
t ) with learning rate η to find θ

(i)
t+1

7 compute ∆
(t)
i = θ

(i)
t − θ

(i)
t+1

8 compute f(θt) =
∑

i pifi(θt) and ∆
(t)

=
∑

i pi∆
(t)
i

9 if VRed then
10 compute ∆t =

∑
i pi∆

(t)
i + 2β

∑
i pi(fi(θt)− f(θt))(∆

(t)
i −∆

(t)
)

11 else if Semi-VRed then
12 compute ∆t =

∑
i pi∆

(t)
i + 2β

∑
i pi(fi(θt)− f(θt))+(∆

(t)
i −∆

(t)
)

13 update θt+1 = θt −∆t

Output: global model θT

4.1 THE VRED ALGORITHM

VRed models the inequality between clients utilities by their variance and aims to minimize the
following objective function:

min
θ

F (θ) = E[{fi(θ)}ni=1] + βσ2[{ui(θ)}ni=1] =
∑
i

pifi(θ) + β
∑
i

pi

ui(θ)−
∑
j

pjuj(θ)

2

=
∑
i

pifi(θ) + β
∑
i

pi

fi(θ)−
∑
j

pjfj(θ)

2

. (3)

This objective, in addition to minimizing the vanilla FedAvg mean loss, reduces the variance of
clients utilities. Let us derive the VRed federated learning algorithm. By taking the gradient of
equation 3 and multiplying it by the step size η, we have:

η∇F (θ) =
∑
i

piη∇fi(θ) + 2β
∑
i

pi

(
fi(θ)−

∑
j

pjfj(θ)
)(

η∇fi(θ)−
∑
j

pjη∇fj(θ)
)
. (4)

This equation immediately leads to an FL algorithm, by replacing the gradient η∇fi(θ) with the
pseudo-gradient (i.e., the opposite of the local update), denoted by ∆

(t)
i :

η∇F (θ) =
∑
i

pi∆
(t)
i + 2β

∑
i

pi

(
fi(θ)− f(θ)

)(
∆

(t)
i −∆

(t)
)
, (5)

where f(θ) =
∑

i pifi(θ) and ∆
(t)

=
∑

i pi∆
(t)
i . The corresponding algorithm is included in

algorithm 1. There is a parameter β which tunes the effect of the regularization term, which needs
to get tuned for better performance. Note that this is a new aggregation rule: instead of simply
averaging the local models, it has an additional second term, which relates to the variance of clients
losses. If all clients are identical, this term would vanish.

4.1.1 AN INTERPRETATION OF VRED

With the definition of utilities in the previous section (ui(θ) = M − fi(θ)), the objective function
of VRed algorithm (equation 3) is aimed to penalize the variance of clients utilities. One poten-
tial drawback of this is that it might result in the suppression of well-performing clients (the ones
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with small losses) for reducing the variance, which is the same drawback that GiFair (Yue et al.,
2021) had. Hence, the final model overall performance averaged across clients might get sacrificed
for achieving fairness. In fact, GiFair minimizes an upper bound of VRed objective function: as-
suming pi = 1

n (i = 1, . . . , n), i.e., all clients have the same number of data points, we have the
following upper bound on VRed objective function (see equation 18 in the appendix for derivation):

∑
i

fi + β
∑
i

∣∣∣∣fi(θ)− 1

n

∑
j

fj(θ)

∣∣∣∣2 ≤
∑
i

fi +
2β

n2

∑
j ̸=i

∣∣∣∣fi(θ)− fj(θ)

∣∣∣∣2, (6)

where the right hand side is the same as GiFair objective function (except the power 2 used for
measuring the pairwise distances between clients losses, see table 3 in the appendix). Therefore,
GiFair in fact minimizes an upper bound of VRed’s objective function. This might be the reason
explaining why our VRed usually outperforms GiFair in terms of fairness in our experiments.

In typical FL settings, the global objective function can be written as a weighted sum of clients loss
functions, i.e. F (θ) :=

∑n
i=1 wihi(θ), where hi(θ) is used by client i as a surrogate of the global

objective and is optimized using the client local data. Also, the weight wi represents the importance
of client i loss function in the global objective function F (θ). For example, FedAvg simply uses
hi(θ) = fi(θ) and wi = pi (pi = ni

N , see algorithm 1) and q-FFL uses hi(θ) = fq+1
i (θ) and

wi = pi. A direct consequence of the above summation form for F (θ) is:

∇F (θ) =

n∑
i=1

wi∇hi(θ), (7)

Again, the weight wi represents the importance of the client i model updates. In lemma 1, we
show that the gradient of the global objective of VRed in equation 3, can be written in the form
of equation 7. For simplicity and easier interpretation, we assume pi =

1
n (i = 1, . . . , n), i.e., all

clients have the same number of data points.

Lemma 1. For any model parameter θ, the gradient of the global objective F (θ) defined in equa-
tion 3 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), wi(θ) =
1

n
+

2β(fi(θ)− f(θ))

n
, f(θ) =

∑
i fi(θ)

n
. (8)

The proof is deferred to §A in the appendix. Lemma 1 shows that, unlike FedAvg that would assign
wi = 1

n , i = 1, . . . , n to all clients, VRed assigns a relatively larger weight (wi) to clients with
larger loss functions, and dynamically updates the weights wi at each communication round. We
will provide an interpretation of this finding about VRed in the next sections. Importantly, based on
equation 8, in order for all clients to get assigned a positive weight, the parameter β needs to satisfy
the following inequalities: 0 ≤ β < βmax

VRed(θ) ≜
1

2(f(θ)−mini{fi(θ)})
.

4.2 THE SEMI-VRED ALGORITHM

Inspired by the discussion on the superiority of MSV over MV in § 3 for risk modeling, we propose
an extension of VRed. Consider the following objective function instead of equation 3:

min
θ

F (θ) = E[{fi(θ)}ni=1] + βσ2
<[{ui(θ)}ni=1] =

∑
i

pifi(θ) + β
∑
i

pi

fi(θ)−
∑
j

pjfj(θ)

2

+

(9)

where σ2
< denotes the semi-variance of clients utilities. This objective, in addition to minimizing

the mean loss, reduces the semi-variance of clients losses, meaning that only those clients that have
relatively small utilities ui(θ) (or equivalently large losses fi(θ)) contribute to the semi-variance
regularization term in eq. (9).
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Similar to what we did for VRed, if we take the gradient of equation 9, we have:

η∇F (θ) =
∑
i

pi∆
(t)
i + 2β

∑
i

pi

(
fi(θ)− f(θ)

)
+

(
∆

(t)
i −∆

(t)
)
, (10)

where ∆(t)
i is the pseudo-gradient (i.e., the opposite of the local update) of user i. The corresponding

algorithm is included in algorithm 1. Again, we have a tunable parameter β which sets the effect of
the regularization term and needs to get tuned for better performance.

4.3 CAN WE INTERPRET WHAT SEMI-VRED DOES?

4.3.1 OPTIMIZATION ASPECT

We will show in lemma 2 that, in contrast to VRed (and GiFair) and thanks to its more efficient
formulation, Semi-VRed does not suppress the well-performing clients to help the worst-off ones.
Similar to lemma 1, we assume pi =

1
n (i = 1, . . . , n), for simplicity and easier interpretation.

Lemma 2. In each communication round between the clients and the server, let >C denote the set
of clients whose local loss function is greater than the average loss function f(θ). For any model
parameter θ, the gradient of the global objective F (θ) defined in equation 9 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), (11)

where:

f(θ) =

∑
i fi(θ)

n
, wi(θ) =


1

n
+

2β(fi(θ)− f(θ))

n
−

2β
∑

j∈>C
(fj(θ)− f(θ))

n2
, if i ∈>C

1

n
−

2β
∑

j∈>C
(fj(θ)− f(θ))

n2
, if i /∈>C

(12)

Similar to VRed, there is an upper-bound for β to ensure positive weights for all clients in equa-
tion 12: 0 ≤ β < βmax

Semi-VRed(θ) ≜
n

2
∑

j∈>C
(fj(θ)−f(θ))

.

Remark 1. Interesting points can be observed by comparing lemma 1 and lemma 2. First, both of
the algorithms pay more attention to worst-off clients by assigning larger weights to their gradients.
However, Semi-VRed assigns relatively larger weights to the well-performing clients. Also, for
VRed, wi(θ) = 1

n + 2β(fi(θ)−f(θ))
n , so the better a client performs, the more it is suppressed by

the algorithm. In contrast Semi-VRed assigns weights to well-performing clients depending on
how bad the worst-off clients perform compared to the average performance (equation 12). As the
performance of worst-off clients improves gradually, the algorithm also lets the well-performing
ones for further improvement, instead of strictly suppressing them like VRed.

4.3.2 HANDLING EXTREME LABEL SHIFTS

We now provide another interesting interpretation of Semi-VRed, related to data heterogeneity in
FL. In order for an easier interpretability, we assume Pi(x, y) = Pi(x|y)Pi(y) = P (x|y)Pi(y).
This means that the class conditional distribution of input x is identical for all clients. Having made
this assumption, we define ℓj(θ) = Ex∼P (x|y=j)[ℓ(h(x, θ), j)] as the average loss of predictor h on
class j. We have lemma 3 about the objective function of Semi-VRed in equation 9.
Lemma 3. Assuming Pi(x, y) = Pi(x|y)Pi(y) = P (x|y)Pi(y) for i ∈ {1, . . . , n}, for any model
parameter θ, Semi-VRed global objective F (θ) defined in equation 9 can be expressed as

F (θ) =

C∑
j=1

P (j)ℓj(θ) +
β

n

n∑
i=1

( C∑
j=1

[Pi(j)− P (j)]ℓj(θ)
)2

+
, (13)

where P (j) =
∑n

i=1 Pi(j)

n is the marginal distribution of class j in the global dataset.
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Pi(j) and P (j) show the ratio of class j in the client i local dataset and the global dataset, respec-
tively. Based on equation 13, Semi-VRed is capable of improving the performance of the predictor
h in extreme class imbalance scenarios: consider when a label j is over-represented in a client i’s
data (i.e. Pi(j) ≈ 1) and under-represented in the global data (i.e. P (j) ≈ 0). For a better under-
standing of how Semi-VRed does so, see example 1 in the appendix.

5 CONVERGENCE RESULTS: FULL CLIENT PARTICIPATION

In this section, we prove the convergence of our proposed Semi-VRed algorithm, when clients
fully participate in each round. We make some standard assumptions on the objective functions
fi. Specifically, we assume the functions are Lipschitz smooth and strongly convex and also their
gradients have bounded norm and local variance:

Assumption 1 (smoothness, strong convexity, bounded stochastic gradient and bounded gra-
dient variance). Each objective function fi is L-Lipschitz smooth and τ -strongly convex: for any
θ, θ′ ∈ Rd and any i ∈ [n], we have ∥∇fi(θ)−∇fi(θ

′)∥ ≤ L∥θ−θ′∥ and fi(θ)− τ
2∥θ∥

2 is convex.
Also, for any batch S ∼ Bb

i of b i.i.d samples from client i local data, the following inequalities
hold (bounded stochastic gradient and bounded local variance):

E
S∼Bb

i

∥∥∥ 1
|S|

∑
(x,y)∈S

∇ℓ(θ, (x, y))
∥∥∥2 ≤ C2,

E
S∼Bb

i

∥∥∥ 1
|S|

∑
(x,y)∈S

∇ℓ(θ, (x, y))−∇fi(θ)
∥∥∥2 ≤ σ2

l,i,

Note that, according to algorithm 1, each client might have a different number (Ki) of mini batches
of size b, but here we assume b = 1 and each client takes Ki = K local steps. Also all clients use
the same learning rate η. In order to prove the convergence of Semi-VRed , we also additionally
assume boundedness and Lipschitzness for the client losses:

Assumption 2 ( boundednes and Lipschitz continuity). For any i ∈ [n], θ, θ′ ∈ Rd and any batch
S ∼ Bb

i of b i.i.d. samples, we have:

0 ≤ ℓS(θ) :=
1

|S|
∑

(x,y)∈S
ℓ(θ, (x, y)) ≤ M

2

∥fi(θ)− fi(θ
′)∥ ≤ L0∥θ − θ′∥ (14)

With the above assumptions, we prove that Semi-VRed algorithm converges to the correct solution.

Theorem 1 (Semi-VRed with full participation). Given Assumptions 1 and 2 , let pi = ni

N , ν =
L
τ and γ = max{8ν,K}. Assume the diminishing learning rate ηt = 2

τ(γ+t) . Then Semi-VRed
with full participation satisfies:

E[F (θT )]− F ∗ ≤ 2ν

(γ + T )

(
B

τ
+ 2(L+BML+ 2βL2

0)∥θ0 − θ∗∥2
)
, (15)

where F (θ) =
∑

i pi

(
fi(θ) + β

(
fi(θ)− f̄(θ)

)2
+

)
and F ∗ = minθ F (θ). Also, B =∑n

i=1 p
2
i (2σ

2
l,i + 8β2M2C2) + 6LF (θ0) + 8(K − 1)2C2.

6 EXPERIMENTS

In this section, we evaluate our proposed algorithms for training fair models. From the obtained
experimental results, we can observe that VRed achieves competitive fairness performance and
Semi-VRed beats almost all the existing algorithms in terms of multiple fairness metrics. Fur-
thermore, Semi-VRed achieves the state of the art performance in terms of the system overall
average performance too.
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Figure 1: Average and worst 10% test accuracies. top left: CIFAR-10, top right: CIFAR-100, bot-
tom left: CINIC-10, bottom right: StackOverflow. Due to divergence, results for AFL on CIFAR-10
and StackOverFlow are not shown. All subfigures share the same legends and axis labels.

6.1 EXPERIMENTAL SETUP

In this section, we provide some details about the experiments we conducted to evaluate our al-
gorithms: the details of the datasets, models and their hyperparameters, and the metrics we use to
evaluate our algorithms. For detailed explanation of the experiments, see §C in the appendix.

Datasets We use four benchmark datasets existing in the literature. The datasets we use include:
CIFAR-10/100 (Krizhevsky et al., 2009), CINIC-10 (Darlow et al., 2018) (task of image classifica-
tion) and StackOverflow (The Tensorflow Federated Authors, 2019) (task of next word prediction).
In order to split the data among clients, we use Dirichlet distribution Wang et al. (2019). StackOver-
flow has a default realistic partition for each client. We follow the same default data distribution.

Train-Test dataset splitting After partitioning the dataset among clients, we split the data of each
client into train and test sets with a ratio for each dataset. Each client uses its test data to evaluate
the common trained model. For more details of the data splittings, see §C in the appendix.

Models, optimizers and loss functions For the CIFAR-10/100 and CINIC-10 datasets, we use
ResNet-18 He et al. (2016). For the language dataset (StackOverflow), we use LSTMs Hochreiter
& Schmidhuber (1997). In order to optimize the models parameters, We use SGD for minimizing
average cross entropy loss. For further details, see §C in the appendix.

Baseline algorithms We compare our VRed and Semi-VRed algorithms with various fair FL
algorithm existing in the literature including: FedAvg McMahan et al. (2017), AFL Mohri et al.
(2019), q-FFL Li et al. (2020c) , PropFair Zhang et al. (2022a), TERM Li et al. (2020a), GiFair
Yue et al. (2021) and Ditto Li et al. (2021).

Other hyperparameters We implement an FL setting where different clients participate in all com-
munication rounds with one local epoch at each round. We use 200 communication rounds for all
algorithms on the datasets to ensure their convergence. For CIFAR-10/100 and CINIC-10, we parti-
tion the data into 50 clients and for language datasets, we partition the data into 20 clients.
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Table 1: Comparison between the performance of different algorithms on CIFAR-100. Second col-
umn: the percentage (%) of suffering clients with improved test accuracy. The value in parentheses
shows the amount of test accuracy improvement averaged over suffering clients. Third column:
the percentage (%) of well-performing clients with degraded test accuracy. The value in parenthe-
ses shows the amount of test accuracy improvement averaged over well-performing clients. Fourth
column: the amount of improvement in the overall mean test accuracy

Algorithm Improved suffering clients Degraded well-performing clients Overall accuracy improvement

q-FFL 52.08±11.95 (+0.69) 54.21±15.38 (-0.79) +0.04±0.41

AFL 51.18±9.26 (+0.56) 77.25±12.85 (-3.50) -1.22±0.95

GiFair 60.55±6.17 (+0.86) 68.22±16.13 (-2.03) -0.40±0.61

TERM 23.66±5.34 (-1.12) 87.93±1.81 (-3.57) -2.20±0.66

PropFair 8.33±1.69 (-4.05) 92.41±4.28 (-6.74) -5.23±0.96

VRed 60.50±12.52 (+1.11) 60.62±7.53 (-0.94) +0.21±0.06

Semi-VRed 65.40±6.29 (+1.47) 53.17±6.75 (-0.42) +0.64±0.30

Evaluation metrics As we discussed in §4, the ultimate goal of proposing our novel algorithms
is to achieve fairness without compromising the system overall average performance. We measure
the overall performance with the mean test accuracy across clients. In order to measure the fairness
in the system, we use the worst 10% test accuracies among clients, which is a standard metric for
fairness in FL (Li et al., 2020a;c). In the appendix, we also use other common metrics in the literature
for measuring fairness, e.g. the standard deviation of test accuracies (see table 6 in appendix C).

6.2 COMPARISON OF VRED AND SEMI-VRED WITH OTHER BASELINE ALGORITHMS

From fig. 1, Semi-VRed outperforms almost all the existing baseline algorithms in terms of the
fairness in the system. Furthermore, Semi-VRed improves the system overall average performance
(mean test accuracy) for three of the datasets as well. For instance, as can be observed from the
results obtained for StackOverflow (see table 6 in § C in the appendix for evaluation in terms of
various fairness metrics), Semi-VRed improves both fairness and mean test accuracy by 3% and
2.7%, respectively. Also, we can observe the competitive performance of VRed.

6.3 SUPERIORITY OF SEMI-VRED OVER VRED AND THE OTHER BASELINE ALGORITHMS

As discussed in § 2, the existing fair FL algorithms usually suppress the well-performing clients in
order to improve the worst-off clients performance. However, Semi-VRed, thanks to its efficient
formulation, tries to avoid this. In order to get a better understanding of this, in table 1, we have
compared different algorithms based on the amount of performance improvement that they provide:
after running the simple vanilla FedAvg on CIFAR-100, we divide the existing 50 clients into two
sets: 1. suffering clients: those with test accuracies below the FedAvg mean accuracy (22 clients
in our experiment) 2. well-performing clients: those with test accuracies above the FedAvg mean
accuracy (28 clients). Then, we run each of the other algorithms and compare their performance
improvement with each other. The results clearly delivers two important messages: 1. the existing
algorithms either more or less suppress the well-performing clients or cannot improve them, due to
the more attention that they pay to the worst-off clients 2. Semi-VRed has the least suppression of
well-performing clients (53.17% with a small average degradation of -0.42), and the highest average
improvement of suffering clients (65.40% with an average accuracy improvement of +1.47), which
results in improving both the fairness and the system overall average performance simultaneously.

7 CONCLUSION

In this work, we introduced two novel fair FL algorithms: VRed and Semi-VRed. In order to
resolve the drawback of most of the existing fair FL algorithms, which is suppression of well-
performing clients, we propose Semi-VRed, which uses an efficient method for measuring per-
formance inequality in a FL system. Our experimental results show that Semi-VRed not only
improves the worst-off clients performance, but also improves the system overall average perfor-
mance as well. Accordingly, Semi-VRed achieves SoTA performance in terms of both the overall
average accuracy and fairness, measured in terms of various common fairness metrics.
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David Plà-Santamaria and Mila Bravo. Portfolio optimization based on downside risk: a mean-
semivariance efficient frontier from dow jones blue chips. Annals of Operations Research, 205:
189–201, 2013.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 18250–
18280. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/qu22a.html.

11

https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v97/mohri19a.html
https://openreview.net/forum?id=HuaYQfggn5u
https://proceedings.neurips.cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.html
https://proceedings.neurips.cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.html
https://proceedings.mlr.press/v162/qu22a.html


Under review as a conference paper at ICLR 2023

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečny,
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Appendix for Semi-Variance Reduction for Fair Federated
Learning

A PROOFS

Lemma 1. For any model parameter θ, the gradient of the global objective F (θ) defined in equa-
tion 3 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), wi(θ) =
1

n
+

2β(fi(θ)− f(θ))

n
, f(θ) =

∑
i fi(θ)

n
. (8)

Proof. From equation 3 and with pi =
1
n , we have:

n∇F (θ) =
∑
i
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(
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)
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Hence,

∇F (θ) =
∑
i

1 + 2β(fi(θ)− f(θ))

n
∇fi(θ) (17)

Derivation of equation 6∑
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∑
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fj(θ)
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Lemma 2. In each communication round between the clients and the server, let >C denote the set
of clients whose local loss function is greater than the average loss function f(θ). For any model
parameter θ, the gradient of the global objective F (θ) defined in equation 9 can be expressed as

∇F (θ) =

n∑
i=1

wi(θ)∇fi(θ), (11)

where:
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f(θ) =

∑
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Proof. From equation 9 and with pi =
1
n , we have:
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The last term in the above equation can be written as:
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Lemma 3. Assuming Pi(x, y) = Pi(x|y)Pi(y) = P (x|y)Pi(y) for i ∈ {1, . . . , n}, for any model
parameter θ, Semi-VRed global objective F (θ) defined in equation 9 can be expressed as

F (θ) =

C∑
j=1

P (j)ℓj(θ) +
β

n

n∑
i=1

( C∑
j=1

[Pi(j)− P (j)]ℓj(θ)
)2

+
, (13)

where P (j) =
∑n

i=1 Pi(j)

n is the marginal distribution of class j in the global dataset.
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Proof. From equation 9 and with pi =
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n , we have:
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fi(θ)

n
=

1

n

n∑
i=1

[
E(x,y)∼pi(x,y)[ℓ(h(x, θ), y)]

]
=

1

n

n∑
i=1

[ C∑
j=1

pi(j)× E(x,y)∼p(x|y=j)[ℓ(h(x, θ), j)]
]

=
1

n

n∑
i=1

[ C∑
j=1

pi(j)ℓj(θ)]
]

=

C∑
j=1

[
(

∑n
i=1 pi(j)

n
)ℓj(θ)

]

=

C∑
j=1

p(j)ℓj(θ), (23)

where p(j) =
∑n

i=1 pi(j)

n is the ratio of data points with label j in the global dataset. Similarly, we
have:

fi(θ) =

C∑
j=1

pi(j)ℓj(θ). (24)

By plugging in the above equivalences for fi(θ) and f(θ) into equation 9, we get to equation 13.

Due to the similarity of Semi-VRed’s objective function to that of FedAvg, we build its conver-
gence proof on top of the convergence proof for FedAvg in Li et al. (2020d). We refer the reader to
the work for the detailed proof.

We now prove the convergence of our Semi-VRed algorithm.
Theorem 1 (Semi-VRed with full participation). Given Assumptions 1 and 2 , let pi = ni

N , ν =
L
τ and γ = max{8ν,K}. Assume the diminishing learning rate ηt = 2

τ(γ+t) . Then Semi-VRed
with full participation satisfies:

E[F (θT )]− F ∗ ≤ 2ν

(γ + T )

(
B

τ
+ 2(L+BML+ 2βL2

0)∥θ0 − θ∗∥2
)
, (15)

where F (θ) =
∑

i pi

(
fi(θ) + β

(
fi(θ)− f̄(θ)

)2
+

)
and F ∗ = minθ F (θ). Also, B =∑n

i=1 p
2
i (2σ

2
l,i + 8β2M2C2) + 6LF (θ0) + 8(K − 1)2C2.

Proof. We first rewrite a simplified version of the Semi-VRed objective function (equation 9) in
the following.

F (θ) =
∑
i

piGi(θ) =
∑
i

pi
(
fi(θ) + β (fi(θ)− µ)

2
+

)
, (25)

where Gi(θ) = fi(θ) + β (fi(θ)− µ)
2
+, and also, µ = Σipifi is fixed during clients local com-

putations. In the beginning of each communication round, we update µ for the next round of local
computations. In other words:

µt+1 =

n∑
i=1

pifi(θt+1). (26)

With these notations, it suffices to find the constants in Assumption 1 for Gi(θ).

15
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Smoothness We have:

Gi(θ) = fi(θ) + β(fi(θ)− µ)2+ =

{
fi(θ) , if 0 ≤ fi(θ) ≤ µ

fi(θ) + β(fi(θ)− µ)2 , if fi(θ) > µ
(27)

In the first case, Gi is smooth with the same smoothness parameter of fi(θ):
∥∇Gi(θ)−∇Gi(θ

′)∥ ≤ L∥θ − θ′∥. (28)

In the second case, we have:
∇2Gi(θ) = ∇2fi(θ) + 2β((fi(θ)− µ)∇2fi(θ) +∇fi(θ)∇fi(θ)

⊤)

⪯ L+ 2β(
M

2
∇2fi(θ) +∇fi(θ)∇fi(θ)

⊤)

⪯ (L+ βML+ 2βL2
0)I , (29)

where in the last line, we used Assumption 2 and the following:

∥∇fi(θ)∇fi(θ)
⊤∥sp = sup

∥u∥=1

sup
∥v∥=1

⟨∇fi(θ)∇fi(θ)
⊤u; v⟩

= sup
∥u∥=1

sup
∥v∥=1

(∇fi(θ)
⊤u)⊤∇fi(θ)

⊤v = ∥∇fi(θ)∥2 ≤ L2
0, (30)

where in the second line we used Cauchy–Schwarz inequality and Assumption 2. Hence, from
eq. (28) and eq. (29), we conclude that Gi(θ) is Lipschitz smooth:

∥∇Gi(θ)−∇Gi(θ
′)∥ ≤ (L+ βML+ 2βL2

0)∥θ − θ′∥. (31)

Strong Convexity From, eq. (27), we have:

∇2Gi(θ) =

{
∇2fi(θ) , if 0 ≤ fi(θ) ≤ µ

∇2fi(θ) + 2β(fi(θ)− µ)∇2fi(θ) + 2β∇fi(θ)∇fi(θ)
⊤ , if fi(θ) > µ

(32)

From the above derivation of ∇2Gi(θ) and that fi(θ) is τ -strongly convex, we can immediately
conclude that Gi(θ) is also τ -strongly convex.

local gradient variance constants For the local variance term, we define φ(t) = t+ β(t− µ)2+.
We have:

∥∇Gi(θ)−∇(φ ◦ ℓS)(θ)∥

=
∥∥∥(∇fi(θ) + 2β(fi(θ)− µ)+∇fi(θ)

)
−

(
∇ℓS(θ) + 2β(ℓS(θ)− µ)+∇ℓS(θ)

)∥∥∥
≤ ∥∇fi(θ)−∇ℓS(θ)∥+ 2β∥(fi(θ)− µ)+∇fi(θ)∥+ 2β∥ℓS(θ)− µ)+∇ℓS(θ)∥
≤ ∥∇fi(θ)−∇ℓS(θ)∥+ βM∥∇fi(θ)∥+ βM∥∇ℓS(θ)∥
≤ ∥∇fi(θ)−∇ℓS(θ)∥+ 2βMC (33)

where in line four, we used Assumption 2 and in line five, we used 1. By taking the square on both
sides and the expectation over S ∼ Bb

i , we get:

ES∼Bb
i
∥∇Gi(θ)−∇(φ ◦ ℓS)(θ)∥2 ≤ ES∼Bb

i

(
∥∇fi(θ)−∇ℓS(θ)∥+ 2βMC

)2

≤ ES∼Bb
i

(
2∥∇fi(θ)−∇ℓS(θ)∥2 + 8β2M2C2

)
=

(
2σ2

l,i + 8β2M2C2

)
. (34)
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In the third line, we used (a+ b)2 ≤ 2(a2 + b2). We also used Assumption 1 in the same line.

B EXAMPLES

We borrow the following example on class imbalance in FL from Shen et al. (2022) to provide a
better understanding of lemma 3. The following example shows an extreme class imbalance, which
Semi-VRed can handle efficiently.

Example 1. Let u be the uniform distribution over the existing C classes. Also, let δc be the Dirac
distribution of class c. Now, without loss of generality, lets assume that C = 2 (binary classification
problem). For the n existing clients, we have:

pi(y) =

{
αu+ (1− α)δ1 if i = 1

αu+ (1− α)δ2 if i ∈ {2, . . . , n} (35)

Accordingly, we have:

pi(1) =

1− α

2
if i = 1

α

2
if i ∈ {2, . . . , n}

(36)

pi(2) =


α

2
if i = 1

1− α

2
if i ∈ {2, . . . , n}

(37)

Therefore,

fi(θ) =

(1− α

2
)ℓ1(θ) +

α

2
ℓ2(θ) if i = 1

α

2
ℓ1(θ) + (1− α

2
)ℓ2(θ) if i ∈ {2, . . . , n}

(38)

Hence,

f(θ) =
(α
2
+

1− α

n

)
ℓ1(θ) +

(α
2
+

(1− α)(n− 1)

n

)
ℓ2(θ) (39)

Clearly, we can see that if α ≈ 0 and n is large, then ℓ1(θ), which is the loss over the minority data
will have a small weight, which leads to ℓ1(θ) being larger than ℓ2(θ) and poor performance on the
minority class 1. Now, if we rewrite the Semi-VRed objective function (equation 9), we have:

F (θ) =
(α
2
+
1− α

n

)
ℓ1(θ)+

(α
2
+
(1− α)(n− 1)

n

)
ℓ2(θ)+

β(n− 1)2(1− α)2

n3

(
ℓ1(θ)−ℓ2(θ)

)2

(40)

For α ≈ 0:

F (θ) ≈ ℓ2(θ) +
β

n

(
ℓ1(θ)− ℓ2(θ)

)2

, (41)

which improves ℓ2(θ), thanks to its regularization term. Hence, the performance of client 1 and
consequently, fairness in the system will improve.
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C EXPERIMENTAL SETUP

In this section, we provide more experimental details that are deferred from the main paper. For each
experiment, we report the average result obtained from three runs with different random seeds. For
our experiments, we used an internal GPU server with six NVIDIA Tesla P100. The experiments
last about 4 weeks in total.

C.1 DATASETS AND MODELS

In this subsection, we describe the datasets we use in our experiments. For all the datasets we use a
batch size of 64.

CIFAR-10/100 (Krizhevsky et al., 2009) are two image classification datasets vastly used in the
literature as benchmark datasets. Each of these datasests contains 50000 sample images with 10/100
balanced classes for CIFAR-10 and CIFAR-100, respectively. We use Dirichlet allocation (Wang
et al., 2019) to distribute the data among 50 clients with label shift: we split the set of samples from
class k (Sk) to n subsets (Sk = Sk,1 ∪ Sk,2 ∪ . . . ∪ Sk,n), where n is the number of clients and
Sk,j corresponds to the client j. We do the split based on Dirichlet distribution with parameter 0.05
(Dir(0.05)). When the split is done for all classes, we gather the samples corresponding to each
client from different classes: assuming there are C classes in total S1,j ∪ S2,j ∪ . . . ∪ SC,j is the
data allocated to the client j. Having allocated the data of each client, we split them into train and
test set for each client. The train-test split ratio is 50-50 and 60-40 for CIFAR-10 and CIFAR-100,
respectively.

CINIC-10 (Darlow et al., 2018) is another benchmark vision dataset that we use in our experiments.
There are a total of 270,000 sample images, which we distribute with label shift between 50 clients
based on Dir(0.5) distribution Wang et al. (2019). We then randomly split the data of each client
into train and test sets with split ratio 50-50.

StackOverflow (The Tensorflow Federated Authors, 2019) is a language dataset consisting of
Shakespeare dialogues for the task of next word prediction. There is a natural heterogeneous par-
tition of the dataset and we treat each speaking role as a client. We filter out the clients (speaking
roles) with less than 10,000 samples from the original dataset and randomly select 20 clients from
the remaining. Finally, we split the data of each client into train and test sets with a ratio of 50-50.

Table 2 provides a summary of the datasets we used and the models used for each of them.

Table 2: Details of the experiments and the datasets. ResNet-18: residual neural network (He et al.,
2016). GN: Group Normalization (Wu & He, 2018); RNN: Recurrent Neural Network; LSTM: Long
Short-Term Memory layer; FC: fully connected layer.

Dataset Train samples Test samples Partition method clients Model

CIFAR-10 24959 25041 Dir(0.05) 50 ResNet-18 + GN
CIFAR-100 39445 10555 Dir(0.05) 50 ResNet-18 + GN
CINIC-10 134713 134966 Dir(0.5) 50 ResNet-18 + GN

StackOverflow 109671 109621 realistic partition 20 RNN (1 LSTM + 2 FC)

C.2 ALGORITHMS AND THEIR HYPERPARAMETERS

We use most recent fair FL algorithms existing in the literature as our baseline algorithms, including:
FedAvg (McMahan et al., 2017), q-FFL (Li et al., 2020c), AFL (Mohri et al., 2019), PropFair
(Zhang et al., 2022a), TERM (Li et al., 2020a), GiFair (Yue et al., 2021). For each pair of dataset
and algorithm, we find the best learning rate based on a grid search. In the following, we have
reported the learning rate grid we use for each dataset:

• CIFAR-10: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};

• CIFAR-100: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};

• CINIC-10: {1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2};
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Table 3: Details of the existing fairfl algorithms. fi is the loss function of the client i.

FL algorithm Objective Reference
FedAvg

∑
i fi McMahan et al. (2017)

AFL maxi fi Mohri et al. (2019)
q-FFL

∑
i f

q+1
i Li et al. (2020c)

TERM
∑

i e
αfi Li et al. (2020a)

PropFair −
∑

i log(M − fi) Zhang et al. (2022a)

GiFair
∑

i fi + λ
∑

i ̸=j |fi − fj | Yue et al. (2021)

VRed
∑

i fi + β
∑

i

(
fi(θ)− 1

n

∑
j fj(θ)

)2

this work

Semi-VRed
∑

i fi + β
∑

i

(
fi(θ)− 1

n

∑
j fj(θ)

)2

+
this work

• StackOverflow: {1e-2, 5e-2, 1e-1, 5e-1, 1}.

The best learning rate used for each (dataset, algorithm) pair is reported in Table 4.

Table 4: The best learning rates used for training each algorithm on different datasets.

Datasets FedAvg q-FFL AFL TERM PropFair GiFair VRed Semi-VRed

CIFAR-10 5e-3 5e-3 5e-3 1e-2 1e-2 5e-3 5e-3 5e-3
CIFAR-100 2e-3 2e-3 5e-3 1e-2 1e-2 5e-3 5e-3 5e-3
CINIC-10 1e-2 5e-3 1e-2 1e-2 2e-2 2e-2 5e-3 5e-3

StackOverflow 2e-1 5e-2 5e-2 2e-1 5e-1 2e-1 5e-1 5e-1

We now explain the algorithms we use and how we tune their hyperparameters. We adapt TERM
with only client-level fairness (α > 0) and no sample-level fairness (τ = 0). We tune the hyperpa-
rameter α for each dataset based on a grid search in the grid {0.01, 0.1, 0.5, 1}. We have reported
the best value of α for each dataset in Table 5. For AFL, there are two hyperparameters: γw and γλ.
We tune the learning rate γw from the corresponding grid and choose the default value γλ = 0.1.
For q-FFL, we use the q-FedAvg algorithm (Li et al., 2020c). We also tune the hyperparameter q
from the grid {0.01, 0.1, 1}. We find that for all the used datasets, q = 0.1 has the best peformance
(as reported in Table 5). We also tried larger values out of the grid and they often lead to divergence
of the q-FFL algorithm. We adopt the Global GiFair model (Yue et al., 2021), which results in a
single global model. In order to have client-level fairness, we treat each client as a group of size
1. For tuning the regularization weight of GiFair (λ), we follow (Yue et al., 2021). As stated in the
paper, there is an upper-bound for λ (see §3 in the paper). For our experiments, the upper-bound is
λ ≤ mini{ wi

n−1}, where wi is the ratio of total samples allocated to the client i and n is the number
of clients. We try four different values in the interval and choose the best one. When the number
of clients is large, this upper-bound is small, and for all of our datasets, this upper-bound was the
best value, as reported in Table 5. We tune M for the PropFair algorithm based on a grid search in
{2, 3, 4, 5}. Finally, for our VRed and Semi-VRed algorithms, we tune the regularization weight β
based on grid search on the grid {0.01, 0.05, 0.1, 0.2, 0.5, 1}. Larger values of β often resulted in
the divergence of the algorithms. We have reported the best value of all of the hyperparameters for
each dataset in Table 5.

C.3 DETAILED RESULTS

In Table 6, we report detailed results obtained from the algorithms we study in this work. We use a
default batch size of 64 for all the experiments. The statistics we report include: 1. the average test
accuracy across clients (overall average performance) 2. the standard deviation of test accuracies
across clients 3. the lowest (worst) test accuracy among clients 4. the lowest 10% test accuracies 5.
the lowest 20% test accuracies 6. the highest 10% test accuracies. For each experiment, we report
the average result obtained from three runs with different random seeds. As can be observed, our
proposed algorithms VRed and Semi-VRed consistently beat almost all the baseline algorithms
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Table 5: The best values of hyperparameters used for different datasets, chosen based on grid search.

Algorithm CIFAR-10 CIFAR-100 CINIC-10 StackOverflow

q-FFL q 1e-1 1e-1 1e-1 1e-1

TERM α 1e-2 5e-1 5e-1 5e-1

GiFair λ 6e-5 2.6e-4 5e-5 2.4e-3

PropFairM 3 3 5 4

VRed β 5e-1 1e-1 2e-1 1e-1

Semi-VRed β 5e-1 1e-2 2e-1 2e-1
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Figure 2: Worst 20% test accuracies for different algorithms. top left: CIFAR-10, top right: CIFAR-
100, bottom left: CINIC-10, bottom right: StackOverflow. Due to divergence, results for AFL on
CIFAR-10 and StackOverFlow are not shown. All subfigures share the same legends and axis labels.

across different datasets in terms of various fairness metrics. Also, Semi-VRed can improve the
overall average performance (mean test accuracy) for three of the datsets as well.

Following Figure 1, we have compared our proposed algorithms with the baseline algorithms in
terms of their worst 20% test accuracies as well and the visualized results are shown in Figure 2.
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Table 6: Comparison among federated learning algorithms on CIFAR-10, CIFAR-100, CINIC-10
and StackOverflow datasets with test accuracies (%) from clients. All algorithms are fine-tuned.
Mean: the average test accuracy across all clients; Std: standard deviation of clients test accuracies;
Worst: the worst test accuracy among clients; Worst (10/20%): the worst 10/20% test accuracies of
clients; Best (10%): the best 10% test accuracies of clients.

Dataset Algorithm Mean Std Worst Worst (10%) Worst (20%) Best (10%)

FedAvg, Ditto 43.45±0.60 14.33±0.62 9.35±3.13 18.86±0.99 23.77±0.70 68.97±0.81

C
IF

A
R

-1
0 q-FFL 45.46±0.74 14.31±2.03 18.71±3.36 21.23±3.06 25.95±3.51 72.31±2.88

AFL - - - - - -
GiFair 45.05±0.64 12.93±0.44 16.79±3.55 22.65±2.03 26.52±0.76 65.62±2.59

TERM 45.61±1.03 12.24±0.56 13.80±5.25 24.89±1.37 29.34±0.61 68.65±1.27

PropFair 36.95±0.21 15.16±1.33 1.14±1.62 12.49±0.28 16.66±1.31 66.04±4.24

VRed 44.43±0.88 13.05±1.32 18.61 ±3.12 24.28 ±2.22 27.46±1.56 69.31±3.48

Semi-VRed 45.47±0.10 12.58±0.23 19.04±6.73 27.08±1.76 30.34±1.05 72.50±0.88

FedAvg, Ditto 20.20±0.31 6.50±0.21 10.36±0.69 11.07±0.54 12.49±0.51 33.88±0.09

C
IF

A
R

-1
00

q-FFL 20.25±0.11 6.30±0.27 9.66±0.33 11.09±0.67 12.52±0.46 33.96±0.90

AFL 18.98±0.71 4.91±0.37 9.81±0.69 11.31±0.18 12.72±0.21 28.68±1.71

GiFair 19.81±0.32 5.74±0.16 9.35±0.34 11.19±0.24 12.59±0.49 32.30±0.32

TERM 18.00±0.41 6.05±0.18 8.86±0.50 10.02±0.44 11.04±0.51 31.58±0.98

PropFair 14.97±0.68 6.44±0.34 5.40±1.28 7.00±1.11 8.06±1.07 28.89±0.91

VRed 20.42±0.36 6.08±0.05 9.43±1.01 11.21±0.74 12.81±0.85 33.59±1.11

Semi-VRed 20.85±0.39 6.26±0.18 9.12±1.47 11.86±0.74 13.46±0.63 34.57±1.20

FedAvg, Ditto 86.26±0.03 15.20±0.07 50.48±0.29 56.87±0.36 62.78±0.16 100.0±0.00

C
IN

IC
-1

0 q-FFL 86.63±0.06 14.88±0.08 51.57±0.82 57.77±0.36 63.62±0.18 100.0±0.01

AFL 86.45±0.12 15.10±0.11 51.57±0.45 57.58±0.29 63.04±0.28 100.0±0.00

GiFair 86.28±0.11 15.20±0.13 49.66±1.21 56.97±0.29 62.74±0.36 100.0±0.00

TERM 86.34±0.04 15.12±0.01 49.90±0.42 57.21±0.11 62.98±0.04 100.0±0.00

PropFair 86.01±0.17 15.34±0.19 49.97±1.23 56.53±0.65 62.27±0.55 99.99±0.01

VRed 85.79±0.35 15.02±0.06 51.57±0.50 57.66±0.30 62.75±0.36 99.98±0.01

Semi-VRed 85.83±0.33 14.95±0.07 51.59±0.98 58.00±0.21 62.70±0.14 99.96±0.01

FedAvg, Ditto 40.34±0.06 6.98±0.03 25.64±0.11 27.12±0.06 30.35±0.03 49.70±0.07

St
ac

kO
ve

rfl
ow q-FFL 37.79±0.80 7.38±0.09 22.54±1.03 24.12±1.00 27.14±0.92 47.06±0.66

AFL - - - - - -
TERM 40.34±0.05 6.96±0.06 25.56±0.21 27.12±0.20 30.41±0.12 49.76±0.10

GiFair 40.34±0.04 6.97±0.03 25.71±0.13 27.10±0.11 30.34±0.08 49.71±0.09

PropFair 41.76±0.01 6.80±0.05 27.30±0.21 28.75±0.19 32.14±0.10 50.76±0.08

VRed 42.90±0.05 6.64±0.01 29.08±0.09 30.39±0.05 33.55±0.05 51.66±0.03

Semi-VRed 42.90±0.03 6.60±0.01 29.10±0.06 30.34±0.09 35.55±0.05 51.70±0.04

C.4 RELATION BETWEEN VRED AND ROBUST OPTIMIZATION

Empirical optimization is usually used as a data-driven approach for tuning models for decision
making, where an expected loss is minimized based on some available train data. The trained model
is then used for prediction tasks on some test data. However, if the empirical distribution of the
train data is substantially different from that of test data, our confidence for doing prediction on the
test data with the trained model diminishes. Robust empirical optimization has been used to address
this problem (Bertsimas et al., 2018b;a; Ben-Tal et al., 2013). The work in (ya Gotoh et al., 2018)
formulated a distributionally robust optimization (DRO) problem based on a minimax problem,
where a model is trained on the given train data against the worst distribution shifts between the
train and test data:

min
θ

max
Q

{
E(x,y)∼Q[ℓ(h(x, θ), y)] +

1

δ
Hϕ(Q|P̂n)

}
, (42)
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, where P̂n and Q are the train data empirical distribution and the test data distribution. The above
problem optimizes against the “worst-case” test distribution Q. The deviation of the distribution Q
from P̂n is penalized in the regularization term 1

δHϕ(Q|P̂n), where Hϕ is a divergence measure
between two distributions. The solution to this optimization problem is a model which is robust
against distribution shifts between the train and test data. It was shown in (ya Gotoh et al., 2018)
[see Propositions 3.1 and 3.2] that the above DRO problem is equivalent to a mean-variance problem,
where the empirical average loss on train set is regularized with sample variance of the loss:

min
θ

max
Q

{
E(x,y)∼Q[ℓ(h(x, θ), y)] +

1

δ
Hϕ(Q|P̂n)

}
≡

min
θ

{
E(x,y)∼P̂n

[
ℓ(h(x, θ), y)

]
+

δ

2ϕ′′(1)
E(x,y)∼P̂n

[
ℓ(h(x, θ), y)− E(x,y)∼P̂n

[ℓ(h(x, θ), y)]

]2}
.

(43)

This means that variance regularization is equivalent to DRO and can improve out-of-sample (test)
performance. Maurer & Pontil (2009); Namkoong & Duchi (2017) propose regularizing the empiri-
cal risk minimization (ERM) by the empirical variance of losses across training samples to balance
bias and variance and improve out-of-sample (test) performance and convergence rate. Similarly,
Shivaswamy & Jebara (2010) propose boosting binary classifiers based on a variance penalty ap-
plied to exponential loss.

DRO is also an effective approach to deal with imbalanced and non-iid data. Unlike the above
sample-wise variance regularization works, the work (Krueger et al., 2021) - assuming having access
to data from multiple training domains - proposes penalizing variance of training risks across the
domains as a method of distributionally robust optimization to provide out-of-distribution (domain)
generalization. The first work propopsing DRO in FL setting is (Mohri et al., 2019), where they
minimize the maximum combination of clients local losses to address fairness in FL:

min
θ

max
i

fi(θ). (44)

Also, the work in (Deng et al., 2020) proposea distributionally robust FL by minimizing the worst
combination of clients local losses via periodic averaging and adaptive sampling:

min
θ

max
λ∈Λ

n∑
i=1

λifi(θ), (45)

where λ ∈ Λ = {λ ∈ Rn
+ :

∑n
i=1 λi = 1}. In contrast, our proposed VRed penalizes the variance

of losses across clients for improving fairness (performance consistency) in FL settings with high
data heterogeneity:

min
θ

n∑
i=1

λifi(θ) + β

n∑
i=1

λi

fi(θ)−
n∑

j=1

λjfj(θ)

2

, (46)

where λi = ni

N , is the sample size of client i and is fixed. The relation between robust optimiza-
tion and variance regularization in non-FL settings (eq. (43)) encourages us to interpret VRed as
an equivalent form of DRO. Hence, although the variance regularization used in VRed connects it
non-trivially to the previous works AFL (Mohri et al., 2019) and DRFA (Deng et al., 2020) through
DRO, it does not use a minmax objective function with potential convergence problems. As we
have reported in our experiments, AFL fails to converge in settings with high data heterogeneity.
Similarly, the authors of (Deng et al., 2020) have evaluated the DRFA algorithm only on Logistic
Regression model, which is a convex problem. Furthermore, as reported in our results (and also re-
ported in (Deng et al., 2020), fig. 3) AFL, thanks to its DRO formulation, can improve the fairness

22



Under review as a conference paper at ICLR 2023

(performance consistency) in the system. However, it clearly degrades the overall average perfor-
mance. Similarly, DRFA (as reported in fig. 3 of (Deng et al., 2020)) can improve the system fairness
keeping the same level of global accuracy as FedAvg. This is our motivation for proposing our
Semi-VRed algorithm by solving the following problem instead of the previous DRO-based algo-
rithms:

min
θ

n∑
i=1

λifi(θ) + β

n∑
i=1

λi

fi(θ)−
n∑

j=1

λjfj(θ)

2

+

, (47)

where λi =
ni

N , is the sample size of client i and is fixed. We have shown by lemma 2 and lemma 3
and also example 1 that our Semi-VRed has a smarter and more efficient formulation for achieving
fairness in FL systems, which results in improvement of fairness without degrading the system
overall performance.
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