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Abstract

We present a comparative empirical study on the impact of topological regularization on
autoencoders (AEs) and variational autoencoders (VAEs) across six synthetic datasets with
known topology and curvature. Particularly, we probe the alignment of the topology and
geometry of the dimensionality-reduced latent representation with that of the data. To
quantify geometrical alignment, we estimate the mean extrinsic curvature of the latent em-
bedding by fitting local quadrics. We find that topological regularization can significantly
improve the geometrical alignment of latent and data, even when the training objective
emphasizes topological alignment alone, without regard for reconstruction quality.

Keywords: Representation Learning, Manifold Learning, Geometric Deep Learning, Au-
toencoder

1. Introduction

Learning meaningful representations is central to understanding and processing high -
dimensional data. The manifold hypothesis (Bengio et al., 2013) states that real-world data
often lies near a low-dimensional manifold, a view supported in computer vision (Carlsson
et al., 2008), neuroscience (Chaudhuri et al., 2019), and machine learning (Naitzat et al.,
2020). From a manifold learning perspective, an ideal representation respects both topol-
ogy and geometry: local neighborhoods, distances, and angles are preserved while enabling
operations like interpolation and distance computations (Lee et al., 2022; Hauberg, 2019).

However, in practice, most methods fail to satisfy these properties reliably. State-of-the-
art manifold learning methods like t-SNE and UMAP struggle to represent global structure
faithfully and frequently do not preserve topology (Moor et al., 2020; Nazari et al., 2023). In
geometric deep learning, autoencoders provide a popular tool to face this task. A standard
autoencoder (AE) can be considered as an embedding method that learns a dimensionality-
reduced latent representation of the data in the latent space Z. A probabilistic variant
is the variational autoencoder (VAE) (Kingma and Welling, 2014), which instead learns a
joint probability distribution over the input and latent space. For each input x, the encoder
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produces a distribution enc(x) = q(z|x) on Z, such that a sample z∗ ∼ q(z | x) can be
decoded with a high probability to dec(z∗) ≈ x. Thus, every forward pass of the data yields
a probabilistic embedding in the latent space. Although various extensions alter the latent
geometry, the standard choice is Z = R

d, a flat Euclidean space.

In this work We present preliminary results from an empirical comparison of determin-
istic AEs and Gaussian VAEs with Euclidean latent spaces. We investigate their ability to
learn latent representations that align topologically and geometrically with the data, using
six synthetic datasets lying near one and two-dimensional embedded manifolds. Topological
alignment is assessed visually, while geometry preservation is assessed through estimates of
the mean extrinsic curvature, a measure of how the manifold bends within the ambient
space. We estimate curvature directly from the latent embedding via a local quadric fit,
similar to Gilbert and O’Neill (2025); Yang and Lee (1999). In particular, we investigate
the impact of topological regularization (Moor et al., 2020) on topological and geometric
representational alignment.

2. Models and training

2.1. Datasets and architectures

To obtain controlled ground-truth data, we construct six synthetic datasets by embedding
smoothly deformed one- and two-dimensional manifolds into X = R

10. Each manifold is
homeomorphic to either a circle S1, a sphere S2, or a torus T 2. For every topology, we gen-
erate two variants. In the low -deformation datasets (Circlelow, Spherelow,Toruslow, adapted
from Acosta et al. (2023)), the d-dimensional manifold remains in a (d + 1)-dimensional
subspace of R10. In the high-deformation datasets, the manifold is bent across more am-
bient dimensions (9 for the Circlehigh, 5 for Spherehigh and Torushigh). To all datasets we
finally apply random rotations and small Gaussian noise.

We examine standard deterministic AEs and Gaussian VAEs with Euclidean latent
space. Depending on the examined dataset, we set Z = R

d+1, where d is its intrinsic
manifold dimension (e.g. d = 1 for Circlelow).

2.2. Topological and geometrical evaluation

We judge over topological alignment of data and latent embedding by visually inspecting the
latent space focusing on the topological signature, i.e. the number of connected components,
holes and voids, compared to the ground truth of the respecting dataset. This is possible
since all datasets lie close to one- and two-dimensional manifolds and the latent spaces are
constrained to be R

2 or R3.

To evaluate the geometric alignment between the latent embedding {zi}
N
i=1 ⊂ Z and

the original data {xi}
N
i=1 ⊂ X , we estimate the local curvature of both manifolds. For each

point in the latent space, we identify its k nearest neighbors and apply PCA to fit a quadric
that locally approximates the underlying manifold structure. The mean extrinsic curvature
is then computed from the Hessian of the fitted quadric, following the methods of Gilbert
and O’Neill (2025); Yang and Lee (1999). See Appendix D for the algorithm. Geometric
similarity is measured by MSE and SMAPE between data and latent curvature.
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2.3. Intervention and Training

To encourage topological alignment, we add the persistent homology-based loss term Lt
(see Appendix A) to the training objective, aligning latent and input topology by matching
lengths of topologically relevant edges, which give birth and death to topological features.
The fixed hyperparameter dimt specifies the highest topological feature dimension considered
(e.g., dimt = 2 captures connected components, loops and voids). The total loss is

L = αLrecon + γLt (for AEs), L = αLrecon + βLKL + γLt (for VAEs).

Each dataset–architecture pair is trained over low, medium, and high weight settings α∈
{0, 1}, β∈{0, 0.08, 1}, γ∈{0, 1, 100}.

3. Results

Autoencoders trained without topological regularization show topological but not geometri-
cal alignment between data and the latent embedding. Including topological regularization
can substantially improve geometric alignment (see Figure 1), even when only regularizing
on topology, without including the reconstruction loss in the training objective (α = 0),
leaving the decoder unconstrained. For datasets lying in a low-dimensional subspace, topo-
logical regularization yields near-perfect embeddings. However, the effect of topological
regularization depends strongly on the choice of the considered topological features (dimt),
and inappropriate settings can even disrupt topological alignment.

Figure 1: Impact of topological regularization on latent geometry. AE trained on Spherehigh
dataset. Top row: estimated curvature as heatmap. Bottom row: estimated
curvature plotted over ground-truth angle. Scales vary across subplots.

For VAEs without topological regularization, the KL term (β > 0) pulls the latent
embedding toward a Gaussian blob, preventing both topology and geometry preservation.
Topological regularization can partly counteract this effect for low weights on the KL-loss
term, but the latent geometry remains disrupted. Omitting the KL term makes VAEs
behave similarly to AEs (see Figure 2).
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Figure 2: Impact of the KL term and topological regularization on the latent geometry
of a VAE trained on the Circlelow dataset. The KL-loss term (β > 0) disrupts
topological and geometrical alignment. Scales vary across subplots.

4. Discussion and conclusions

We conducted an empirical study of autoencoders and variational autoencoders, evaluating
their ability to preserve data topology and geometry in latent embeddings across six syn-
thetic datasets. Local geometry was quantified via mean extrinsic curvature, estimated on
the learned representation {zi}

N
i=1 by fitting a local quadric.

For AEs, topological regularization Lt significantly improved geometric alignment be-
tween latent representations and data, even in the absence of the reconstruction objective.
For VAEs, topological regularization acted as counterforce to the origin gravity created by
the KL regularization term, but the resulting representations remained noisy and failed to
preserve topology or geometry.

These findings suggest that (i) reliably topologically and geometrically aligned repre-
sentations can potentially be learned by regulating only the pairwise distances between
points, as indicated by the impact of the topological regularization term, and (ii) this may
be achievable with a single neural network rather than a full autoencoder architecture, since
the decoder became redundant when omitting the reconstruction objective.

4.1. Limitations and next steps

An immediate next step is to investigate whether architectures optimizing only for topolog-
ical alignment without a decoder can yield reliable representations.

We evaluated local geometry using extrinsic curvature estimated via local quadrics, a
naive method that restricts analysis to simple datasets. Future work should aim to broaden
the scope toward more diverse and real-world datasets.

Topological alignment was only indirectly assessed. A similarity score based on per-
sistent homology would provide a stronger measure. Future work should also examine
intrinsic curvature, which is independent of ambient geometry. Finally, repeated experi-
ments are needed to test whether topological regularization also leads to representational
alignment across runs.
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Appendix A. Persistent Homology and Topological Regularization

Persistent homology provides a way to estimate the topology of the underlying manifold
of a point cloud. We can extract topological properties by tracking the birth and death
of connected components, loops, and higher-dimensional cycles across a series of simplicial
complexes with increasing connectivity. The Topological Autoencoder Moor et al. (2020)
integrates this into training via a differentiable regularization term Lt, aligning latent and
input topology by matching lengths of topologically relevant edges. Let AX , AZ be pairwise
distance matrices and πX , πZ persistence pairings in input/latent space. Then

Lt =
1

2
∥AX [πX ]−AZ [πX ]∥2 +

1

2
∥AZ [πZ ]−AX [πZ ]∥2.

Here A[π] extracts the lengths of topologically relevant edges. Minimizing Lt encourages
topologically faithful embeddings.

Appendix B. Implementation details

Encoders and decoders use three hidden layers of width 100 with softplus activations, ensur-
ing smoothness and making the decoder an immersion. Models are trained for 100 epochs
with Adam optimizer (batch size 64). We implement models in PyTorch.

We measure the geometrical similarity of data and latent representation using both
absolute and relative error metrics on curvature estimates κ:

MSE =
1

N

∑

i

(κ(xi)− κ(zi))
2, SMAPE =

1

N

∑

i

|κ(xi)− κ(zi)|

|κ(xi)|+ |κ(zi)|
.

Appendix C. Parametrizations of the datasets

C.1. Low-deformed datasets

C.1.1. Circle

ϕCirclelow(θ) = A(θ)

(

cos θ
sin θ

)

, where A(θ) = r (1 + α cos(kθ))

C.1.2. Sphere

ϕSpherelow(θ, φ) = A(θ)





sin θ cosφ
sin θ sinφ

cos θ



 , where A(θ) = 1 + αe−5θ2 + αe−5(θ−π)2
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C.1.3. Torus

ϕToruslow(θ, φ) = A(θ, φ)





(R− r cos θ) cosφ
(R− r cos θ) sinφ

r sin θ



 ,

where A(θ, φ) = 1 + αe−2(φ−
π
2 )

2

e−2(θ−π)2 + αe−2(φ−
3π
2 )2e−2(θ−π)2

C.2. High-deformed datasets

C.2.1. Circle

ϕCirclehigh(θ) = (sin θ, cos θ, sin(2θ),

α cos(2θ), α sin(3θ), α cos(3θ), α sin(4θ), α cos(4θ), α sin(5θ), α cos(5θ))⊤

C.2.2. Sphere

ϕSpherehigh(θ, φ) =













A(θ)r sin θ cosφ
A(θ)r sin θ sinφ

A(θ)r cos θ
sin θ cos(2φ)

sin(2θ) cos(3φ)













,where A(θ) = 1 + α
2

(

e−5θ2 + e−5(θ−π)2
)

C.2.3. Torus

ϕTorushigh(θ, φ) =

















A1(θ, φ)(R− r cos θ) cosφ
A1(θ, φ)(R− r cos θ) sinφ

A1(θ, φ)r sin θ
A2(θ, φ)

sin θ cos(2φ)
sin(2θ) cos(3φ)

















,

where A1(θ, φ) = 1 + α
2

(

e−2(φ−
π
2 )

2

e−2(θ−π)2 + e−2(φ−
3π
2 )2e−2(θ−π)2

)

,

and A2(θ, φ) = α
(

e−2(φ−
π
2 )

2

e−2(θ−
π
2 )

2

+ e−2(φ−
3π
2 )2e−2(θ−

3π
2 )2

)
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Appendix D. Curvature estimation algorithms

Algorithm 1: Estimate 1D Curvature via Quadratic Fitting

Input: Point cloud P = {p1, . . . , pN} ⊂ R
n, number of neighbors k ∈ N

Output: Curvature estimates κ = {κ1, . . . , κN} ⊂ R

for i = 1 to N do

Find k nearest neighbors of pi: Ni ⊂ P ;
Compute local centroid: ci ←

1
k

∑

x∈Ni
x;

Center neighborhood: Xi ← {x− ci | x ∈ Ni};
Perform PCA on Xi; obtain tangent ti and normal ni ∈ R

n;
Project neighbors: xj ← ⟨Xj , ti⟩, zj ← ⟨Xj , ni⟩;
Fit parabola: zj ≈ ax2j + bxj + c via least squares;

Set κi ← |2a|;

end

return κ

Algorithm 2: Estimate 2D Mean Curvature via Quadratic Fitting

Input: Point cloud P = {p1, . . . , pN} ⊂ R
n, number of neighbors k ∈ N

Output: Curvature estimates κ = {κ1, . . . , κN} ⊂ R

for i = 1 to N do

Find k nearest neighbors of pi: Ni ⊂ P ;
Compute local centroid: ci ←

1
k

∑

x∈Ni
x;

Center neighborhood: Xi ← {x− ci | x ∈ Ni};
Perform PCA on Xi; obtain tangent basis Ti ∈ R

2×n, normal ni ∈ R
n;

Project neighbors onto local frame: [xj , yj ]← TiX
⊤
j ∈ R

2, zj ← ⟨Xj , ni⟩ ∈ R;

Fit quadric: zj ≈ ax2j + by2j + cxjyj + dxj + eyj + f via least squares;

Set κi ← |a+ b|;

end

return κ

Appendix E. Similarity measuring results

MSE and SMAPE error of the estimated curvature on the input {xi}
N
i=1 data and the

representation {zi}
N
i=1 learned by AEs for different weight settings and datasets. Here α is

the weight of the reconstruction loss Lrecon, γ the weight of the topological regularization
term Lt, β the weight of the KL loss term LKL for VAEs. The value of dimt sets the
dimension up to which topological features in Lt are considered.
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Appendix F. Supplementary figures

F.1. Autoencoders

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

(j ) (k) (l) (m) (n)

(o) (p) (q) (r)

Figure 3: Euclidean AE trained on Circlelow and Circlehigh datasets. Here (α, γ, dimt) =
(reconstruction weight, topological weight, topological dimension). Top two

rows: Circlelow. Topological regularization yields an almost perfect representa-
tion. (a) True curvature (PCA). (b)+(f) Only reconstruction, (1, 0,−). (c)+(g)
With topo. loss, (1, 1, 0). (d)+(h) With topo. loss, (1, 1, 1). (e)+(i) Only topo. loss
(0, 1, 1). Bottom two rows: Circlehigh. Topological regularization can destroy
topological alignment and focuses on high curvature areas. (j) True curvature
(PCA). For the same weights as above: (k)+(o) Only reconstruction. (l)+(p),
(m)+(q): With topo. loss. (n)+(r) Only topo. loss.
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Figure 4: Autoencoder trained on Spherelow, Toruslow, Spherehigh, Torushigh. Topological
regularization gives near-perfect alignment on low-datasets and clear improve-
ments on high-datasets depending on dimt. Each pair of rows shows curvature
heatmaps (top) and curvature plots (bottom) over ground truth angle. Columns:
Input (PCA), latent curvature with reconstruction loss (1, 0,−), and with topo-
logical regularization (1, 1, 0), (1, 1, 1), (1, 1, 2), (0, 1, 1). Last column: only topo-
logical regularization for dimt with best result. Tuples denote weights (α, γ, dimt).
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F.2. Variational autoencoder

(a) (b) (c) (d)

Figure 5: Effect of topological regularization on latent geometry for a VAE trained on
Toruslow. The KL term (β > 0) disrupts topological and geometrical alignment.
(a) True curvature of input data (PCA). (b–d) Latent curvature with topological
regularization (dimt = 2) and increasing β: (c) β = 0, (d) β = 0.08, (e) β = 1.
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