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Abstract— Simultaneous Localization and Mapping (SLAM)
on small quadruped robots, such as rat robots, is challenged
by body vibrations, limited onboard computation, and low-
texture environments. These factors cause sparse features,
unstable viewpoints, and frame loss, which hinder conventional
SLAM. To address these challenges, we redesign the rat
robot with an external antenna to improve communication
and a monocular camera to reduce bandwidth, while running
monocular ORB-SLAM on a remote computer. In addition,
we introduce a hierarchical SLAM framework that switches
between coarse frame matching under sparse features and fine
keyframe matching when features are sufficient. Experiments
in a low-texture drainage channel show that our system
maintains continuous mapping despite frequent interruptions,
demonstrating feasibility for real-world deployment of rat-sized
quadruped robots. A demo of the experiments can be found at
https://youtu.be/2vSgOohzkUA.

I. INTRODUCTION

Quadruped robots have gained attention for their adaptabil-
ity in unstructured environments [1]. To repeatedly perform
diverse tasks such as field inspection, they must accurately
perceive and understand their surroundings. Integrating Si-
multaneous Localization and Mapping (SLAM) offers a
promising solution, enabling these robots to build environ-
mental awareness and operate effectively across different
scenarios [2].

SLAM integrates data from LiDAR, cameras, and inertial
systems to help autonomous vehicles map unknown envi-
ronments and localize accurately during revisits [3], [4].
However, quadruped robots face challenges distinct from
wheeled vehicles, which operate on flat surfaces. To traverse
rough terrain, they rely on dynamic foothold adjustments
that introduce body pose variations and reduce stability,
particularly during fast trotting or bounding gaits. Such insta-
bility generates sensor disturbances, including vibrations that
impair visual and LiDAR front-ends and rapid drift in IMU
biases [5]. The problem is more severe in small quadruped
robots due to limited stability and hardware constraints [6].
For example, rat robot often use low-torque motors that
struggle to maintain balance, while their compact design
restricts power supply and sensor payload [7]. Consequently,
conventional SLAM sensors like LiDAR or depth cameras
are difficult to integrate. To address this, Shi et al. equipped
a ratquadruped with a miniature binocular camera for visual
SLAM (V-SLAM) [8]. They further reduced sensor distur-
bances by using a walking gait with three legs in ground
contact, enabling stable though slow navigation.

Most SLAM methods assume stable robot motion and
reliable sensing. As a result, they are typically designed
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Fig. 1. Challenges of ORB-SLAM in the rat robot. (a) illustrates
the sparsity of image features captured in low-texture environments, (b)
demonstrates the potential divergence of feature points caused by motion-
induced instability, and (c) depicts frame loss resulting from the limitations
of the rat robot’s onboard system.

for wheeled robots with planar motion or quadrupeds using
highly stable gaits [9], [10], while overlooking the unique
challenges of small quadruped robots. These challenges
include significant body oscillations, limited onboard compu-
tation, and operation in low-texture environments. First, low-
texture scenes provide sparse visual features within a frame,
reducing inter-frame correspondences and hindering reliable
feature matching (Fig. 1(a)). Second, body oscillations dur-
ing locomotion introduce divergence in feature extractionFig.
1(b)). For example, in fast gaits such as trotting, only
two legs contact the ground at once, producing large body
motions, unstable viewpoints, and perceptual errors such as
misidentifying feature points or mistaking static textures for
dynamic ones. Third, limited onboard computation restricts
image capture frequency and may cause signal loss (Fig.
1(c)). Rat robot cannot carry high-performance processors,
requiring computation to be uploaded to remote devices.
This uploading is further constrained by camera sampling
rates, communication bandwidth, and latency. In addition,
the robot’s small antenna weakens wireless transmission,
leading to intermittent frame drops that break continuous
frame matching in SLAM.

To address these challenges, we propose a hierarchical
SLAM framework that enables rat robots to perform mapping
at both coarse and fine levels of feature points. Our main
contributions are as follows:

• To mitigate unstable image sampling caused by onboard
limitations, we improved the robot design from our prior
work [11]. The updated system uses an external antenna
to enhance transmission and a monocular camera to re-
duce bandwidth, with monocular ORB-SLAM executed
on a remote computer.

• To handle interruptions from insufficient feature corre-
spondences (Fig. 1), we introduce a hierarchical frame-
work that applies coarse-grained frame matching when
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Fig. 2. Main components of the rat robot for ORB-SLAM. This robot
employs ESP32-CAM as the central control unit, integrates IMU data from
MPU6050, and utilizes rigid-leg locomotion to support ORB-SLAM-based
mapping.

features are sparse and fine-grained keyframe matching
when features are sufficient.

• We evaluated our approach in a real-world, low-texture
drainage channel. Results show that the hierarchical
ORB-SLAM framework supports reliable mapping for
rat robots in outdoor environments, maintaining contin-
uous performance even under frequent SLAM interrup-
tions.

II. FOUNDATION OF ORB-SALM

ORB-SLAM relies on robust feature extraction and match-
ing as the foundation for map reconstruction [12]. In each
incoming frame, ORB features are detected and described,
forming a set Ft = {(ut

i,d
t
i)}. To establish temporal

correspondences, descriptors are compared across frames by
minimizing the Hamming distance,

mij = argmin
j

∥dt
i ⊕ dt−1

j ∥H , (1)

which yields matched pairs of image points. With sufficient
correspondences between multiple views, triangulation is
performed to generate new 3D landmarks. These landmarks,
together with previously established ones, are incrementally
refined through bundle adjustment,

{X}∗ = argmin
X

∑
i,j

∥∥uij − π(TjXi)
∥∥2, (2)

where π(·) denotes the projection model. This iterative cycle
of feature matching, triangulation, and optimization allows
ORB-SLAM to construct a consistent and scalable represen-
tation of the environment while supporting localization and
loop closure.

III. IMPLEMENTATION OF ORB-SLAM ON RAT ROBOT

This section first describes the components of our rat
robot, followed by an explanation of the proposed hierar-
chical ORB-SLAM architecture and its mapping process.

A. Components of the Rat Robot

Inspired by rat locomotion, we previously developed the
NeRmo robot with a bioinspired skeletal design [11]. How-
ever, severe size constraints prevent onboard execution of
computationally intensive SLAM, requiring real-time image
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Fig. 3. Hierarchical framework of ORB-SLAM in rat robot applications.
The figure illustrates the operational logic and data flow. The locomotion
states are triggered or suspended according to mapping process. The density
of extracted feature points determines which mapping layer is activated.

transmission to a remote computer. This approach is limited
by the small antenna, which cannot support the bandwidth
needed for real-time SLAM. To overcome these limitations,
we reconstructed the control system using an ESP32-CAM,
a compact image acquisition board with an external antenna,
as the central processor. To reduce bandwidth demands,
the platform employs a monocular camera, with visual data
fused with IMU measurements for SLAM. In addition, the
flexible legs of the original NeRmo design were replaced
with rigid link structures to reduce body oscillations and
improve stability. As illustrated in Fig. 2, the redesigned
robot supports real-time monocular SLAM while executing
a trotting gait.

B. Structure of the Hierarchical ORB-SLAM for Rat Robot

In outdoor environments, the rat robot encounters multiple
challenges (Fig. 1) that prevent the remote computer from
extracting sufficient feature points to form keyframes for
ORB-SLAM, causing ORB-SLAM to stall even as images
are continuously captured. Typically, ORB-SLAM resumes
mapping by matching newly generated keyframes with his-
torical ones after a stall. However, locomotion instability,
the restricted field of view resulting from the robot’s low
height and small camera, and the limited resolution of the
onboard sensor all reduce the similarity between new and
historical keyframes. Consequently, keyframe matching fre-
quently fails, causing ORB-SLAM to break and interrupting
continuous mapping. To address this limitation, we propose a
hierarchical mapping framework capable of recovering from
SLAM failures by merging historical data and supporting
system reinitialization, as illustrated in Fig. 3.

As illustrated in Fig. 3, the rat robot communicates with
a remote computer via Wi-Fi through an external gain
antenna. Firstly, a submap construction process is created
simultaneously with the activation of the robot’s motion.
During trotting, the robot continuously collects image and
IMU data, which are transmitted to the remote computer for
processing. The computer extracts feature points from the
images and evaluates their density. If sufficient features are
available to form a keyframe, the SLAM system operates in a
fine-grained state; otherwise, it enters a coarse-grained state,
signaling a potential SLAM stall. In the fine-grained state, the
framework follows the standard SLAM pipeline, generating
keyframes and matching them with historical ones within
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Fig. 4. Time cost of image collection on the remote computer. The red
box marks high latency, while the orange box shows fluctuating latency that
disrupts image acquisition and mapping.

the current submap to maintain continuous mapping. In the
coarse-grained state, submap construction is suspended, and
the most recent submap is merged with previous ones to
preserve global consistency. This merging process leverages
kinematic information and submap keyframe coordinates
rather than feature correspondences. Because locomotion
introduces pose variations and coordinate shifts, the robot
temporarily halts during merging. Once merging is complete,
both submap generation and locomotion are reinitialized.

C. Hierarchical Mapping Inspection and Submap Merging

One of the core components of the framework illustrated
in Fig. 3 is the determination of the SLAM mapping state
based on the density of feature points. At time t, let nt

denote the density of detected feature points. If nt ≥ η,
the system is considered to be in a fine-grained feature state,
where keyframe can be constructed to support map building.
Accordingly, the fine-grained ORB-SLAM mapping process
can be expressed as

Mt
k = Mt−1

k

⋃
Kt, Kt =

{
(Tt, It), if nt ≥ η,

∅, otherwise.
(3)

In (3), Mt
k represents the mapping result of the k-th submap

at time t. The keyframe Kt consists of the robot’s pose Tt,
obtained from kinematics, and the image It, captured by the
onboard camera. Thus, Mt

k is obtained by merging Mt−1
k

with the feature correspondences from Kt, expressed using
a union operator. If the conditions shown in Fig. 1 occur, too
few feature points are extracted to form a keyframe, causing
Kt = ∅ and Mt

k = Mt−1
k . In this context, to detect when

SLAM is approaching a stall, we introduce a counter defined
as

Ct =

t∑
τ=t−λ+1

[Mτ
k = Mτ−1

k ]. (4)

Here, λ denotes the observation window length, and [Mτ
k =

Mτ−1
k ] indicates whether the submap has changed. If Ct

falls below a predefined threshold, SLAM is regarded as
stalled and enters the coarse-grained state. In this state,
submap construction is suspended, and the k-th submap Mk

is merged into the global map MW as

MW = MW
⋃

MW
k , MW

k = Mk ·∆Tk→k−1, (5)

Fig. 5. Global map constructed from submap merging at different stages.
The smaller images illustrate the submap generated before each SLAM
stalls, while the larger image in the lower left corner shows the final global
map obtained through submap merging.

where Mk · ∆Tk→k−1 denotes mapping the submap Mk

into the world coordinate system, and ∆Tk−1→k represents
the relative pose change from submap k− 1 to k, which can
be computed from the recorded poses Tt in (3). Once the
merging of Mk is completed, ORB-SLAM and the robot’s
locomotion are reinitialized to ensure continuous mapping.

IV. REAL-WORLD EXPERIMENTS

In this section, we deploy the rat robot in the drainage
channel illustrated in Fig. 1 to conduct mapping experiments.
In this scenario, the robot is required to navigate a 25 cm-
wide corridor containing a right-angle turn. We then analyze
the interruptions encountered during the mapping process as
well as the corresponding results of continuous mapping.

A. Constraints in the Mapping Process
In real-world deployments of ORB-SLAM on the rat robot,

image acquisition on the remote computer is constrained not
only by the camera frame rate but also by long-range wireless
transmission. Fig. 4 shows the time cost for each frame when
the robot navigates the corridor in Fig. 1. The red dashed
box highlights high-latency periods, during which the remote
computer struggles to receive images in real time, reflecting
the frame loss problem described in Fig. 1(c). The orange
dashed box indicates fluctuating latency, where transmission
drops below 10 Hz. This delay may introduce image blur
and further aggravate sparse or divergent feature extraction.
These hardware-induced transmission constraints, combined
with locomotion instability and low-texture environments,
frequently cause ORB-SLAM interruptions during real-world
operation.

Fig. 5 presents the mapping results of the robot navigating
through the initial straight section of the corridor. Each
submap in Fig. 5 corresponds to one interruption in the map-
ping process. Using conventional ORB-SLAM, which relies
on feature-based keyframe matching, the robot often builds
only the first submap before crashing, as new keyframes fail
to match historical ones. In contrast, our proposed framework
explicitly accounts for such failures by restarting mapping
independently after each crash. Although this approach sac-
rifices some accuracy by not enforcing matches with prior
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Fig. 6. Montage of hierarchical ORB-SLAM mapping performed by the rat robot in a right-angled corridor. Each subfigure includes the locomotion
following view (left), the mapping results over time (top right), and the real-time camera view (bottom right).

keyframes, it produces a set of submaps aligned to the global
coordinate system with pose information. These submaps are
then merged based on pose constraints to form the global
map. The larger image in the lower left of Fig. 5 shows
the mapping result of the straight corridor: despite multiple
SLAM restarts, our framework successfully reconstructs the
approximate corridor structure through submap stitching.

B. Mapping under Sparse Feature Constraints
In Fig. 6, the rat robot navigates a right-angled drainage

channel (Fig. 1) to construct its two-dimensional outline.
The task is challenged by low-texture scenes, limited remote
sampling frequency, and unstable locomotion causing large
viewpoint shifts. As shown in Fig. 6, the mapping process
encounters multiple difficulties: sparse feature extraction at
30 s and 210 s, divergent features at 60 s and 150 s, and
severe communication delays at 90 s that prevent timely im-
age updates. Fine-grained mapping is achieved only at 120 s
and 180 s, when sufficient features are successfully extracted.
Although these challenges repeatedly force the system into
coarse-grained states and trigger several SLAM restarts, the
proposed framework still enables the rat robot to produce
a coherent global outline of the corridor, demonstrating its
feasibility under real-world constraints.

V. CONCLUSIONS

We present a hierarchical ORB-SLAM framework for rat-
sized quadruped robots that addresses instability of loco-
motion, low-texture scenes, and communication limits. By
switching between fine-grained and coarse-grained mapping
and merging submaps using pose information, the system
maintains mapping continuity under frequent interruptions.
Experiments in drainage channels show that, despite sparse
features, viewpoint shifts, and delays, the robot can construct
a coherent global outline, confirming the feasibility of reli-
able mapping in constrained environments.
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