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Abstract

While heterophily has been widely studied in node-level tasks, its impact on
graph-level tasks remains unclear. We present the first analysis of heterophily
in graph-level learning, combining theoretical insights with empirical validation.
We first introduce a taxonomy of graph-level labeling schemes, and focus on
motif-based tasks within local structure labeling, which is a popular labeling
scheme. Using energy-based gradient flow analysis, we reveal a key insight: un-
like frequency-dominated regimes in node-level tasks, motif detection requires
mixed-frequency dynamics to remain flexible across multiple spectral components.
Our theory shows that motif objectives are inherently misaligned with global
frequency dominance, demanding distinct architectural considerations. Experi-
ments on synthetic datasets with controlled heterophily and real-world molecular
property prediction support our findings, showing that frequency-adaptive model
outperform frequency-dominated models. This work establishes a new theoreti-
cal understanding of heterophily in graph-level learning and offers guidance for
designing effective GNN architectures.

1 Introduction

Graph Neural Networks (GNNs) have achieved success in learning from graph-structured data,
demonstrating strong performance across diverse domains including social networks [19, 26] and
molecular property prediction [41, 45]. Many popular GNN architectures, such as Graph Con-
volutional Networks (GCNs) [11], are designed under the homophily assumption, i.e., connected
nodes tend to share similar features or labels [29, 14, 25]. However, many real-world graphs exhibit
heterophily, where neighboring nodes have dissimilar characteristics [47, 24]. While the challenges
posed by heterophily have been extensively studied on node-level tasks [23, 21, 22, 44, 43, 42], its
impact on graph-level tasks remains poorly understood.

This work is the first to study heterophily in graph-level tasks. We introduce a taxonomy that classifies
such tasks into three types by their labeling mechanisms, focusing on motif-based tasks where labels
depend on discriminative subgraphs (motifs). From an energy and gradient flow perspective [12],
our analysis shows that graph-level tasks have distinct frequency preferences from node-level tasks,
as motif detection misaligns with the global nature of low- and high-frequency dominant regimes.
This misalignment challenges the effectiveness of GNN under heterophily settings. We provide
both theoretical and empirical evidence, offering new insights into heterophily’s role in graph-level
prediction and guiding the design of more adaptive GNNs.
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2 Task Taxonomy, Notations and Background

2.1 Task Taxonomy

Compared to node-level tasks, the labeling schemes of graph-level tasks make it challenging to
establish a simple and general relation between graph labels and certain graph properties. To enable a
simplified and systematic discussion, we categorize the labeling schemes into three main types based
on the following criterion derived from practical applications.

Aggregated Node Features. In this scenario, graph labels are primarily determined by aggregated
node features. For instance, a graph may be assigned to a particular class if the average value of
a specific node feature across all nodes exceeds a given threshold, or if a certain proportion of
nodes belong to a particular latent class, e.g., online community detection based on aggregated user
demographics [30, 9, 5].

Local Structure. Labels depend on local structural patterns and node-level features. For example, a
label may be assigned based on the presence of a specified number of particular motifs (e.g., triangles)
within the graph. These motifs may predominantly consist of either homophilic or heterophilic
nodes, e.g., molecular classification based on the presence of specific pharmacophores or toxic
substructures [7, 40, 18, 36].

Global Structure. In this case, labels are determined by global structural properties of the graph,
such as its diameter or overall connectivity. The label thus reflects a purely structural characteristic of
the graph, e.g., metabolic network categorization of different organisms based on global connectivity
patterns, such as scale-free vs. random network topologies [46, 28, 33].

To give a more intuitive understanding, we list some real-world applications according to these three
types of tasks in the Appendix A. Note that the above three categories are not exclusive, and a graph
can be classified by mixture criteria. To simplify the discussion, we focus on the local structure
labeling in this work, which is common in real world.

2.2 Energy-Based Framework for Understanding GNN Dynamics

Recent work by Di Giovanni et al. [12] provides a rigorous framework for analyzing GNNs as
dynamical systems that minimize a generalized energy functional. This framework reveals that under
certain conditions, the training dynamic of GNN will lead to a global frequency-dominated regime,
leading to a bipolar convergence of node features. We review this framework briefly.

GNN Dynamics as Gradient Flow Consider an undirected and connected graph G = (V,E),
where nodes v = {v1, v2, . . . , vn} ∈ V have features {fi ∈ Rd : vi ∈ V }, and edge set denotes
E ⊂ V × V . The feature matrix F ∈ Rn×d consists of fi as its rows. According to [3], Message
Passing Neural Networks (MPNNs) [11] update the layer t+ 1 via:

Ḟ = F(t+ 1)− F(t) = σ(−F(t)Ωt + AF(t)Wt − F(0)W̃t) (1)

where Ωt, Wt, and W̃t are learnable matrices performing feature transformations, σ is the non-linear
activation function, and A is the adjacency matrix which aggregates neighbor information.

A gradient flow is a special dynamical system which is defined by an ordinary differential equation
Ḟ(t) = −∇E(F(t)). The dynamic in Eq.1 corresponds to a gradient flow of the energy functional:

Eθ(F) =
∑
i

⟨fi,Ωfi⟩ −
∑
i,j

Aij⟨fi,Wfj⟩ + φ0(F,F(0)) (2)

given the conditions that the weight matrices Ω and W are symmetric 1, and φ0 is a pre-defined
function to calculate the distance between F and the source F(0). Note that the Dirichlet energy
EDir(F(t)) := 1

2

∑
(i,j)∈E ∥∇F(t)∥2 is a special case of EΘ when Ω = W = Id and φ0 = 0.

1Note that the symmetric is due to the result of derivative of the functional Eq. 1, not the requirement of the
matrices.
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Asymptotic Frequency-Dominated Regimes This energy framework reveals that linear GNNs
converge to one of two asymptotic behaviors, characterized by the relationship between the graph
Laplacian spectrum and the eigenvalues of the weight matrix W. Let ∆ = I−D−1/2AD−1/2 be
the normalized Laplacian with ordered eigenvalues 0 = λ0 ≤ · · · ≤ λn−1 and corresponding eigen-
vectors {ϕ0, . . . ,ϕn−1}. We give the symmetric definition for the frequency-dominated dynamics
and a theorem to decide the dynamics in a simplified version of MPNN.

Definition 1 (Frequency-Dominated Dynamics). The dynamics of a GNN depends on the limiting
behavior of the normalized Dirichlet energy EDir(F(t))/∥F(t)∥2 . If it converges to the eigenvalue
λ0, we call the dynamic Low-Frequency-Dominant (LFD). Conversely, if it converges to the eigenvalue
λn−1, we call it High-Frequency-Dominant (HFD).

We refer a lemma to illustrate the condition to decide whether the MPNN is HFD or LFD.

Lemma 1 (Theorem 4.3 in [12]). Given a continuous MPNN of the form Ḟ(t) = AF(t)W, let
µ0 ≤ µ1 ≤ · · · ≤ µd−1 be the eigenvalues of W. If |µ0|(λn−1 − 1) > µd−1, then for almost every
F(0), the MPNN is HFD. Conversely, if |µ0|(λn−1 − 1) < µd−1, then for almost every input F(0),
the MPNN is LFD.

From the lemma, the dynamic of the network depends on the biggest and lowest eigenvalues of W:
µ0 and µd−1. Since the network is a gradient flow along the energy functional described in Eq. 2,
the network is trained to minimize the energy. We will discuss below how will this energy decreasing
affect W and its eigenvalues, especially under heterophily situation.

2.3 Graph Heterophily in Energy-based Framework

Heterophily refers to the tendency of connected nodes to have dissimilar features or labels, in contrast
to homophily where neighboring nodes are similar [47, 22]. Within the energy functional framework,
heterophily has a direct correspondence to the spectral behavior of GNNs.

Recall the weight matrix W in Eq. 2, it can be rewritten as W = Θ⊤
+Θ+ −Θ⊤

−Θ− by decomposing
it into components with positive and negative eigenvalues (see the derivation at D.1) . The pairwise
interaction term

∑
i,j Aij⟨fi,Wfj⟩ in Eq. 2 captures the relationship between connected nodes.

When W has predominant positive eigenvalues, which leads to [Θ⊤
+Θ+]i,j ≫ [Θ⊤

−Θ−]i,j , the
maximization of the pairwise interaction term will encourage neighboring nodes to have aligned
representations. This naturally smooths the features across connected nodes, promotes GNN to LFD
dynamics, so that benefits GNN performance on homophilic graphs.

Conversely, when W has significant negative eigenvalues (i.e., Θ⊤
−Θ− dominates), the optimization

of the pairwise interaction term will encourage connected nodes to have anti-aligned or dissimilar
representations. This will drive the system toward HFD dynamics, where high-frequency components
dominate, and sharp differences emerge between connected nodes. And the GNN will end up with an
energy landscape that favors heterophilic patterns.

The eigenvalue decomposition W = Θ⊤
+Θ+ −Θ⊤

−Θ− thus reveals a fundamental trade-off: the
energy framework naturally biases GNNs toward either global homophily (LFD) or global heterophily
(HFD), but not both simultaneously . This global preference creates challenges for tasks that require
local adaptation—where some regions of the graph exhibit homophilic patterns (e.g., within motif
instances) while others exhibit heterophilic patterns (e.g., at motif boundaries) .

3 Motif Detection Requires Mixed-Frequency Dynamics

Given that the energy framework naturally leads GNNs to frequency-dominated regimes, in this
section, we will show that graph-level motif detection represents a fundamentally different class of
problems which cannot be solved by either pure low-frequency or high-frequency dynamics.

3.1 Shift Motif Detection to Node-level Task

A given motif M = (VM , EM ) is a connected graph pattern, where VM ⊆ V and EM = {(u, v) ∈
E : u, v ∈ VM} . There exists a graph isomorphism ψ : VM → V ′ such that (u, v) ∈ EM if and
only if (ψ(u), ψ(v)) ∈ E′. While often framed as a graph-level problem (i.e., determining if a graph
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contains a motif), its inherent dependency on local structure makes it easy to be formulated as a
node-level problem. This perspective can shift the objective from a graph-level task to a node-level
task, which is to identify all the nodes that belong to the motif. We define the objective of the motif
detection task as a node-level task:
Definition 2 (Node-Level Motif Detection). For a graph G = (V,E) and motif M , we assign binary
labels yi ∈ {0, 1} to each node i ∈ V , where yi = 1 if the node i is part of any subgraph isomorphic
to M , and 0 otherwise. The task is to learn fnode : G→ {0, 1}|V | that predicts y = (y1, . . . , y|V |)
using a GNN encoder Enode and classifier.

Furthermore, we prove the equivalence of the task objectives in different levels.
Proposition 1 (Equivalence of Node-Level and Graph-Level Motif Detection.). For graph G =
(V,E) and motif M , the following objectives are equivalent: (i) detect if G contains a subgraph
isomorphic to M ; (ii) detect whether ∃i ∈ V such that yi = 1 in the node-level task.

Heterophily Patterns in Motif Detection The node-level motif detection task reveals a fundamental
heterophily challenge that distinguishes graph-level tasks from node-level tasks. Unlike traditional
node classification where heterophily is characterized globally across the entire graph, motif detection
requires handling spatially-varying heterophily patterns.

Effective motif detection demands three distinct connectivity behaviors. First, intra-motif homophily
requires nodes within the same motif instance to have similar representations for consistent detection
(yi = yj = 1 for i, j ∈ VM ). Second, inter-motif heterophily necessitates strong representational
boundaries between motif participants and non-participants (fi ̸= fj for i ∈ VM , j /∈ VM when
(i, j) ∈ E). Finally, context-dependent adaptation means the same edge (i, j) may require
homophilic smoothing if both nodes are motif participants, or heterophilic sharpening if they represent
a motif-background boundary.

This spatial heterogeneity in connectivity requirements creates a fundamental mismatch with the
energy framework’s global frequency preferences, as we demonstrate below.

3.2 Theoretical Incompatibility with Frequency-Dominated Regimes

From Heterophily to Mixed-Frequency Requirements The spatially-varying heterophily patterns
required for motif detection directly translate to mixed-frequency requirements in the spectral domain.
Recall from Section 2.3 that LFD dynamics correspond to global homophily (feature smoothing),
while HFD dynamics correspond to global heterophily (feature sharpening). However, motif detection
requires both behaviors simultaneously but at different spatial locations.

Specifically, the optimal node representation f∗i for motif detection must satisfy conflicting spectral
requirements: (i) low-frequency components are needed within motif instances to maintain intra-motif
consistency (f∗i ≈ f∗j for i, j ∈ VM ), (ii) high-frequency components are essential at motif boundaries
to create discriminative separation (∥f∗i − f∗j ∥ large for i ∈ VM , j /∈ VM ), and (iii) medium-frequency
components may be required for motifs of specific structural scales.

The energy functional’s global optimization toward either LFD or HFD regimes cannot accommodate
this spatial heterogeneity. A purely LFD approach would blur motif boundaries through over-
smoothing, while a purely HFD approach would fragment intra-motif coherence through excessive
sharpening. This fundamental incompatibility explains why frequency-dominated GNNs struggle
with motif detection across different heterophily settings.

To give a theoretical analysis on the incompatibility with the frequency-dominated regimes, we first
draw a lemma that the performance of GNN on motif-based graph-level tasks is upper bounded by its
performance on the node-level task defined in Def. 2.

Lemma 2. The node-level motif detection function fnode : G → {0, 1}|V | contains sufficient
information to solve the graph-level motif detection problem. Specifically, motif M exists in graph G
if and only if ∥y∥0 > 0, where y = fnode(G) and ∥ · ∥0 denotes the ℓ0 norm.

We then show (informally) below that, if there exists an ideal encoder Enode : {f(0)i }|V |
i=1 → {f(t)i }|V |

i=1
for node-level motif detection, it is not aligned with the frequency-dominated dynamics.
Theorem 1. The frequency-dominated regimes are suboptimal for node-level motif detection tasks.
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Figure 1: (A) The motifs and background graphs in two different settings (homophily and heterophily).
Node colors represent different node features/labels. The example illustrates motifs and backbones
with distinct feature distributions. (B) MMD scores of different conditions. The MMD scores are
calculated on the test sets between graphs with and without motifs attached.

The proofs for the above results are given in the Appendix E. We show that effective node-level motif
detection requires GNNs to be flexible to multiple frequency bands, which help us understand the
impact of heterophily on graph-level tasks, and assist us to design new models for graph classification.

Implications for Heterophilic Graph Classification Our theoretical analysis reveals why het-
erophily impacts graph-level tasks differently than node-level tasks. In node classification, heterophily
typically manifests as a spatial-consistency graph property that can be partially addressed through
HFD dynamics. However, in motif-based graph classification, heterophily patterns are task-dependent
and spatially localized, creating three distinct challenges as mentioned in 2.1.

In a fine-grain clarification, we further divide the heterophily in motif-detection scenario into two
genres: Motif-agnostic heterophily emerges when the background graph exhibits connectivity
patterns independent of motif detection requirements, and Motif-specific heterophily arises because
discriminative signals often require heterophilic patterns at motif boundaries, regardless of the back-
ground graph’s structure. Heterophily interference occurs when mismatched patterns between
motifs and backgrounds (e.g., heterophilic motifs embedded in homophilic backgrounds) create con-
flicting optimization objectives for frequency-dominated approaches. This analysis directly motivates
our experimental design in Section 4, where we systematically evaluate all four combinations of
motif and background heterophily patterns to validate that mixed-frequency architectures outperform
frequency-dominated approaches across diverse heterophily configurations.

4 Experimental Validation

In this section, we will verify our claims on both synthetic and real-world datasets to support the
theoretical analysis. For both synthetic and real-world experiments, we use three different GNN
models, standard GCN [11], gradient flow GCN (GCNgf ) [12] and Adaptive Channel Mixing GNN
(ACM-GNN) [24], where standard GCN and GCNgf will provably lead to the frequency-dominated
dynamic which enhances either low-frequency or high-frequency signals, while ACM-GNN are
designed to adaptively combine multiple frequency filters. We make the parameters of these three
models in the similar level to ensure them comparable. The train, validation and test sets are split by
80%, 10% and 10% in both synthetic and real-world experiments. The optimizer is Adam and the
learning rate is set to 0.01 and 0.001 for synthetic and real-world experiments, respectively.

4.1 Synthetic Experiment

We conduct experiments on four synthetic dataset variants, each representing a different combina-
tion of backbone and motif connectivity patterns: homophilic-homophilic, homophilic-heterophilic,
heterophilic-homophilic, and heterophilic-heterophilic (see Fig. 1(A) for demonstration and Ap-
pendix B for details). For each dataset variant, we train all three GNN models and evaluate the
best-performing model (selected via validation) on the corresponding test set.
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Table 1: Results on the pKa dataset and Dirichlet Energy analysis.
Performance Shrink Ratio of Normalized Dirichlet Energy

Model MSE ↓ Boundary ↑ R2-NH R-CH=O R-C(=NH)NH2

GCN 3.08± 0.31 0.14± 0.01 0.13± 0.01 0.17± 0.02 0.16± 0.03
GCNgf 3.24± 0.40 0.13± 0.01 0.19± 0.01 0.12± 0.01 0.11± 0.02

ACM-GNN 2.32 ± 0.38 1.77± 0.17 0.24± 0.08 0.14± 0.01 0.18± 0.04

We employ the empirical Maximum Mean Discrepancy (MMD) to quantify how effectively each
GNN learns to distinguish between graph embeddings of different classes:

M̂MD
2

κ({hi}, {gj}) =
1

p2

p∑
i,i′=1

κ(hi,hi′) +
1

q2

q∑
j,j′=1

κ(gj ,gj′)−
2

pq

p∑
i=1

q∑
j=1

κ(hi,gj) (3)

where {hi}pi=1 and {gj}qj=1 ∈ Rd represent p and q final graph embeddings randomly sampled from
graphs with and without motifs in the test set, respectively, and κ denotes the RBF kernel function.

Figure 1(B) presents the MMD scores across different experimental conditions. Higher MMD scores
indicate superior discriminative capability between graphs containing motifs versus those without,
while lower scores suggest diminished separation ability. Across all four scenarios, ACM-GNN
consistently achieves higher MMD scores compared to the baseline models, while the two frequency-
dominated approaches exhibit similar performance levels. These results validate our theoretical
claims regarding the limitations of frequency-dominated GNNs for motif detection tasks.

4.2 Real-world Experiment

To practically verify our claim on real-world graph-level tasks, we evaluated the baseline models
on a newly collected dataset (see Appendix C for details). The dataset comprises 6,714 molecules
with their corresponding pKa (acid-base dissociation constant) values. The pKa value quantifies
the acidity or basicity of a molecule and is strongly influenced by specific functional groups, which
correspond to distinctive motifs in the molecular graph structure. This constitutes a graph-level
regression task where molecules serve as input and the objective is to predict the pKa value of them.

Table 1 reports the experimental results. The mean squared error (MSE) is evaluated on the test set
and averaged over five independent runs. Consistent with the synthetic data experiments, ACM-GNN
achieves the best performance among the three GNN models. We further compute the shrink ratio
of the normalized Dirichlet energy, EDir(F(t))/∥F(t)∥2

EDir(F(0))/∥F(0)∥2 where t denotes the evolution time of the
dynamical system (i.e., the number of layers). Since Dirichlet energy reflects differences across
edges, we focus on two categories: boundary edges (those connecting motifs to the backbone graph)
and intra-motif edges (within the three functional groups). The results show that GCN and GCNgf

yield low shrink ratios for both boundary and intra-motif edges, indicating global over-smoothing
consistent with LFD dynamics. In contrast, ACM-GNN produces high shrink ratios on boundary
edges and low shrink ratios within motifs, effectively sharpening boundaries while smoothing internal
embeddings. This behavior explains the observed performance gap across models and supports our
hypothesis on heterophily patterns in motif detection (Sec. 3.1).

5 Limitation, Conclusion and Future Work

6 Conclusion

Our theoretical and empirical analysis demonstrates that effective motif detection demands a spatially
adaptive dynamic, rejecting monolithic low- or high-frequency dominated (LFD/HFD) regimes.
Successful models must resolve a fundamental tension: performing intra-motif smoothing to unify
constituent nodes while simultaneously sharpening boundaries to distinguish the motif from the
wider graph structure. Our energy-based framework formalizes why globally frequency-dominated
dynamics are ill-suited for this, revealing that their asymptotic convergence actively destroys the
spectral signatures required to identify local patterns.
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6.1 Limitation

Our work, while providing a foundational energy-based perspective, has several limitations that offer
clear directions for future inquiry.

• Task Scope: Our theoretical and empirical analysis is primarily focused on motif-based
classification. We use this task as a representative template to illustrate our core theory
but do not conduct a formal analysis of the other two graph labeling schemes previously
proposed. These other tasks, which may rely on different structural information, could
present unique dynamic requirements not fully captured by our current study.

• Empirical Generality: The experimental validation is confined to a single real-world
dataset. This inherently limits the assessment of our framework’s generality and robust-
ness. The conclusions drawn may not readily transfer to graphs with substantially different
topological properties, such as varying degree distributions, clustering coefficients, sizes, or
dataset domains.

• Asymptotic vs. Finite-Layer Dynamics: Our energy-based framework provides a powerful
lens for analyzing the asymptotic convergence of graph dynamics. However, practical
GNNs are almost always shallow, operating in a finite-layer regime (e.g., 2–8 layers). A
potential gap exists between the properties predicted by our long-term asymptotic model and
the actual transient behavior of these shallow architectures, which is ultimately responsible
for their performance.

• Architectural Scope: The presented analysis implicitly centers on the dynamics character-
istic of standard Message-Passing Neural Networks (MPNNs). The extent to which our
energy-based perspective and taxonomy of dynamics apply to other, increasingly popular
architectures—particularly Graph Transformers which employ different mechanisms like
global attention—has not been investigated.

7 Future Work

This energy-based perspective opens several avenues for future research. First, a deeper charac-
terization of motif-specific dynamics promises to guide the principled design of specialized GNN
architectures that excel at local structural pattern recognition. Second, extending our dynamic-based
taxonomy to a broader class of graph-level tasks—and to other architectures like Graph Transformers—
could provide a unified theory explaining performance variations across different models and problem
settings. Such an analysis would clarify the nuanced role of heterophily at both the node and graph
levels, paving the way for more robust and versatile graph learning models.
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A Real-world Examples for Graph-level Task Taxonomy

A.1 Examples for Aggregated Node Feature Based Labeling

• Molecular property prediction: Classifying drug molecules based on average atomic
properties (e.g., if the average electronegativity of atoms exceeds a threshold, classify as
“polar” vs “non-polar”) [27, 35]

• Social network analysis: Categorizing online communities based on aggregated user
demographics (e.g., if > 70% of users are in a certain age group, label the network as
“young adult community”) [37, 31]

• Brain network analysis: Classifying brain connectivity networks based on average ac-
tivation levels across brain regions (e.g., networks with high average activity labeled as
“hyperactive state”) [4, 32]

• Protein interaction networks: Classifying protein complexes based on the proportion of
proteins belonging to specific functional categories [20, 16]

A.2 Substructure labeling examples

• Drug discovery: Classifying molecules based on the presence of specific pharmacophores
or toxic substructures (e.g., presence of benzene rings, specific functional groups) [1, 10]

• Social network analysis: Detecting communities based on local clustering patterns –
networks with many tightly-knit triangular relationships vs. those with more heterophilic
connections [34, 8]

• Transportation networks: Classifying road networks based on the presence of specific
traffic patterns like roundabouts, highway interchanges, or bottleneck structures [2]

• Chemical reaction networks: Categorizing reaction pathways based on the presence of
specific reaction motifs or catalytic cycles [17, 39]

A.3 Global labeling examples

• Molecular classification: Distinguishing between different molecular families based on
overall structural properties like molecular diameter, overall connectivity, or graph den-
sity [40]

• Social network analysis: Classifying entire social networks based on global properties like
average path length (small-world vs. random networks) or overall network density [15, 38]

• Infrastructure networks: Classifying power grids or communication networks based on
their overall robustness, measured by global connectivity metrics [13]

B The Synthetic Dataset

Our synthetic dataset consists of graphs composed of a larger background graph (backbone) with
a smaller substructure (motif) embedded within it. We generate backbone graphs and motifs inde-
pendently, with each type designed to exhibit either homophilic or heterophilic node connectivity
patterns.

Dataset Composition. We generate 1,000 backbone graphs for each connectivity type (homophilic
and heterophilic) and create 5 distinct motif types, also categorized by connectivity pattern. Each
backbone graph is paired with one motif to form a complete graph, resulting in four possible
combinations: (homophilic backbone, homophilic motif), (homophilic backbone, heterophilic motif),
(heterophilic backbone, homophilic motif), and (heterophilic backbone, heterophilic motif). With
1,000 backbone graphs and 5 motif variants per combination, each of the four combinations contains
5,000 graphs, yielding a total dataset of 20,000 graphs.

Graph Generation Process. The synthesis procedure consists of two stages: (1) structural generation
of unlabeled graph skeletons, and (2) node feature assignment. The skeleton is first constructed
by adding extra edges to a random tree, where the number of added edges is preset to half of the
maximum possible edges for the given number of nodes. For homophilic graphs, node labels are
assigned using the Clauset–Newman–Moore greedy modularity maximization algorithm [6], which
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Structural Motifs with Significant Effects on pKa Values

Figure 2: The influence of the functional groups on the pKa values. The y-axis refers to different
functional groups, and the x-axis refers to the change of the pKa value if this specific functional
group appears in the molecule.

encourages intra-community similarity. For heterophilic graphs, node labels are instead assigned at
random to promote dissimilarity among connected nodes. The initial node features f0 are generated
using a fixed embedding layer in PyTorch with small perturbations (gaussian noise with µ = 0 and
σ = 0.05), ensuring that nodes sharing the same label have similar features.

Graph Constraints. Backbone graphs contain 20–50 nodes, while motifs contain 5–7 nodes. And
the edges are randomly sampled from minimum (|V | − 1) to maximum ( |V |×(|V |−1)

4 ). The maximum
number of edges is set to ensure reasonable connectivity without creating overly dense graph.

C The pKa Dataset

The dataset is collected from the IUPAC Dissociation Constants GitHub repository 2, which serves
as a publicly accessible, continuously updated resource containing high-confidence pKa data. This
dataset has been meticulously digitized and curated from authoritative reference works published by
the International Union of Pure and Applied Chemistry (IUPAC), ensuring data quality and reliability
for computational chemistry applications.

From the total 24,290 records available in the repository, we select 6,714 unique molecules with
their corresponding pKaH1 values, which represent the equilibrium constant for the loss of the first
proton from each molecule. This subset focuses on molecules with well-defined ionization properties,

2https://github.com/IUPAC/Dissociation-Constants
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Table 2: Statistical properties of the pKa value in the dataset.
Average Standard Variance Maximum Minimum
4.063 4.259 14.110 -17.632

making it suitable for studying the relationship between molecular structure and chemical reactivity.
The pKa values in our dataset span a wide range of chemical environments, encompassing various
functional groups and molecular frameworks encountered in pharmaceutical and chemical research.
In Fig. 2 we list the influence of functional groups on the molecule’s pKa.

For our task, we convert each molecule into a graph representation where atoms serve as nodes and
chemical bonds as edges. Node features include atomic properties, e.g., atomic number, formal charge,
and hybridization state, while edge features capture bond types and stereochemistry information.

Table 2 presents statistical properties of the pKa values in our curated dataset, including the distribu-
tion range, mean, median, and standard deviation, providing insight into the chemical diversity and
complexity of the molecular structures under investigation.

D Equation Derivation

D.1 Eigenvectors Decomposition

Since W ∈ Rn×n is symmetric, we write it as W = QΛQ⊤, where Λ is a digonal matrix with
all the eigenvalues µ ∈ {µ0,µ1, . . . ,µn−1}. Suppose µk is the smallest positive eigenvalue, and
µ0 ≤ µ1 ≤ · · · ≤ µk ≤ · · · ≤ µn−1, we have:

Λ =


µ0 0 . . . 0
0 µ1 . . . 0
...

...
. . . 0

0 0 . . . µn−1



=



µ0 0 . . . . . . . . . 0
0 µ1 . . . . . . . . . 0
...

...
. . . . . . . . . 0

0 0 . . . µk−1 . . . 0
...

... . . . . . .
. . . 0

0 0 . . . . . . . . . 0


+



0 0 . . . . . . . . . 0
0 0 . . . . . . . . . 0
...

...
. . . . . . . . . 0

0 0 . . . µk . . . 0
...

... . . . . . .
. . . 0

0 0 . . . . . . . . . µn−1


= Λ+ −Λ−

where Λ+ is a diagonal matrix with all the positive eigenvalues (from µk to µn−1) and Λ− is a
diagonal matrix with absolute values of all the negative eigenvalues (from µ0 to µk−1). We note√
Λ+ and

√
Λ− as the element-wise square root of the two matrices Λ+ and Λ− respectively.

Furthermore, we define Θ+ =
√
Λ+Q⊤ and Θ− =

√
Λ−Q⊤. Then we can rewrite the weight

matrix W as:
W = Q(Λ+ −Λ−)Q⊤

= QΛ+Q⊤ − QΛ−Q⊤

= Q(
√
Λ+)(

√
Λ+)Q⊤ − Q(

√
Λ−)(

√
Λ−)Q⊤

= (Q
√
Λ+)(

√
Λ+Q⊤)− (Q

√
Λ−)(

√
Λ−Q⊤)

= Θ⊤
+Θ+ −Θ⊤

−Θ−

E Proofs

E.1 Proof of Proposition 1

Proof. We prove both directions of the equivalence.
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(i) ⇒ (ii) Assume graph G contains a subgraph isomorphic to motif M . That is, there exists a
subgraph H = (VH , EH) where VH ⊆ V , EH ⊆ E, and H ∼=M .

Since H is isomorphic to M , by definition, every node i ∈ VH is part of a subgraph in G that is
isomorphic to M (namely, H itself). Therefore, by Definition 2, for every node i ∈ VH , we have
yi = 1.

Since VH ̸= ∅ (as M is a non-empty motif), there exists at least one node i ∈ V such that yi = 1.

(ii) ⇒ (i) Assume there exists at least one node i ∈ V such that yi = 1.

By Definition 2, yi = 1 means that node i is part of some subgraph in G that is isomorphic to M . Let
H denote this subgraph. Then H ⊆ G and H ∼=M .

Therefore, graph G contains a subgraph isomorphic to motif M .

Conclusion Thus, the equivalence (i) ⇔ (ii) is established. This proves that the objective of
distinguishing nodes in a substructure (node-level motif detection) is equivalent to detecting the
existence of the substructure (graph-level motif detection) in the sense that:

∃ subgraph H ⊆ G : H ∼=M ⇔ ∃i ∈ V : yi = 1

E.2 Proof of Lemma 2

Proof. To prove this, we must show two things: (1) a perfect node-level classifier contains sufficient
information to construct a perfect graph-level classifier, and (2) a perfect graph-level classifier does
not contain sufficient information to construct a perfect node-level classifier.

Let G = (V,E) be a graph and M be a target motif. The node-level task requires learning a function
fnode : G → {0, 1}|V | that predicts the label vector y = (y1, . . . , y|V |), where yi = 1 if node i is part
of a subgraph isomorphic to M . The graph-level task requires learning a function fG : G→ {0, 1}
that predicts a single label yG = 1 if G contains any subgraph isomorphic to M .

A node-level solution implies a graph-level solution. Given a perfect node-level classifier fnode,
we can construct a perfect graph-level classifier, f∗G, using a simple transformation T : {0, 1}|V | →
{0, 1}:

f∗G(G) = T (fnode(G)) = max(fnode(G)).

By definition, a graph G contains a motif M if and only if there is at least one node i ∈ V that is part
of a subgraph isomorphic to M . This is equivalent to the condition that at least one entry in the true
node-level label vector y is 1. The function f∗G correctly implements this, as max(y) = 1 if and only
if
∑
yi > 0. Thus, the information provided by fnode is sufficient to solve the graph-level task.

A graph-level solution does not imply a node-level solution. We prove this by counterexample.
Let the motif M be a triangle (K3) and consider two graphs, G1 and G2, on the vertex set V =
{v1, v2, v3, v4}.

• Let G1 be a graph consisting of a single triangle on nodes {v1, v2, v3} and an isolated node
v4.

• Let G2 be a complete graph (K4) on all four nodes.

A perfect graph-level classifier fG will produce the same output for both, as both graphs contain at
least one triangle:

fG(G1) = 1 and fG(G2) = 1.

However, the ground-truth node-level label vectors are different:

• For G1, the node-level vector is y1 = (1, 1, 1, 0).

• For G2, the node-level vector is y2 = (1, 1, 1, 1), since all nodes in a K4 are part of at least
one triangle.
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Figure 3: A barbell-shape graph consists of two complete graph K10 and a connection path line graph
P5.

Any transformation attempting to construct a node-level classifier from the graph-level output would
need to map the input value ‘1‘ to two different outputs, y1 and y2. This is impossible for a function.
Therefore, the information provided by a graph-level classifier is fundamentally insufficient to solve
the node-level task, as it cannot distinguish between different node configurations that satisfy the
same graph-level property. Since a node-level solution implies a graph-level solution but the reverse
is not true, the node-level task is strictly more general.

E.3 Proof of Theorem 1

Proof. Let Lmotif denote the motif detection loss function, and let f∗M denote the optimal node
feature representation for motif detection. We analyze how the energy functional Eθ(F) from Eq. 2
conflicts with motif detection objectives under LFD and HFD regimes.

LFD Suboptimality According to the framework in Section 2, LFD dynamics minimize the
normalized Dirichlet energy EDir(F(t))/∥F(t)∥2, driving the system toward the global minimum
where F(t) → cϕ01

T (c is the proportional coefficient).

In the gradient flow formulation Ḟ(t) = −∇Eθ(F(t)), the pairwise interaction term
−
∑

i,j Aij⟨fi,Wfj⟩ encourages neighboring nodes to have aligned representations (when W has
positive eigenvalues). This global alignment objective is fundamentally at odds with motif detection.

For motif detection, the optimal loss Lmotif requires representations to distinguish between motif-
participating nodes VM and non-participating nodes V \ VM . However, LFD dynamics optimize for
global consensus, producing identical representations fi ≈ fj for all i, j ∈ V (e.g., the node on the
boundary like node 9 and node 10 in the Fig. 3). This makes the model to have blurred edges between
motifs and the background graph and eliminates the discriminative information necessary for motif
detection, resulting in Lmotif (cϕ01

T ) > Lmotif (f
∗
M ).

HFD Suboptimality From the theorem in Section 2, HFD dynamics occur when |µ0|(λn−1−1) >
µd−1, leading to maximization of the normalized Dirichlet energy and convergence to F(t) →
cϕn−11

T .

In this regime, the energy functional’s pairwise term −
∑

i,j Aij⟨fi,Wfj⟩ drives neighboring nodes
to have maximally different representations, as the system seeks to maximize

∑
(i,j)∈E ∥fi − fj∥2.

This creates a fundamental conflict with motif detection objectives. Consider any connected motif M
- nodes within the same motif instance are connected by edges and should receive similar labels (both
should be classified as motif participants). However, HFD dynamics force these neighboring nodes to
have anti-aligned representations: fi ≈ −fj for (i, j) ∈ E, e.g., nodes in the complete graph K10 on
the sides in Fig. 3.

The energy minimization process actively works against the motif detection objective, making it
impossible for any linear classifier to consistently label connected nodes within the same motif
instance. Thus Lmotif (cϕn−11

T ) > Lmotif (f
∗
M ).
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Mixed-Frequency Requirement The energy framework reveals why motif detection is incompati-
ble with frequency-dominated regimes. The gradient flow Ḟ(t) = −∇Eθ(F(t)) drives the system
toward eigenvector alignment, but motif detection requires a different objective function altogether.

Optimal motif detection requires minimizing Lmotif , which demands:

• Inner smoothing: Similar representations within motif instances, i.e., local low-frequency
behavior

• Boundary sharpening: Sharp boundaries between motif and non-motif regions, i.e., local
high-frequency behavior

• Scale-appropriate sensitivity: Frequency components matching the motif’s characteristic
size

This creates a mixed-frequency optimization problem that cannot be solved by the global energy
minimization of Eθ. The optimal solution f∗M requires spatially-varying frequency content: f∗M =∑

k αkϕkvk where the coefficients αk depend on the local structural context around each motif.

Since the energy functional in Eq. 2 enforces global spectral alignment (either LFD or HFD), it cannot
accommodate the spatially-heterogeneous frequency requirements of motif detection. Therefore,
effective motif detection requires architectures that can escape the LFD/HFD dichotomy imposed by
the standard energy framework.
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paper’s contributions and scope?

Answer: [Yes]
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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