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DenseFlow: Spotting Cryptocurrency Money Laundering in
Ethereum Transaction Graphs

Anonymous Author(s)∗

ABSTRACT
In recent years, money laundering crimes on blockchain, espe-
cially on Ethereum, have become increasingly rampant, resulting
in substantial losses. The unique features of money laundering on
Ethereum, such as decentralization and pseudonymity, pose new
challenges for Ethereum anti-money laundering. Specifically, the
existence of dense and extensive laundering gangs and intricate
multilayered laundering pathways makes it exceptionally challeng-
ing for regulators to identify suspicious accounts and trace money
flows. To address this issue, we propose an innovative DenseFlow
framework that effectively identifies and traces money laundering
activities by finding dense subgraphs and applying the maximum
flow idea. We conduct multiple experiments on four datasets from
Ethereum to validate the effectiveness of our approach. The pre-
cision of our DenseFlow is 16.34% higher than the start-of-the-art
comparison methods on average, highlighting its distinctive contri-
bution to tackling money laundering issues on blockchain.

CCS CONCEPTS
• Applied computing→ Electronic funds transfer; • Security
and privacy→ Economics of security and privacy.

KEYWORDS
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1 INTRODUCTION
Over the course of the past 15 years, since the concept of Bitcoin [27]
being introduced, blockchain technology has attracted sustained
global attention and experienced rapid growth. Ethereum, as the
pioneering blockchain platform supporting smart contracts [2], has
now emerged as the world’s second-largest blockchain network,
boasting a staggering market capitalization of $19.5 billion. Never-
theless, while blockchain technology presents new opportunities, it
is also a breeding ground for a plethora of criminal activities [9, 37],
including fund theft, phishing schemes, Ponzi scams, etc. Following
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Service
providers

Source account
with stolen money

Suspicious accounts

Normal accounts

Money transfer

Figure 1: Example of a cryptocurrencymoney laundering pro-
cess on Ethereum. The source account illegally gains money
and launders it through dense and complex accounts and
transactions until service providers.

the execution of these crimes, criminals must engage in money
laundering to legitimize their ill-gotten gains, allowing them to
spend these illegal funds without raising suspicion [31].

Money laundering [30] refers to the act of transforming ille-
gally acquired funds or assets into seemingly legitimate sources
through a series of transactions. Currently, illegal activities in-
volving money laundering on blockchain platforms have amassed
significant amounts and caused substantial losses, drawing the
attention of governments and regulatory authorities. Combating
money laundering crimes on blockchain has become an urgent
priority. According to reported statistics [31], the amount involved
in cryptocurrency money laundering has steadily increased from
2015 to 2022, with a staggering $23.8 billion in losses within a single
year in 2022. The cumulative losses have reached an alarming $67
billion. This underscores the severity and rampant nature of money
laundering crimes on the blockchain.

Anti-money laundering (AML) in the financial sector is not a new
issue, but financial activities on blockchain exhibit significant dif-
ferences from traditional finance: (1) Decentralized and distributed
nature: Blockchain operates on a global network of nodes, free from
foreign exchange controls, making it easy to evade financial regu-
lations; (2) Pseudonymity: Users can create unlimited accounts and
transactions without the need for real-name verification, making it
challenging to trace and track transactions. These characteristics
pose significant challenges for regulatory authorities in identifying
suspicious accounts and tracing funds:
• C1: Massive and dense gang ofmoney laundering accounts:

Unlike traditional financial money laundering, where criminals
aim to use as few bank accounts as possible [21], in blockchain,
creating accounts is nearly cost-free. Criminals can generate
numerous disposable accounts, forming massive and dense ac-
counts to launder the proceeds of illegal activities. This strategy
helps them evade being frozen by centralized cryptocurrency
service providers and escalates the difficulty for regulators to
identify suspicious accounts manually.

• C2: Complex multi-layered money laundering pathways:
To disperse and transfer illegal funds as quickly as possible, hack-
ers create intricate multi-layered money laundering pathways

1
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among numerous accounts. Furthermore, hackers utilize multiple
accounts to engage in multiple transactions among themselves,
and they may also interact with other types of accounts, such as
service provider accounts and regular user accounts, to conceal
their activities.
Although there have been some studies on blockchain anomaly

analysis and detection [5, 10, 15, 32, 34, 39–41], these methods do
not consider finding the core gangs and pathways of money laun-
dering. Most of these paper focuses on account classification, such
as phishing account detection [20, 38], Ponzi scheme detection [7],
and fraud account classification [14, 17, 26, 35]. This kind of work
focuses on the source of the stolen money, and cannot not uncover
the money laundering gangs that follow it. Anti-money launder-
ing research in the field of Bitcoin is mainly based on the Elliptic
dataset [36] to classify accounts (i.e. illicit accounts vs licit accounts),
and this kind of work does not uncover money laundering gangs
and money laundering pathways. Anti-money laundering efforts in
the Ethereum field are based on heuristic rules to screen suspected
money laundering networks [22], but this kind of method is easily
circumvented by experienced hackers, resulting in ineffective rules.

To address these challenges, we propose a new framework called
DenseFlow, designed to assist regulators in identifying and evi-
dencing money laundering activities on the blockchain. To tackle
Challenge C1, we identify accounts of money laundering gangs
engaged in extensive high-frequency asset transfers by detecting
dense subgraphs and considering the characteristics of money
laundering transaction amounts and time sequences. To address
Challenge C2, we trace the flow of funds from money laundering
sources to accounts of gangs and supplement involved accounts
along the money laundering pathway using maximum flow. We
conduct experiments on four real-world incident datasets from the
Ethereum platform, comprehensively analyzing the effectiveness
of DenseFlow through method comparisons, ablation studies, and
case studies.

Overall, our contributions are summarized as follows:
• This paper is the first to conduct an in-depth analysis and

research on the issue of money laundering detection on
Ethereum and introduce the DenseFlow method innova-
tively.

• We design the suspiciousness metric for accounts and trans-
actions based on the traits of money laundering behavior,
rather than relying on a black-box model. Furthermore,
we prove that our algorithm approaches the theoretical
boundaries of approximate optimality in detecting money
laundering within a graph.

• We implement the DenseFlow method1 and demonstrate
its superior effectiveness via multiple experiments. The
precision of our DenseFlow is 16.34% higher than the start-
of-art comparison methods on average.

The remainder of this paper is organized as follows. Section 2
gives the background related to our approach, and Section 3 surveys
the related work. Section 4 defines and formulates the Ethereum
money laundering detection problem. Section 5 introduces the
framework of DenseFlow. Section 6 presents an extensive experi-
mental evaluation to validate the effectiveness of our framework.
1Available at https://github.com/DenseFlow.

Section 7 finally concludes this work. Additional theoretical proofs
are provided in the appendix.

2 BACKGROUND
2.1 Money Laundering
Money laundering involves disguising financial assets so they can
be used without detecting the illegal activity that produced them,
through money laundering, the criminal transforms the monetary
proceeds derived from criminal activity into funds with an appar-
ently legal source [8]. Money laundering facilitates a broad range
of underlying severe criminal offenses and ultimately threatens the
integrity of the financial system [33].

Traditionally, money launderers engaging in layering repeatedly
move fiat currency into different financial institutions and assets to
blur the origins of the criminal proceeds. Figure 1 demonstrates an
example of the Ethereum money laundering process. With crypto,
money launderers may move the illicit funds through hundreds
of wallets before depositing the funds and cashing out the funds
at service providers2, e.g. crypto exchange. Unlike bank accounts,
thousands of wallets may be opened without proof of identity,
within seconds [18].

2.2 Ethereum and Transactions
Ethereum is the first blockchain platform that supports smart con-
tracts. On Ethereum, users can create and execute smart contracts,
which are computer programs designed to enforce the terms of
a contract automatically. Ethereum transactions involve financial
activities conducted on the Ethereum blockchain, similar to transac-
tions in traditional financial systems. These transactions encompass
the transfer of the digital currency Ether, and may involve actions
such as transferring funds from one account to another, execut-
ing smart contracts, or engaging in other operations related to
digital assets [6]. Each transaction is recorded on the Ethereum
blockchain, ensuring transparency and immutability of the trans-
action history. Ethereum’s transaction system offers the financial
sector decentralized and secure alternatives, enhancing the effi-
ciency and traceability of various financial activities.

3 RELATEDWORK
3.1 Anti Money Laundering
In the traditional financial anti-money laundering research, Li et
al. [21] proposed a graph-based method to detect money launder-
ing behavior. Sun et al. [28] proposed a model to detect money
laundering agent accounts by keeping track of their residuals and
other features. In the study of blockchain financial anti-money
laundering, Alarab et al. [1] used an ensemble learning approach
to detect money laundering transactions on the Bitcoin blockchain.
Lorenz et al. [25] proposed active learning and unsupervised meth-
ods to detect money laundering activities on a Bitcoin transaction
dataset. Lin et al. [22] mined untagged money laundering gangs on
Ethereum through heuristic transaction tracking methods, to carve
out a complete picture of security incidents.
2Typically, the conversion of virtual currency to fiat currency by hackers requires
navigating through one or a series of centralized virtual asset service providers like
exchanges or over the counter (OTC). We use the term “service providers” to denote a
group of virtual currency service providers that adhere to AML compliance.
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3.2 Graph-based Anomaly Detection
Graph-based techniques excel at identifying groups of fraudsters,
typically by identifying irregularities through density indicators.
Evading such detection is challenging because fraudulent activi-
ties inherently involve interconnected relationships, represented
as edges within the graph. In recent years, many studies have
used graph-based methods to accomplish anomaly detection and
demonstrated their effectiveness. HoloScope [24] introduced con-
trast suspiciousness from graph topology and spikes to accurately
detect fraudulent users and objects. FRAUDAR [13] proposed a
camouflage-resistant weighting scheme to calculate the amount
of fraud adversaries can have, even in the face of camouflage. AN-
TICO [16] presented a class of metrics to capture suspicious signals
of the activities and a greedy algorithm to spot suspicious dense
subgraphs by optimizing the proposed metric. AntiBenford [4] pro-
posed a novel unsupervised framework for detecting anomalies in
financial networks.

4 PROBLEM FORMULATION
On Ethereum, after successful fund theft, hackers strategically cre-
ate a multitude of intermediary accounts to obscure the flow of
funds. They engage in multi-layered and complex transactions, fa-
cilitating the transfer of stolen funds from the source account to
several accounts.

4.1 Analysis
We assume the following measurable traits in money laundering
activities on Ethereum.

Trait 1 (dense transfer). Hackers construct a large and dense
subgraph of money transfers within gang accounts.

In the realm of blockchain, all transactions are publicly trans-
parent. Therefore, large-scale asset theft will attract significant
attention from monitoring systems. To circumvent potential freez-
ing by service providers, hackers urgently engage in frequent and
substantial fund transfers within gang accounts but have limited
collaboration with other accounts. This results in the density of the
money laundering transfer subgraph, particularly during the latter
stages of money laundering, i.e., the process of converting assets
into fiat currency.

Trait 2 (Temporal Surge). Hackers tend to engage in frequent
fund transfers within a short timeframe.

This trend arises from hackers conducting multiple rounds of
illicit fund transfers, resulting in a surge in transaction activity
within money laundering accounts. Conversely, hackers typically
opt for one-time use of these accounts to evade detection by service
providers. This leads to the termination of the money laundering
account’s lifecycle corresponding to a sudden decline in its transac-
tion activity. Therefore, the behavior of money laundering accounts
often manifests as peaks in the temporal sequence.

Trait 3 (Amount Intensity). The proportion of suspicious trans-
actions in a specific time period significantly exceeds that of other
time periods.

Due to the urgent need to transfer substantial illicit assets in the
hands of hackers, frequent transactions occur during the money

laundering period, resulting in an uneven temporal pattern of trans-
action amounts. Leveraging this trait, we define a suspiciousness
rating for each transaction (refer to Section 5 for details).

Trait 4 (Rating Deviation). Money laundering accounts show
a significant difference in the suspiciousness score of transactions
compared with regular accounts.

This is attributed to the fact that money laundering accounts
are specifically employed by hackers for the purpose of money
laundering, rendering the majority of their transactions suspicious.
In contrast, transactions by regular users exhibit greater random-
ness, leading to a noticeable deviation in the suspiciousness rating
compared to money laundering accounts.

In addition, Trait 1 is related to a dense topological structure.
Trait 2 is associated with temporal behavior. Trait 3 is correlated
with both temporal behavior and transaction amount. Trait 4 is
linked to rating deviation. In summary, hackers engage in money
laundering activities by rapidly and intensively transferring embez-
zled funds through multiple layers from the source account. This
results in a substantial cash flow, which distinguishes from ordinary
transactions.

4.2 Definitions and Notations
Generally, the source account responsible for the stolen assets in
each incident can be obtained from incident reports. We can acquire
a biased downstream multi-layered transaction history starting
from the incident’s source account by Lin’s tool [22]. Thus, we use
this biased downstream transaction record of the hacker as input.
The transaction records (𝑖, 𝑗, 𝑎, 𝑡) include the sender’s account (𝑖),
the recipient’s account ( 𝑗 ), the transaction amount in Ether (𝑎),
and the timestamp (𝑡 ) indicating the time when the transaction
occurred.

To explore the relationship of transactions between accounts, we
model transaction records as graphs [19, 23, 42].Wemodel the input
hacker’s downstream transactions as a directed graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 represents accounts (including both money laundering
(ML) and non-money laundering accounts). 𝐸 represents directed
transactions (multiple transactions may occur between each pair of
accounts), and 𝑒𝑖 𝑗 represents the frequency from node 𝑖 to node 𝑗 .

Problem (EthereumMLDetection):Given a downstream trans-
action network 𝐺 starting from the source account of an Ethereum
incident,

• Identify a dense subgraph in𝐺 consisting of suspicious money
laundering gang accounts;

• Optimize suspiciousness metrics under general cryptocur-
rency money laundering knowledge, considering topology,
transaction time, and amount;

• Trace the flow of funds from the source to money laundering
accounts and supplement on group accounts.

Table 1 displays the symbols primarily used throughout the
entire paper.

5 METHODOLOGY
We design DenseFlow for Ethereum money laundering detection,
targeting suspicious account gangs and money laundering flows.
Firstly, we collect the downstream transaction network 𝐺 starting

3
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Table 1: Symbols and definitions

Symbols Interpretation

𝐺 Downstream transaction network
𝑉 Nodes of graph 𝐺
𝐸 Transaction edges of graph 𝐺 , each edge 𝑒 = (𝑖, 𝑗, 𝑎, 𝑡)
𝑎 Transaction amount
𝑡 Transaction timestamp

𝑒 𝑗𝑖 Edge frequency from node 𝑗 to node 𝑖
𝑆 Node subset of graph 𝐺

𝛼𝑖 (𝑆) Topological suspiciousness of node 𝑖 within 𝑆
𝛽𝑖 (𝑆) Temporal suspiciousness of node 𝑖 within 𝑆
𝛾𝑖 (𝑆) Monetary suspiciousness of node 𝑖 within 𝑆

Φ [𝑇𝑖 (𝑆)] Timestamp set of transaction from 𝑆 to 𝑣𝑖
𝑅 Rating of transaction suspiciousness
𝜔𝑖 Weighted assigned to node 𝑖 in priority tree
𝐹 Accounts within suspicious money laundering flow
𝑀 Suspicious money laundering account set

𝑓𝑖 (𝑆) Suspicious function of node 𝑖 within 𝑆
𝑔(𝑆) Suspicious function of subset 𝑆

from the source hacker accounts, and then model it as a transac-
tion graph. Subsequently, within 𝐺 , we identify suspicious account
gangs through proposed suspiciousness metrics and dense sub-
graph algorithm. These gangs exhibit the key traits of generating
high-frequency and dense transactions to launder illicit gains. Then,
based on the account of gangs and the source account, we employ
the maximum flow algorithm to trace the money laundering path-
way between the source account and the suspicious gangs. In the
end, DenseFlow generates the money laundering subgraph for the
Ethereum incidents, including the gangs of accounts and laundering
flows.

5.1 Proposed Suspiciousness Metric
Given this problem definition, we propose how to measure the
ML suspiciousness of subgraphs in 𝐺 . According to the key traits
discussed in Problem Formulation, we propose three metrics for
optimization.

Topological suspiciousness. According to Trait 1, hackers con-
struct a large and dense subgraph of money transfers within gang
accounts but have limited transactions with other accounts. Thus,
an account becomes more suspicious when it primarily establishes
transactions with suspicious accounts and has fewer connections
with others. This can be expressed mathematically by defining the
topological suspiciousness of node 𝑖 within a suspicious subset 𝑆

𝛼𝑖 (𝑆) =
∑
( 𝑗,𝑖 ) ∈𝐸∧𝑗∈𝑆 𝑒 𝑗𝑖∑
(𝑘,𝑖 ) ∈𝐸∧𝑘∈𝑁 𝑒𝑘𝑖

, (1)

where 𝑒 𝑗𝑖 denotes the transaction frequency from node 𝑗 to node 𝑖 .
𝛼𝑖 (𝑆) measures the density and involvement ratio of node 𝑖 within
subset 𝑆 .

By dynamically adjusting the topological suspiciousness of node
𝑖 , DenseFlow can improve the accuracy of ML detection in “noisy”
graphs, even with low ML density.

Temporal suspiciousness. According to Trait 2, the behavior of
money laundering accounts often manifests as peaks in the tempo-
ral sequence. Considering the burst and drop patterns described in
Trait 2, we first need to detect surge awakening and peak points
of the temporal sequence. By the MultiBurst algorithm[24], The
awakening point and peak points are calculated and represented as
(𝑡𝑜 , 𝑎𝑜 ) and (𝑡𝑝 , 𝑎𝑝 ), respectively. 𝑡 denotes the transaction times-
tamp and 𝑎 denotes the transaction amount.

The temporal suspiciousness (𝛽) of a node 𝑖 is represented by
the ratio of the node’s participation level (Φ) in certain transaction
surges within the subset 𝑆 compared to the entire node set 𝑉 . The
temporal suspiciousness of a node 𝑖 is designed as

𝛽𝑖 (𝑆) =
Φ [𝑇𝑖 (𝑆)]
Φ [𝑇𝑖 (𝑉 )]

, (2)

where𝑇 𝑖
𝑆
denotes the transaction timestamp set of node 𝑖 connecting

within nodes of the subset 𝑆 . The participation level (Φ) of node
𝑖 within subset 𝑆 can be quantified by dividing the intensity of
the surge by the frequency with which it occurs, and the intensity
calculation entails multiplying the slope by the surge’s increment.

Φ [𝑇𝑖 (𝑆)] =
∑︁
(𝑡𝑜 ,𝑡𝑝 )

𝑘𝑜𝑝 · Δ𝑎𝑜𝑝
∑︁
𝑡 ∈𝑇 𝑖

𝑆

I(𝑡 ∈ [𝑡𝑜 , 𝑡𝑝 ]), (3)

where Δ𝑎𝑜𝑝 = 𝑎𝑝 − 𝑎𝑜 , 𝑘𝑜𝑝 denotes the slope of the line going
through (𝑡𝑜 , 𝑎𝑜 ) and (𝑡𝑝 , 𝑎𝑝 ), and I is the indicating function.

With the temporal suspiciousness, DenseFlow can measure the
temporal surge pattern of money laundering behavior. Noticeably,
the method has the capability to adjust bin sizes tailored to different
nodes. For instance, accounts with large transactions benefit from
finer bins, facilitating the exploration of intricate patterns.

Monetary suspiciousness. According to Trait 3, if there is a sudden
increase in the transfer amount of a transaction within a certain
period, we consider the transaction as suspicious. We can consider
the suspicious rating of a transaction to be related to the ratio of
its total transaction amount within a specific time period to the
total amount over the entire duration. We slice the timestamp set of
the transaction graph 𝐺 based on a month-long duration. For each
transaction, we calculate the total amount of all transactions within
each slice.𝐴(𝜏) denotes the sum of the amounts for all transactions
within the timestamp set 𝜏 . 𝜏 (𝑡) represents the timestamp set of
this transaction timestamp 𝑡 within the time slot.

The calculation of the suspicious rating 𝑅(𝑖, 𝑗, 𝑎, 𝑡) of a transac-
tion (𝑖, 𝑗, 𝑎, 𝑡) can be performed by

𝑅(𝑖, 𝑗, 𝑎, 𝑡) = 𝐴( [𝑡 − 𝑑, 𝑡 + 𝑑])
𝐴(𝜏 (𝑡)) , (4)

where [𝑡 −𝑑, 𝑡 +𝑑] refers to the collection of transaction timestamps
within the two days before and after the transaction timestamp 𝑡 .

According to Trait 4, we know that money laundering accounts
have many suspicious transactions compared to regular accounts,
showing differences in the rating distribution. In order to quantify
the difference in transaction rating distributions, we employ KL-
divergence (𝐾𝐿) to calculate the rating distribution of node 𝑖 in the
subset 𝑆 compared to the rest of the nodes (i.e., the complement
𝑉 \𝑆). The monetary suspiciousness score (𝛾 ) of node 𝑖 in subset 𝑆

4
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is obtained by weighting the KL-divergence with a balancing factor

𝑏𝑎𝑙 =𝑚𝑖𝑛{ 𝜂𝑖 (𝑆)
𝜂𝑖 (𝑉 \𝑆)

,
𝜂𝑖 (𝑉 \𝑆)
𝜂𝑖 (𝑆)

}, and 𝜂𝑖 (𝑆) =
∑︁

( 𝑗,𝑖 ) ∈𝐸∧𝑗∈𝑆
𝑒 𝑗𝑖 , (5)

𝛾𝑖 (𝑆) = 𝑏𝑎𝑙 ∗ 𝐾𝐿 [𝑅𝑖 (𝑆)) , 𝑅𝑖 (𝑉 \𝑆)] , (6)
where 𝑅𝑖 (𝑆) refers to the transaction rating set of node 𝑖 within
subset 𝑆 . We use the complement 𝑉 \𝑆 to measure distribution
differences, rather than the entire set𝑉 , to avoid trivial cases where
the majority of transaction ratings come from 𝑆 .

Suspiciousness fusion. In order to comprehensively leverage dif-
ferent metrics, including topological, temporal, and monetary suspi-
ciousness, we need a method to aggregate these metrics. The most
effective approach is the natural joint probability method, which
involves multiplying these metrics together:

𝑓𝑖 (𝑆) =
∑︁

( 𝑗,𝑖 ) ∈𝐸∧𝑗∈𝑆
𝑒 𝑗𝑖 · 𝑏𝛼𝑖 (𝑆 )+𝛽𝑖 (𝑆 )+𝛾𝑖 (𝑆 )−3, (7)

where 𝑓𝑖 (𝑆) refers to the joint suspiciousness of a node 𝑖 to subset
𝑆 , 𝑏 refers to a hyperparameter. In such a way, DenseFlow can
dynamically update the node’s suspiciousness while the suspicious
subset 𝑆 is evolving. The total suspiciousness (𝑔) of subset 𝑆 of
graph 𝐺 can be defined based on the node suspiciousness

𝑔(𝑆) =
∑
𝑖∈𝑆 𝑓𝑖 (𝑆)
|𝑆 | . (8)

5.2 Greedy Approximation Algorithm
Given the problem definition and suspiciousness of the subset, we
need to find subset 𝑆 that maximizes the objective 𝑔(𝑆) in Eq. (8).

Inspired by Charikar’s greedy peeling method [3], DenseFlow
iteratively identifies and removes the node with the minimum sus-
piciousness and updates the suspiciousness of related nodes. Each
iteration involves traversing all nodes to locate the node with the
minimum suspiciousness, incurring significant computational over-
head. Therefore, we first construct a priority tree for the nodes in
subset 𝑆 .

The leaf nodes of the priority tree represent nodes in 𝑆 , and
each internal tree node records the minimum value among its child
nodes. The minimum priority tree is designed to efficiently locate
the leaf node corresponding to the global minimum value recorded
at the root node. This approach reduces the time complexity from
𝑂 ( |𝑆 |) to 𝑂 (𝑙𝑜𝑔 |𝑆 |). The weight (i.e., priority) of subset 𝑆 assigned
to node 𝑖 is defined as

𝜔𝑖 (𝑆) = 𝑓𝑖 (𝑆). (9)

We employ an approximate greedy algorithm based on priority
trees as shown in Algorithm 1. DenseFlow takes the directed graph
𝐺 as input and initializes subset 𝑆 starts at the whole node set 𝑁 .
In each iteration, we calculate the suspiciousness for each node
based on metrics (1) (2), (6) and weight of priority tree (9). Then,
we remove the node in 𝑆 with minimum weight, approximately
maximizing objective (8), and update the weight of its connected
nodes. Let 𝑆 (𝑥 ) denote the nodes of the subgraph at the 𝑥-th itera-
tion, and iteratively generate a decreasing sequence of node subsets
𝑆 (0) ⊃ 𝑆 (1) ⊃ ..., and so on until the remaining part is empty.

Finally, the DenseFlow algorithm outputs the final subset 𝑆∗ with
the maximum suspiciousness 𝑔(𝑆).

Algorithm 1 Pseudocode of Dense Subgraph Detection

Require: 𝐺 = (𝑉 , 𝐸) a directed graph
Ensure: Optimal subset 𝑆∗
1: 𝑆 ← 𝑁

2: 𝜔𝑖 ← Calculate node weight as Eq. (9)
3: 𝑃 ← 𝑁 Build priority tree for 𝑆 with 𝜔𝑖 (𝑆)
4: while 𝑆 is not empty do
5: 𝑖 ← Find the minimum weighted node in 𝑃
6: 𝑆 ← 𝑆\{𝑖}
7: Update priority tree 𝑃 for all neighbors of 𝑖
8: 𝑔(𝑆) ← calculate as Eq. (8)
9: end while
10: Return subset 𝑆∗ that maximizes 𝑔 during the loop.

5.3 Tracing Maximum Flow
After the suspicious subset detection, we have obtained multiple
subgraphs representing money laundering gangs. Naturally, we
aim to identify the money laundering pathway connecting the
source account to these money laundering gangs. In a directed
transaction graph, nodes represent accounts, and the weights on
the edges indicate transaction amounts. Given a source account
and downstream money laundering gangs, can we find the flow of
money laundering funds?

We consider using the maximum flow algorithm [11] to discover
the money laundering pathways. The maximum flow problem is
to find the maximum possible flow from the source node to the
junction in a directed graph. This problem is often used to simulate
the flow of fluids in a network or other applications in computer
science and operations research. The mathematical form of a simple
maximum flow problem can be expressed as follows:

max
∑︁
(𝑖, 𝑗 ) ∈𝐸

𝑥𝑖 𝑗 , (10)

where 𝑥𝑖 𝑗 is the flow on edge (𝑖, 𝑗). Subject to the following con-
straints:

(1) capacity constraint. 0 < 𝑥𝑖 𝑗 < 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 𝑗 , and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
refers to the transaction amounts in our problem;

(2) flow conservation constraint. For all nodes 𝑘 (except the
source and sink) ∑︁

(𝑖,𝑘 ) ∈𝐸
𝑥𝑖𝑘 =

∑︁
(𝑘,𝑗 ) ∈𝐸

𝑥𝑘 𝑗 ;

(3) source and sink flow constraints. For the source node 𝑠 ,∑︁
(𝑠,𝑗 ) ∈𝐸

𝑥𝑠 𝑗 −
∑︁
( 𝑗,𝑠 ) ∈𝐸

𝑥 𝑗𝑠 = 𝑆𝑢𝑝𝑝𝑙𝑦𝑠 ,

and for the sink node 𝑡 ,∑︁
(𝑖,𝑡 ) ∈𝐸

𝑥𝑖𝑡 −
∑︁
(𝑡,𝑖 )

= 𝑆𝑢𝑝𝑝𝑙𝑦𝑡

where 𝑆𝑢𝑝𝑝𝑙𝑦𝑠 and 𝑆𝑢𝑝𝑝𝑙𝑦𝑡 are the total inflow or outflow of the
source and sink nodes, respectively. Google OR-Tool [12] is used to
solve the optimization problem.

This part traces the flow direction of funds involved in money
laundering from the source node to various money laundering
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nodes. Let account set 𝐹 be the accounts within the identified max-
imine flow. Our final suspicious money laundering account set is
defined as𝑀 = 𝑆∗ ∪ 𝐹 .

5.4 Theoretical Analysis
In this part, we discuss the bounds of the optimal solution for our
algorithm, providing a theoretical lower bound for our algorithm
and the associated proofs.

To make a clear explanation, we define 𝑓 (𝑆) as the overall node
suspiciousness of subset 𝑆 :

𝑓 (𝑆) =
∑︁
𝑖∈𝑆

𝑓𝑖 (𝑆)

Lemma 1. Consider a subset 𝑆 , and remove node 𝑖0 from 𝑆 , let
𝑆 ′ = 𝑆/{𝑖0}, then we can draw a conclusion that:

𝑓 (𝑆 ′) ≥ 𝑓 (𝑆) − 𝑓𝑖0 (𝑆) (11)

Proof. It is obvious that, if 𝑆 ′ ∈ 𝑆 then 𝑓𝑖 (𝑆) ≥ 𝑓𝑖 (𝑆 ′) because

𝑓 (𝑆) =
∑︁
𝑖∈𝑆

𝑓𝑖 (𝑆) =
∑︁
𝑖∈𝑆 ′

𝑓𝑖 (𝑆) + 𝑓𝑖0 (𝑆)

≥
∑︁
𝑖∈𝑆 ′

𝑓𝑖 (𝑆 ′) + 𝑓𝑖0 (𝑆 ′)

□

Lemma 2. For optimal subset 𝑆∗ and any node 𝑖 ∈ 𝑆∗:
𝑓𝑖 (𝑆∗) ≥ 𝑔(𝑆∗) .

The proof of Lemma2 is presented in the Appendix.

Thereom 1 (Bound of optimal solution). Set 𝑔(𝑆∗) be the
theoretical optimal solution of greedy algorithm, and suppose 𝑔(𝑆 (𝑘 ) )
be the output of algorithm. Then

𝑔(𝑆 (𝑘 ) ) ≥ 𝑏 − 1
𝑏2

𝑔(𝑆∗),

where 𝑏 represents the base of 𝑓𝑖 (𝑆) in Eq. (7).

Proof. Without loss of generality, let 𝑆∗ = 𝑆 (𝑘 ) , and denote
𝑆 (𝑘−1) as the last subset before 𝑆 (𝑘 ) . 𝑖1 represents the node that is
removed at the last step, that is 𝑆∗ = 𝑆 (𝑘−1)\{𝑖1}. For each node
𝑖 ∈ 𝑆∗ :

𝑓𝑖 (𝑆 (𝑘−1) ) > 𝑓𝑖 (𝑆∗), 𝑓𝑖1 (𝑆 (𝑘−1) ) > 𝑓𝑖 (𝑆 (𝑘−1) )

𝑔(𝑆 (𝑘−1) ) ≥ (𝑏 − 1)
𝑏2

𝑓𝑖1 (𝑆 (𝑘−1) ) (12)

Table 2: Statistics of evaluation datasets. ‘#’ means the num-
ber. ‘Heists’ means the number of accounts labeled as suspi-
cious money laundering accounts in the dataset. The time
span is shown in days.

Dataset # Accounts # Transactions # Heists Time

PlusTokenPonzi 34,521 58,049 30,782 817
AlphahomaraExploit 76,130 612,349 6,960 2494

CryptopiaHack 152,779 815,242 8,787 2,481
UpbitHack 377,912 1,627,861 16,533 2,310

The proof of inequality (12) will be presented in the Appendix due
to lack of space.

𝑔(𝑆 (𝑘 ) ) ≥ 𝑔(𝑆 (𝑘−1) ) ≥ (𝑏 − 1)
𝑏2

𝑓𝑖1 (𝑆 (𝑘−1) )

≥ (𝑏 − 1)
𝑏2

𝑓𝑖1 (𝑆∗) ≥
𝑏 − 1
𝑏2

𝑔(𝑆∗)

□

6 EVALUATION
In this section, we perform experiments to demonstrate the effec-
tiveness of the proposed DenseFlow. In particular, we aim to answer
the following research questions (RQ):

• RQ1: Model effectiveness. Can our method outperform
existing dense subgraph detection algorithms?

• RQ2: Proposedmetric assessment. For different datasets,
on which metrics do algorithms perform better?

• RQ3: Case study. Can our method effectively trace the
money laundering behavior in practical use?

6.1 Settings
6.1.1 Dataset. We choose four money laundering datasets PlusTo-
kenPonzi3, AlphahomoraExploit4, CryptopiaHack5, UpbitHack6,
which are real-world incidents and collected based on the work of
Lin et al. [22], using a heuristic rule-based approach. Table 2 sum-
marizes the essential characteristics of the four money laundering
datasets employed in this study, encompassing the total number
of accounts, transactions, transaction amounts, the count of those
marked as “Heist” accounts, and the temporal span of the dataset,
including normal and suspicious transactions.

It is worth noting that the labels of the heuristic rule-based ap-
proach are obtained from the taint analysis and the taint propaga-
tion depends on the setting of the hyperparameters. The parameters
are set loosely so there may be redundancy in accounts labeled as
“Heist” accounts, meaning not all accounts marked as “Heist” are
necessarily involved in money laundering. Our goal is to cover as
many implicated funds as possible with as few nodes as necessary,
thereby enhancing the efficiency of regulatory scrutiny.

6.1.2 Comparison methods. We compare our proposed DenseFlow
framework with start-of-art graph-based anomaly detection via
dense subgraph.

• FRAUDAR [13]. FRAUDAR detects fraud attacks in graphs
by a novel family of suspiciousness metrics that satisfy
intuitive traits.

• Cubeflow [29]. Cubeflow is a flow-based approach to spot
fraud from a mass of transactions and proposes a multi-
attribute metric for money-laundering flow.

• Holoscope [24]. Holoscope introduces the “contrast suspi-
ciousness” metric, aiming to detect fraudulent users and
entities by integrating the topological structure and peak
information on the graph.

3https://etherscan.io/address/0xf4a2eff88a408ff4c4550148151c33c93442619e
4https://etherscan.io/address/0x905315602ed9a854e325f692ff82f58799beab57
5https://etherscan.io/address/0xc8b759860149542a98a3eb57c14aadf59d6d89b9
6https://etherscan.io/address/0xa09871aeadf4994ca12f5c0b6056bbd1d343c029

6

https://etherscan.io/address/0xf4a2eff88a408ff4c4550148151c33c93442619e
https://etherscan.io/address/0x905315602ed9a854e325f692ff82f58799beab57
https://etherscan.io/address/0xc8b759860149542a98a3eb57c14aadf59d6d89b9
https://etherscan.io/address/0xa09871aeadf4994ca12f5c0b6056bbd1d343c029
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Table 3: Performance comparison results on four datasets. ‘-’ means never returning a possible result due to the size of datasets.
‘DenseFlow’ means our method considering all the suspiciousness metrics, and ‘DenseFlow*’ means our methods with the best
result. MCR means money cover rate, and |𝑀 | means the number of identified laundering accounts.

Dataset PlusTokenPonzi AlphahomaraExploit CryptopiaHack UpbitHack

Metric Precision MCR |𝑀 | Precision MCR |𝑀 | Precision MCR |𝑀 | Precision MCR |𝑀 |
FRAUDAR 0.9167 0.03 60 0.5122 0.32 82 0.5217 0.0004 46 0.5083 0.11 120
Cubeflow 0.2841 0.19 5,174 0.0300 0.31 15,951 - - - - - -
HoloScope 0.2423 0.11 549 0.1786 0.0001 17 0.1529 0.0001 14 0.00 0.01 15
DenseFlow 0.9912 0.83 19,402 0.4929 0.33 211 0.5282 1.00 426 0.6856 0.39 264
DenseFlow* 0.9981 0.78 16,641 0.5579 0.52 656 0.6049 1.00 329 0.6994 0.50 326

6.1.3 Evaluation metrics. In this paper, we employ the following
three validation metrics to comprehensively evaluate the perfor-
mance of different methods for Ethereum money laundering detec-
tion:

• Precision. The precision rate means the percentage of real
money laundering nodes in the identified suspicious ac-
counts.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ,

where 𝑇𝑃 is true positives and 𝐹𝑃 is false positives.
• Money coverage ratio (MCR). MCR refers to the proportion

of money involved in the subset of identified money laun-
dering accounts compared to the total amount associated
with labeled money laundering accounts.

𝑀𝐶𝑅 =

∑
(𝑖, 𝑗 ) ∈𝐸∧𝑖∈𝑀𝑝𝑟𝑒𝑑

𝑎𝑖 𝑗∑
(𝑖,𝑘 ) ∈𝐸∧𝑘∈𝑀𝑡𝑟𝑢𝑒

𝑎𝑖𝑘
,

where𝑀𝑡𝑟𝑢𝑒 denotes the set of accounts labeled as “Heist”,
and𝑀𝑝𝑟𝑒𝑑 is the predicted suspicious account by the algo-
rithms.

• The node number of suspicious account set (|𝑀 |). We con-
sider thismetric to investigatewhether our proposedmethod
can identify core team accounts.

It is worth mentioning again that since the accounts labeled as
“Hesit” in the dataset may not be suspicious, therefore the Recall
metric is not considered in this paper in favor of the Precision
metric.

6.2 RQ1: Model Effectiveness
To address RQ1, we evaluate the performance of compared meth-
ods in Ethereum money laundering detection. The corresponding
results are shown in Table 3. The following conclusions can be
drawn:

(1) Precision considers how many of the money laundering ac-
counts detected by the algorithm are indeed labeled as money laun-
dering. Our precision exceeds the optimal results of the compared
methods on the four datasets by 8.14%, 29.77%, 8.32%, and 19.11%,
respectively. It shows that our algorithm can perform better in
money laundering detection accuracy. In particular, Cubeflow does
not run out of results for both the CryptopiaHack and UpbitHack
datasets, which have a large number of accounts and transactions.

(2) MCR (Money Coverage Ratio) assesses the extent to which
the algorithm’s detection of money laundering accounts covers

the labeled money laundering funds in the dataset. This evaluates
whether the algorithm accurately detects core money laundering
accounts, which typically involve more dense and frequent money
laundering activities and are the primary focus of detection and
evidence collection for regulatory authorities. Our MCR signif-
icantly outperforms existing methods across four datasets, espe-
cially achieving 83% and 100% on the PlusToken and CryptopiaHack
datasets, respectively.

(3) The number of suspicious nodes (|𝑀 |) indicates how well
the algorithm can detect as few nodes as possible while achieving
high precision and coverage. This is because a large number of
suspicious annotations can inconvenience regulatory personnel in
subsequent manual reviews and evidence organization. Compared
to the “Heist” accounts labeled in the dataset, each algorithm has
significantly reduced the number of suspicious nodes. However,
the existing algorithms may have reduced the quantity excessively,
which could be one of the reasons for the low MCR.

We further analyze the reasons behind the superiority of our
method over the comparison methods. The FRAUDAR method,
based on an unweighted graph, primarily relies on the density of
node degrees, resulting in the inability to accurately identify money
laundering transaction behaviors related to time and amount char-
acteristics. CubeFlow money laundering detection method consid-
ers the density of node degrees along with amount characteristics
but overlooks the temporal aspects of money laundering. While
HoloScope comprehensively considers the characteristics of node
degrees, temporal sequences, and the distribution of anomalous
edges, it does not account for the transaction amount characteris-
tics of anomalous edges. In summary, our DenseFlow method takes
into account multiple features, including density, frequency, and
transaction anomaly scores, enabling the detection of Ethereum
money laundering with high precision and MCR.

6.3 RQ2: Suspiciousness Metric Assessment
To answer RQ2 and evaluate the three metrics we proposed, we con-
duct experiments individually with the three metrics (topological
suspiciousness 𝛼 , temporal suspiciousness 𝛽 , monetary suspicious-
ness 𝛾 ) and their combinations.

The experiment results are shown in Figure 2. We get the follow-
ing observations:

Observing precision results, we find that the 𝛾 metric signifi-
cantly improves the precision result in the CryptopiaHack case.
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(a) PlusTokenPonzi (Precision) (b) AlphaHomoraExploit (Preci-
sion)

(c) CryptopiaHack (Precision) (d) PlusTokenPonzi (MCR)

(e) AlphaHomoraExploit (MCR) (f) CryptopiaHack (MCR)
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(i) CryptopiaHack ( |𝑀 |)

Figure 2: Results of DenseFlow and its variants.

This suggests that the density of laundering accounts in the Cryp-
topiaHack case is significantly higher in the amount of money
laundered and easy for us to catch. In the AlphaHomoraExploit
case, the 𝛼 metric has a more obvious enhancement effect on the
precision results, which indicates that the interactions between
the laundering accounts in this case are more intensive and more
pronounced in Trait 1.

Observation of the MCR reveals that adding the 𝛽 metric in
AlphaHomoraExploit improves the results, implying that the core
money laundering accounts, in this case, have frequent transactions
and significant temporal surges. In the PlusTokenPonzi case, the
𝛼 metric is better portrayed, implying that the core accounts have
more dense transfers.

Looking at the number of identified nodes |𝑀 |, we find that
considering the 𝛾 metric helps narrow the scope better with fewer
nodes in the AlphaHomoraExploit case, where the core gang can
be effectively differentiated with the 𝛾 metric. In contrast, 𝛼 and 𝛽
metrics play a similar role in the CryptopiaHack case.

In general, since laundering accounts in different cases have
different preferences and may use different strategies to avoid de-
tection, the actual algorithm can be based on the needs of a com-
prehensive consideration of the metrics to be used.

6.4 RQ3: Case Study
To answer RQ3, we visualize the traced money laundering path-
ways in DenseFlow. We take a money laundering pathway on the
AlphaHomoraExploit dataset as an example, as shown in Figure 3.

The source node represents the origin hacker account of this
incident. Nodes in 𝑆∗ are suspicious accounts identified through
Algorithm 1. Nodes in 𝐹 represent accounts on the pathway between
suspicious accounts and source accounts found by the maximum
flow algorithm. The arrow color intensity indicates the proportion
of money laundering amounts in the entire flow, with darker colors
indicating higher proportions and lighter colors indicating lower
proportions.

Figure 3: Visualization of an identified money laundering
pathway on the AlphaHomoraExploit dataset.

We observe that the money laundering pathways evolve from
sparse to dense. A clear flow pattern emerges in the upstream
layers (around 1-3 layers), indicating significant transactions. How-
ever, as we move downstream, the number of transactions becomes
denser, and the money laundering pathways become more complex,
even forming loops. Money laundering amounts are continuously
diluted, with more dispersion into smaller transactions as we ap-
proach downstream. The graph shows this in the lighter colors of
transactions in the downstream part of the pathways. The money
laundering pathways eventually converge from multiple dispersed
accounts to the heist account.

7 CONCLUSIONS
This paper proposes an Ethereum money laundering detection
method called DenseFlow. DenseFlow considers three suspicious-
ness metrics according to money laundering traits and supplements
the laundering pathways via maximum flow. DenseFlow offers sev-
eral advantages: 1) Suspiciousness metrics proposal and adaptable
strategies: We introduce a novel transaction rating and provide
different account metrics combinations. These strategies can be se-
lected depending on the specific characteristics of different cases. 2)
Effectiveness: DenseFlow outperforms existing algorithms regard-
ing precision and money cover ratio. DenseFlow can identify core
account nodes with higher precision and higher money coverage.
We enable clear tracking of fund flows, aiding in case investigation
and evidence gathering. 3) Interpretability. It searches for dense
subgraphs based on well-defined descriptive features and supple-
ments their connections using the maximum flow algorithm. The
underlying model logic is straightforward and transparent.
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A APPENDIX
A.1 Proof for Lemma 2
Lemma 2. For optimal subset 𝑆∗ and any node 𝑖 ∈ 𝑆∗:

𝑓𝑖 (𝑆∗) ≥ 𝑔(𝑆∗)

Proof. Suppose there exists node 𝑖0 such that

𝑓𝑖0 (𝑆∗) < 𝑔(𝑆∗)
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then we consider subset 𝑆 ′ = 𝑆∗\{𝑖0}, and

𝑔(𝑆 ′) = 𝑓 (𝑆 ′)
|𝑆 ′ | =

𝑓 (𝑆 ′)
|𝑆∗ | − 1

≥
𝑓 (𝑆∗) − 𝑓𝑖0 (𝑆∗)
|𝑆∗ | − 1 By Lemma 1

≥ 𝑓 (𝑆∗) − 𝑔(𝑆∗)
|𝑆∗ | − 1 By the suppose

=
𝑓 (𝑆∗) − 𝑔(𝑆∗)
|𝑆∗ | − 1 = 𝑔(𝑆∗)

There is a contradiction with the condition that 𝑆∗ is the optimal
subset. Hence, the assumption is not valid and the original proposi-
tion is proven. □

A.2 Proof for Inequality (13)
Continuing with the labeling used in the main text, 𝑆∗ = 𝑆 (𝑘 ) , and
denote 𝑆 (𝑘−1) as the last subset before 𝑆 (𝑘 ) , and 𝑖1 represents the
node that is removed at the last step, that is 𝑆∗ = 𝑆 (𝑘−1)/{𝑖1}.

Proof.

𝑔(𝑆 (𝑘−1) ) ≥ (𝑏 − 1)
𝑏2

𝑓𝑖1 (𝑆 (𝑘−1) )

Let the 𝑏-quantile of {𝑓𝑖 (𝑆) |𝑖 ∈ 𝑆} denoted as 𝑄𝑏 (𝑆), and the cor-
responding nodes are denoted as 𝑖𝑏 . To simplify notation, denote
𝑝 = 1

𝑏
.

𝑔(𝑆 (𝑘−1) ) = 1
|𝑆 (𝑘−1) |

∑︁
𝑓𝑖 (𝑆 (𝑘−1) )

=
1

|𝑆 (𝑘−1) |
(

∑︁
𝑓𝑖≥𝑄𝑏 (𝑆 (𝑘−1) )

𝑓𝑖 (𝑆 (𝑘−1) ) +
∑︁

𝑓𝑖<𝑄𝑏 (𝑆 (𝑘−1) )
𝑓𝑖 (𝑆 (𝑘−1) ))

≥ (1 − 𝑝)𝑄𝑏 (𝑆 (𝑘−1) ) +
1

|𝑆 (𝑘−1) |
∑︁

𝑓𝑖<𝑄𝑏 (𝑆 (𝑘−1) )
𝑓𝑖 (𝑆 (𝑘−1) )

≥ (1 − 𝑝)𝑄𝑏 (𝑆 (𝑘−1) )

= (1 − 𝑝)𝑄𝑏 (𝑆 (𝑘−1) )
𝑓𝑖1 (𝑆 (𝑘−1) )

𝑓𝑖1 (𝑆 (𝑘−1) )

Now we consider 𝑄𝑏 (𝑆 (𝑘−1) )
𝑓𝑖1 (𝑆 (𝑘−1) )

, according to the definition of 𝑓𝑖 (𝑆),

𝑄𝑏 (𝑆)
𝑓𝑖1 (𝑆)

=

∑
( 𝑗,𝑖𝑏 ) ∈𝐸∧𝑗∈𝑆 𝑒 𝑗𝑖𝑏 · 𝑏

𝛼𝑖𝑏 (𝑆 )+𝛽𝑖𝑏 (𝑆 )+𝛾𝑖𝑏 (𝑆 )−3∑
( 𝑗,𝑖1 ) ∈𝐸∧𝑗∈𝑆 𝑒 𝑗𝑖1 · 𝑏

𝛼𝑖1 (𝑆 )+𝛽𝑖1 (𝑆 )+𝛾𝑖1 (𝑆 )−3

≥ 1
𝑏

∑
( 𝑗,𝑖𝑏 ) ∈𝐸∧𝑗∈𝑆 𝑒 𝑗𝑖𝑏∑
( 𝑗,𝑖1 ) ∈𝐸∧𝑗∈𝑆 𝑒 𝑗𝑖1

Since 𝑖1 is the node with maximum weight.

≥ 1
𝑏

Therefore,
𝑄𝑏 (𝑆 (𝑘−1) )
𝑓𝑖1 (𝑆 (𝑘−1) )

≥ 1
𝑏

Furthermore,

𝑔(𝑆 (𝑘−1) ) ≥ (1 − 𝑝) · 1
𝑏
𝑓𝑖1 (𝑆 (𝑘−1) )

= (1 − 1
𝑏
) · 1
𝑏
𝑓𝑖1 (𝑆 (𝑘−1) )

=
(𝑏 − 1)
𝑏2

𝑓𝑖1 (𝑆 (𝑘−1) )

Therefore, the inequality holds, and the proof is complete. □
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