
On the Tool Manipulation Capability of
Open-source Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent studies on software tool manipulation with large language models (LLMs)1

mostly rely on closed model APIs. The industrial adoption of these models is2

substantially constrained due to the security and robustness risks in exposing in-3

formation to closed LLM API services. In this paper, we ask can we enhance4

open-source LLMs to be competitive to leading closed LLM APIs in tool manipu-5

lation, with practical amount of human supervision. By analyzing common tool6

manipulation failures, we first demonstrate that open-source LLMs may require7

training with usage examples, in-context demonstration and generation style regu-8

lation to resolve failures. These insights motivate us to revisit classical methods9

in LLM literature, and demonstrate that we can adapt them as model alignment10

with programmatic data generation, system prompts and in-context demonstration11

retrievers to enhance open-source LLMs for tool manipulation. To evaluate these12

techniques, we create ToolBench1, a tool manipulation benchmark consisting of13

diverse software tools for real-world tasks. We demonstrate that our techniques can14

boost leading open-source LLMs by up to 90% success rate, showing capabilities15

competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such16

enhancement typically requires about one developer day to curate data for each17

tool, rendering a recipe with practical amount of human supervision.18

1 Introduction19

Tool-augmented large language models (LLMs) recently emerge as a research frontier. Such aug-20

mented LLMs demonstrate tool manipulation capabilities which automate software operations through21

natural language instructions (1; 2; 3; 4; 5). Despite the fact that open-source LLMs substantially22

shrink the quality gap towards proprietary closed LLMs in tasks such as chatbot (6; 7; 8; 9), recent23

tool-augmented LLMs still mostly rely on closed LLM APIs (1; 2; 3; 4). This leads to a fundamental24

barrier for the industrial adoption of these augmented LLMs due to security and robustness risks25

associated with exposing enterprise-internal workflows and information to closed LLM APIs (10; 11).26

To maximize the industrial impact, there is a substantial need for tool manipulation capabilities27

founded on open-source LLMs. To this end, we ask can we build on open-source LLMs with practical28

amount of human supervision and achieve tool manipulation capabilities competitive to closed LLMs.29

In this paper, we first demystify key challenges for tool manipulation using open-source LLMs; we30

then leverage the insights to suggest practical recipes for enhancement. Concretely, we study the31

setting shown in Figure 1 where LLMs take in a natural language instruction as the goal and generate32

API calls to accomplish the goal. Although we expect a quality gap between the open-source and33

closed LLMs (12), what we observe is a far more severe disparity. Specifically, for an on-sale house34

searching tool, a leading open LLM for code generation fails every test case while the OpenAI GPT-35

1Available at https://github.com/sambanova/toolbench

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://github.com/sambanova/toolbench

Figure 1: Tool manipulation setup. We augment LLMs as action generators with access to API
documentations. In a single-step scenario, an action generator directly generates API calls to
accomplish the goal. A multi-step action generator iterates with an environment using API calls and
generates the next-step calls based on the information from the environment until an exit state.

Action Generator

 Goal Action Generator

Single-step Manipulation

API calls

Multi-step Manipulation

LLM

Goal

Action Generator

Observation

API calls

Environment

API docs
Exit state

Executed
results

4 (13) attains 77% success rate across the same one hundred examples. This observation motivates us36

to study the challenges for open-source LLMs to attain strong tool manipulation capability.37

During our investigation, we identify three key challenges that impede the performance of open-source38

LLMs in tool manipulation. Firstly, open-source models often struggle to accurately identify API39

names, whereas closed LLMs demonstrate the capability to invoke the correct APIs without explicit40

usage examples or documentation during inference. This suggests that closed LLMs hypothetically41

internalize knowledge of API usage during training. Secondly, we show that without demonstration42

examples, open-source LLMs often fail to populate the appropriate values for API arguments. Thirdly,43

we demonstrate that open-source LLMs tend to produce non-executable generation, such as natural44

language beyond the desired code.45

Our insights suggest us to revisit three simple techniques from LLMs for conventional NLP tasks. In46

the context of tool manipulation, we adapt them with practical amount of supervision and use them to47

enhance open-source LLMs. Model alignment: To first internalize API usage knowledge, we perform48

instruction tuning (14; 15) with programatically generated data. Specifically, we first write a few49

dozens of templates on goals and corresponding API calls. We then pragmatically bootstrap the data50

volume by instantiating templates with concrete key word values. In-context demonstration retriever:51

Inspired by retrieval-augmented generation (16; 17; 18), we additionally enhance the LLMs with a52

retriever to leverage in-context demonstrations during inference. This module selects demonstration53

examples with the most semantically similar goals from a human-curated pool of examples. Given n54

API functions, the retriever only requires O (n) examples where every API function appears in at least55

one example. We then leverage LLMs to generalize to goals achieved by unseen API combinations.56

System prompt: Finally we embed goal descriptions into a pre-defined system prompt which provides57

inference-time guidelines to generate executable API calls; such system prompts were shown to58

regulate language style in chatbots (19). These techniques only require a small amount of human59

supervision. Thus they render a potentially practical recipe for building on top of open-source LLMs.60

To extensively evaluate the inspired techniques, we present ToolBench, a benchmark suite on eight61

diverse tools ranging from Google Sheets manipulation to controlling robots (20). It enables the first62

publicly-available quantitative evaluation test bench among the ones brought up in the tool-augmented63

LLM literature (2; 3). For the software tools in our benchmark, LLMs need to accomplish a variety64

of goals by selecting and combining API functions from up to a hundred candidates.65

Using the tools in the ToolBench suite, we first empirically show that leading open-source LLMs66

can demonstrate up to 78% lower success rate when compared to the OpenAI GPT-4 APIs. We then67

demonstrate that these simple techniques can substantially improve the success rate of open-source68

LLMs by up to 90%, attaining results competitive or better than OpenAI GPT-4 models in 4 out of69

the 8 tools in our benchmark2. To reveal the impact of different techniques, we provide evidence70

that aligning model with synthetic data primarily contributes to the significant improvement of71

open-source LLMs. The system prompt and the in-context demonstration retriever further enhance72

the performance. During the enhancement process, we observe that, on average, it takes just one day73

for a developer to craft the in-context demonstrations and curate the templates for generating model74

alignment data. This implies that the recipe requires a practical level of human supervision.75

2We apply the same system prompt and in-context example retriever for GPT-4. Model alignment is not
applicable to GPT-4 as there is no publicly available tuning APIs for it during our experiments.

2

Our contributions and the structure of this paper are as follows.76

• In Section 3, we reveal challenges in API selection, argument populating and non-executable77

generation which hinder open-source LLMs on tool manipulation.78

• To alleviate the challenges, we revisit simple techniques for conventional NLP tasks. We adapt them79

for tool manipulation to boost open-source LLMs with minimal human supervision in Section 4.80

• In Section 5, we introduce the ToolBench, the first open-sourced benchmark with pre-defined test81

cases for quantitative evaluation compared to the ones in the recent tool-augmented LLM literature.82

• We demonstrate in Section 6 that our adapted techniques boost open-source LLMs by up to 90%83

success rate, showing competitiveness with GPT-4 APIs in 4 out of 8 ToolBench tasks.84

2 Background85

To establish backgrounds, we first concretize the software tool manipulation setup. We then present86

a preliminary observation on the capability of open-source LLMs. This observation motivates our87

study on the challenges in Section 3 which inspire simple techniques for enhancements in Section 4.88

2.1 Tool manipulation setup89

In this paper, we study the scenario where software users intend to translate a natural language goal de-90

scription g into a sequence of application programming interface (API) calls Cg =
{
c0, c1, · · · , cng

}
91

to accomplish the goal. We study tool manipulation with open-source LLMs in this specific setting,92

because APIs serve as the prevalent abstraction for developers and users in modern software systems.93

Large language model Autoregressive language models encode probabilities of the next word94

xN+1 given x0, x1, · · · , xN as the context sequence (21). By sampling from this conditional probabil-95

ity p (xN+1|x0, x1, · · · , xN) iteratively, it generates language continuations from given contexts. In96

the recent wave of scaling up model size and training data volume, transformer-based language models97

show unprecedented capability in instruction following for text and code generation (22; 23; 24). In98

the context of tool manipulation, we cast goal descriptions and optional information as an instruction99

in the context and task the LLMs to generate code for API calls as the continuation.100

Algorithm 1 API Call Generation
Input: Goal g, API docs D, action generator A
Input: Optional info O

1: procedure ACTIONGEN(g, D, A, O)
2: Dg ←R (g,D) ▷ Retrieve API functions
3: Cg ← A (g,Dg, O) ▷ API call generation
4: return Cg

5: end procedure

Action generator A key implementation for tool101

manipulation is an action generator A which maps102

a goal g to API calls Cg. As open-source LLMs103

likely have not seen the information regarding the104

relevant APIs, we augment an LLM M into an ac-105

tion generator by providing access to a pool of m106

candidate API functions D = {d0, d1, · · · , dm}.107

Due to the input sequence length limit of LLMs,108

we provide an optional retriever R to retain a rele-109

vant subset of API documents Dg = R (g,D) ∈ D. Thus, the action generator produces the sequence110

of API calls Cg = A (g,Dg, O), where O represents the optional information that can be included in111

the prompt. This is a naive way of retrieval augmented generation (18; 25; 26) and we employ an112

off-the-shelf retriever implementation (27) for our study, but we also highly encourage the community113

to explore algorithms tailored for the action generator.114

Single and multi-step tool manipulation As shown in Figure 1, an action generator may interact115

with software in either a single-step or a multi-step scenario. In a single-step scenario, action116

generator directly produces an API call sequence Cg = A (g,Dg, ∅). In a multi-step scenario, the117

action generator produces a series of API call sequences Cg = ∪iCg,i where each segment Cg,i is118

used to interact with a predefined environment E and generates the observation Oi = E(Cg,i). The119

observation is then used to generate a new segment Cg,i+1 = A (g,Dg, Oi). The process stops at an120

exit state. Throughout the remainder of this paper, we use the single-step setup for illustration clarity121

unless stated otherwise. Our experiments in Section 6 cover both single and multi-step cases.122

2.2 Motivating Observation123

3

Table 2: Example of tool manipulation errors.
Errors are highlighted in red.

Goal

To move the robot to position (x, y)
robot.move_to(x, y)
To raise the arm by a given height
robot.raise_arm(height)
Task: how to move a robot to (20, 30)?

Expected results robot.move_to(20, 30)

Wrong API robot.raise_arm(20)

Wrong Arguments robot.move_to(30, 20)

Non-executable

You can create a robot with
robot = Robot()
and move it to the target location by
robot.move_to(20, 30)

Figure 2: Without API documentation exposure dur-
ing inference, closed LLMs attain high accuracy in
selecting APIs (left), implying potential example us-
age exposure during training. Hand-picked oracle
one-shot demonstration improves success rate over
zero-shot on the OpenWeather (right), showing the
roofline impact of in-context demonstrations.

GPT-4
LLaMA

CodeGen
StarCoder

0

30

60

A
PI

se
le

ct
io

n
ac

c.

goal only

GPT-4
LLaMA

CodeGen
StarCoder

0
20
40
60
80

Su
cc

es
s

ra
te zero-shot

one-shot

Table 1: Huge capability gaps on a house searching
task. Open-source LLMs lag behind the OpenAI
GPT-4 by 70% on success rate.

Model GPT-4 LLaMA StarCoder CodeGen

Open source ✗ ✓ ✓ ✓
Success rate 77% 0% 7% 0%

To assess the tool manipulation capability of124

open-source LLMs, we compare them to Ope-125

nAI GPT-4 API using the setup discussed in Sec-126

tion 2.1. In this preliminary comparison, we ini-127

tially anticipate the closed LLMs go exhibit an128

advantage in tool manipulation, as observed in129

traditional NLP tasks (12). However we observe130

a significantly larger gap than expected. For in-131

stance, in a home search task, open-source LLMs have a hard time to generate correct API calls,132

resulting in a 70% success rate gap compared to the zero-shot GPT-4 APIs as shown in Table 1. Such133

gap motivates us to study what impedes open-source LLM’ performance.134

3 Challenges for open-source LLMs135

Table 3: Categorized typical tool manipulation error
types on a weather query tool.

GPT-4 LLaMA StarCoder CodeGen

Failure rate 19% 61% 68% 93%

API selection 0% 22% 22% 30%
Args. populating 14% 32% 23% 63%
Non-executable 5% 7% 23% 0%

To demystify key challenges, we study the136

behaviors of open-source LLMs in tool ma-137

nipulation. By analyzing common mistakes138

in a weather query task, we discover three139

challenges to attain strong tool manipula-140

tion capabilities. As shown in Table 2, we141

observe that open-source LLMs often face142

difficulty in (1) API selection, (2) API ar-143

gument population, and (3) generating le-144

gitimate and executable code 3. These insights are described in detail in this section and inspire the145

techniques to alleviate the challenges in Section 4.146

Difficulty in API selection We observe that API selection failures often involve using incorrect APIs147

and even hallucinating non-existent API names. To quantitatively understand the intrinsic capability148

in API selection, we compare open-source LLMs to GPT-4 without providing any documentation149

or in-context demonstrations during inference. The results, as shown in Figure 2 for the weather150

query tool OpenWeather, reveal that GPT-4 can choose the right API without additional information151

beyond the goal, while open-source models struggle. Such capability disparity entails that closed152

LLMs potentially internalize knowledge of API usage during training.153

Confusion in populating arguments After the action generator selects the appropriate APIs, the154

subsequent challenge lies in parsing the goal description and populating the API arguments. At this155

stage, we observe that open-source models often provide wrong values for the required API arguments.156

The confusion in argument populating contributes to up to 63% of the failures in open-source models,157

3If a failure case has multiple errors, we categorize it by the first triggered category in the following order:
non-executable generation, wrong API selection, wrong argument populating

4

as shown in Table 3. In an attempt to mitigate this issue, we provide the LLMs with a hand-picked158

oracle in-context demonstration which achieves the same goal with different argument values. We159

show in Figure 2 that the hand-picked oracle examples improve success rates by up to 45%. It160

is important to note that oracle examples are not intended as a solution for argument populating161

confusion, as they are hand-picked on a per-test-case basis. Nonetheless, these observations suggest162

that in-context demonstrations can substantially enhance open-source LLMs for tool manipulation.163

Non-executable generation The third common failure of open-source LLMs is non-executable164

generation. Such failures encompass issues such as language verbosity around API calls and adher-165

ence to natural language based guidelines, as shown in Table 2. Open-source models sometimes166

exhibit such errors in 23% of one hundred weather query cases. These observations underscore the167

necessity of regulating open-source LLMs to exclusively generate code.168

4 Boosting Open-source LLMs for Tool Manipulation169

The insights from Section 3 emphasize the importance of tuning with API usage examples, in-context170

demonstration and generation regulation in the domain of tool manipulation. In this section, we171

revisit three techniques from the LLM literature and adapt them to address the aforementioned172

challenges, using a practical amount of human supervision. We first introduce model alignment with173

programatically curated data to internalize API usage knowledge in Section 4.1. We then discuss174

augmenting open-source LLMs with an in-context demonstration retriever in Section 4.2. Lastly, we175

apply a system prompt to regulate generation in Section 4.3. These techniques collectively serve as a176

strong baseline for alleviating the challenges presented in Section 3 and inspiring further innovations.177

4.1 Multi-tool model alignment with programmatic data curation178

Model alignment, through tuning LLMs with usage examples, plays a vital role in improving LLMs179

for capabilities such as instruction following and conversation (14; 19; 28). In light of our insights180

from in Section 3, we recognize the potential of model alignment with API usage examples to improve181

API selection capability. To practically leverage such alignment for tool manipulation, it requires a182

data curation strategy without massive manual example writing. Towards this end, we prototype a183

method which generates usage examples from human-curated templates.184

Figure 3: Programmatic training data gen-
eration using templates and random values

Task:
Move the robot to
{position}, and {move}
the arm by {height}.

API Calls:
robot.move_to({x}, {y})
robot.raise_arm({h})

Task:
Move the robot to
location (20, 30),
and raise the arm by
5cm.

API Calls:
robot.move_to(20, 30)
robot.raise_arm(5)

Random Value Pool
position: location (20, 30)

move: raise
height: 5cm

x: 20
y: 30
h: 5

Training Data

Templates

position: the corner
move: raise

height: 0.5 meter
x: 0
y: 0

h: 50

...

position: (0, 40)
move: drop

height: 10cm
x: 0

y: 40
h: -10

Figure 3 depicts our flow to generate alignment data.185

We create a handful of templates consisting of goal de-186

scriptions and corresponding API calls. These templates187

contain one or more placeholder pairs. Each of these188

pairs maps to a key word in the goal and an argument in189

the corresponding API calls. We also provide a pool of190

candidate values for each keyword and randomly choose191

values to fill in the placeholders within the template.192

Given a tool with n candidate APIs, we only require193

O(n) human-curated templates to ensure practical hu-194

man supervision. Specifically we use a principle where195

each of the n APIs is encouraged to appear in at least196

one template. In practice, we find it takes on average one197

day for one developer to curate the data for one software198

tool in our benchmark; this includes writing the goal199

templates, providing the pool of argument values and200

generate the data. We provide example templates we use201

for different tools in Appendix C. With data curated for202

all the tools, we perform model alignment tuning jointly for all tools and produce a single model.203

4.2 Demonstration retrieval204

In Section 3, we demonstrate the efficacy of hand-picked oracle examples in improving argument205

populating. However, extending from oracles to practical in-context demonstration poses two206

challenges. First, given n API function candidates, there are exponentially many combinations of207

API calls associated with different goals. Thus, LLMs should be capable of generalizing to a wide208

5

variety of goals based on a limited number of examples. Second, to ensure effective demonstration, it209

is important to provide LLMs with only the relevant examples without human interventions.210

To fulfill the above two desiderata, we augment open-source LLMs with a demonstration retriever211

module. This module revolves around a repository where every API is required to appear in only212

one human-curated demonstration. This implies that only O(n) examples are needed. Among these213

demonstration examples, the retriever selects the most semantically similar examples to the goal214

descriptions.215

Figure 4: In-context demonstration can
improve both closed and open-source
models on Home Search, a tool for
browsing houses on sale.

0 1 2 3 4 5 6 7 8

30

60

90

In-context examples

Su
cc

es
s

ra
te

GPT-4 LLaMA

StarCoder CodeGen

Validation To verify the effectiveness of demonstration216

examples in practice, we empirically show that the retrieved217

demonstrations can improve the success rate on goals re-218

quiring API combinations unseen in the example repository.219

In particular, we evaluate this approach on the home search220

task which exposes 15 API functions and requires mul-221

tiple functions to accomplish each goal. With only 10222

human-curated demonstrations that do not precisely match223

any of the 100 test cases in terms of API combinations,224

the retrieved demonstrations can boost the success rate225

by up to 79% across open-source LLMs and make GPT-4226

nearly perfect, as shown in Figure 4. This shows that the227

demonstration examples can improve tool manipulation for228

unseen types of goals with a repository of size O(n) only.229

4.3 Generation regulation with system prompts230

Figure 5: System prompt with guidelines to
only generate code in a desired format. Red
parts are populated with real data for each
test case during inference.
… As the AI API Assistant, my focus is on assembling the APIs in
the correct order to achieve the desired outcome without
introducing any new APIs or unnecessary information. …

Here is a list of API functions:
{A list of API functions}

To guide me in generating the executable code snippet, use the
following format. Within the three ticks I will be generate code only:
Task: Goal
Action:
```
API_function_name1(args1, args2)
API_function_name2(args3)
```

Here is a list of demonstration examples:
{A list of demonstration examples}

Task: {Goal}
Action:
```

The use of system prompts is a well-established tech-231

nique in chatbots powered by LLMs (19). By incorpo-232

rating human-chatbot conversations, system prompts233

can effectively control the natural language style of234

the generated responses. In the context of tool manipu-235

lation, we regularize open-source LLMs to exclusively236

generate API calls with a system prompt in Figure 5,237

where the black part is the template shared across238

all tasks and the red rows are instantiated during in-239

ference for a certain goal. Our system prompt first240

defines a format that combines text sections contain-241

ing goals, demonstrations, and generations. It then242

provides explicit guidelines in natural language, in-243

structing the LLMs to generate code exclusively. The244

system prompt incorporates the goal description and245

the retrieved API functions directly for each request,246

reducing the human development effort to a one-time247

task.248

5 ToolBench: A New Tool Manipulation Benchmark249

To evaluate open-source LLMs in the domain of tool manipulation, we curate a benchmark suite from250

both existing datasets and newly collected ones. This benchmark stands out as the first open-source251

test bench with predefined test cases for quantitative evaluation, distinguishing it from recent tool252

manipulation research using closed LLMs (2; 3). In this section, we introduce the software tools and253

the evaluation infrastructure. We also demonstrate the level of challenges posed by each tool, in terms254

of the ability to generalize to unseen API combinations and the requirement for advanced reasoning.255

5.1 Software tools and evaluation infrastructure256

As shown in Table 4, our benchmark consists of five tasks we collected and three tasks derived from257

existing datasets, including VirtualHome(29; 30), Webshop(31) and Tabletop(20). They cover both258

single-step and multiple-step action generation, which requires selecting and combining from 2 to 108259

6



Table 4: Tasks in the ToolBench. We provide demonstration examples for few-shot in-context-
learning while test cases are for quantitatively evaluation. We develop API complexity, a metric to
quantify the challenge level in generalizing to unseen API combinations; higher complexity indicates
more challenging tasks. We package the challenges beyond API complexity as advanced reasoning.
We refer to Appendix A for more details on these tasks.

Single Step Multi-Step
Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long / Short Tabletop

Data
API functions 9 6 15 20 108 40 2 32

Demonstration examples 18 12 10 11 10 83 1533 / 200 74
Test cases 100 100 100 120 70 100 100 105

Level of challenges
API complexity 2.2 1.4 7.3 11.1 8.4 12.3 0.0 4.6

Advanced reasoning ✓ ✓ ✓

API functions to accomplish the goals. Each task consists of approximately approximately 100 test260

cases, including goal descriptions and the ground truth API calls. We also provide a limited number261

of demonstration examples to aid model predictions4. We include a comprehensive introduction and262

analysis of each task within the benchmark in Appendix A.263

We use success rate as the primary evaluation metric for most tasks, except for the WebShop where264

we report rewards, as well as for VirtualHome where we use executability and Longest Common265

Subsequence (LCS), following the original metrics proposed by the respective authors. To facilitate266

evaluation, we build an infrastructure that executes the API calls generated by the action generators267

and assess the final outcome. This process enables reliable evaluation of tool manipulation capabilities268

without restricting the action generators to perfectly match the ground truth API calls.269

5.2 Level of challenges270

Table 5: A typical task of Google
Sheets manipulation. It requires
both selecting the correct API func-
tion and reasoning on the arguments.

Product Cost Price

beef 1 3
pork 5 4

chicken 10 11

Task: Update beef’s price to 10.
Action:
worksheet.update("C2", 10)

To assess the level of challenge, we examine ToolBench tasks271

based on their API complexity and the requirement for ad-272

vanced reasoning. Intuitively, API complexity indicates the273

challenges in generalizing to unseen API combinations and274

non-default argument values. Challenges beyond API com-275

plexity then involve advanced reasoning.276

API Complexity To quantify the challenge in generalizing277

to unseen API combinations, we develop a task-agnostic com-278

plexity score S ∈ R+
0 , where279

S(T ,X ,D) = Et∈T mine∈X d(t, e). (1)

It averages over all the test samples in the test set T on the280

minimum distance between t and any demonstration example e from the example pool X . In281

particular, the distance d(t, e) between each test sample t and a demonstration example e is negatively282

proportional to the probability of transforming the API combination of e to match that of t, by283

randomly dropping the API functions irrelevant to t and inserting the uncovered API functions284

required by t from the API pool D. We refer to the details of the complexity score to Appendix D and285

list their values in Table 4. The score is non-negative and the higher the score is, the more complex a286

task is. Despite the fact that this complexity score reflects the challenge level of API selection, it does287

not capture all the difficulties of a task. A task with low complexity score can still be very challenging288

as it might require advanced reasoning. For instance, even though Webshop is challenging, the API289

selection complexity of it is zero. This is because there are only two API functions requiring only one290

argument each in Webshop, and they are both covered by the examples, so there is no API selection291

complexity.292

4For WebShop, we find that more thanO(n) demonstration examples can improve the success rate. Nonethe-
less, these examples can be acquired from programmatic software operations without heavy human curation.

7



Advanced reasoning Within our benchmark, advanced reasoning encompasses challenges beyond293

generalizing to unseen API combinations. These challenges include non API-based coding for tasks294

such as Google Sheets and Tabletop, as well as decision-making based on observations returned295

from the WebShop environment. For instance, in the Google Sheets example shown in Table 5, the296

coordinate of the beef price’s cell ("C2") cannot be easily derived from either the goal or the table297

itself. The action generator needs to understand the content or write additional python code to derive298

this coordinate before calling the API function. In the similar scenario, WebShop task requires the299

action generator to extract the exact button ID to click on the webpage given the description. These300

challenges, categorized as advanced reasoning, complement the API complexity category.301

6 Experiment302

In this section, we leverage the ToolBench to empirically validate the techniques introduced in303

Section 4. First, to concretize the capability gap between open-source and closed LLMs, we304

demonstrate that OpenAI GPT-4 API can have substantially higher success rate than representative305

open-source LLMs in Section 6.2. We then show in Section 6.3 that the simple techniques in Section 4306

can boost open-source LLMs to achieve success rates competitive to in-context-learning with GPT-4307

APIs5 in four out of the eight tasks. Through ablation studies in Section 6.4, we additionally show308

that model alignment does the heavy lifting for boosting open-source LLMs, while system prompt309

and in-context learning robustify LLMs for further improvement.310

6.1 Experiment Setup311

To establish strong baselines, we use GPT-4 API as the representative closed LLM in our study312

because it attains the leading accuracy in mainstream NLP tasks. In our study, we compare LLAMA-313

30B (32), StarCoder (33) and CodeGen-16B-mono (34) to GPT-4. LLAMA represents open research314

models, while StarCoder and CodeGen are publicly available for both research and commercial315

purposes. We choose these three models due to their superior performance on ToolBench among316

open-source models as shown in Table 96. In our experiments, we consider the zero-shot setting as the317

out-of-the-box configuration where only API documentation is provided without any demonstration318

examples. We use this configuration to understand the initial gap in capabilities among models. We319

then incorporate all available techniques on top of this initial configuration to assess their benefits.320

For the original Tabletop dataset (20), which includes examples in a few-shot setting without explicit321

API definitions, we only evaluate settings with in-context demonstrations. More detailed setup322

information is included in Appendix C. We run each job 3 times with different random seeds and323

report average accuracy. The variation is minimal, so we ignore them in the main paper but report324

them in appendix.325

6.2 Capability Gap326

Table 6 exhibits significant disparities in tool manipulation between the closed GPT-4 API and327

open-source models in the out-of-the-box zero-shot setting. For simpler tasks, namely Open Weather328

and the Cat API, which require only one API call for each goal, the open-source models exhibit329

success rates up to 74% lower than GPT-4. Furthermore, on all the remaining tasks other than the330

Webshop, none of the LLAMA, the StarCoder and the CodeGen model can reach meaningful accuracy331

or compare with GPT-4. These results highlight an opportunity to enhance open-source LLMs.332

6.3 Boosting open-source LLMs333

To boost the open-source LLMs, we first perform model alignment using programmatially generated334

data. We then apply a system prompt and a 3-shot demonstration retriever during inference. Given335

GPT-4 does not provide tuning APIs, we enhance the out-of-the-box GPT-4 with the same system336

prompt and demonstration retriever as the baseline. The improvements from the combined enhance-337

ment techniques are shown in Table 6, where the success rates of the open-source LLMs can improve338

up to 90%. As a result, the open-source models achieve competitive or better success rates on 4 out339

5GPT-4 tuning APIs were not released by the time this work is done.
6Surprisingly, we observe that for tool manipulations, open-source LLMs instruction-tuned for conventional

NLP tasks do not outperform their base models before tuning.

8



Table 6: Capability gap in tool manipulation is substantial between closed API and open-source
LLMs in the out-of-the-box zero-shot setting. Using model alignment, the in-context demonstration
retriever and the system prompt, open-soured LLMs attain significant boost in success rate. GPT-4 is
enhanced with the retriever and system prompt. Tabletop is only evaluated in the few-shot fashion.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

Zero-shot Baseline
GPT-4 81.3 97.4 76.6 91.5 5.7 40.8 / 8.0 0.0 -

LLaMA-30b 39.0 49.0 0.0 0.0 0.0 78.0 / 0.3 0.0 -
StarCoder 32.0 71.0 7.0 13.3 5.9 22.0 / 3.7 0.0 -

CodeGen-16B-mono 7.0 78.0 0.0 0.0 1.4 4.0/ 1.0 0.0 -

Enhanced w/ techniques
GPT-4 99.0 98.0 98.0 99.2 68.6 29.0 / 21.7 0.0 0.0 83.8

LLaMA-30b 100.0 94.0 87.0 85.8 2.9 16.0 / 24.3 0.0 0.0 7.5
StarCoder 99.0 97.0 83.0 80.8 21.2 31.0 / 18.4 0.0 0.0 13.9

CodeGen-16B-mono 97.7 99.0 82.0 77.5 19.8 29.0 / 17.2 0.0 3.5 16.2

of 8 tasks, including Open Weather, the Cat API, VirturalHome and WebShop. Moreover, on Home340

Search and Trip Booking, the gap between the LLAMA model and the GPT-4 API is reduced to 11%341

and 13.4% respectively, compared to the initial gap of up to 91%. Despite the fact that open-source342

models are still lagging behind on the Google Sheets and Tabletop, these observations show that343

our recipe can significantly improve the performance of open-source LLMs and attain success rates344

comparable to GPT-4 API on many of the ToolBench tasks.345

Human supervision To identify the practicality of an enhancement recipe, the amount of required346

human supervision is a crucial factor. In our approach, human supervision is primarily in the form347

of in-context demonstration examples and alignment data templates. Regarding the demonstration348

examples, we provide 10 to 83 examples for each task as shown in Table 4, except for WebShop given349

its difficulty in advanced reasoning. As shown in Table 10, the number of templates for alignment350

data is typically less than 100 for each task. We observe that providing these supervisions takes one351

developer day on average, making it practical in terms of the time cost on human supervision.352

Remaining challenges In our experiments, we observe that the boosted open-source LLMs still353

have relatively low success rates on tasks that require advanced reasoning, such as Google Sheets,354

WebShop and Tabletop tasks. This implies the need to further enhance the reasoning capabilities of355

open-source models. We are excited about the prospect of more exploration from the community to356

address the challenges for tool manipulation on these complex tasks.357

6.4 Ablation Study358

Table 7: The number of ToolBench tasks
improved (+N) or hurt (-N) over the base-
lines when adding or dropping techniques.

LLaMA StarCoder CodeGen

Zero-shot - - -
+ Sys. Prompt +4 +4 +4
+ 3-shot +8 +8 +8
+ Alignment +7 +7 +7

Full system - - -
- Sys. Prompt -0 -2 -3
- 3-shot -3 -4 -5
- Alignment -5 -5 -7

We break down the contribution of the techniques in359

two ways. First, we apply each technique individually360

on top of the out-of-the-box zero-shot configuration361

and evaluate its impact. As shown in Table 7, both the362

3-shot in-context demonstration and model alignment363

techniques bump up the success rates across all tasks,364

while the system prompt only benefits simple tasks that365

involve relatively fewer API calls for each goal.366

Next, we consider the combination of all techniques367

and remove them one at a time to evaluate their rela-368

tive contributions within the full system. As shown in369

in Table 7, solely removing model alignment triggers370

success rate degradation in up to 7 tasks, while remov-371

ing either in-context demonstration up to 5 tasks and372

dropping system prompt up to 3. We notice that the tasks that are not significantly impacted when373

removing techniques are typically the ones with relatively low success rate (usually <20% even in the374

full system). Thus, those accuracy changes are hypothetically subject to high variance and fluctuation.375

The full results from the experiments in this section can be found in Table 12.376

9



7 Related work377

Our work establishes a strong connection to the LLM-driven program synthesis. In contrast to378

the conventional rule-based code generation in popular compilation frameworks (35), recent auto-379

regressive LLMs such as CodeGen(34), SantaCoder(36) and StarCoder(33) treat the problem as380

a sequence generation task and demonstrate superior capabilities in emitting semantically correct381

computer programs. We use CodeGen as a representative from these models in our study for API call382

generation.383

Tool manipulation are also known as tool augmented learning (3; 37). Some of the works seek to384

augment generations with the execution results from various tools(1; 38; 39; 26; 40; 41; 42), while385

another line of works focus on executing the tools themselves, including embodied robotic learning386

(20; 30; 43; 44; 45), and automation for other tools (31; 46; 47; 48). We focus on the study of the387

second stream with different models and techniques.388

Recent works in tool manipulation with LLMs mostly study techniques to enhance in-context-389

learning with closed LLMs APIs (1; 2; 3; 4; 5). In contrast, we study simple techniques to allow for390

developers to practically build on top of open-source LLMs. The three techniques we mention in this391

paper (19; 22; 26; 49) are well studied in the conventional NLP tasks. We revisit and adapt them in the392

context of tool manipulation on open-source models with a practical amount of human supervision.393

In the recent LLM literature, there are several works presenting tool manipulation benchmarks (2; 3).394

Compared to these benchmarks, the ToolBench is the first one providing predefined test cases for395

evaluation on real execution results.396

8 Conclusion397

In this paper, we answer the question can we enhance open-source LLMs to compete with leading398

closed LLM APIs in tool manipulation, with practical amount of human supervision. Drawing from399

our observations of the common tool manipulation failures and insights from the literature on conven-400

tional NLP tasks with LLM, we propose to instantiate model alignment with programmatical data401

generation, system prompts, and in-context demonstration retrievers to improve the tool manipulation402

capability of open-source models. To comprehensively evaluate the impact of these techniques, we403

create the ToolBench, a benchmark consisting of diverse software tools for real-world tasks. Our404

results demonstrate that these techniques can make the leading open-source LLMs competitive with405

the OpenAI GPT-4 in 4 out of 8 ToolBench tasks, all achieved with a practical amount of human406

labeling effort.407

References408

[1] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and409

T. Scialom, “Toolformer: Language models can teach themselves to use tools,” arXiv preprint410

arXiv:2302.04761, 2023.411

[2] M. Li, F. Song, B. Yu, H. Yu, Z. Li, F. Huang, and Y. Li, “Api-bank: A benchmark for412

tool-augmented llms,” arXiv preprint arXiv:2304.08244, 2023.413

[3] Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, Z. Zeng, Y. Huang, C. Xiao, C. Han et al.,414

“Tool learning with foundation models,” arXiv preprint arXiv:2304.08354, 2023.415

[4] S. Gravitas. (2023) Auto-gpt: An autonomous gpt-4 experiment. [Online]. Available:416

https://github.com/Significant-Gravitas/Auto-GPT417

[5] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “Hugginggpt: Solving ai tasks with418

chatgpt and its friends in huggingface,” arXiv preprint arXiv:2303.17580, 2023.419

[6] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.420

Gonzalez, I. Stoica, and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-4 with421

90%* chatgpt quality,” March 2023. [Online]. Available: https://vicuna.lmsys.org422

[7] T. Computer, “Openchatkit: An open toolkit and base model for dialogue-style applications,” 3423

2023. [Online]. Available: https://github.com/togethercomputer/OpenChatKit424

10

https://github.com/Significant-Gravitas/Auto-GPT
https://vicuna.lmsys.org
https://github.com/togethercomputer/OpenChatKit


[8] O.-A. Team, “Laion: Open-assistant,” April 2023. [Online]. Available: https://open-assistant.io/425

chat426

[9] Databricks, “Databricks’ dolly, a large language model trained on the databricks machine427

learning platform,” 3 2023. [Online]. Available: https://github.com/databrickslabs/dolly428

[10] Bloomberg. (2023) Samsung bans staff’s ai use after spotting chatgpt429

data leak. [Online]. Available: https://www.bloomberg.com/news/articles/2023-05-02/430

samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg431

[11] CNN. (2023) Jpmorgan restricts employee use of chatgpt. [Online]. Available: https:432

//www.cnn.com/2023/02/22/tech/jpmorgan-chatgpt-employees/index.html433

[12] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan,434

Y. Wu, A. Kumar et al., “Holistic evaluation of language models,” arXiv preprint435

arXiv:2211.09110, 2022.436

[13] OpenAI, “GPT-4 technical report,” Mar. 2023.437

[14] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,438

K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,”439

Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.440

[15] Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho-441

seini, C. McKinnon et al., “Constitutional ai: Harmlessness from ai feedback,” arXiv preprint442

arXiv:2212.08073, 2022.443

[16] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driess-444

che, J.-B. Lespiau, B. Damoc, A. Clark et al., “Improving language models by retrieving445

from trillions of tokens,” in International conference on machine learning. PMLR, 2022, pp.446

2206–2240.447

[17] H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu, “A survey on retrieval-augmented text generation,”448

arXiv preprint arXiv:2202.01110, 2022.449

[18] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham,450

“In-context retrieval-augmented language models,” arXiv preprint arXiv:2302.00083, 2023.451

[19] A. Glaese, N. McAleese, M. Trębacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger,452

M. Chadwick, P. Thacker et al., “Improving alignment of dialogue agents via targeted human453

judgements,” arXiv preprint arXiv:2209.14375, 2022.454

[20] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as455

policies: Language model programs for embodied control,” arXiv preprint arXiv:2209.07753,456

2022.457

[21] D. Jurafsky and J. H. Martin, Speech and Language Processing, Jan 2023.458

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,459

G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural460

information processing systems, vol. 33, pp. 1877–1901, 2020.461

[23] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,462

T. L. Scao, A. Raja et al., “Multitask prompted training enables zero-shot task generalization,”463

arXiv preprint arXiv:2110.08207, 2021.464

[24] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,465

N. Joseph, G. Brockman et al., “Evaluating large language models trained on code,” arXiv466

preprint arXiv:2107.03374, 2021.467

[25] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.468

Yih, T. Rocktäschel et al., “Retrieval-augmented generation for knowledge-intensive nlp tasks,”469

Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.470

11

https://open-assistant.io/chat
https://open-assistant.io/chat
https://open-assistant.io/chat
https://github.com/databrickslabs/dolly
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg
https://www.cnn.com/2023/02/22/tech/jpmorgan-chatgpt-employees/index.html
https://www.cnn.com/2023/02/22/tech/jpmorgan-chatgpt-employees/index.html
https://www.cnn.com/2023/02/22/tech/jpmorgan-chatgpt-employees/index.html


[26] G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin,471

S. Riedel, and E. Grave, “Few-shot learning with retrieval augmented language models,” arXiv472

preprint arXiv:2208.03299, 2022.473

[27] D. GmbH. (2023) Haystack documentation. [Online]. Available: https://docs.haystack.deepset.474

ai/docs/retriever#bm25-recommended475

[28] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. De-476

hghani, S. Brahma et al., “Scaling instruction-finetuned language models,” arXiv preprint477

arXiv:2210.11416, 2022.478

[29] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, “Virtualhome: Simulating479

household activities via programs,” 2018.480

[30] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-shot planners:481

Extracting actionable knowledge for embodied agents,” in International Conference on Machine482

Learning. PMLR, 2022, pp. 9118–9147.483

[31] S. Yao, H. Chen, J. Yang, and K. Narasimhan, “Webshop: Towards scalable real-world web484

interaction with grounded language agents,” 2023.485

[32] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,486

E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv487

preprint arXiv:2302.13971, 2023.488

[33] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li,489

J. Chim et al., “Starcoder: may the source be with you!” arXiv preprint arXiv:2305.06161,490

2023.491

[34] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong,492

“Codegen: An open large language model for code with multi-turn program synthesis,” arXiv493

preprint arXiv:2203.13474, 2022.494

[35] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T. Shpeisman,495

N. Vasilache, and O. Zinenko, “Mlir: A compiler infrastructure for the end of moore’s law,”496

arXiv preprint arXiv:2002.11054, 2020.497

[36] L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis, N. Muennighoff, M. Mishra,498

A. Gu, M. Dey et al., “Santacoder: don’t reach for the stars!” arXiv preprint arXiv:2301.03988,499

2023.500

[37] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans, “Foundation models for501

decision making: Problems, methods, and opportunities,” arXiv preprint arXiv:2303.04129,502

2023.503

[38] G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Rozière, T. Schick,504

J. Dwivedi-Yu, A. Celikyilmaz et al., “Augmented language models: a survey,” arXiv preprint505

arXiv:2302.07842, 2023.506

[39] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing507

reasoning and acting in language models,” arXiv preprint arXiv:2210.03629, 2022.508

[40] Y. Liang, C. Wu, T. Song, W. Wu, Y. Xia, Y. Liu, Y. Ou, S. Lu, L. Ji, S. Mao et al., “Taskmatrix.509

ai: Completing tasks by connecting foundation models with millions of apis,” arXiv preprint510

arXiv:2303.16434, 2023.511

[41] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,512

J. Hilton, R. Nakano et al., “Training verifiers to solve math word problems,” arXiv preprint513

arXiv:2110.14168, 2021.514

[42] A. Parisi, Y. Zhao, and N. Fiedel, “Talm: Tool augmented language models,” arXiv preprint515

arXiv:2205.12255, 2022.516

12

https://docs.haystack.deepset.ai/docs/retriever#bm25-recommended
https://docs.haystack.deepset.ai/docs/retriever#bm25-recommended
https://docs.haystack.deepset.ai/docs/retriever#bm25-recommended


[43] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,517

K. Hausman, A. Herzog et al., “Do as i can, not as i say: Grounding language in robotic518

affordances,” arXiv preprint arXiv:2204.01691, 2022.519

[44] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and520

A. Garg, “Progprompt: Generating situated robot task plans using large language models,” arXiv521

preprint arXiv:2209.11302, 2022.522

[45] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics: Design principles523

and model abilities,” 2023, 2023.524

[46] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,525

W. Saunders et al., “Webgpt: Browser-assisted question-answering with human feedback,” arXiv526

preprint arXiv:2112.09332, 2021.527

[47] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan, “Visual chatgpt: Talking, drawing and528

editing with visual foundation models,” arXiv preprint arXiv:2303.04671, 2023.529

[48] G. Kim, P. Baldi, and S. McAleer, “Language models can solve computer tasks,” arXiv preprint530

arXiv:2303.17491, 2023.531

[49] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid training532

data creation with weak supervision,” in Proceedings of the VLDB Endowment. International533

Conference on Very Large Data Bases, vol. 11, no. 3. NIH Public Access, 2017, p. 269.534

[50] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as535

policies: Language model programs for embodied control,” 2023.536

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and537

I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,538

vol. 30, 2017.539

[52] N. Muennighoff, T. Wang, L. Sutawika, A. Roberts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen,540

Z.-X. Yong, H. Schoelkopf et al., “Crosslingual generalization through multitask finetuning,”541

arXiv preprint arXiv:2211.01786, 2022.542

[53] BigScience Workshop, “BLOOM (revision 4ab0472),” 2022. [Online]. Available: https:543

//huggingface.co/bigscience/bloom544

[54] Chavez. (2023) chavinlo/gpt4-x-alpaca. [Online]. Available: https://huggingface.co/chavinlo/545

gpt4-x-alpaca546

[55] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto,547

“Stanford alpaca: An instruction-following llama model,” https://github.com/tatsu-lab/stanford_548

alpaca, 2023.549

[56] S. Iyer, X. V. Lin, R. Pasunuru, T. Mihaylov, D. Simig, P. Yu, K. Shuster, T. Wang, Q. Liu, P. S.550

Koura et al., “Opt-iml: Scaling language model instruction meta learning through the lens of551

generalization,” arXiv preprint arXiv:2212.12017, 2022.552

[57] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li,553

X. V. Lin et al., “Opt: Open pre-trained transformer language models,” arXiv preprint554

arXiv:2205.01068, 2022.555

[58] A. Andonian, Q. Anthony, S. Biderman, S. Black, P. Gali, L. Gao, E. Hallahan, J. Levy-Kramer,556

C. Leahy, L. Nestler, K. Parker, M. Pieler, S. Purohit, T. Songz, W. Phil, and S. Weinbach,557

“GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch,” 8 2021. [Online].558

Available: https://www.github.com/eleutherai/gpt-neox559

[59] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,560

N. Nabeshima et al., “The pile: An 800gb dataset of diverse text for language modeling,” arXiv561

preprint arXiv:2101.00027, 2020.562

13

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://huggingface.co/chavinlo/gpt4-x-alpaca
https://huggingface.co/chavinlo/gpt4-x-alpaca
https://huggingface.co/chavinlo/gpt4-x-alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://www.github.com/eleutherai/gpt-neox


[60] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,563

K. McDonell, J. Phang et al., “Gpt-neox-20b: An open-source autoregressive language model,”564

arXiv preprint arXiv:2204.06745, 2022.565

[61] Together, LAION, and Ontocord.ai. (2023) The oig dataset. [Online]. Available:566

https://huggingface.co/datasets/laion/OIG567

[62] S. Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,568

S. Purohit, U. S. Prashanth, E. Raff et al., “Pythia: A suite for analyzing large language models569

across training and scaling,” arXiv preprint arXiv:2304.01373, 2023.570

[63] Databricks, “dolly-v2-12b,” 2023. [Online]. Available: https://huggingface.co/databricks/571

dolly-v2-12b572

[64] Stablility-AI. (2023) Stablelm. [Online]. Available: https://github.com/Stability-AI/StableLM573

[65] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,574

“Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of575

Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.576

[66] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao, L. Nardi,577

A. Pedram, C. Kozyrakis et al., “Spatial: A language and compiler for application accelerators,”578

in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and579

Implementation, 2018, pp. 296–311.580

[67] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,581

C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel pa-582

terns,” ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 389–402, 2017.583

[68] R. Prabhakar and S. Jairath, “Sambanova sn10 rdu: Accelerating software 2.0 with dataflow,” in584

2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–37.585

[69] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in586

Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233–240.587

[70] J. Hauke and T. Kossowski, “Comparison of values of pearson’s and spearman’s correlation588

coefficients on the same sets of data,” Quaestiones geographicae, vol. 30, no. 2, pp. 87–93,589

2011.590

14

https://huggingface.co/datasets/laion/OIG
https://huggingface.co/databricks/dolly-v2-12b
https://huggingface.co/databricks/dolly-v2-12b
https://huggingface.co/databricks/dolly-v2-12b
https://github.com/Stability-AI/StableLM


In the appendix section, we provide detailed information on the following aspects of our study. In591

Appendix A, we present the background and curation details for the 8 tasks included in ToolBench.592

Appendix B focuses on the performance evaluation of an extensive suite of LLMs on ToolBench. In593

Appendix C, we delve into the details of model alignment, including the process of generating the594

training data and training details. We also provided the full spectrum of results for the experiments595

in Section 6. Finally, in Appendix D, we introduce the API selection complexity score system, and596

demonstrate its effectiveness and implication in measuring task complexity.597

A Benchmark Details598

A.1 OpenWeather599

This task involves using the REST API to interact with OpenWeather website7. We include 9 types of600

API calls that cater to 9 categories of queries, including but not limited to retrieving current weather601

data in a city, obtaining air quality data at a specific longitude and latitude, and acquiring weather602

forecast data for a location specified by a zip code. Making each type of API calls involves correctly603

filling 2 to 3 required parameters (such as lon for longitude and lat for latitude) and 0 to 3 optional604

parameters (such as lang for language and units for units of measurement), depending on the605

requirements specified in each query. In total, we develop 100 unique queries for the 9 categories606

and 2 demonstration examples for each category. To assess the quality of the LLM’s generation, we607

look for the first line beginning with the word "curl", if it exists. We then execute this line using608

the shell process. If the shell process returns a non-zero value, we declare "not executable" for this609

generation. On the other hand, if the code can be executed, we compare the returned response with the610

corresponding result from the ground-truth Curl request. The model’s generation will be considered611

successful if the output matches the expected result precisely.612

A.2 The Cat API613

This task is a similar REST API task as the OpenWeather, but it involves making all the GET, DELETE,614

or POST request to The Cat API website8. There are 6 types of API calls for 6 types of queries,615

including deleting a cat image from the user’s list of favorites, adding an image to the user’s list616

of favorites, returning the list of favorite images, voting up or down to an image, and searching for617

cat images with filtering requirements. We develop 100 queries for the test set and 2 demonstration618

examples for each category. To evaluate the executability and success of the LLM’s generation in619

these scenarios, we follow a similar procedure as that of the Open Weather task. It is worth noting that620

for queries related to removing an image from the list of favorites, we compare the LLM’s generation621

verbatim with the ground-truth label since duplicated deletion would inevitably lead to failure if622

executed.623

A.3 Home Search624

This task is designed to replicate the process of searching for homes at a specific location based on625

certain criteria. We design the API with 15 functions, including626

• set_location which sets the desired location;627

• set_but_or_rent which specifies whether the user is looking to buy or rent a home;628

• 12 functions for setting criteria, such as home prices, number of bedrooms, and home square629

footage;630

• search which submits the criteria to get search results.631

We consider executability and f1 score of the generated action. To ensure executable searches,632

the agent should make a sequence of function calls that starts with set_location and633

set_buy_or_rent, followed by the criterion-setting functions, and then ends with a call to the634

search function. If executable, an f1 score is computed between the criteria set by the generated635

program and that by the ground-truth program. We develop a test set consisting of 100 queries that636

7https://openweathermap.org/api
8https://thecatapi.com

15



asked for home options with varying criteria combinations and provide 10 demonstration examples.637

To test the LLM’s ability to utilize unseen API functions, we intentionally exclude 3 criterion-setting638

functions from all demonstration examples.639

A.4 Trip Booking640

The Trip Booking task is similar to the Home Search task but with more advanced dependency641

requirements among function calls. It simulates the process of submitting search requests for642

transportation tickets, hotel rooms, or both based on specific requirements like locations, dates, and643

the number of tickets required. We design 20 functions for the three types of booking scenarios.644

Depending on the scenario, some function calls may be required while others are optional. Missing645

any required function call or mistake the order of some function calls results in a non-executable646

search, while missing optional function calls lead to an unsuccessful search. We include 120 queries647

in the test set and provide 11 demonstration examples.648

A.5 Google Sheets649

This task is to manipulate the real worksheets from the Google Sheets9, via the gspread library10. We650

include 100 distinct API function calls from the gspread library, but we only create tests for the most651

common use cases, including updating cell values, sorting, adding or deleting rows and columns,652

merging cells, filtering, formatting and creating pivot tables. There are 70 test cases and 10 examples653

in total. We also encourage the model to utilize Pandas DataFrame11 and gspread-dataframe12 for654

advanced manipulations, by explicitly providing 8 additional API functions and certain examples for655

them. The manipulation is considered as correct only if both the value and the format of each cell656

match the expectation.657

A.6 Virtual Home658

This task is inherited from the setting of the VirtualHome13 simulator and asks the LLM to generate659

sequences of actions for completing household activities. We develop API definitions, demonstration660

examples, and a test set based on the list of available examples14 curated in (30). The API consists of661

40 functions, each of which corresponds to a specific action used in the examples. These functions662

can take up to two arguments, and we collect the list of valid object names for each argument663

based on all examples. Some examples of the functions include Sleep(), Push(object), and664

PourInto(object1, object2).665

The original example list contains 202 household activities, represented by 5088 examples, with each666

example being a series of actions to complete a specific activity. However, some activities have exactly667

the same solution as another activity. After deduplication, we are left with 183 unique activities with668

non-overlapping solutions between any two activities. We randomly select 100 activities to form the669

test set, while the remaining 83 tasks with their 512 solutions are used as demonstration examples.670

When evaluating the LLM’s generation for a given task, we consider both executability and correctness.671

The generation is considered executable if it can be correctly parsed into a series of valid actions,672

where each action involves only recognizable objects. Regarding correctness, we measure the673

similarity between the generated program and the ground-truth solution, using the longest common674

subsequence (LCS) (29) normalized by the maximum length of the two. For tasks with multiple675

solutions, we consider the highest LCS score from any solution.676

A.7 WebShop677

This is a multi-step task inherited from Webshop (31), a simulated online shopping environment. The678

task requires an agent to navigate through a series of webpages to find and purchase a desired product679

9https://www.google.com/sheets/about/
10https://docs.gspread.org/
11https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
12https://gspread-dataframe.readthedocs.io/en/latest/
13http://virtual-home.org/
14https://github.com/huangwl18/language-planner/blob/main/src/available_examples.json

16



based on a text instruction that outlines the item description.The agent can perform two primary680

types of actions: search[text], which involves entering a text query, and click[button] which681

involves selecting a button on the page.682

We generate demonstration examples based on this file15, which contains trajectories collected683

from humans performing the online shopping tasks. We formulate each trajectory into a series684

of (instruction, webpage description, action) tuples in plain text format. The Long version of the685

demonstration set consists of 1533 full trajectories, which often exceed the input sequence length686

limit of the LLM. To address this issue, we provide a Short version of the demonstration examples,687

by first removing 80% of the non-targeted items from any webpage description, and selecting only688

the 200 shortest trajectories from the complete set.689

For evaluation, we use the predefined simple mode of the WebShop environment16 and set up690

the environment with the provided option of using only 1000 random products. We include 100691

instructions from sessions with ID numbers 0 to 99 in the test set. We define success as making a692

purchase which receives a positive reward from the environment within 25 steps.693

A.8 Tabletop694

This task is developed based on the simulated tabletop manipulation domain presented by (50) and695

outlined in their Appendix K. In this simulation environment, a UR5e robot with a Robotiq 2F85 jaw696

gripper can perform pick and place actions parameterized by 2D top-down positions. We reuse their697

API definitions and prompts as demonstration examples. We iterate on the 14 instruction templates698

used in their evaluation benchmark and create 15 types of tasks that involve manipulating up to 4699

colored blocks and 4 colored bowls. For each type of task, we generate 7 valid initial setups of blocks700

and bowls for the test set, ensuring that no collisions occur during the execution of a valid solution.701

The success of the LLM’s generated program is determined by whether all objects are within a small702

threshold of their target positions after execution.703

B Comprehensive Model Evaluation on the ToolBench704

In this section, we want to compare the performance of different models on the ToolBench. Specifi-705

cally, we selected 27 representative LLMs from both closed and open-source community, and evaluate706

them on the ToolBench in 3-shot scenario.707

B.1 Models708

As listed in Table 8, we select a set of representative LLMs from both closed-source and open-source709

community.710

The closed models are the (Generative Pre-trained Transformer) GPT series from OpenAI, especially711

the GPT-3(22) and its successors(13). GPT-3 is a state-of-the-art language model developed by712

OpenAI, with 175 billion parameters, making it the largest and most powerful language model ever713

created. It is capable of performing a wide range of natural language processing tasks and has the714

potential to revolutionize the way we interact with and understand language. Due to the lack of715

detailed information about its training, we are motivated to study methods to build models achieving716

similar capabilities, especially using open-source models.717

We select the representative and the most advanced open-source models from recent years in our718

work. They are all decoder-only models, based on transformers(51) architecture. Bloomz(52) is the719

largest open-source LLM built upon the large-scale multilingual pretrained BLOOM(53). Bloomz is720

funtuned on xP3(52), a crosslingual task mixture, for crosslingual generalization to unseen tasks and721

languages. StarCoder(33) is a family of models developed for purely code generation and synthesis722

with 8K context length. They exhibit superior performance on common code generation benchmarks.723

LLaMA(32) is a family of pretrained models, that are performant on quite a few NLP benchamrks.724

Although they are not as large as Bloomz, they are all trained for almost 4 times longer than Bloom.725

This is an important reason why they are able to outperform several top peer models on many NLP726

tasks. Alpaca (54; 55) is fine-tuned LLaMA-13b model on 52K instruction-following data as well727

15https://github.com/princeton-nlp/WebShop/blob/master/baseline_models/data/il_trajs_finalized_images.zip
16https://github.com/princeton-nlp/WebShop#text-environment-simple-mode

17



Table 8: The achitecture and training data of all the models in our evaluation. The models are grouped
by their architecture and training data.

Model Architecture Data
Family Size Max SS # Tokens Pretraining Finetuning

Closed-source
text-davinci-003 gpt3 175b 4096 - - -

gpt-3.5-turbo gpt3 - 4096 - - -
text-curie-001 gpt3 6.7b 2048 - - -

gpt4 gpt4 - 8192 - - -

Open-source
bloomz bloom 176b 2048 366B bloom corpus xP3

llama-65b llama 65b 2048 1.4T CCNet, C4,
GitHub, Wikipedia,

Books, ArXiv,
Stack Exchange

-
llama-30b llama 30b 2048 1.4T -
llama-13b llama 13b 2048 1.4T -

llama-13b-alpaca llama 13b 2048 1.4T GPT-4 responses, Alpaca

starcoderbase bigcode 15.5b 8192 1T The Stack -
starcoder bigcode 15.5b 8192 1T The Stack (Python)

opt-30b opt 30b 2048 300B The Pile, BookCorpus,
CC-Stories, Reddit,

CCNewsV2

-
opt-1.3b opt 1.3b 2048 300B -

opt-iml-30b opt 30b 2048 300B OPT-IML Benchopt-iml-1.3b opt 1.3b 2048 300B

gpt-neox-20b neox 20b 2048 450B

The Pile

-
GPT-NeoXT-Chat-Base-20B neox 20b 2048 460B OpenChatKit IT

codegen-16B-nl neox 16b 2048 700B -
codegen-16B-multi neox 16b 2048 1T BigQuery
codegen-16B-mono neox 16b 2048 1T BigQuery, BigPython

pythia-12b neox 12b 2048 300B -
dolly-v2-12b neox 12b 2048 300B Dolly IT

pythia-6.9b/2.8b1.4b neox multi 2048 300B -

stablelm-base-alpha-7b neox 7b 4096 800B

The Pile (1.5T)

-
stablelm-base-alpha-3b neox 3b 4096 800B -
stablelm-tuned-alpha-7b neox 7b 4096 800B Alpaca, GPT4All,

Anthropic, Dolly, ShareGPTstablelm-tuned-alpha-3b neox 3b 4096 800B

responses from GPT-4. OPT-IML(56) is the finetuned version of the original OPT(57), which is the728

first family of large-scale (176 billion parameters) open-source models that are trained on publicly729

available datasets. OPT-IML significatly improves the instruction following capability of OPT by730

training on a large benchmark of 2000 NLP tasks for Instruction MetaLearning (IML). We only select731

the publicly accessibile checkpoints from the OPT families in our work.732

Another important family of models are all developed from the NeoX toolkit(58) and pretrained733

using the PILE dataset(59). GPT-NeoX-20B(60) is only pretrained on the PILE, while GPT-NeoXT-734

Chat-Base-20B(7) is further finetuned on the OIG-43M(61), a dataset targetting better instruction735

following capability. CodeGen family(34) is designed for superior capability on code generation, as736

they are heavily finetuned on large code datasets. Pythia family(62) is a suite of models designed737

for analyzing LLMs across training and scaling. They are all pretrained on the Pile in the same738

way, but have different model sizes and intermediate checkpoints released during training. We use739

those variants in our ablation study. Dolly(63) is finetuned beyond Pythia-12b on a new, high-quality740

human generated instruction following dataset, crowdsourced among Databricks employees. The741

StableLM family(64) is pre-trained on an experimental version of the PILE datasets which has 1.5742

trillion tokens in total. The models have a sequence length of 4096 to push beyond the context743

window limitations of the existing open-source language models. The instruction tuned counterpart744

of each model is also released. By the time we publish this work, only 7b and 3b models are released,745

while the team behind them is training larger models.746

There are other notable models, such as FlanT5(28), the T0 family(23), and the T5 family(65), that747

have shown promising performance. We do not include all of them in our baseline comparison, as748

some of their features are not designed for the task at hand. For example, their tokenizers do not749

distinguish between spaces, tabs and new lines, making it hard for them to generate executable code750

based on API function calls.751

18



Table 9: The performance on ToolBench of different models in 3-shot scenario. The models are group
by their architecture and training data.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

max tokens to generate 128 128 128 300 256 128 128 256
num API function all all all all 10 10 all 0

Closed-source
gpt4 93.0 96.0 97.0 96.7 62.9 23.0 / 23.5 0.0 81.0

text-davinci-003 99.0 98.0 97.0 89.2 62.9 31.0 / 25.1 0.0 66.7
gpt-3.5-turbo 90.0 92.0 80.0 85.8 51.4 20.0 / 18.9 0.0 1.8 33.3
text-curie-001 8.0 58.0 6.0 6.7 1.4 12.0 / 4.1 0.0 0.0 1.0

Open-source
llama-65b 90.0 80.0 84.0 65.8 32.9 32.0 / 20.3 0.0 41.2 30.5
llama-30b 78.0 84.0 66.0 45.0 37.1 27.0 / 21.7 0.0 30.6 34.3
llama-13b 70.0 74.0 45.0 35.8 5.7 28.0 / 18.9 0.0 27.6 17.1

llama-13b-alpaca 62.0 43.0 44.0 40.8 11.4 1.0 / 1.6 0.0 2.7 9.5

starcoder 91.0 84.0 82.0 51.7 48.0 23.0 / 19.4 2.6 0.0 21.9
starcoderbase 90.0 86.0 79.0 63.3 42.9 24.0 / 16.3 5.8 23.1 17.1

codegen-16B-nl 51.0 75.0 37.0 21.7 7.1 43.0 / 18.0 0.0 0.0 16.2
codegen-16B-multi 56.0 75.0 47.0 7.5 21.4 31.0 / 14.1 0.0 0.5 8.6
codegen-16B-mono 63.7 72.0 52.0 28.3 31.5 28.0 / 15.7 1.5 6.6 15.2

bloomz 58.0 85.0 36.0 22.5 14.3 9.0 / 4.9 0.0 1.0 1.0

opt-iml-30b 44.0 48.0 5.0 3.3 2.9 13.0 / 8.3 0.0 0.0 1.0
opt-30b 46.0 35.0 2.0 3.3 8.6 24.0 / 11.7 0.0 0.0 1.0

opt-iml-1.3b 20.0 28.0 0.0 0.0 4.3 13.0 / 3.1 0.0 0.0 1.0
opt-1.3b 18.0 30.0 0.0 0.0 1.4 31.0 / 9.7 0.0 0.0 1.0

neox-20b 55.0 69.0 27.0 10.8 18.6 28.0 / 15.3 0.0 8.8 6.7
GPT-NeoXT-Chat-Base-20B 43.0 73.0 28.0 10.8 4.3 26.0 / 13.1 0.0 0.7 7.6

pythia-12b 53.0 65.0 12.0 0.8 11.4 17.0 / 12.1 0.0 0.0 1.9
dolly-v2-12b 0.0 1.0 10.0 5.0 7.1 11.0 / 8.9 0.0 0.0 7.6
pythia-12b 53.0 65.0 12.0 0.8 11.4 17.0 / 12.1 0.0 0.0 1.9
pythia-6.9b 41.0 72.0 8.0 7.5 4.3 29.0 / 14.0 0.0 0.0 8.6
pythia-2.8b 49.0 54.0 7.0 3.3 12.9 24.0 / 14.8 0.0 0.0 7.6
pythia-1.4b 37.0 48.0 4.0 5.0 10.0 22.0 / 10.7 0.0 5.2 7.6

stablelm-base-alpha-7b 22.0 47.0 0.0 0.0 4.3 28.0 / 10.3 0.0 0.0 2.9
stablelm-tuned-alpha-7b 23.0 38.0 0.0 0.0 1.4 26.0 / 7.3 0.0 0.0 3.8
stablelm-base-alpha-3b 6.0 28.0 0.0 0.0 1.4 29.0 / 5.3 0.0 0.0 1.0
stablelm-tuned-alpha-3b 14.0 31.0 0.0 0.8 0.0 8.0 / 5.6 0.0 0.0 1.0

B.2 Evaluation752

To collect the baseline results, we exploit the naive approach described in section 2 as the action753

generator. We give each LLM sufficient max tokens to generate on each task and retrieve as many754

API functions as possible in the prompt. The detailed information is listed in Table 9. We evaluate all755

the models on a mixture of GPUs and RDUs(66; 67; 68). In particular, the 176b-parameter bloomz756

is evaluated on RDU, while all the other models are evaluated on NVIDIA A100 GPUs with 80GB757

RAM.758

For these models, We only conduct the few-shot evaluation described Section 6 because 1) zero-shot759

results are not representative, as most of them are zero, 2) it is not practical to tune all the models on760

our training data, and 3) few-shot results can be used as a great proxy of the model performance in all761

the other settings. For the conversation-oriented models, including gpt-3.5-turbo, chavinlo/gpt4-x-762

alpaca, GPT-NeoXT-Chat-Base-20B and dolly-v2-12b, we additionally add <human>: and <bot>:763

key words in the prompt to better align with their training data format for better performance.764

After we get the completion from the LLMs given a prompt, only minimal post-processing steps are765

applied to the completion: 1) Properly truncate the completion, given the list of task-specific stop766

sequences and 2) Replace the {API_KEY} keywords in the completion with the real API key, so as767

to execute the code properly. Finally, as shown in Figure 1, to validate the action generated for the768

single-step tasks, we execute the generated API calls and compare its output against the ground truth;769

while for the multi-step tasks, the actions are used to interact with the environment directly and only770

19



the final status is evaluated. For each task, we report the metrics described in Section 5 for each771

task. Note that we only evaluate the top 1 generated action with sampling disabled. This is because,772

in practice, action can only be executed once and there is no chance to reset things and try another773

action.774

B.3 ToolBench performance of different models775

The performance of different models are summarized in Table 9. Below we show several observations.776

Capability Gap Currently, the GPT family of models stands out as the leading players in the field,777

and there is a significant gap between GPT-4, GPT-3.5 and all the other open-source models. While778

open-source models may demonstrate competitiveness on some simpler tasks, they lag far behind on779

more challenging tasks such as Google Sheets and Tabletop.780

Instruction tuning on conventional NLP tasks doesn’t help Comparing the models between781

chavinlo/gpt4-x-alpaca and LLaMA-13b, OPT-IML and OPT, StableLM-tuned and StableLM-base,782

NeoX-Chat-Base-20b and NeoX, and dolly and pythia, the former model in each pair is intentionally783

optimized to enhance instruction following capability compared to the latter model. However, no784

significant accuracy improvement is observed on the ToolBench. Further, the LLaMA family, despite785

not undergoing any specific instruction tuning during training, still achieves relatively good quality786

compared to other public models.787

Model size is important By comparing the performance of models from GPT faimily, LLaMA788

family, OPT family, Pythia family and StableLM family, we can clearly see the trend that the larger789

models tend to perform better on the ToolBench, given the same quantity and quality of their training790

data.791

Code generation is important StarCoder and CodeGen faimily stand out among other models792

with similar sizes on ToolBench, while StarCoderBase is even on par with the llama-65b model793

which is more than 4 times larger in size. CodeGen-16B-mono is overall better than its base model794

CodeGen-16B-nl, which is not specifically tuned for code generation. It is also surprisingly better795

than CodeGen-16B-multi on almost all the tasks, indicating that it is highly beneficial for action796

generation if the model is heavily tuned on Python-style code generation.797

C Experiment Details798

In this section, we extended Section 6 with more details about model training and results.799

C.1 Training data800

For the OpenWeather, The Cat API, Trip Booking, and Home Search tasks, we generate the train-801

ing data by converting or expanding the demonstration examples of each task into templates and802

populating them with various sets of variable values. For the remaining four tasks, we format the803

training samples directly from the demonstration example set described in section 5. We exclude any804

test samples from the training data and minimize the overlap of the API function call combinations805

between any training and test samples. For example, we make sure that the API function combinations806

used in each test case for the Home Search task are never present in the training data. However,807

for the OpenWeather task, it was unavoidable to have some overlap because each test case only808

involved a single function call and the training examples covered all the API functions. The numbers809

of templates and training samples for each task are summarized in table 10. Example templates and810

variable values are shown in table 11. The training sets for all tasks, except for the Google Sheets811

and WebShop task, reduce the complexity score of their respective test sets when compared to the812

example sets. As expected, the model’s accuracy shows improvement after fine-tuning.813

C.2 All-shot loss814

To construct the training samples, we concatenate API documents and multiple pairs of goal and API815

calls as one input sequence to the LLMs. We use an all-shot loss formulation illustrated in Figure 6816

20



Table 10: The statistics of model alignment data

Task Open The Cat Home Trip Google VirtualHome WebShop TabletopWeather API Search Booking Sheets
Templates 90 40 100 30 1 1 2 1

Repeat 20 45 18 60 118 512 900 74
Training samples 1800 1800 1800 1800 118 512 1800 74

Complexity score 1.1 1.0 6.4 10.1 12.1 12.3 0.0 4.6

Table 11: Training template examples of different tools
Goal Action Variable values

Open
Weather

What is the present weather situation
in {city}? Please respond in {lang}
and use {units} units.

curl -X GET ’https://api.openweathermap.org/data/
2.5/weather?q={city_formatted}&appid=
{API_KEY}&lang={lang_abbr}&units={units}’

{city: "Palo Alto",
city_formatted: "palo+alto",
lang: "English",
lang_abbr: "en",
units: "imperial"}

The Cat
API

Add the cat photo with id={image_id}
to my list of favorites.

curl -X POST ’https://api.thecatapi.com/v1/favourites’
–data ’{"image_id":"{image_id}"}’ {image_id: "MTUyNTA1OA"}

Home
Search

Looking for homes for sale in
{location} with {num_beds}
bedrooms and {num_baths} bathrooms,
between ${min_price} and ${max_price}.

API.set_location({location})
API.set_buy_or_rent("buy")
API.set_num_beds({num_beds})
API.set_num_baths({num_baths})
API.set_min_price({min_price})
API.set_max_price({max_price})
API.search()

{location: "Palo Alto",
num_beds: 4,
num_baths: 5,
min_price: 7000000,
max_price: 8000000}

Trip
Booking

Search for {means_of_transportation}
tickets for {num_adults} adults
from {location_from} to
{location_to}, on {departure_date}.

API.select_booking_type("trip tickets")
API.select_transportation({means_of_transportation})
API.set_num_adults({num_adults})
API.set_origin(Loc({location_from}))
API.set_destination(Loc({location_to}))
date = Date({departure_date})
API.set_departure_date(date)
API.search()

{means_of_transportation: "flight",
max_price_ticket: 150,
num_adults: 2,
location_from: "San Francisco",
location_to: "Los Angeles",
departure_date: "2023-08-15"}

Google
Sheet {task} {action}

{task: "
| Product | Cost | Price |
| beef | 1 | 3 |
| pork | 5 | 4 |
| chicken | 10 | 11 |
| lamb | 3 | 15 |
| duck | 12 | 2 |
| fish | 2 | 100 |

Task:
Sum B1:B4 and write the result below B4
Action:",
action: "
worksheet.update(’B5’, ’=SUM(B1:B4)’,
raw=False)"}

VirtualHome {task} {action}

{task: "
Task: Read book
Action:",
action: "
Agent.Find(novel)
Agent.Grab(novel)
Agent.Find(chair)
Agent.SitOn(chair)
Agent.Read(novel)"}

WebShop {task} {action}

{task: "Instruction: i’m looking to
buy a high resolution marine
animal themed backdrop. the size
should be 12x10ft, and price lower
than 100.00 dollars
[button] Search [button_]
Action:",
action: "
search[12x10ft high resolution
marine animal backdrop]"}

Tabletop {task} {action}

{task: "objects = [’yellow block’,
’green block’, ’yellow bowl’,
’blue block’, ’blue bowl’, ’green bowl’]
# move the green block to the
top right corner.",
action: "
corner_pos = parse_position(
’top right corner’)
put_first_on_second(
’green block’, corner_pos)"}

21



Figure 6: We use all-shot loss for model alignment. We concatenate several examples into a single
training sample and backpropagate through the loss on the blue actions in every example. There is no
separator token between examples.

API Definition Goal 1 Goal N API calls N...Normal:

API Definition Goal 1 API calls 1 Goal N API calls N...All shot:

API calls 1 Goal 2 API calls 2

Goal 2 API calls 2

Table 12: The detailed performance on the ToolBench of models with different techniques applied.
Mean(standard deviation) values are provided for each task. There exists some inevitable randomness,
but it won’t cange the results by too much.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

Zero-shot Baseline
gpt4 81.3(1.7) 97.4(0.3) 76.6(1.1) 91.5(0.5) 5.7(0.0) 40.8(0.6) / 8.0(0.2) 0.0(0.0) - -

llama-30b 39.0(0.0) 49.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 78.0(0.0) / 0.3(0.0) 0.0(0.0) - -
starcoder 32.0(0.0) 71.0(0.0) 7.0(0.0) 13.3(0.0) 5.9(1.1) 22.0(0.0) / 3.7(0.0) 0.0(0.0) - -

codegen-16B-mono 7.0(0.0) 78.0(0.0) 0.0(0.0) 0.0(0.0) 1.4(0.0) 4.0(0.0) / 1.0(0.0) 0.0(0.0) - -

Sys. Prompt
gpt4 78.4(0.3) 94.2(0.8) 72.7(2.0) 89.6(0.9) 28.6(0.0) 42.8(0.6) / 8.6(0.1) 0.0(0.0) - -

llama-30b 50.0(0.0) 88.0(0.0) 0.0(0.0) 0.0(0.0) 11.4(0.0) 24.0(0.0) / 2.5(0.0) 0.0(0.0) - -
starcoder 71.0(0.0) 91.0(0.0) 2.0(0.0) 7.5(0.0) 15.9(0.2) 26.0(0.0) / 4.9(0.0) 0.0(0.0) - -

codegen-16B-mono 32.0(0.0) 69.0(0.0) 0.0(0.0) 0.0(0.0) 7.1(0.0) 5.0(0.0) / 1.6(0.0) 0.0(0.0) - -

3-shot
gpt4 93.0(0.0) 96.0(0.0) 97.0(0.0) 96.7(0.0) 62.9(0.0) 23.0(0.0) / 23.5(0.0) 0.0(0.0) 0.0(0.0) 81.0(0.0)

llama-30b 78.0(0.0) 84.0(0.0) 66.0(0.0) 45.0(0.0) 37.1(0.0) 27.0(0.0) / 21.7(0.0) 0.0(0.0) 30.6(0.0) 34.3(0.0)
starcoder 91.0(0.0) 84.0(0.0) 82.0(0.0) 51.7(0.0) 48.0(1.1) 23.0(0.0) / 19.4(0.0) 2.6(0.0) 0.0(0.0) 21.9(0.0)

codegen-16B-mono 63.7(0.5) 72.0(0.0) 52.0(0.0) 28.3(0.0) 31.5(0.5) 28.0(0.0) / 15.7(0.0) 1.5(0.0) 6.6(0.0) 15.2(0.0)

Alignment
llama-30b 100.0(0.0) 94.0(0.0) 85.0(0.0) 87.5(0.0) 4.3(0.0) 14.0(0.0) / 10.6(0.0) 20.8(0.0) - -
starcoder 95.0(0.0) 98.0(0.0) 78.0(0.0) 85.0(0.0) 10.0(0.0) 28.0(0.0) / 13.4(0.0) 0.0(0.0) - -

codegen-16B-mono 99.0(0.0) 95.8(0.6) 78.0(0.0) 73.3(0.0) 10.0(0.0) 10.0(0.0) / 11.5(0.0) 30.3(0.0) - -

Sys. Prompt + 3-shot -
gpt4 99.0(0.0) 98.0(0.0) 98.0(0.0) 99.2(0.0) 68.6(0.0) 29.0(0.0) / 21.7(0.0) 0.0(0.0) 0.0(0.0) 83.8(0.0)

llama-30b 66.0(0.0) 82.0(0.0) 63.0(0.0) 45.8(0.0) 27.1(0.0) 34.0(0.0) / 20.5(0.0) 0.0(0.0) 0.0(0.0) 34.6(0.2)
starcoder 92.0(0.0) 91.0(0.0) 73.0(0.0) 54.2(0.0) 50.0(0.2) 28.0(0.0) / 15.0(0.0) 0.0(0.0) 0.0(0.0) 23.4(0.3)

codegen-16B-mono 64.2(0.3) 70.0(0.0) 45.0(0.0) 22.5(0.0) 28.6(0.9) 27.0(0.0) / 15.7(0.0) 0.0(0.0) 0.0(0.0) 14.6(0.2)

Sys. Prompt + Alignment
llama-30b 100.0(0.0) 94.0(0.0) 79.0(0.0) 80.8(0.0) 5.7(0.0) 10.0(0.0) / 10.3(0.0) 0.6(0.0) - -
starcoder 98.7(0.2) 97.0(0.0) 79.0(0.0) 84.2(0.0) 10.0(0.0) 18.0(0.0) / 10.3(0.0) 0.0(0.0) - -

codegen-16B-mono 99.0(0.0) 96.0(0.0) 77.0(0.0) 75.8(0.0) 8.6(0.0) 7.0(0.0) / 10.0(0.0) 25.7(0.0) - -

3-shot + Alignment
llama-30b 100.0(0.0) 94.0(0.0) 88.0(0.0) 89.2(0.0) 4.3(0.0) 20.0(0.0) / 26.3(0.0) 19.5(0.0) 15.1(0.0) 6.9(0.2)
starcoder 100.0(0.0) 96.0(0.0) 91.0(0.0) 84.2(0.0) 15.7(0.0) 48.0(0.0) / 21.3(0.0) 0.0(0.0) 0.0(0.0) 13.9(0.3)

codegen-16B-mono 99.0(0.0) 97.9(0.2) 80.0(0.0) 77.5(0.0) 16.4(0.9) 38.0(0.0) / 18.6(0.0) 6.5(0.0) 17.5(0.0) 16.2(0.0)

Prompt + 3-shot + Alignment
llama-30b 100.0(0.0) 94.0(0.0) 87.0(0.0) 85.8(0.0) 2.9(0.0) 16.0(0.0) / 24.3(0.0) 0.0(0.0) 0.0(0.0) 7.5(0.1)
starcoder 99.0(0.0) 97.0(0.0) 83.0(0.0) 80.8(0.0) 21.2(0.3) 31.0(0.0) / 18.4(0.0) 0.0(0.0) 0.0(0.0) 13.9(0.3)

codegen-16B-mono 97.7(0.2) 99.0(0.0) 82.0(0.0) 77.5(0.0) 19.8(0.3) 29.0(0.0) / 17.2(0.0) 0.0(0.0) 3.5(0.0) 16.2(0.0)

which learns to generate the API calls for every goal in a sequence. We use this loss formulation817

because it empirically delivers better success rate, especially when using in-context demonstrations,818

than the conventional loss which only backpropagates the loss associated with the API calls for the819

last goal.820

C.3 Training details821

We finetune each model on the same dataset created with the method described in Section C.1 for 8822

epochs. We use a max sequence length of 2048 without packing and mix the data from all the tasks823

into a single dataset with random shuffling. In each sample, all the goal-action pairs are from the824

same task. We report the validation accuracy on the best checkpoint. We use a batch size of 16 and a825

constant learning rate of 1e − 5 for each model and train on an internal cluster of 4 A100 GPU’s,826

each with 80GB RAM.827

22



C.4 Extended results for Section 6828

We list out the detailed results of Section 6 in Table 12, where we report the model performance829

on all the possible combinations of the three proposed techniques. The main observations are all830

covered in Section 6. We run each job 3 times, and report the mean and standard deviation of the831

main metrics. Their are some inevitable randomness happens in API or example retrieval, public API832

services and the environment provided in Webshop and Tabletop. Even though randoness exists, we833

observe that they barely change the final results. Thus, we only report the mean value everywhere834

else in the paper.835

D API Selection Complexity Score836

D.1 Complexity score837

This section introduces a complexity score system designed to measure the intrinsic complexity and838

difficulty of the tasks from ToolBench. The complexity score system aims to provide a quantitative839

measure of the intrinsic complexity of the tests given the examples by calculating the probability of840

the tests being derived or converted from the examples; and the derivation or conversion is performed841

in a random system with all possible outcomes equally likely. This score serves to assess the inherent842

level of difficulty involved in transitioning from one scenario to another, thereby assisting researchers843

and developers in benchmark evaluation and analysis.844

D.1.1 The likelihood of a test being derived from an example845

In the complexity score system proposed herein, the calculation of the complexity score involves846

assessing the probability or likelihood of the tests being derived from an example in the particular847

task. Given a demonstration example e and a set of API functions D, the derivation of a particular848

test sample t involves two major steps: 1) remove all the unused API calls while keeping all the849

necessary ones and 2) insert the new API calls that e does not cover. Given a random system, where850

all possible outcomes are equally likely, we suppose the deletion possibility of each API call from e851

is 50%, while the insertion possibilities of the correct API call is 1/|D|, where |D| is the total number852

of API functions of the given task. If t or e contains multiple calls to the same API function, we853

consider them as different API calls, because they are usually not interchangeable. Based on these854

assumptions, the likelihood of generating a test sample t is calculated using Equation (1).855

p(t | e,D) =

(
1

2

)|e| (
1

|D|

)|t\e|

(2)

where |e| represents the number of API calls in the example e, and |t \ e| is the number of uncovered856

API calls in the test sample. Suppose we have a task that has 10 API functions in total {ai}101 , and857

the demonstration example covers {a1, a2, a3, a4}, but the test sample requires {a1, a2, a6, a4, a5}.858

In the first step, the probability of successfully dropping a3 while keeping the rest ones in e is
(
1
2

)4
.859

Then, the probability of correctly adding in the uncovered ones, a5 and a6, is
(

1
10

)2
. Note that we860

do not take the order of API calls into consideration for the purpose of being simple without losing861

generosity.862

D.1.2 The distance between a test and example pair863

We first define the distance d between one particular test and example pair by take the logarithm of864

the reciprocal of Equation (1) as:865

d(t, e) = log

[
1

p(t | e,D)

]
(3)

The use of the reciprocal in the expression aligns the complexity score with the definition of complex-866

ity, where a higher score indicates a greater level of complexity. Additionally, applying the logarithm867

to the reciprocal value aids in addressing the magnitude gap. The logarithm function compresses the868

range of values, reducing the impact of extreme values and creating a more manageable scale. This869

normalization ensures that the complexity score is not disproportionately influenced by outliers or870

23



extreme values, providing a more balanced representation of complexity across the range of input871

values. By combining the reciprocal and logarithm, the expression effectively balances the score by872

aligning it with the definition of complexity and mitigating the impact of magnitude differences in873

the input values.874

D.1.3 Complexity score of a task875

Based on the complexity score of generating a test from an example, we can construct the complexity876

score S of a given task. The score S = f(T ,X ,D) is a function of the test samples T , the877

demonstration examples X and the API functions D of each task.878

S(T ,X ,D) = Et∈T mine∈X d(t, e)

= Et∈T mine∈X log

[
1

p(t | e,D)

]
= −Et∈T maxe∈X log

[(
1

2

)|e| (
1

|D|

)|t\e|
] (4)

This score ranges from zero to infinity. The larger the score is, the more challenging a task is in terms879

of API selection. We calculate this score for both the original ToolBench (Table 4) and the training880

data we created for alignment Table 10. They share the same D and T , but have a different X , so that881

their API selection complexities are different for each task.882

D.2 Complexity score on the ToolBench883

In this section we demonstrate how the complexity score behaves on the ToolBench.884

D.2.1 Computation details885

For the Trip Booking, Home Search, Virtual Home, and Google Sheets tasks, the set of API functions886

D is the same as described in appendix A. For the single-step, single-API-call tasks, Open Weather887

and The Cat API, each valid URL with parameters is treated as a unique API option in set D. In888

total, Open Weather has 37 API options, while The Cat API has 52 API options. In the case of the889

Tabletop task, since there are no predefined correct answers for the test cases, we divide the three set890

of "Tabletop Manipulation" examples17 into 65 single-step samples. Note that for the WebShop task,891

since there are only two API functions always covered by the example set, the complexity score is 0892

by definition.893

D.2.2 Reversed-F1 Score894

For comparison purpose, we also consider the simple Reversed-F1 (r-F1) distance dr−F1, derived895

from the conventional F1 score(69), between one particular test and example pair as896

dr−F1(t, e) = (1− F1(t, e)) ∗ 100 (5)

We multiply 100 to the score to align with the range of the complexity score defined above. Follow897

the same definition proposed in appendix D.1.3, we can construct the r-F1 score Sr−F1 of a given898

task as:899

Sr−F1(T ,X ) = Et∈T mine∈X dr−F1(t, e)

= Et∈T mine∈X [(1− F1(t, e)) ∗ 100] (6)

D.2.3 Measurements900

17https://code-as-policies.github.io/

24



Figure 7: Spearman’s correlation coefficient(SCC) is computed separately for two comparisons: (1)
complexity score and error rate, and (2) reversed F1 score and error rate on five tasks: (1) Open
Weather, (2) The Cat API, (3) Home Search, (4) Trip Booking, and (5) Virtual Home.

Table 13: Spearman’s Correlation Coefficients

GPT-4 LLaMA CodeGen StarCoder

Complexity 0.2 1.0 1.0 0.7
r-F1 -0.3 0.7 0.7 0.3

In this section, Spearman’s Corre-901

lation Coefficient (SCC) (70) is em-902

ployed to assess the effectiveness903

of the proposed complexity score.904

The evaluation involves the anal-905

ysis of five different tasks using906

three models: GPT-4, LLaMA-30b,907

CodeGen-16b, and StarCoder. We only include the five tasks without advanced reasoning from table 4,908

as the advanced reasoning breaks the correlation between the API selection difficulty and the final909

model performance. The complexity score and the r-F1 score are calculated for each task. SCC is910

then computed separately for two comparisons: (1) complexity score and error rate, and (2) reversed911

F1 score and error rate, for all five tasks. The results are illustrated in fig. 7 and table 13.912

The findings of the study reveal near-perfect Spearman’s correlation coefficient (SCC) between913

the complexity score and the error rate for the LLaMA-30b, CodeGen-16b and StarCoder models.914

This strong correlation indicates that the proposed complexity score system accurately captures the915

intrinsic difficulty of these tasks.916

For more powerful models like GPT4, which exhibit near-perfect accuracy (above 93%) for low-917

complexity tasks (complexity < 12) such as Open Weather, The Cat API, Home Search, and Trip918

Booking, the SCC becomes relatively sensitive to any randomness or turbulence during the ex-919

periments. Consequently, the complexity score system shows a non-perfect SCC of 0.2 in this920

case.921

Despite the sensitivity of the SCC in the GPT4 experiments, the complexity score remains a superior922

indicator of task difficulty compared to the r-F1 score. It effectively captures the inherent difficulty923

of each task and provides valuable insights into task complexity. Overall, complexity score is more924

effective at capturing the inherent difficulty of each task, thus providing valuable insights into task925

complexity.926

The obtained results provide empirical evidence supporting the validity and reliability of the pro-927

posed complexity score system. The high SCC values signify a consistent relationship between the928

complexity score and the error rate across different models and tasks. This correlation strengthens929

the argument that the complexity score accurately captures the complexity and difficulty of the930

benchmarks, enabling researchers and developers to assess and compare the inherent challenges931

associated with different tasks.932

25


	Introduction
	Background
	Tool manipulation setup
	Motivating Observation

	Challenges for open-source LLMs
	Boosting Open-source LLMs for Tool Manipulation
	Multi-tool model alignment with programmatic data curation
	Demonstration retrieval
	Generation regulation with system prompts

	ToolBench: A New Tool Manipulation Benchmark
	Software tools and evaluation infrastructure
	Level of challenges

	Experiment
	Experiment Setup
	Capability Gap
	Boosting open-source LLMs
	Ablation Study

	Related work
	Conclusion
	Benchmark Details
	OpenWeather
	The Cat API
	Home Search
	Trip Booking
	Google Sheets
	Virtual Home
	WebShop
	Tabletop

	Comprehensive Model Evaluation on the ToolBench
	Models
	Evaluation
	ToolBench performance of different models

	Experiment Details
	Training data
	All-shot loss
	Training details
	Extended results for sec:experiments

	API Selection Complexity Score
	Complexity score
	The likelihood of a test being derived from an example
	The distance between a test and example pair
	Complexity score of a task

	Complexity score on the ToolBench
	Computation details
	Reversed-F1 Score
	Measurements



