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ABSTRACT

Recent studies have revealed policy collapse in advanced reasoning models trained
with Group Relative Policy Optimization (GRPO), and entropy regularization has
stood out as an elegant approach to promote exploration. Yet, within the vast to-
ken space of language models, entropy gradients often exhibit severe singularities,
creating a direct conflict with the natural entropy decay required for convergence
and thereby disturbing optimization dynamics. To resolve this tension, we present
Info-GRPO, an information-theoretic framework that reconciles the opposing en-
tropic forces of exploration and convergence by cultivating correlation between
the policy and a latent prior. Info-GRPO leverages a contrastive regularization that
maximizes the mutual information between latent variables and the policy. Intu-
itively, by augmenting prompts with latent variables, the model explores a more
diverse set of policies that remain correlated with the latent prior, guiding condi-
tional entropy toward convergence. Through this correlation-aware design, Info-
GRPO respects the natural entropy reduction during training while enabling more
effective exploration. Extensive experiments demonstrate that Info-GRPO signif-
icantly outperforms vanilla GRPO and entropy-regularized GRPO across diverse
reasoning benchmarks. For instance, it achieves improvements of 3.75%, 1.66%,
and 4.16% in Avg@8 compared to GRPO based on Qwen2.5-Math-7B, Qwen2.5-
7B, and DeepSeek-R1-Distill-Qwen-7B, respectively, under the AIME24 bench-
mark. Furthermore, analysis reveals that Info-GRPO induces distinct and inter-
pretable reasoning patterns conditioned on the latent variable, showcasing a more
systematic and effective exploration strategy.

1 INTRODUCTION

Recent advances in large language models (LLMs) (OpenAI, 2024; 2025; Anthropic, 2025; Team,
2025a; Guo et al., 2025) have ushered in a new era of sophisticated reasoning capabilities, driving
performance to new heights across a variety of complex domains such as mathematics and program-
ming (Team, 2025b; Yang et al., 2025). These models increasingly rely on advanced reinforcement
learning paradigms to refine their reasoning processes and align them with desired outcomes. A key
driver behind this progress is Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
et al., 2024), a paradigm that scalably rewards outcomes against ground-truth solutions by lever-
aging external verification signals, effectively bypassing the need for labor-intensive supervision.
Building on this, methods like Group Relative Policy Optimization (GRPO) (Shao et al., 2024) have
further enhanced the stability and sample efficiency of RLVR by introducing group-relative advan-
tage estimation, which accelerates convergence without significant computational overhead.

Despite the empirical success of RLVR and GRPO, these methods remain fundamentally limited in
their ability to encourage exploration beyond the model’s pre-existing knowledge, which severely
limits the potential for improvement under diverse sampling conditions (Ma et al., 2025). Inherently
constrained by their on-policy nature, these approaches predominantly reinforce reasoning paths
that the model already deems highly rewarding. As the model grows increasingly confident in
its predictions, exploration is progressively reduced (Walder & Karkhanis, 2025). This becomes
particularly acute in environments with sparse rewards or deceptive local optima, where the model
is highly susceptible to converging prematurely toward suboptimal solutions (Hong et al., 2018).
With training progression, models optimized with RLVR often exhibit policy collapse (He et al.,
2025), becoming overconfident in a narrow set of strategies and sacrificing policy diversity.
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(a) Validation performance for Qwen2.5-Math-7B-based methods (c) Correlation for augmented prompt-response pairs(b) Response entropy under original vs. augmented seeds
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Figure 1: (a) Validation results on Qwen2.5-Math-7B show that Info-GRPO significantly outper-
forms the GRPO baseline. (b) Info-GRPO encourages mild high-entropy policies from original
prompts and low-entropy policies from seed-augmented prompts. (c) The high correlation between
random seeds and their respective outputs demonstrates a diversity-driven exploration mechanism.

Entropy regularization has emerged as a remedy to mitigate policy collapse and encourage diversity
in recent reasoning models (Yu et al., 2025; Cui et al., 2025; Wang et al., 2025a). Rooted in conven-
tional RL, entropy helps balance exploration and exploitation by preventing early convergence to
deterministic policies (Ziebart et al., 2008; O’Donoghue et al., 2016; Haarnoja et al., 2018). Com-
mon strategies include adding entropy bonuses to rewards or advantages (Chen et al., 2025; Cheng
et al., 2025; Wang et al., 2025b) or targeting high-entropy regions during sampling to improve cover-
age of uncertain decisions (Wang et al., 2025a; Zheng et al., 2025). These approaches help the model
explore uncertain regions of the policy space and avoid overconfidence in suboptimal strategies.

Nevertheless, incorporating entropy regularization into GRPO introduces a fundamental tension
with the natural trajectory of optimization. The primary training objective drives entropy reduction
as a prerequisite for convergence, compelling the model to learn a confident, high-quality policy (Fu
et al., 2025). In direct opposition, the regularization term actively pulls the policy toward higher en-
tropy for the sake of exploration. This creates an unstable dynamic where the optimization oscillates
between two conflicting objectives. The instability is severely exacerbated in the vast token spaces
of modern LLMs (e.g., about 152,000 tokens (Yang et al., 2025)), where the gradients from the en-
tropy term are highly susceptible to singularities (as elaborated in Sec. 3). Although the trade-off
between opposing forces can be managed via careful hyperparameter tuning, such adjustments are
merely a heuristic compromise. This highlights the need for a new framework that fosters diversity
without relying on this inherently unstable mechanism.

In this paper, we propose Info-GRPO, a novel training framework that reframes the challenge of
exploration in policy optimization. Rather than balancing exploration and convergence as opposing
objectives in entropy regularization, we introduce a correlation-aware perspective inspired by infor-
mation theory. Info-GRPO addresses the inherent tension between entropy-driven exploration and
entropy-reducing convergence by conditioning the policy on a latent prior and explicitly optimizing
the statistical dependency between them. This is achieved by maximizing the mutual information be-
tween the latent variable and the policy, which simultaneously encourages a diverse set of strategies
that are each highly confident, as shown in Fig. 1. In summary, our contributions are as follows:

• We show that naive entropy regularization in large vocabularies suffers from gradient singularities
induced by massive tokens in the tail of the distribution. By framing entropy regularization as
a special case of mutual information, we reorient learning toward conditional entropy reduction,
yielding gradients inherently consistent with convergence.

• We introduce Info-GRPO, a correlation-aware training paradigm that augments prompts with la-
tent variables and employs a mutual information objective to correlate distinct reasoning strategies
with latent priors. This simple and effective design resolves the tension between exploration and
convergence with a coherent trajectory of entropy reduction.

• We conduct evaluations across diverse benchmarks and models, demonstrating that Info-GRPO
consistently and substantially outperforms GRPO baselines. Furthermore, latent-conditioned out-
puts exhibit distinct and interpretable reasoning patterns, providing direct evidence of structured
exploration and a novel pathway for steering and analyzing cognitive strategies in large models.
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(a) Normal entropy vs. entropy collapse during RL training (b) Average number of tokens exceeding various thresholds
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(b) Log(p) gradients across different directions in LLMs
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Figure 2: (a) An entropy bonus can degrade the policy into a uniform distribution, where entropy
reaches its upper bound. (b) This instability is inherent to LLMs, whose vocabularies are dominated
by a vast tail of low-probability tokens that induce logarithmic singularities (see Proposition 1).
Statistically, in the 152,064 tokens of Qwen2.5-7B, fewer than five tokens exceed a probability of
10−6. The instability makes direct entropy maximization an ill-posed objective for exploration.

2 BACKGROUND AND NOTATIONS1

In RLVF, we model the LLM as a policy πθ. The generation process begins with an initial state s0,
which corresponds to the input prompt. At each subsequent step t, the state is defined by the history
of previous actions, st = (s0, a0, . . . , at−1), based on which the policy πθ(·|st) selects an action at
(a token). The full sequence of actions τ = (a0, a1, . . . ) constitutes the complete trajectory.

Proximal Policy Optimization (PPO) is a foundational on-policy algorithm for LLM fine-tuning,
prized for its stability and reliability (Schulman et al., 2017b). It addresses the sensitivity to step size
inherent in traditional policy gradient methods. PPO stabilizes training by optimizing a clipped sur-
rogate objective that depends on an advantage estimate. Critically, standard PPO requires a separate,
trainable critic model to compute this advantage, which can be computationally expensive.

Group Relative Policy Optimization (GRPO) is an efficient, critic-free alternative (Shao et al.,
2024). Instead of training a critic, GRPO estimates the advantage Â for an entire trajectory τ by
comparing its reward to that of other trajectories in a sampled group T = {τ i}Gi=1. This critic-free
advantage is incorporated into a PPO-style clipped objective. For a trajectory τ , the objective is:

JGRPO(θ, T ) =
∑
τ∈T

∑
t

min
(
rt(θ)Â(τ), clip(rt(θ), 1− ϵ, 1 + ϵ)Â(τ)

)
, (1)

where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio for taking action at in state st. This approach

significantly simplifies the training process by removing the need for a separate critic model.

Policy Entropy is a fundamental concept that measures uncertainty of policy in RL. For a initial
state s0, the Shannon entropy of a policy trajectory τ is defined as:

H(πθ(T |s0)) :=
∑
τ∈T

∑
t

H(πθ(·|st)), H(πθ(·|st)) = −
∑
a∈V

πθ(a|st) log πθ(a|st), (2)

where V is the set of all possible actions, i.e., the vocabulary in the context of LLMs, and πθ(a|s)
is the probability of selecting action a in state s. A high entropy value corresponds to a more
uniform, uncertain policy that encourages exploration, while a low entropy value signifies a more
deterministic, confident policy geared towards exploitation.

1The full review of related work is provided in Appendix A.2.
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3 WHY ENTROPY REGULARIZATION IS INTRACTABLE IN LLMS

3.1 POLICY ENTROPY IN REINFORCEMENT LEARNING

During the fine-tuning of large reasoning models, a monotonic decrease in policy entropy is an
expected outcome of successful learning. The seminal work of (Cui et al., 2025) provides a deep
analysis of this phenomenon. They establish a strong positive correlation between the probability of
an action under the policy and its corresponding advantage value. As the model learns to identify
high-quality reasoning paths (Fu et al., 2025), it naturally assigns higher probabilities to actions with
high advantages, and vice versa.

Entropy Collapse and Regularization. While entropy reduction signifies learning, a pathological
version of this process, known as entropy collapse, refers to a sharp drop in policy entropy at the
very beginning of training (Hong et al., 2018; He et al., 2025; Cheng et al., 2025). Such a rapid
decrease leads to premature convergence, where the model becomes overconfident in a suboptimal
strategy and insufficient exploration of the vast solution space. To counteract this problem, entropy
regularization has become an essential technique in modern RL (Hong et al., 2018; He et al., 2025) to
maintain sufficient policy diversity to prevent premature convergence. This is typically implemented
as a token-level entropy bonus added to the primary objective (i.e., maximizing Eq. (2)), ensuring
the model retains its exploratory capacity throughout the fine-tuning process.

3.2 SINGULARITY TRAP OF ENTROPY REGULARIZATION IN THE CURSE OF SCALE

The RL objective seeks certainty by reducing entropy, while the entropy bonus pursues possibility
by increasing it, creating a fundamental conflict that destabilizes optimization. As demonstrated
by (Cui et al., 2025; He et al., 2025), managing this tension with a simple coefficient is fraught
with difficulty: small coefficients have a negligible effect on exploration, while large ones risk
catastrophic instability and entropy explosion. This is also evident in our Fig. 2(a), where we use
a relative small coefficient of 0.05, which suggests that applying entropy regularization to large-scale
models is a non-trivial challenge that goes beyond simple hyperparameter tuning.

We demonstrate that this tension manifests as a concrete and severe numerical instability caused by
the logarithmic singularity log πθ(y|s), and this is not an incidental artifact but an essential flaw
rooted in the high-dimensional, sparse nature of LLM vocabularies.
Proposition 1 (The Singularity Trap for High-Dimensional Entropy Maximization). Let πθ(·|s)
be a policy over a discrete vocabulary A of size V , and let the policy entropy gradient be
∇θH(πθ) = −

∑
a∈A∇θπθ(a|s)(1 + log πθ(a|s)). The gradient is fundamentally ill-conditioned

in high-dimensional spaces, characterized by two results2:

(1) Quantitative Bound of the Tail Set: For any probability threshold δ ∈ (0, 1), the set of low-
probability “tail” tokens, Aδ := {a ∈ A | πθ(a|s) < δ}, constitutes the vast majority of the
vocabulary. Its size is lower-bounded by:

|Aδ| ≥ V − 1

δ
(3)

(2) Quantitative Bound on Gradient Instability: Consequently, the gradient contribution from this
tail,∇θH(πθ)tail = −

∑
a∈Aδ

∇θπθ(a|s)(1 + log πθ(a|s)), is numerically unstable. The cumu-
lative magnitude of its logarithmic scaling factors, defined as the Total Tail Instability (TTI), has
a lower bound that grows linearly with V :

TTI :=
∑
a∈Aδ

|1 + log πθ(a|s)| ≥
(
V − 1

δ

)
|1 + log δ| (4)

These results hold provided V > 1/δ, a condition readily met in LLMs, confirming that the entropy
gradient is structurally unstable.

2See Theorem 1 and 2 in Appendix A.1
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Figure 3: An intuitive comparison of exploration methods. Plus (+) and minus (-) signs represent
forces that increase or decrease policy entropy. (a) Vanilla GRPO focuses on exploitation (-), often
leading to policy collapse. (b) Entropy regularization promotes diversity by increasing all entropy
(+), but this risks collapsing the model towards a uniform distribution. (c) Info-GRPO balances a
mild entropy increase (+) with a strong, seed-conditioned entropy decrease (-). This maximizes the
mutual information between seeds and outcomes, using correlation to drive stable exploration.

Remark 1 A large V makes a dominant tail set inevitable. Claim 1 formalizes that a massive
vocabulary must result in an extremely sparse distribution, and the number of tail tokens grows
linearly with V . In the context of LLMs, this means the region where the problematic log πθ(a|s)
term can cause instability is not a fringe case but constitutes nearly the entire action space. For a
concrete example, Fig. 2(b) illustrates this phenomenon using the sampling distribution of Qwen2.5-
7B, confirming the prevalence of a dominant tail set.

Remark 2 A dominant tail set makes gradient anomalies inevitable. Claim 2 shows that the
cumulative explosive potential from the tail tokens also grows linearly with V . The final gradient
vector becomes an aggregation of tens of thousands of ill-conditioned terms, where the learning
signal from the few important ”head” tokens is inevitably drowned out by the numerical noise from
the vast tail.

Remark 3 Entropy gradient is asymmetrically unstable. During entropy maximization, the sin-
gularity creates a powerful amplifying force that increases countless near-zero probabilities, leading
to explosive updates and uniform distribution. Conversely, for entropy minimization, the singularity
creates a suppressive force that pushes these negligible values closer to their lower bound of zero.

In summary, the vast token space is the direct cause of the singularity trap, which transforms entropy
regularization from a manageable technique into a barrier for LLMs. While encouraging exploration
via an entropy bonus is precarious, driving an LLM’s policy toward certainty is reliable. This mo-
tivates our search for an alternative exploration mechanism that avoids this intractable dynamic.

4 THE INFO-GRPO FRAMEWORK

4.1 FROM ENTROPY REGULARIZER TO CORRELATION-AWARE REGULARIZER

To resolve the tension between exploration and convergence, we introduce an improved regularizer
that conditions the policy on a latent variable z ∼ p(Z). As shown in Fig. 3, our objective balances
two competing entropic forces for stable and structured exploration:

max
θ
JInfo(θ) = max

θ
(α ·H(πθ(T | s0))−H(πθ(T | s0, z))) . (5)

The objective is driven by a consolidation term, −H(πθ(τ | s0, z)), which compels each latent-
conditioned policy to converge to a confident strategy. This is counterbalanced by the weighted
entropy bonus, in which the coefficient α ∈ [0, 1) mitigates gradient instability, and a small positive
value is retained to anchor the exploration in the model’s original policy.

5
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Algorithm 1 The Info-GRPO Training Algorithm
1: Input: Initial policy πθ, dataset D, hyperparameters G,λ, α.
2: Initialize: Policy parameters θ.
3: for each training iteration do
4: Sample initial states {s(i)0 } ⊂ D and latents {z(i)} ∼ p(Z).
5: Sample trajectories: Tori = {πθ(· | s(i)0 )} and Taug = {πθ(· | s(i)0 , z(i))}.
6: Calculate the objective JInfo-GRPO(θ) per Eq. (7).
7: Update θ using gradient ascent: θ ← θ + η∇θJInfo-GRPO.
8: end for
9: Return: Optimized parameters θ.

Correlation with Mutual Information. Our objective in Eq. (5) is deeply grounded in informa-
tion theory. For the case of α = 1, it becomes equivalent to maximizing the mutual information
(MI) between the trajectory τ and the latent variable z:

I(τ, z | s0) = Eτ∼πθ(·|s0,z),z∼p(Z)

[
log

πθ(τ, z | s0)
p(z) πθ(τ | s0)

]
. (6)

This perspective reframes exploration: rather than pursuing a single, high-entropy policy, we maxi-
mize the statistical correlation between latent codes and their corresponding reasoning paths. Our
framework thus cultivates a diverse ensemble of low-entropy policies, each activated by a differ-
ent z. Using correlation to orchestrate diversity provides a stable and principled mechanism for
exploration, resolving the exploration and exploitation dilemma.

4.2 IMPLEMENTATION

The Info-GRPO framework modifies the standard GRPO (Shao et al., 2024) training loop by in-
troducing a latent-augmented sampling strategy and a corresponding correlation-aware objective
function. The implementation is designed to be efficient and minimally invasive.

Latent-Augmented Sampling. Unlike vanilla GRPO, which samples a single group of trajecto-
ries, Info-GRPO generates two distinct groups for each initial state s0. First, a group of original
trajectories, Tori, is sampled from the base policy πθ(· | s0). Concurrently, the policy is conditioned
on a latent variable z, which is a discrete token sampled uniformly from a predefined set (e.g.,
{1, 2, . . . , 10}). The conditioning is achieved by integrating z into s0 using a deterministic textual
template, such as appending the string: ”Choosing random seed {z} from seed list 1 to 10.” A second
group of augmented trajectories, Taug, is then sampled from this conditioned policy, πθ(· | s0, z).

The Info-GRPO Objective. The complete objective function combines the GRPO policy loss,
computed over the unified set of trajectories, with the correlation-aware regularizer. The regular-
izer’s entropy terms are estimated via Monte Carlo approximation using their respective trajectory
sources Tori for the marginal entropy and Taug for the conditional entropy. The final objective to be
maximized is:

JInfo-GRPO(θ) = JGRPO(θ, Tori ∪ Taug) + λ (α ·H(πθ(Tori | s0))−H(πθ(Taug | s0, z))). (7)

Here, JGRPO is the standard clipped objective defined in Eq. (1), with its advantage estimates Â(τ)
computed across the entire merged set Tori ∪ Taug for robust estimation. The λ-weighted term is
the practical implementation of our regularizer, directly guiding the model to cultivate a diverse yet
confident policy space.

5 EXPERIMENTS

5.1 TRAINING DETAILS

We conduct experiments on three open-source models: Qwen2.5-7B (Team, 2024), Qwen2.5-Math-
7B (Yang et al., 2024), and DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025). (1) For Qwen2.5

6
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Table 1: Comparison of methods on different backbones and benchmarks (Avg@8, %).
Backbone Method AIME24 AIME25 AMC MATH500 Minerva Average

Qwen2.5-7B

Base Model 12.08 7.50 42.77 75.50 35.06 34.58
GRPO 20.42 10.83 56.48 80.53 37.82 41.22
DAPO 18.75 11.25 48.95 78.13 36.53 38.72
Skywork-OR1 20.83 7.50 57.38 78.38 38.05 40.43
Info-GRPO (Ours) 22.08 8.75 58.28 79.60 38.37 41.42

Qwen2.5-
Math-7B

Base Model 11.67 8.33 48.64 82.38 36.40 37.48
GRPO 21.25 11.67 66.57 86.75 38.97 45.04
DAPO 21.25 7.92 79.52 86.35 38.92 46.79
Skywork-OR1 22.50 13.33 81.02 84.73 38.19 47.95
Info-GRPO (Ours) 25.00 15.83 78.46 86.63 39.34 49.05

DeepSeek-R1
-Distill-Qwen
-7B

Base Model 54.58 34.17 81.63 92.03 39.89 60.46
GRPO 57.92 34.17 82.38 93.63 44.16 62.45
DAPO 58.33 37.50 82.53 93.63 44.53 63.30
Skywork-OR1 59.58 37.92 82.08 93.73 44.12 63.48
Info-GRPO (Ours) 62.08 45.83 83.13 93.98 44.94 65.99

series models, the RL training set and prompts follow DAPO-Math-17K (Yu et al., 2025), which
contains 17,917 questions, each paired with an integer as its corresponding answer. The max token
length is 4,096, following the official model configuration of Qwen2.5-Math-7B. (2) For DeepSeek-
R1-Distill-Qwen-7B, the RL training set and prompts are sourced from (He et al., 2025), with 48,371
samples. The max token length is 8,192. For both training settings, the learning rate is 1e-6 with a
batch size of 128. We set λ = 0.005 and α = 0.5 throughout to mitigate the potential for gradient
instability from the entropy maximization term. In each rollout step, 16 responses are sampled per
prompt with a temperature of 1.0. Regarding the two SOTA methods, the target entropy is 0.2 for
Skywork-OR1 (He et al., 2025). The clipping parameter ϵlow = 0.2 and ϵhigh = 0.28 for DAPO (Yu
et al., 2025). The models are trained on 8 NVIDIA B200 GPUs, and the best results are reported.

5.2 BENCHMARKS AND METRICS

Accuracy. The methods are validated on AIME 2024, AIME 2025 (Li et al., 2024), AMC (Li et al.,
2024), MATH500 (Hendrycks et al., 2021), and Minerva (Lewkowycz et al., 2022) benchmarks, with
the test sets containing 30, 30, 83, 500, and 272 samples, respectively. During evaluation, the rollout
temperature is 0.6. Following (He et al., 2025), Pass@K is used to measure the reasoning ability
of the model. For a given question, Pass@K = 1 if at least one of the K sampled outputs passes
verification, and 0 otherwise. For stability, each test sample is repeated eight times to compute
Pass@1, Pass@8, and Avg@8, which is the average of Pass@1.

Diversity. To report the influence of the latent seed on generation, we quantify the coupling be-
tween a seed and its corresponding trajectory. We define the score as the average log-probability of
the trajectory, given the initial state s0 and the specific seed z:

Correlation(z, τ | s0) =
1

|τ |
∑
t

log π(at | s0, z, a<t). (8)

5.3 COMPARATIVE RESULTS

Comparisons on multiple benchmarks. Table 1shows that Info-GRPO achieves state-of-the-art
performance, securing the top average score on each backbone: 41.42% (Qwen2.5-7B), 49.05%
(Qwen2.5-Math-7B), and 65.99% (DeepSeek-R1-Distill-Qwen-7B). For example, Info-GRPO out-
performs GRPO by an average of 4.01% and DAPO by 2.26% with Qwen2.5-math, indicating its
robustness and general effectiveness across different pre-trained models. For demanding reasoning
benchmarks, Info-GRPO underperforms on AIME25 based on Qwen2.5-7B, presumably owing to
the limited capabilities of the base model, which constrain the entropy-regularized methods on this
most challenging dataset. This limitation is alleviated as the base model’s capabilities improve, such
as the best value of 15.83% and 45.83% on the other two backbones.
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Table 2: Comparison of methods based on different backbones on the AIME 2024 benchmark (%).
Metric Backbone Base GRPO DAPO Skywork-OR1 Info-GRPO

Pass@1
Qwen2.5-7B 13.33 16.67 13.33 16.67 16.67
Qwen2.5-Math-7B 13.33 23.33 26.67 26.67 30.00
DeepSeek-R1-Distill-Qwen-7B 53.33 66.67 63.33 63.33 56.67

Pass@8
Qwen2.5-7B 30.00 30.00 33.33 33.33 36.67
Qwen2.5-Math-7B 23.33 43.33 30.00 33.33 36.67
DeepSeek-R1-Distill-Qwen-7B 80.00 83.33 83.33 80.00 86.67

Avg@8
Qwen2.5-7B 12.08 20.42 18.75 20.83 22.08
Qwen2.5-Math-7B 11.67 21.25 21.25 22.50 25.00
DeepSeek-R1-Distill-Qwen-7B 54.58 57.92 58.33 59.58 62.08

Table 3: Ablation on coefficient λ. ‘P1’, ‘P8’,
‘A8’ are Pass@1, ass@8, and Avg@8.

Coef AIME24 AIME25

P1 P8 A8 P1 P8 A8

0.5 50.00 80.00 57.08 36.67 63.33 39.58
0.05 56.67 83.33 58.75 30.00 60.00 40.42
0.005 56.67 86.67 62.08 50.00 63.33 45.83
0.002 56.67 83.33 62.08 53.33 66.67 44.17

Table 4: Ablation on max response lengths
based on DeepSeek-R1-Distill-Qwen-7B.

Len AIME24 AIME25

P1 P8 A8 P1 P8 A8

2K 43.33 80.00 56.67 33.33 60.00 37.08
3K 46.67 83.33 61.25 30.00 63.33 37.92
4K 53.33 83.33 60.00 40.00 66.67 40.42
8K 56.67 86.67 62.08 50.00 63.33 45.83

Comparison of multiple metrics based on multiple backbones. As shown in Table 2, we con-
ducted a multi-metric evaluation on AIME24. Info-GRPO achieves the top Pass@1 score of 30.00%
on Qwen2.5-Math-7B, but not good on DeepSeek-R1-Distill backbone. This may be because the
benefits of a diversity-driven exploration strategy are less pronounced under the single-attempt con-
straint of this metric, particularly when the base model’s capability is already strong. On Pass@8,
Info-GRPO performs optimally except for the Qwen2.5-Math-based method, where it performs sub-
optimally. Crucially, when measured by Avg@8, which is a more robust metric, Info-GRPO out-
performs all competing methods across all three backbones without exception. For instance, it out-
performs GRPO by 3.75%, 1.66%, and 4.16% on Qwen2.5-Math-7B, Qwen2.5-7B, and DeepSeek-
R1-Distill-Qwen-7B, respectively, further validating the method’s consistent superiority.

5.4 ABLATION STUDY

Analysis of Different Coefficients. Based on DeepSeek-R1-Distill-Qwen-7B, Table 3 summa-
rizes the impact of the regularization coefficient λ on model performance, revealing a clear advan-
tage for smaller values. Lower coefficients like 0.005 and 0.002 consistently enhance generation
quality and stability by reducing output stochasticity. This trend is reflected in the multi-sample
metrics. For instance, on AIME24, a coefficient of 0.005 achieves the highest Pass@8 (86.67%)
and Avg@8 (62.08%) scores. This pattern holds on AIME 2025, where the 0.002 coefficient yields
the best Pass@8 result (66.67%). The strong Pass@1 performance further confirms that this con-
strained exploration also benefits single-sample reliability. Based on its robust results across bench-
marks, we selected a coefficient of 0.005 as the optimal setting for our experiments.

Analysis of different max response lengths. Table 4 investigates the impact of the maximum
response length on reasoning performance. The results indicate a clear positive correlation between
longer response allowances and improved performance across both AIME benchmarks. Increasing
the maximum length from 2K to 8K tokens leads to consistent gains. On AIME 2024, the 8K
setting achieves the highest scores across all metrics: Pass@1 (56.67%), Pass@8 (86.67%), and
Avg@8 (62.08%). A similar trend is observed on the more challenging AIME 2025, where the 8K
length yields the best Pass@1 (50.00%) and Avg@8 (45.83%), while Pass@8 peaks at 66.67%
with a 4K length. These findings demonstrate that a more generous response length is critical for
complex reasoning tasks, as it provides the model with sufficient capacity to elaborate on logical
steps and computations. The superior performance with 8K tokens confirms that constrained length
can hinder the expression of complete reasoning chains. Therefore, a maximum response length of
8K is identified as the optimal configuration for achieving the best overall performance.
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(a) Entropy for Qwen2.5-7B-based methods (b) Entropy for Qwen2.5-Math-7B-based methods

(c) Training rewards for Qwen2.5-7B-based methods (d) Training rewards for Qwen2.5-Math-7B-based methods

Entropy
GRPO  Info-GRPO

Entropy
GRPO  Info-GRPO

Training Reward
GRPO  Info-GRPO

Training Reward
GRPO  Info-GRPO

Figure 4: Entropy and reward dynamics. In conjunction with benchmark results, a key finding is
that a low-entropy policy can achieve superior results on both training and validation sets, proving
that an effective exploration strategy is more critical than maintaining a high-entropy state.

Analysis of the training entropy. Fig. 4 compares the evolution of entropy and training rewards
throughout the RL training process for both GRPO and our proposed Info-GRPO. Our method
demonstrates a faster entropy reduction (in subfigures (a) and (b)), indicating quicker policy con-
vergence. Simultaneously, it achieves a steeper reward increase (subfigures (c) and (d)), signifying
more efficient learning. These results confirm that the latent prior in Info-GRPO stabilizes training
and accelerates the discovery of high-reward policies, explaining its superior final performance.

Analysis of the prompt-response correlation. Based on Eq. (8), a high correlation score is ob-
served only when a trajectory τ i is paired with its seed zi, and the score is low for any mismatched
pair (zj , τ i) where j ̸= i. Fig. 1 (c) further visualizes the correlation between different augmented
prompts (rows) and their corresponding generated responses (columns). The distinct block-diagonal
pattern indicates strong intra-group correlation while maintaining clear separation from responses
to other prompts, demonstrating a diversity-driven exploration mechanism. This could signify that
a trajectory is highly dependent on its seed, enabling a controllable and diverse exploration of the
solution space. Consequently, by sampling from the diverse set of seeds, the model can reliably
access a wide range of distinct trajectories that it would not have explored otherwise, thus achieving
a rich and structured form of exploration. More case analyses are provided in the Appendix A.3.

6 CONCLUSION AND DICUSSION

This paper identifies the fundamental conflict between naive entropy regularization and convergence
in language model reasoning, caused by gradient singularities in vast token spaces. We introduce
Info-GRPO, an information-theoretic framework that resolves this tension through latent-variable
augmentation and mutual information maximization. Extensive experiments demonstrate consistent
improvements over GRPO baselines across multiple benchmarks and model architectures. Info-
GRPO’s superiority stems from its ability to conduct correlation-aware exploration, as evidenced
by distinct latent-conditioned reasoning patterns and stable training dynamics. Future work could
explore more sophisticated latent variable structures to unlock a richer diversity of reasoning strate-
gies. For instance, employing hierarchically structured latent spaces may allow the model to learn
more fine-grained and compositional control over its generative process.
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A APPENDIX

This supplementary material details the proposed method and presents additional experimental re-
sults. Section A.1 provides additional proof. Section A.2 reviews the related work. Section A.3
provides more case analyses. Section A.4 introduces the usage of LLMs.

A.1 PROOF

Theorem 1 (Quantitative Bound of the Tail Set). Let πθ(·|s) be a policy distribution over a discrete
vocabulary A of size V . For any probability threshold δ ∈ (0, 1), let the tail set Aδ be defined as the
set of tokens whose probability is less than δ:

Aδ := {a ∈ A | πθ(a|s) < δ}. (9)

The size of this tail set, |Aδ|, is lower-bounded as follows:

|Aδ| ≥ V − 1

δ
. (10)

Proof. 1. Bounding the size of the head. First, we partition the vocabulary A into the tail set Aδ

and its complement, the head set Ac
δ = A \ Aδ . By definition, for any token a ∈ Ac

δ , its probability
is bounded below by δ:

∀a ∈ Ac
δ, πθ(a|s) ≥ δ. (11)

The total probability mass is constrained by the normalization axiom of probability distributions:∑
a∈A

πθ(a|s) = 1. (12)

We can decompose this sum over the head and tail sets:∑
a∈Ac

δ

πθ(a|s) +
∑
a∈Aδ

πθ(a|s) = 1. (13)

Since probabilities are non-negative,
∑

a∈Aδ
πθ(a|s) ≥ 0. This implies an upper bound on the

probability mass contained within the head set:∑
a∈Ac

δ

πθ(a|s) ≤ 1. (14)

Combining this with the lower bound on individual token probabilities in the head set (Eq. 3), we
get:

|Ac
δ| · δ ≤

∑
a∈Ac

δ

πθ(a|s) ≤ 1. (15)

From this, we derive a strict upper bound on the size of the head set, |Ac
δ|:

|Ac
δ| ≤

1

δ
. (16)

This result is critical: it shows that the number of ”high-probability” tokens is independent of the
vocabulary size V and is solely limited by the chosen threshold δ.

2. Deriving the lower bound for the tail size. The size of the tail set is simply the total vocabulary
size minus the size of the head set:

|Aδ| = V − |Ac
δ|. (17)

Substituting our upper bound for |Ac
δ| from Eq. 7, we obtain the lower bound for the tail size:

|Aδ| ≥ V − 1

δ
. (18)

This proves the first part of the theorem. As V → ∞, the term 1/δ becomes negligible, and thus
|Aδ| ≈ V . The vast majority of tokens must lie in the tail.
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Remark 1. According to our result (Eq. 9), for large V , the gradient sum is dominated by at least
V − 1/δ such terms. For instance, in an LLM with V = 150, 000 and a small probability threshold
of δ = 10−8, the head can contain at most 108 tokens (a loose bound), but the tail is guaranteed
to contain at least 150, 000 − 108, which is nonsensical unless the head is much smaller. A more
realistic scenario, if we assume the top 100 tokens hold significant probability mass, we can set
|Ac

δ| = 100, implying δ ≈ 0.01 at most. Then |Aδ| ≥ 150, 000− 100 = 149, 900.
Theorem 2 (Quantitative Bound on Gradient Instability). Let πθ(·|s) be a policy over a vocabulary
A of size V . The entropy gradient can be decomposed into contributions from a head set Ac

δ and a
tail set Aδ = {a ∈ A | πθ(a|s) < δ}, for any threshold δ ∈ (0, 1):

∇θH(πθ) = −
∑
a∈Ac

δ

∇θπθ(a|s)(1 + log πθ(a|s))︸ ︷︷ ︸
Ghead

−
∑
a∈Aδ

∇θπθ(a|s)(1 + log πθ(a|s))︸ ︷︷ ︸
Gtail

. (19)

The cumulative magnitude of the logarithmic scaling factors from the tail gradient, which we define
as the Total Tail Instability (TTI), is lower-bounded and grows linearly with V . Specifically:

TTI :=
∑
a∈Aδ

|1 + log πθ(a|s)| ≥
(
V − 1

δ

)
|1 + log δ|. (20)

This bound holds provided V > 1/δ, a condition easily met in LLMs.

Proof. 1. Bounding the Magnitude of Each Term. For any token a ∈ Aδ , by definition, 0 <
πθ(a|s) < δ. Since the logarithm is a monotonically increasing function, this implies log πθ(a|s) <
log δ. Therefore, for each term in the TTI sum, we can establish a lower bound on its magnitude:

|1 + log πθ(a|s)| > |1 + log δ|. (21)

This holds true because for any small δ < 1/e ≈ 0.36, the term (1 + log δ) is negative, and its
magnitude increases as δ approaches zero.

2. Bounding the Number of Terms. From Theorem 1, we have a tight lower bound on the size of
the tail set |Aδ|:

|Aδ| ≥ V − 1

δ
. (22)

By combining these two results, we can lower-bound the Total Tail Instability (TTI):

TTI =
∑
a∈Aδ

|1 + log πθ(a|s)| >
∑
a∈Aδ

|1 + log δ| (23)

= |Aδ| · |1 + log δ| (24)

≥
(
V − 1

δ

)
|1 + log δ|. (25)

This concludes the proof. The TTI, which represents the total amplification of gradient components
from the tail, is shown to have a magnitude that scales at least linearly with the vocabulary size
V .

A.2 RELATED WORK

Reinforcement Learning for LLMs. Reinforcement learning has emerged as a pivotal paradigm
for improving the reasoning capabilities of Large Language Models (LLMs) (OpenAI, 2024; 2025;
XAI, 2024; Qwen, 2024; Guo et al., 2025). Early work focused on aligning models with human
preferences, typically using Reinforcement Learning from Human Feedback (RLHF) Ouyang et al.
(2022). This domain could be categorized into online and offline preference optimization. Online
methods (Schulman et al., 2017b; Williams, 1992; Shao et al., 2024) generate responses dynam-
ically during training, receiving real-time feedback. In contrast, offline methods (Rafailov et al.,
2023; Meng et al., 2024; Ethayarajh et al., 2024) optimize policies using pre-collected preference
datasets. Traditional methods like Proximal Policy Optimization (PPO) Schulman et al. (2017b)
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and REINFORCE Williams (1992) are computationally expensive and suffer from instability due
to the large and discrete action space. A significant advancement is the development of value-
model-free methods, such as Group Relative Policy Optimization (GRPO) Shao et al. (2024). It
addresses the instability in PPO by using trajectory-level comparisons instead of value networks,
thereby reducing computational costs and enhancing the robustness of the training process. Rein-
forcement Learning with Verifiable Rewards (RLVR) Lambert et al. (2024); Shao et al. (2025) has
also emerged as a promising alternative, demonstrating how outcome-based reward signals can en-
hance reasoning, particularly in domains demanding rigorous logical deduction like mathematics
and programming. A growing understanding in the literature Gandhi et al. (2025) indicates that the
presence of reasoning behaviors, rather than merely correct answers, is a primary driver of perfor-
mance gains in RLVR. Recent works such as DRA-GRPO Chen et al. (2025) aim to address this by
explicitly incorporating semantic diversity into the reward computation. S-GRPO Dai et al. (2025)
improves the performance by encouraging conciseness and incentivizing early thinking termination.
Dr. GRPO Liu et al. (2025) removes the length and std normalization terms to avoid the optimiza-
tion bias in GRPO. DAPO Yu et al. (2025) proposes four effective techniques, such as clip-higher,
dynamic sampling, token-level policy gradient loss, and overlong reward shaping. VAPO Yue et al.
(2025) further integrates the value model by proposing length-adaptive GAE. ORZ Hu et al. (2025)
also utilizes a value model for advantage estimation with the Monte Carlo estimation. Despite the
successes of these methods, challenges remain. Notably, GRPO-based approaches struggle with in-
sufficient exploration and the lack of diversity in generated solutions Chen et al. (2025). In this work,
we focus on extending GRPO to achieve improvements in exploration and exploitation capabilities.

Entropy Regularization for Reinforcement Learning. Entropy regularization has become an es-
sential technique in RL to address issues such as premature convergence and insufficient explo-
ration Hong et al. (2018). Early works focused on entropy as a means to encourage exploration
in environments with high uncertainty Mnih et al. (2015; 2016); Haarnoja et al. (2017); Schulman
et al. (2017a;b); Haarnoja et al. (2018). In particular, the maximum entropy principle Ziebart et al.
(2008); Toussaint (2009) has been used to balance reward maximization with policy stochasticity.
It has been extended to language model training, where entropy-based terms are introduced into
the reward function to enhance the model’s exploratory behaviors during reasoning tasks. Recent
works focus on forking tokens, which introduce new reasoning paths to improve the reasoning per-
formance of LLMs when. Wang et al. Wang et al. (2025a) highlight the importance of high-entropy
tokens in driving reasoning behavior. FR3E Zheng et al. (2025) identifies high-uncertainty decision
points in reasoning trajectories and builds intermediate feedback by conducting targeted rollouts.
Other recent advancements in entropy-based exploration strategies, such as diversity-driven explo-
ration Chen et al. (2025) and the RL with entropy-augmented advantage Cheng et al. (2025), pro-
pose solutions by introducing entropy regularization into the advantage function. These methods
reinforce exploratory behaviors, allowing LLMs to tackle complex reasoning tasks more effectively.
In addition, Skywork-OR1 He et al. (2025) utilizes the appropriate entropy control to mitigate pre-
mature convergence and improve test outcomes. 1-shot RLVR Wang et al. (2025b) promotes diverse
exploration in outputs by adding an entropy loss with a coefficient to enhance model performance.
While effective at both a macroscopic level (preventing overall policy collapse) and a microscopic
level (guiding exploration at individual token choices), it is challenging for entropy-based methods
to balance exploration and exploitation, since the uncertainty introduced by entropy to promote ex-
ploration may weaken confidence of the model. In this paper, we extend entropy-regularized GRPO
with mutual information to address the contradiction between diversity and confidence.

Mutual Information in Unsupervised Learning. In unsupervised learning, Mutual Information
(MI) has been widely used to capture dependencies between random variables and improve the
diversity of learned representations Hjelm et al. (2018); Poole et al. (2019); Wen et al. (2020);
Rakelly et al. (2021); Chen et al. (2024). The power of MI in learning disentangled representations
in unsupervised settings is evident in methods like InfoGAN Chen et al. (2016) and InfoVAE Zhao
et al. (2017). InfoGAN has disentangled prominent attributes to show its capacity for unsupervised
discovery of interpretable concepts. Similarly, InfoVAE addresses limitations of variational autoen-
coders by incorporating an explicit mutual information constraint between the latent code and the
generated data within its loss function. MI also underpins self-supervised contrastive learning, a
field that employs the InfoNCE loss Chen et al. (2020); Zhang et al. (2023); Lee et al. (2024) to
maximize the similarity between positive sample pairs and minimize the similarity between nega-
tive sample pairs by estimating mutual information. In the context of LLMs, mutual information
has also been explored for enhancing model reasoning capabilities by ensuring that reasoning steps
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Figure 5: The correlation heatmap for a case. It is generated by our Info-GRPO based on the
DeepSeek-R1-Distill-Qwen-7B models.

are not overly deterministic or constrained. For instance, the submodular mutual information used
in GRPO-based methods Chen et al. (2025) aims to downweight redundant completions and focus
on diverse reasoning outputs. Qian et al. Qian et al. (2025) investigate the reasoning trajectory of
large reasoning models from the perspective of information theory. They find that the MI between
intermediate representations and the answer arrives at peaks corresponding to tokens that indicate
reflection or transition. Moreover, InfoPO Xiao et al. (2025) optimizes the conditional mutual infor-
mation between responses and preferences given a prompt to avoid the Bradley-Terry assumption. In
the context of controllability and randomness in generative models, the mutual information approach
is particularly useful for balancing control over the model’s output while still allowing for enough
randomness to explore diverse reasoning strategies. This motivates the emergence of Info-GRPO in
this paper, which explores the combination of unsupervised mutual information maximization and
RL techniques. Through maximizing the mutual information conditioned on a new latent variable,
our method improves the quality of reasoning and ensures that LLM could handle more complex
and abstract reasoning tasks.

A.3 CASE ANALYSIS

It should be noted that in the main text, we only use the augmented prompt for training but not for
evaluation. Here, we use different augmented seeds for evaluation just for case analysis. Fig. 5
illustrates a correlation heatmap given a query as follows:

Find the number of ways to place a digit in each cell of a 2x3
grid so that the sum of the two numbers formed by reading left to
right is 999, and the sum of the three numbers formed by reading
top to bottom is 99. The grid below is an example of such an
arrangement because 8 + 991 = 999 and 9 + 9 + 81 = 99.
beginarray|c|c|c|
hline 0 0 8
hline 9 9 1
endarray

The scores for 8 responses under different prompt seeds are shown in Table 5. It could be observed
that responses under different seeds get different scores. Fig. 6 further provides two cases under
different prompt seeds. It can be seen that the model adopts completely different approaches to
solving the problem, which verifies the effectiveness of our diversity-driven mechanism.
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Table 5: The scores for 8 responses under different prompt seeds.
Seed No seed Aug1 Aug2 Aug3 Aug4 Aug5 Aug6 Aug7 Aug8 Aug9 Aug10

R1 1 1 0 1 1 1 0 1 1 1 1
R2 0 1 1 0 0 0 1 1 1 0 1
R3 1 1 1 1 0 0 1 1 1 0 1
R4 0 0 1 0 1 0 0 1 1 1 1
R5 1 1 1 1 1 1 1 1 0 1 1
R6 1 0 1 1 1 0 1 1 0 1 1
R7 1 1 1 1 1 1 1 1 1 1 0
R8 1 0 1 1 1 1 0 1 0 0 0

(a) The first response under seed aug2 with score 0 (b) The second response under seed aug2 with score 1

Alright, let me try to figure out how to solve this problem. So, we have a 2x3 
grid, right? We need to place digits in each cell such that two conditions are 
satisfied:
1. The sum of the two numbers formed by reading left to right in each row is 
999.
2. The sum of the three numbers formed by reading top to bottom in each 
column is 99.
......
......
The key steps are:
1. The sum of the top digits \(A + B + C = 9\).
2. The sum of the bottom digits \(D + E + F = 9\).
3. The sum of the numbers formed by the columns must be 99.
We analyze the columns:
- Column 1: \( \text{col1} = D \) if \(A = 0\) else \(10A + D\)
- Column 2: \( \text{col2} = E \) if \(B = 0\) else \(10B + E\)
- Column 3: \( \text{col3} = F \) if \(C = 0\) else \(10C + F\)
The sum of these columns must be 99:
\[ \text{col1} + \text{col2} + \text{col3} = 99 \]
After thorough analysis, we find that the only valid grid is when:
- \(A = 0\), \(B = 9\), \(C = 0\)
- \(D = 9\), \(E = 0\), \(F = 0\)
This results in:
- \( \text{col1} = 9 \)
- \( \text{col2} = 90 \)
- \( \text{col3} = 0 \)
Thus, the sum of the columns is \(9 + 90 + 0 = 99\).
Therefore, the number of such grids is:
\[
\boxed{1}
\]

Alright, so I've got this problem where I need to figure out how many ways 
there are to place a digit in each cell of a 2x3 grid. The conditions are that the 
sum of the two numbers formed by reading left to right in each row should be 
999, and the sum of the three numbers formed by reading top to bottom in each 
column should be 99. 
Let me try to visualize the grid. It's a 2x3 grid, meaning there are 2 rows and 3 
columns. Each cell will contain a digit from 0 to 9.
......
......
We find that:
- \(c + f = 9\)
- \(d = b + c + 1\)
- \(a + d = 9\)
- \(b + e = 9\)
We express the variables in terms of \(d\) and \(c\):
- \(a = 9 - d\)
- \(b = d - c - 1\)
- \(e = 10 - d + c\)
- \(f = 9 - c\)
We determine the constraints:
- \(d\) ranges from 1 to 9
- For each \(d\), \(c\) ranges from 0 to \(d - 1\)
The number of possible pairs \((c, d)\) is the sum from \(d = 1\) to \(d = 9\) of 
the number of \(c\) values, which is:
\[
\sum_{d=1}^{9} d = \frac{9 \times 10}{2} = 45
\]
Thus, the number of ways to place the digits in the grid is:
\[
\boxed{45}
\]

Figure 6: Responses under different prompt seeds.

A.4 USAGE OF LLMS

Large Language Models (LLMs) are employed exclusively for grammar checking in this manuscript.
They are not utilized for writing assistance, literature retrieval, or research ideation.
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