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Abstract

We study the problem of maintaining a deci-
sion tree in the fully-dynamic setting, where the
dataset is updated by an adversarial sequence of
insertions and deletions. We present the first algo-
rithm with strong guarantees on both the quality
of the tree and the worst-case update time (the
maximum number of operations the algorithm per-
forms between two dataset updates). For instance,
we can maintain a tree where each node has Gini
gain within β of the optimum, while guaranteeing
an update time O

(
d β−3 log4 n

)
, where d is the

number of features and n the maximum size of
the dataset. This is optimal up to polylogarithmic
factors, as any dynamic algorithm must have up-
date time in Ω(d). Similar guarantees hold for the
variance and information gain, for classification
and regression, as well as for boosted trees. This
shows that many popular decision trees such as
ID3 or C4.5 can be efficiently made dynamic, an-
swering an open question of Bressan, Damay, and
Sozio (2023). We also show that, under the 3SUM
conjecture or the Orthogonal Vectors Hypothesis,
the update time must be polynomial in β−1.

1. Introduction
Decision trees are among the most successful tools in ma-
chine learning and data mining (Shalev-Shwartz & Ben-
David, 2014; Wu et al., 2008). In the standard offline model,
decision trees are constructed by feeding a training set of
labeled examples to a decision tree construction algorithm.
The most popular such algorithms, such as ID3 (Quinlan,
1986) or C4.5 (Quinlan, 1993), work in this way. In many
cases, however, one deals with training data that is subject
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to frequent updates over time. In those cases, any decision
tree may quickly become obsolete and need to be replaced.
This has led to the study of algorithms for maintaining de-
cision trees in dynamic models, where the input is given
as a stream of examples, and the algorithm can update the
tree after each example is read from the stream. Many such
algorithms have been developed, and have proved to deliver
high performance with respect to both quality and running
time (Domingos & Hulten, 2000; Hulten et al., 2001; Gama
et al., 2003; Manapragada et al., 2018; Das et al., 2019;
Sun et al., 2020; Haug et al., 2022; Jin & Agrawal, 2003;
Rutkowski et al., 2013). All those algorithms, however,
have two major limitations. The first one is that they are
purely incremental: they assume the examples are added
to the dataset, and that no example is ever removed. The
second one is that they ensure trees of good quality only if
the streamed examples are drawn independently from some
distribution; for an arbitrary stream, they give no guarantee.

In this work we study the problem of maintaining decision
trees in the fully dynamic model. This model assumes arbi-
trary streams of insertions and deletions, and is extensively
studied in machine learning and related areas (Cohen-Addad
et al., 2019; Henzinger & Kale, 2020; Lattanzi et al., 2020;
Duetting et al., 2023). Let X be any domain (say, X = Rd)
and Y = {0, 1}. Any x ∈ X is an unlabeled example, and
any (x, y) ∈ X × Y is a labeled example. In the fully dy-
namic model, the algorithm starts with some initial multiset
S0 of labeled examples, which we call a dataset.1 Then, at
discrete time steps i = 1, 2, . . ., an adversary updates Si−1

to Si by inserting or deleting a labeled example (xi, yi).
The goal of the algorithm is to maintain, at every time i, a
decision tree Ti that is close to the offline tree that some
reference algorithm (say, C4.5) would compute from Si
(we discuss this notion of “closeness” below). The compu-
tational performance of the algorithm is measured by the
update time and the query time. The update time, tu, is the
maximum time spent by the algorithm to compute Ti from
Ti−1. The query time, tq , is the maximum time spent by the
algorithm to compute the label Ti(x) predicted by Ti on any
given x ∈ X . The ideal goal is tu = O(dpoly log n) and

1We use “dataset” as a term for both “multiset” and “sequence”,
depending on the use we make of them.

1



Fully-Dynamic Decision Trees With Update-Time Guarantees

tq = O(h), with h = maxi h(Ti) and n = maxi |Si| being
the maximum height of the tree and the maximum dataset
size, respectively.2

Let us now discuss how to gauge the quality of the tree
Ti maintained by the algorithm. A first attempt would be
to require that Ti approximates well the labeling of the of-
fline tree, in the sense that the labelings of the two trees
disagree on just a small fraction of the examples in Si. The
crucial problem is that decision trees are inherently unsta-
ble: adding even a single example to the current dataset can
lead to an offline tree completely different in terms of both
topology and labeling (Li & Belford, 2002). As a conse-
quence, the algorithm may need to recompute the whole tree
from scratch after every couple of updates. This is a well-
known issue, and there seems to be no easy workaround. We
shall therefore take another route: instead of approximating
the labeling given by the offline tree, we approximate the
decisions taken by the algorithm during its construction.

Let us introduce some notation. A decision tree is a full
binary tree T . Each internal node v of T holds a split
function σv : X → {0, 1} which specifies to which child of
v (left or right) each x ∈ X should go. In this presentation
we assume splits in the form 1xj<t, that is, “is the j-th
feature of x smaller than t?”, but our results allow for more
general splits. Every leaf v instead holds a label λv ∈ Y .
The quality of the split σv is measured by some function,
called gain, that measures how much a dataset “improves”
by splitting it according to σv. For ease of presentation we
will use the Gini gain but, again, our results generalize to
other gains (the information gain and the variance gain). Let
pS be the fraction of examples in S with label 1. The (Gini)
impurity of S is g(S) = 2pS(1−pS). Thus g(S) = 0 when
all labels are identical, and g(S) = 1

2 when half are 0 and
half are 1. For a split σ let (S0, S1) = σ(S) where Sz is the
subset of S on which σ evaluates to z. The Gini gain of σ
over S is:

G(S, σ) = g(S)−
(
|S0|
|S|

g(S0) +
|S1|
|S|

g(S1)

)
The typical decision tree algorithm constructs the tree in a
greedy fashion, as follows. First, it starts with T consisting
of one leaf v whose label λv is the majority label of S. For
every node v in T let S(T, v) be the dataset consisting of all
examples of S that, following the splits of T , reach v. The
algorithm takes a leaf v of T , and finds a split σ that maxi-
mizes G(S(T, v), σ). If G(S(T, v), σ) ≥ α for some fixed
threshold α > 0, then the leaf v is split: it is converted to an
internal node with split function σv = σ, and with two child
leaves whose labels are the majority labels of respectively
S(T, v)0 and S(T, v)1. If instead G(S(T, v), σ) < α, then

2Note that tq must be constrained, for otherwise a lazy algo-
rithm could achieve tu = O(logn) by updating Si after each
update, but computing Ti only at query time.

the algorithm moves on to examine the next leaf. This opera-
tion is repeated until no leaf is split. We call this a max-gain
construction rule with threshold α. It is the construction
rule used by algorithms such as C4.5 and ID3 (possibly
using other types of gain).

All the works listed above aim to maintain decision trees
that, at every node, approximate the gain obtained by the
max-gain construction rule. In defining a suitable approxi-
mation one must be careful, though. If, to decide whether
a node is internal, one uses a hard gain threshold, then up-
dating one single example in the dataset can make the gain
cross the threshold, and thus the node flip from internal to
leaf (or viceversa), forcing the algorithm to repeatedly re-
construct the tree. Thus, one should allow some slack. The
following definition from (Bressan et al., 2023) captures
the idea. For every internal node v ∈ V (T ) let again σv be
the split associated to v, and let σ∗v be the best split, that
is, the one that maximizes the gain G(S(T, v), σ∗v), and for
compactness let G∗(v) = G(S(T, v), σ∗v).

Definition 1.1 (εεε-feasibility). Let εεε = (α, β) where 0 <
β < α ≤ 1. A decision tree T is εεε-feasible w.r.t. a dataset
S if for all v ∈ V (T ):
1. if G∗(v) ≥ α then v is internal and its split function σv

satisfies G(S(T, v), σv) ≥ G∗(v)− β.

2. if G∗(v) = 0 then v is a leaf.

The crucial point of Definition 1.1 is that it requires a
node v to be internal, and with gain close to G∗(v), only
when G∗(v) ≥ α, and it requires v to be a leaf only when
G∗(v) = 0. When insteadG∗(v) is between 0 and α, then v
is allowed to be a leaf, or an internal node but with gain far
from optimal. As a consequence, as long as 0 < G∗(v) < α
the algorithm may leave v untouched, even if S(T, v) has
been updated and the gain at v and/or the choice of making v
internal or leaf are not near-optimal anymore. Therefore, if
G∗(v) changes slowly with the number of updates, then the
algorithm may have the time to rebuild the subtree rooted
at v before G∗(v) falls outside (0, α) and Definition 1.1
constrains v again. Thus, εεε-feasibility seems a good target
for dynamic decision tree algorithms. Indeed, all works
listed above adopt more or less explicitly some variant of
εεε-feasibility, possibly with some additional constraints (such
as that v must be a leaf if |S(T, v)| is small). The main goal
of our work is to design an efficient algorithm for maintain-
ing an εεε-feasible decision tree in the fully dynamic model.

As mentioned above, all existing algorithms are only incre-
mental (they support insertions, but not deletions) and give
guarantees only in probability, assuming that the examples
are i.i.d. from some distribution. The only exception is a
recent work by the authors, Bressan et al. (2023). That
work introduces FUDYADT, a deterministic algorithm that
maintains an εεε-feasible decision tree in the fully-dynamic
model in update time O

(
β−2d log3 n

)
. However, this holds
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only in an amortized sense. More precisely, after the i-th
update the cumulative running time of FUDYADT can be
Ω(d|Si|), and that time could be entirely spent over the
last update. This is not an artifact of the analysis: by con-
struction, when the ε|S|-th update over a dataset S is per-
formed, FUDYADT recomputes T entirely, and therefore it
truly spends time Ω(dn) over a single update. Therefore, it
is still unknown whether the amortized bounds of FUDYADT
can be de-amortized and made worst-case. The main result
of our work is to show that this is possible.

1.1. Contributions

A framework for approximate greedy decision trees
(Section 3). We start by devising a general notion of ap-
proximation for decision trees. Let us pin down some nota-
tion first. A construction rule is a function ρ that maps every
dataset S to a split σ or a label λ. Every construction rule
ρ defines an algorithm GREEDYρ that proceeds top-down
as described above. Given two datasets S, S′, their edit dis-
tance is4(S, S′) = |S\S′|+|S′\S|, and their relative edit
distance is 4∗(S, S′) = 4(S,S′)

max(|S|,|S′|) . Recall that S(T, v)

is the dataset consisting of all examples of S that, following
the splits of T , reach v.

Definition 1.2 (ε-approximation). Let S be a dataset and
ρ a construction rule. A decision tree T is ε-approximate
w.r.t. (S, ρ) if, for every v ∈ V (T ), there exists a dataset Sv
such that4∗(S(T, v), Sv) ≤ ε, and that ρ(Sv) = σv if v is
internal and ρ(Sv) = λv if v is a leaf.

Intuitively, Definition 1.2 says that T is ε-approximate if it
was constructed by taking, at every node v, the same deci-
sion that ρ would take on a dataset Sv close to S(T, v). The
notion of ε-approximation turns out to be the right one for
us to study. First, we show that it implies εεε-feasibility for
several common construction rules (including the thresholds
1xj<t) and for all gains that behave smoothly under pertur-
bations of the datasets (including Gini gain, information
gain, and variance gain). Second, we show that it implies
boosting properties under standard weak-learning assump-
tions, as we explain below. Third, we give an efficient
fully-dynamic algorithm that maintains an ε-approximate
decision tree, as we describe next.

A fully-dynamic algorithm for ε-approximate trees (Sec-
tion 4). Let again ρ be a construction rule. We consider
the following problem, that we name dynamic approximate
decision tree problem. The input is again the sequence of
update requests u1, u2, . . .. The goal is to maintain, for
every i = 1, 2, . . ., a tree Ti that is ε-approximate w.r.t.
(Si, ρ). We present a deterministic algorithm for this prob-
lem, FUDY-WC, that guarantees query time tq = O(h(Ti))
and worst-case update time:

tu = O
(
ε−3d log4 n

)

FUDY-WC is the key technical contribution of our work.
As we show below, for an appropriate choice of ε the tree
maintained by FUDY-WC is in fact εεε-feasible, where εεε =
(α, β). Thus, FUDY-WC is also fully-dynamic algorithm for
our original problem of maintaining εεε-feasible trees. We
also show that FUDY-WC is nearly optimal in terms of its
space usage, which is in O(dn poly(log n/ε)).

We remark that FUDY-WC is substantially different from
the algorithm of (Bressan et al., 2023), FUDYADT, which
attains an amortized update time of O

(
β−2d log3 n

)
. In

particular, FUDY-WC does not simply take the total work
done by FUDYADT and “spread” it over the sequence of up-
dates (actually, we show that this approach does not work).
Rather, FUDY-WC is based on solving a certain relaxation
of the original problem; this is a novel ingredient, not used
by FUDYADT. It should also be noted that FUDYADT and its
O(dpoly log n) amortized update time do not constitute ev-
idence that a O(dpoly log n) update time could be obtained
in the worst case. Indeed, under widely accepted conjec-
tures, several dynamic problems have update time that is
poly-logarithmic in the amortized case but polynomial in
the worst case (Hanauer et al., 2022).

Applications: popular decision trees made dynamic
(Section 5). By combining our results above, we obtain
the first fully-dynamic algorithm for maintaining εεε-feasible
decision trees with strong worst-case performance guar-
antees. More precisely, if εεε = (α, β), then for ε = β

100
FUDY-WC maintains an εεε-feasible decision tree in query
time tq = O(β−1 log n) and worst-case update time:

tu = O(β−3d log4 n)

This is just a factor O
(
β−1 log n

)
away from the update

time of (Bressan et al., 2023); but, again, their bound is amor-
tized, while ours is worst-case. We prove similar bounds for
multi-class decision trees, where Y = {0, . . . , k}, and/or
for G being the information gain; as well as for regression
trees, where Y = R and G is the variance gain. Table 1
gives a summary of these bounds. In a nutshell, this shows
that popular decision trees such as ID3 and C4.5 can be
efficiently made fully dynamic.

task update time query time

classification (Gini gain) O
(
d log4n
ε3

)
O
(
logn
ε

)
classification (information gain) O

(
d log7n
ε3

)
O
(

log2 n
ε

)
regression (variance gain) O

(
dc6 log4n

ε3

)
O
(
logn
ε

)
Table 1. Update and query times for maintaining an ε-approximate
tree, as well as for maintaining a εεε-approximate tree if ε = β. Here
(α, β) = εεε, and c is a bound on the absolute value of the labels.

For constant ε > 0, our bounds are optimal up to poly log n
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factors, at least when X = {0, 1}d and when G is the Gini
gain. Indeed, in that case our update time isO(dpoly log n),
and our query time is O(h) = O(d) (because, with X =
{0, 1}d, the tree never splits twice on the same feature). And,
by a lower bound of (Bressan et al., 2023), any algorithm has
update/query time Ω(d). The space used is almost optimal,
too: we use spaceO(dn poly(log n/ε)), and again (Bressan
et al., 2023) give a lower bound of Ω

(
dn/ log n

)
. Thus, we

achieve simultaneously a near-optimal worst-case update
and query time and a near-optimal space usage.

Our results also yield efficient fully-dynamic boosted trees.
We start from the weak learning assumption; it essentially
says that, for any distribution over the input data, one can
find a split that correlates with the labels. It is well-known
that, under this assumption, for any δ > 0 one can con-
struct a tree of height O(log 1

δ ) that has loss at most δ over
S (Kearns & Mansour, 1999; Takimoto & Maruoka, 1998).
This is called tree boosting. Using our results we can show
that, for ε = Θ(δ), a decision tree that is ε-approximate
w.r.t. the construction rule used by boosting has loss at most
δ and height O(log 1

δ ), too. Thus, FUDY-WC can be used
to maintain dynamically a boosted tree that, at any time, is
correct on all but a fraction δ of the points in the dataset.
Loosely speaking, this means that boosted trees can be made
fully dynamic for free.

Conditional lower bounds based on 3SUM and OVH
(Section 6). We complement our upper bounds with con-
ditional lower bounds based on two widely accepted con-
jectures from computational complexity theory: the 3SUM
conjecture (3SUM) and the Orthogonal Vector Hypothesis
(OVH). The 3SUM posits that n2−o(1) time is needed to
decide if a set of n integers contains three distinct elements
whose sum is 0. The OVH posits that n2−o(1) time is needed
to decide if a set of n vectors contain two orthogonal vectors.
We reduce 3SUM and OVH to two specific variants of our
dynamic decision tree problem. In the first variant, we allow
examples to be weighted by positive integers. In the second
variant, we consider construction rules that use the variance
gain (instead of the Gini gain). Our lower bounds show that,
unless 3SUM or OVH fail, any dynamic algorithm for main-
taining exactly the offline tree has an update or query time
at least polynomial in n. Since any 1

n+1 -approximate tree
coincides with the offline tree, this implies that maintaining
an ε-approximate tree requires an update time or query time
at least polynomial in ε−1. This suggests that our algorithms
cannot be improved significantly, and in particular that a
polylogarithmic dependence on ε−1 is not possible.

Section 2 and 3 introduce the necessary notation and defini-
tions. Our main algorithm is presented in Section 4, while
Section 5 discusses some applications. Our lower bounds
are presented in Section 6. Finally, Section 8 points out
interesting directions for future work.

2. Preliminaries
All missing proofs and claims can be found in the Appendix.
We assume X = X1 × . . .×Xd where each Xi is arbitrary
(e.g., {0, 1} or R). We denote a labeled example by s =
(x, y) ∈ X × Y . A dataset is a sequence, or multiset,
S = (s1, . . . , sn) ∈ (X × Y )∗. We always assume |S| ≥ 1
unless otherwise specified. An update request is a pair
u = (s, o) where o ∈ {INS, DEL}. For a dataset S and a
sequence of update requests U we denote by S + U the
dataset obtained by applying U to S in the obvious way. In
particular, the dataset defined by U is the dataset ∅+ U . If
U = ((s, INS)) then we may just write S + s.

Split function and decision trees. Throughout the paper
we denote by S the desired family of split functions (e.g.,
feature thresholds). For all x ∈ X and all split functions σ
we assume one can compute σ(x) in timeO(1), so that for a
dataset S one can compute (S0, S1) = σ(S) in time O(|S|).
Let T be a decision tree. For x ∈ X denote by P (T, x)
the path followed by x in T . We say x reaches v ∈ V (T )
if v ∈ P (T, x), and we define T (x) = λv(x) where v is
the leaf in P (T, x). Clearly one can compute P (T, x) and
T (x) in time linear in h(T ). All these definitions hold for
both labeled and unlabeled examples, as well as for update
requests, in the obvious way. For v ∈ V (T ) we denote by
Tv the subtree of T rooted at v.

All decision trees in this work are maintained explicitly3.
The trees are pointer-based: every v ∈ V (T ) is represented
by a data structure holding pointers to v’s parent and chil-
dren (if any). We denote by D a generic associative array
data structure that supports insertion, lookup, and deletion
in time O(log |D|), as well as enumeration in time O(|D|),
where |D| is the total number of entries in D; this can be
fulfilled by a self-balancing search tree. Each node v of
T points to such an array D(T, v) that stores some set of
labeled examples by mapping each example to the number
of its occurrences. We may keep additional counters or
structures at v; for example we may keep |D(T, v)|.

Construction rules and greedy algorithms. A construc-
tion rule is a map ρ : (X × Y )∗ → S ∪ Y . We
say ρ is γ-balanced if it yields γ-balanced splits, i.e., if
min(|S0|, |S1|) ≥ γ|S| when ρ(S) = σ. If ρ is γ-balanced
then h(T ) = O(γ−1 log n) where n = |S| is the size of
the dataset used to construct T . We assume that, if ρ(S)
returns a label λ, then λ is a label of maximum frequency
in S (or, for regression trees, the average of the labels of
S). We denote by fρ : R≥0 → R≥0 an upper bound on the
cost of computing ρ(S) as a function of |S|. We assume
that fρ is twice differentiable and f ′ρ, f

′′
ρ ≥ 0; this implies

fρ is superadditive and fρ(n) = Ω(n), so in time fρ(|S|)
3In principle one could maintain the labeling function of the

tree without storing the tree’s structure.
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one can compute both ρ(S) and σ(S). Every construction
rule ρ immediately defines a greedy algorithm GREEDYρ,
see Algorithm 2. (For compactness Algorithm 2 is in re-
cursive form, but it is straightforward to make it iterative).
GREEDYρ is the algorithm we use to reconstruct subtrees
dynamically. We assume GREEDYρ stores S(T, v) in the
dictionary D(T, v), for all v ∈ V (T ).

Algorithm 1 GREEDYρ

1: Input: dataset S
2: T = a tree on one unmarked leaf v
3: store S in a dictionary D(T, v)
4: compute ρ(S)
5: if ρ(S) is a split function σ then
6: let σv = σ and let (S0, S1) = σ(S)
7: compute T0 = GREEDYρ(S0)
8: compute T1 = GREEDYρ(S1)
9: attach T0 and T1 as left and right child of v

10: else
11: let λv = ρ(S)
12: return T

Gain functions, max-gain rules, and threshold rules. An
impurity is a function g : (X×Y )∗ → R≥0. Every impurity
g gives the conditional g-gain G that for every S, σ yields:

G(S, σ) = g(S)−
(
|S0|
|S|

g(S0) +
|S1|
|S|

g(S1)

)
(1)

where (S0, S1) = σ(S). In this work we consider only
conditional gains. Again, by default we assume g to be the
Gini impurity, whose conditional g-gain is the Gini gain; but
our results extend to the information gain and the variance
(defined in Appendix B). A construction rule ρ is a max-G
rule if it always chooses splits of maximum gain, that is, if
ρ(S) = σS ∈ S implies:

σS ∈ arg max
σ∈S

G(S, σ) (2)

We say ρ has threshold α ≥ 0 if ρ(S) produces a split iff:

max
σ∈S

G(S, σ) ≥ α (3)

For the gains above, a max-G construction rule with thresh-
old α is γ-balanced for some γ close to α; see Appendix C.

Note. For the sake of the presentation, unless otherwise
specified, we assume G is the Gini gain, S is the family
of all feature-threshold splits σ, and ρ is a max-gain rule
with threshold α for some fixed α > 0. As said above, this
implies that T = GREEDYρ(S) has height O(log |S|). This
implies that GREEDYρ(S) runs in timeO(d|S| log2 |S|): for
each of the O(log |S|) levels it sorts a total of O(|S|) ele-
ments, each one of size O(d).

3. Approximate and Feasible Decision Trees
This section starts the technical overview of our algorithms
and results. We start by defining the two problems central to
our work. Let u1, u2, . . . be a sequence of update requests,
and for i ≥ 1 let Si be the dataset defined by u1, . . . , ui.

Definition 3.1. The Dynamic Feasible Decision Tree Prob-
lem asks, given εεε, to maintain for all i ≥ 1 a tree T i that is
εεε-feasible with respect to Si.

Definition 3.2. The Dynamic Approximate Decision Tree
Problem asks, given ε ∈ (0, 1) and a construction rule ρ, to
maintain for all i ≥ 1 a tree T i that is ε-approximate with
respect to (Si, ρ).

As a first step, we show how εεε-feasibility (Definition 1.1)
is implied by ε-approximation (Definition 1.2). As a result,
we can focus on the dynamic approximate decision tree
problem; the feasible version comes for free.

Theorem 3.3. Let εεε = (α, β), let ε = β
100 , and let ρ be a

max-gain construction rule with threshold α
2 . Then, for all

datasets S, every decision tree that is ε-approximate w.r.t.
(S, ρ) is also εεε-feasible w.r.t. S.

The proof of Theorem 3.3 is given in Appendix D.1. The
key observation is thatG(S, σ) is Lipschitz w.r.t. the relative
edit distance: that is, |G(S, σ)−G(S′, σ)| = O(4∗(S, S′)).
This is proven in Appendix C, and was already exploited
by (Bressan et al., 2023). Because of this, a tree that is
ε-approximate w.r.t. (S, ρ) behaves essentially as ρ — it
makes almost the same decision at every node, and it has
the same gains except for an additive term of O(β). In
particular, if we choose ρ to have threshold α

2 instead of α,
we leave enough slack for the ε-approximate tree to behave
like a tree produced by a construction rule with threshold
α, and with the same gains save for an additive β. In other
words, the tree is εεε-feasible.

Moreover, from G being Lipschitz it follows that, if a tree
T has gain at least γ at each internal node, then the tree
has logarithmic height. Since for a εεε-feasible tree this holds
with γ = α− β > 0, then εεε-feasible trees have logarithmic
depth, too.

Lemma 3.4. Let εεε = (α, β). If T is εεε-feasible w.r.t. S then

h(T ) = O
(

log |S|
α−β

)
.

Lemma 3.4 follows immediately from the balancedness re-
sults of Appendix C.4 (that, again, include bounds also for
the information gain and variance gain). Note that, together,
Theorem 3.3 and Lemma 3.4 imply that ε-approximate trees
have logarithmic height, too. These results are used im-
plicitly in the next sections to bound the query time of our
algorithms, which are linear in the height of the tree.
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4. Dynamic Approximate Decision Trees
We describe FUDY-WC, our algorithm for the dynamic ap-
proximate decision tree problem. Our main result is:

Theorem 4.1. Let ρ be a max-gain construction rule and let
ε > 0. FUDY-WC maintains a decision tree ε-approximate
w.r.t. ρ with worst-case query time tq = O(ε−1 log n) and
worst-case update time tu = O

(
ε−3d log4n

)
.

The rest of the section discusses FUDY-WC and gives a
detailed walkthrough of the arguments used to prove Theo-
rem 4.1 (for a full proof see Appendix E). Before delving
into that, let us remark that we also show that FUDY-WC
uses space almost linear in the total size of the dataset. To
measure the space usage, we equip the algorithm with a
primitive MALLOC, which takes a positive integer k and
in time O(k) returns a pointer to a block of k contiguous
words; and a primitive FREE, which takes a pointer returned
by MALLOC and returns in time O(1). At any point, the
total space used by the algorithm is the sum of the sizes of
the blocks MALLOC-ed so far, minus the sizes of those that
have been FREE-ed. In this model we prove (Appendix E.6):

Theorem 4.2. The total space used by FUDY-WC after the
first i update requests is in O

(
ε−2 d |Si| log2n+ tu

)
.

Let us turn to FUDY-WC. In order to build the intuition
we start from FUDYADT, the dynamic amortized algorithm
of (Bressan et al., 2023). Let S be a dataset, and sup-
pose we start with the decision tree T that is the output
of GREEDYρ on S. Obviously T is ε-approximate w.r.t.
(S, ρ). As said above, the Gini gain is Lipschitz, i.e.,
|G(S, σ)−G(S′, σ)| = O(4∗(S, S′)) for any two datasets
S′. Thus, if we perform ε|S| updates on S, the Gini gain
of any split function over S changes by O(ε). Therefore,
the split σv at the root v of T can violate ε-approximation
only after Ω(ε|S|) updates to S. This applies in fact to every
subtree Tv: for σv to violate ε-approximation, v must be
reached by Ω(ε|S(T, v)|) updates since Tv was constructed
using S(T, v). Now, if nv = |S(T, v)|, then rebuilding Tv
by running GREEDYρ on Sv takes time O

(
dnv log2 nv

)
.

Then each update pays for O(ε−1d log2 nv) operations.
This is the core argument giving the amortized time bound
of (Bressan et al., 2023).

Let us try to de-amortize the approach above, and make
the bound hold in the worst case. By Definition 1.2, for
any given v ∈ V (T ), we could recompute the split of v by
ignoring the last εnv update requests that reach v. Thus, in
principle, we could use a charging argument to make those
εnv updates pay for the reconstruction of Tv. The chal-
lenging part is to implement this high-level idea correctly.
Consider indeed the following “naive” approach. First, wait
until the first ε nv2 update requests reach v. At that point we
start constructing a new subtree by running GREEDYρ on
the updated dataset S′v at v, and we spread the execution of

GREEDYρ over the next ε nv2 update requests that reach v.
In this way, between any two of those update requests we
perform O(ε−1d log2 nv) operations. We do this for every
vertex of the tree; every update request will pay for the at
most h(T ) vertices it reaches, and thus we will get a total
update time of O(hε−1d log2 nv). Unfortunately, this ap-
proach does not yield an approximate tree: the new subtree
T ′v computed at v is ε-approximate w.r.t. S′(T, v); and, by
the time T ′v is ready, S′(T, v) is not anymore the dataset
at v, because of the additional ε nv2 update requests arrived
in the meantime. Therefore we cannot replace Tv with T ′v,
because there is no guarantee that T ′v is ε-approximate w.r.t.
to the current dataset. We shall refer to such a problem
as the ready-too-late problem. This is not easily fixable:
T ′v could be made not approximate by the last request that
arrives, in which case we are out of time for rebuilding it.

We need another strategy. The next section shows how
to obtain an algorithm by reducing the original dynamic
problem to a relaxed version.

4.1. The Delayed Approximate Decision Tree Problem

Consider the following problem.

Definition 4.3 (Delayed Approximate Decision Tree). The
input is a tuple (ρ, ε, S, n, U) where ρ is a construction rule,
ε ∈ (0, 1), S is a dataset with |S| = n, U is a sequence of εn
updates u1, . . . , uεn. The output is a decision tree T that is
ε-approximate with respect to (S′, ρ), and such that D(T, v)
stores S′(T, v) for each v ∈ V (T ), where S′ = S + U .

Note how this is a relaxed version of the original problem:
the algorithm only needs to output a single tree that is ε-
approximate w.r.t. the final dataset S′. We will now show
how to reduce the approximate decision tree problem to the
delayed variant above. Consider a generic algorithm DELAY-
APX for the delayed approximate decision tree problem.
Suppose that both S and U are accessible through iterators,
so that their elements can be read sequentially in time O(d)
per element. Suppose also that DELAY-APX starts by reading
S, followed by the elements of U . Define the fetch time of
DELAY-APX as the maximum time spent by DELAY-APX
between any two consecutive elements fetched from U . We
claim that, if DELAY-APX has fetch time τ , then we can
achieve update time O(h τ) for the original problem, where
h is the height of the maintained tree.

The reduction that turns the fetch time τ into an update
time O(h τ) is performed by our algorithm FUDY-WC (Al-
gorithm 2), which maintains a decision tree T as follows.
First, for every v ∈ V (T ) FUDY-WC keeps an associative
array D(T, v) storing the dataset Sv from which the cur-
rent subtree Tv was built by GREEDYρ. Second, for every
v ∈ V (T ) FUDY-WC simulates an instance I(v) of DELAY-
APX with input

(
ρ, ε2 , |Sv|, Sv, Uv

)
. Now, the execution of
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Algorithm 2 FUDY-WC

1: Input: construction rule ρ, approximation ε ∈ (0, 1),
and a sequence of update requests {(si, oi)}i≥1

2: T = a tree on one leaf v with λv = 1 and I(v) = NIL
3: for each i = 1, 2, . . . do
4: for each v in P (T, si) do
5: if I(v) = NIL then
6: initialize an empty iterator U(v)
7: start an instance I(v) of

DELAY-APX
(
ρ, ε2 , |D(T, v)|, D(T, v), U(v)

)
8: append (si, oi) to U(v)
9: run I(v) until it fetches an element from U(v)

10: if I(v) returns a pointer to a tree T ′v then
11: set I(v) = NIL and replace Tv with T ′v
12: break the loop of line 4

I(v) is allowed to progress only when an update request
(s, o) from the input reaches v. When that happens, FUDY-
WC appends (s, o) to Uv, and makes I(v) progress until
it fetches that update. Thus, while I(v) sees Uv as a se-
quence of εn elements, FUDY-WC is actually creating that
sequence on the fly. In this way, as soon as ε

2 |Sv| updates
reach v, by construction I(v) returns a new tree T ′v that is
ε
2 -approximate w.r.t. S′v := Sv + Uv, with S′v being pre-
cisely the current dataset at v. Thus, all the nodes of T ′v
satisfy the definition of ε

2 -approximation. Now FUDY-WC
can replace Tv with T ′v, which boils down to just updating
the pointer at v’s parent (and free-ing the memory used by
Tv). Thereafter, T ′v remains εεε-approximate w.r.t. S′v until
the next ε

2 -approximation arrive; but, by that time, a new
replacement for T ′v will have been built.

In this way the tree T maintained by FUDY-WC is always ε-
approximate. Moreover, by our assumption on the fetch time
of DELAY-APX, every update request makes I(v) perform
at most τ operations. Therefore, as every update request
entails running at most h(T ) instances of DELAY-APX, the
update time of FUDY-WC is at most O(τ · h(T )). Formally,
we prove (Appendix E):

Lemma 4.4. Let DELAY-APX be an algorithm for the de-
layed approximate decision tree problem with fetch time τ .
Then the tree T i maintained by FUDY-WC is ε-approximate
w.r.t. (Si, ρ) for all i ≥ 0. Moreover, FUDY-WC has update
time O(τ · h) where h = maxi≥1 h(T i).

Next, we show an efficient algorithm for DELAY-APX. To-
gether with Lemma 4.4, this will yield Theorem 4.1.

4.2. An Algorithm for the Delayed Problem

Theorem 4.5. There is an algorithm for the delayed ap-
proximate decision tree problem, DELAY-APX (Algorithm 3),
with fetch time O

(
ε−2d log3 n

)
.

Theorem 4.5 together with Lemma 4.4 yields Theorem 4.1.
The complete proof is nontrivial and requires keeping track
carefully of several invariants. It is given in Appendix E.3,
in a more general form that allows for general construction
rules. The rest of the section gives a sketch.

Simplifying a little, DELAY-APX works as follows. First,
we construct T from S, ignoring U . Now T may not be
ε-approximate w.r.t. (S′, ρ), but we show that its root does
satisfy the ε-approximation constraint w.r.t. (S′, ρ). This
means that we do not need to recompute the split at the root
anymore. Then, for i = 1, 2, . . ., we feed T the next |U |/2i
requests from U and we reconstruct any subtree whose root
is not ε-approximate w.r.t. S plus all the updates seen so far.
We can show that this reconstruction involves subtrees that
hold, overall, roughly |U |/ε2i examples; thus every request
“pays” for the work done on 1

ε of those examples. Note
that during the reconstruction T may be in an inconsistent
state, that is, not ε-approximate w.r.t. any subsequence of
S′. But eventually the process catches up, and T becomes
ε-approximate w.r.t. the final sequence S′. This is where the
“delayed” nature of the problem helps.

Algorithm 3 DELAY-APX

1: Input: construction rule ρ, ε ∈ (0, 1), n ∈ N, set S of
examples, sequence U of ε|S| update requests

2: let ` = log2(εn) + 1 and let τ be as in Theorem E.3
3: compute T = GREEDYρ(S) using at most τ operations

for each request fetched from U1
0

4: for i = 1, . . . , `: using at most τ operations for every
request fetched from U i+1

i , do
5: initialize a set Ri = ∅
6: for each (s, o) ∈ U ii−1 do
7: compute the path P (T, s) of s in T
8: for each vertex v ∈ P (T, s) do
9: update D(T, v) with (s, o)

10: increment ∆i(v)
11: if ∆i(v) ≥ ε

4 log2 n
ni−1(v) then

12: add v to Ri
13: R∗i = {v ∈ Ri : @ no proper ancestor of v ∈ Ri}
14: for every v ∈ R∗i do
15: Tv = GREEDYρ(D(T, v))
16: return a pointer to T

Let us describe DELAY-APX in more detail. Without loss
of generality we may assume εn = 2`−1 for some ` ∈ N;
otherwise we can just replace ε with an appropriate ε′ ∈
(ε/2, ε). Define the following times:

ti =

{
εn(1− 2−i) i = 0, . . . , `− 1
εn i = `

(4)

For all j, i ≥ 0 let U ij = utj+1, . . . , uti , and to simplify the
notation let Uj = U `j and U i = U i0. We also let U `+1

` =

7



Fully-Dynamic Decision Trees With Update-Time Guarantees

U ``−1. Therefore, the subsequence U i contains all but the
last 2−i|U | elements of U , for all i 6= `, while U ` = U .
Finally, for all i ≥ 0 let Si = S + U i. Thus, Si is the
dataset obtained by applying to S all but the last 2−i|U |
requests of U . In particular, S0 = S and S` = S + U .

Let us go back to the algorithm. To begin, while the requests
in U1 are fetched, DELAY-APX computes T 0 by running
GREEDYρ(S), which can be easily seen to imply a total
work of O(d hn log n). Since |U1| = εn

2 , by spreading
the computation of T 0 over the elements of U1 one can
achieve fetch time O(ε−1dh log n). Now suppose that, for
some i ≥ 1, before fetching any request of U i+1 we have
T i−1 = GREEDYρ(S

i−1). For i = 1 this holds by construc-
tion. Recall that every v ∈ V (T i−1) holds an associative
array D(T i−1, v) that stores Si−1(T i−1, v). While the re-
quests of U i+1

i are being fetched, DELAY-APX updates the
associative arrays of the nodes of T i−1 using the requests
of U ii−1. Moreover, it marks every vertex v of T i−1 that
is reached by more than ε|D(T i−1, v)| of those requests.
These are the vertices that may violate ε-approximation.
Therefore, DELAY-APX takes all the marked vertices and
recomputes their subtrees on the updated datasets using
GREEDYρ. The resulting tree is defined to be T i.

Now let us bound the fetch time. As we did above for T 0,
we shall bound the total work and spread it evenly over the
elements of U i+1

i . It is not hard to see that the total work
is dominated by the time spent to recompute the trees of
the marked vertices, so we shall bound that work. First,
each request in U ii−1 reaches at most h vertices. Second,
the dataset of each marked vertex has size at most 1

ε times
the number of requests that reached that vertex. Thus, the
total size of the sets at marked vertices is at most:

h |U ii−1|
ε

= hn2−i (5)

Thus, the total work to recompute the subtrees at marked
vertices is O(d h2 2−in log n). Distributing this work over
the elements fetched fromU i+1

i , and recalling that |U i+1
i | =

εn2−(i+1), yields a fetch time of:

O
(
d ε−1 h2 log n

)
(6)

This argument is almost but not quite correct. The reason
is that we assumed that T i−1 = GREEDYρ(S

i−1), but then
we computed a tree T i which is not in general equal to
GREEDYρ(S

i). Thus the argument does not correctly prop-
agate the invariant T i = GREEDYρ(S

i). To fix this issue
we perform two changes. First, we slightly tighten the ap-
proximation parameter from ε to ε

log2 n
. Second, we slightly

loosen the invariant from T i = GREEDYρ(S
i) to T i being

ε-approximate w.r.t. (Si, ρ). At this point the argument car-
ries over, but yields an update time bound slightly worse
than that of Theorem 4.5; however, this can be fixed by
performing a more refined analysis.

5. Applications
Dynamic εεε-feasible trees. The first application of our re-
sults is, as promised, maintaining εεε-feasible decision trees
in the fully-dynamic model:

Theorem 5.1. FUDY-WC maintains an εεε-feasible decision
tree with worst-case query time tq = O(β−1 log n) and
worst-case update time tu = O(β−3d log4n).

The result follows by coupling Theorem 4.1 and Theo-
rem 3.3, see Appendix F.1.

Dynamic boosted trees. Let Y = {0, 1} and let c : X →
Y . We see c as a target function (or concept) to be approxi-
mated by our trees. Let P be a distribution over X , and T
be a decision tree. The loss of T is:

LP (T, c) = Pr
x∼P

(T (x) 6= c(x))

For a split function σ we denote by Tσ its associated deci-
sion stump, that is, the tree of height 1 whose sole internal
node uses σ. Now let S be a family of split functions. We
say S satisfies the weak learning assumption if there exists
γ > 0 such that, for every distribution P over X , there
exists σ ∈ S such that LP (σ, c) ≤ 1

2 − γ. It is well known
that, if the weak learning assumption holds, then through
a simple greedy algorithm one can construct trees based
on splits from S that achieve arbitrarily small loss. More
precisely, for every δ > 0 one can construct a tree T with
height h(T ) = O(log 1

δ ) such that LP (T, c) ≤ δ, where
the O notation hides constants depending only on γ. This
is known as tree boosting (Kearns & Mansour, 1999; Taki-
moto & Maruoka, 1998). All definitions and results above
can be stated for a dataset S by letting P be the uniform
distribution over S; in particular LS(T, c) is the fraction of
examples in a dataset S for which T mispredicts the label.

We prove that, under the weak learning assumption, our
algorithm FUDY-WC maintains a boosted tree. To this end,
suppose for each i ≥ 1 there is a concept ci : X → Y
such that the labels of Si are consistent with ci (that is,
y = ci(x) for all (x, y) ∈ Si). Moreover suppose that the
weak learning assumption is satisfied w.r.t. ci. Then we say
the weak learning assumption holds for all i ≥ 1. We show:

Theorem 5.2. Suppose the weak learning assumption holds
for all i ≥ 1. For any δ > 0 FUDY-WC can maintain a tree
of height O(ln 1

δ ) so that, for all i ≥ 1, the loss over the
current dataset satisfies LSi(Ti, c) ≤ δ. Moreover FUDY-
WC does so in worst-case query time O(log 1

δ ) and worst-
case update time O(δ−3d log4 n).

The proof of Theorem 5.2 is in Appendix F.2. The idea
is that, for small enough ε = Θ(γδ), a tree that is ε-
approximate has essentially the same gains of the boosted
tree. Proving this requires some care, as the construction
rule used by the boosted tree (and thus, by FUDY-WC) is not
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a max-gain rule; it only ensures that the gain is at least γδ
whenever the impurity is at least δ. However, we can show
that the ε-approximate tree of FUDY-WC has gain Ω(γδ), too.
The height and the loss are bounded using the arguments
of (Kearns & Mansour, 1999; Takimoto & Maruoka, 1998),
and the update/query times using our results of Section 3.

6. Lower Bounds
We prove conditional lower bounds based on widely ac-
cepted conjectures from computational complexity: the
3SUM and the OV conjectures. Our bounds show that main-
taining exactly the offline tree requires update/query time
polynomial in n. Since for ε = 1

n+1 the only ε-approximate
tree is the offline tree itself, this shows that, in Theorem 4.1,
the polynomial dependence on 1

ε of the update time for
maintaining an ε-approximate tree cannot be avoided, un-
less 3SUM or OV fail. The same holds for the polynomial
dependence on 1

β of the update time for maintaining a εεε-
feasible tree, see Theorem 5.1.

Our first bound is for dynamic decision trees but in the more
general setting of weighted examples. More precisely, every
example (x, y) appearing in an update request is replaced
by a triple (x, y, w) where w ∈ N; the impurity, gain, and
so on are then defined as before, but on the dataset where
every example (x, y, w) is replaced by w copies of (x, y).
(The unweighted case thus corresponds to having w = 1 in
all examples). In this weighted setting we prove:

Theorem 6.1. Let X = {0, 1}d, Y = {0, 1}, c ∈ (0, 1
3 ).

Let ρ be a max-G construction rule with threshold α = 0
that labels using the mean or the label distribution4, where
G can be the Gini, the information, or the variance gain.
Unless OVH fails, maintaining exactly the decision tree of
GREEDYρ under weighted examples requires amortized time
Ω(nc) for some c > 0, even if the weights are in O(n3c).

Our second bound is for the unweighted version of the prob-
lem, but only for maintaining trees based on the variance
gain which label using majority vote. This is nonstandard,
as the tree combines the gain used for regression and the
labeling rule used for classification.

Theorem 6.2. Let X = N, Y = R, and G be the variance
gain. Let ρ be any max-G threshold construction rule that
labels using majority labels. Unless the 3SUM conjecture
fails, maintaining exactly the decision tree of GREEDYρ
requires update and/or query time Ω(nc) for some c > 0.

The proofs of Theorem 6.1 and 6.2 are in Appendix H.

4This means that, when queried on an unlabeled example x, T
returns the distribution of the labels at the leaf v reached by x.

7. Extensions
We conclude by discussing some generalizations of our
results that can be found in the Appendix.

Additional stopping conditions. The original definition of
εεε-feasibility (Bressan et al., 2023) constrains v to be a leaf
also when |S(T, v)| ≤ k∗, or when v has depth h∗, where
k∗, h∗ ∈ N are given in input. These stopping conditions are
often crucial in practice for decision trees of good quality.
We can include these constraints without altering the bounds
of Theorem 4.1. For |S(T, v)| ≤ k∗, define ρ so that σ ∈ S
if and only if G(S(T, v)) ≥ α and |S(T, v)| > k∗. For
the the depth of v, define an “enriched” decision function ρ̂
that takes in input a pair (S, ζ) where ζ ∈ N. One then lets
ρ̂(S, ζ) = ρ(S) if ζ > 0, and ρ̂(S, ζ) be the majority label
of S if ζ = 0. Then, GREEDYρ̂ at v computes ρ̂(S(T, v), ζ)
where ζ equals h∗ minus the depth of v.

General construction rules, gains, etc. Our full bounds
are stated in terms of:

• For a construction rule ρ, the maximum time fρ(n)
needed to compute ρ(S) when |S| ≤ n. For the rules con-
sidered above fρ(n) = O(dn log n), but one could have
fρ(n) = O(dn log3 n) and this would be just reflected in
our bounds. See Theorem E.2.

• For a construction rule ρ, the balance of the splits it pro-
duces, possibly as a function of the dataset’s size. The
rules considered above produce Θ(α)-balanced splits,
where α is the gain threshold, but the information gain
for instance yields Θ( α

logn )-balanced splits. Again, this is
taken into account by our full bounds. See Theorem E.2.

• The sensitivity of the gain to changes in the dataset. As
said, in the Appendix we do this for three significant
gains (Gini gain, information gain, and variance gain).
Moreover, as long as the impurity measure is an upper
bound (even just asymptotic) on the expected loss, then
our bounds for boosted trees will hold, too. This is true
for instance for

√
g, used by (Kearns & Mansour, 1999),

where g is the Gini impurity. See Theorem F.1.

8. Conclusions and Open Problems
We present the first fully-dynamic algorithm for maintaining
a decision tree, with strong guarantees on both the quality
of the tree and its worst-case update time. The update time
is optimal up to polylogarithmic factors, and our conditional
lower bounds show that, in some cases of interest, any dy-
namic algorithm maintaining exactly the offline tree has an
update time polynomial in n. Interesting open problems
include the study of other successful decision-tree based al-
gorithms, such as random forests and gradient-boosted trees,
in the fully-dynamic settings. Moreover, we conjecture that
there is no efficient algorithm for maintaining exactly the
offline tree, even when all examples have unit weights.
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A. Bounds for GREEDYρ

Lemma A.1. GREEDYρ(S) runs in time

O
(
ĥ ·
(
fρ(|S|) + d |S| log |S|

))
where ĥ is the height of the returned tree.

Proof. Recall the pseudocode from Algorithm 2. For
each v ∈ V (T ), GREEDYρ spends time fρ(S(T, v)) +
O(d|S(T, v)| log |S(T, v)|) to compute ρ(S(T, v)) and
populateD(T, v). If v is internal then GREEDYρ also spends
time O(d|S(T, v)|) to compute (S(T, v1), S(T, v2)) =
σ(S(T, v)) where v1, v2 are the children of v; this is dom-
inated by the bound above. The claim follows by the as-
sumptions on fρ and since

∑
v∈Vi |S(T, v)| ≤ |S| where

Vi by the subset of V at depth i.

B. Gain measures
We recall the definitions of Gini gain, information gain and
variance gain.

B.1. Gini gain

Let Y = {1, . . . , k}. The Gini Impurity of a dataset S is:

Igini(S) = 1−
k∑
i=1

p2
i (S) (7)

where pi(S) is the fraction of examples of S having label
i. The Gini gain Ggini : (X × Y )∗ × S is the conditional
Igini-gain.

B.2. Information gain

Let X ∈ N be a random variable. The entropy of X is:

H(X) =
∑
x

Pr(X = x) log
1

Pr(X = x)
(8)

If X takes on at most k distinct values with positive prob-
ability then H(X) ≤ log k. For p ∈ [0, 1] let H(p) be the
entropy of a Bernoulli random variable of parameter p. Let
Y,Z ∈ N be two random variables defined on the same
space of events. The conditional entropy of Y given Z is:

H(Y |Z) =
∑
z

Pr(Z = z)H(Y |Z = z) (9)

The mutual information or information gain between Y and
Z is:

Ginfo(Y,Z) = H(Y )−H(Y |Z) (10)
= H(Z)−H(Z|Y ) (11)
= H(Y ) +H(Z)−H((Y, Z)) (12)

Now let S be a dataset. The entropy of S and the information
gain of a split rule σ on S are defined as follows: letting
(X,Y ) be a random uniform element of S,

H(S) = H(Y ) (13)
Ginfo(S, σ) = Ginfo(Y, σ(X)) (14)

One can see that Ginfo : (X × Y )∗ × S is the conditional
H-gain.

B.3. Variance gain

Let Y = R. The variance of the labels of a set S is:

var(S) =
1

|S|2
∑
s,s′∈S

(y − y′)2 (15)

where s = (x, y) and s′ = (x′, y′). The variance gain
Gvar : (X × Y )∗ × S is the conditional var-gain.

C. Smoothness, approximation, and
balancedness of gains

In this section we prove that G ∈ {Ggini, Ginfo, Gvar} is
smooth w.r.t. the relative edit distance; that is, that for any
split rule σ we can bound |G(S, σ) − G(S′, σ)| in term
of 4∗(S, S′). As a consequence we also prove that an ε-
approximate tree also guarantees a good approximation in
terms of G, and that max-G α-threshold construction rules
are γ-balanced where α depends on γ. We first prove some
ancillary results on the functions g for which G is a condi-
tional g-gain, and then move on to prove the rest.

C.1. Ancillary results

Lemma C.1. Let g : (X×Y )∗ → R≥0 and let f : N→ R
be nondecreasing and such that for all datasets S, S′:

g(S) ≤ f(|S|) (16)

|g(S)− g(S′)| ≤ f(max(|S|, |S′|))
max(|S|, |S′|)

(17)

Then for all datasets S, S′:

|g(S)− g(S′)| ≤ 34∗(S, S′)f(max(|S|, |S′|)) (18)

Proof. For simplicity let k = 4(S, S′). If k = 0 then
g(S) = g(S′) and the bound is trivial, so assume k ≥ 1 and
|S′| ≥ |S|. Suppose first4∗(S, S′) ≥ 1

3 . Then:

|g(S)− g(S′)| ≤ max(g(S), g(S′)) (19)
≤ f(max(|S|, |S′|)) (20)
≤ 34∗(S, S′)f(max(|S|, |S′|)) (21)

Now suppose instead 4∗(S, S′) < 1
3 . Observe that this

implies |S′| ≤ 3
2 |S| and |S| ≥ 2, and thus |S| − 1 ≥ 1

3 |S
′|.

12
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By definition of4 there exist S0, . . . , Sk ∈ (X ×Y )∗ with
S0 = S, Sk = S′, and such that 4(Si, Si+1) = 1 for all
i = 0, . . . , k − 1. Note that in particular there exists such a
set where |S| − 1 ≤ |Si| ≤ |S′| for all i. By the properties
of f this implies:

|g(S)− g(S′)| ≤
k−1∑
i=0

|g(Si)− g(Si+1)| (22)

≤
k−1∑
i=0

f(max(|Si|, |Si+1|))
max(|Si|, |Si+1|)

(23)

≤
k−1∑
i=0

f(|S′|)
|S| − 1

(24)

= k
f(|S′|)
|S| − 1

(25)

≤ 3k
f(max(|S|, |S′|))

max(|S|, |S′|)
(26)

which equals 34∗(S, S′)f(max(|S|, |S′|)).

C.1.1. GINI IMPURITY

Lemma C.2. If4(S, S′) ≤ 1 then |Igini(S)−Igini(S
′)| ≤

4
max(|S|,|S′|) .

Proof. The claim is trivial if S = S′, so assume S′ =
S + s. Without loss of generality we may assume s =
(x, y) where y = 1. Clearly Igini(S) − Igini(S

′) =∑k
i=1(p2

i (S
′) − p2

i (S)), and since p2
i (S
′) − p2

i (S) =
(pi(S

′)+pi(S))(pi(S
′)−pi(S)) and (pi(S

′)+pi(S)) ≤ 2,
then:

|Igini(S)− Igini(S
′)| (27)

=

∣∣∣∣∣p2
1(S′)− p2

1(S) +

k∑
i=2

(p2
i (S
′)− p2

i (S))

∣∣∣∣∣ (28)

≤ 2|p1(S′)− p1(S)|+ 2

∣∣∣∣∣
k∑
i=2

(pi(S
′)− pi(S))

∣∣∣∣∣
(29)

Standard calculations give:

pi(S
′)− pi(S) =

{
1−pi(S)
n+1 i = 1

−pi(S)
n+1 i ≥ 2

(30)

Thus

2|p1(S′)− p1(S)|+ 2

∣∣∣∣∣
k∑
i=2

(pi(S
′)− pi(S))

∣∣∣∣∣ (31)

= 2
1− p1(S)

n+ 1
+ 2

k∑
i=2

pi(S)

n+ 1
(32)

= 4
1− p1(S)

n+ 1
(33)

which is at most 4
n+1 = 4

max(|S|,|S′|) , as claimed.

C.1.2. ENTROPY

Claim 1. H(p) ≤ 3p log 1
p for all p ∈ [0, 1/2].

Proof. Theorem 1.1 of (Topse, 2001) and easy manipula-
tions yield:

H(p) ≤ log p log(1− p)
log 2

(34)

=
log 1

p log
(

1 + p
1−p

)
log 2

(35)

≤
log 1

p

log 2

p

1− p
(36)

≤ 3p log
1

p
(37)

Claim 2. For any two random variables X,X ′ defined on
the same space of events and taking on at most n distinct
values:

|H(X)−H(X ′)| (38)
≤ tvd(X,X ′) log2(n− 1) +H(tvd(X,X ′)) (39)

Proof. This is a special case of the FannesAudenaert in-
equality (Audenaert, 2007) for diagonal matrices.

Lemma C.3. If 4(S, S′) ≤ 1 then |H(S) − H(S′)| <
5 logn
n where n = max(|S|, |S′|).

Proof. The claim is trivial if S = S′, hence assume S′ =
S + s, and let (X,Y ) be a uniform random element of
S and (X ′, Y ′) a uniform random element of S′. Clearly
tvd(Y, Y ′) = 1

n , hence by the definition of H(S), H(S′),
and by Claim 2 and Claim 1, and since n ≥ 2 and so 1

n ≤
1
2 :

|H(S)−H(S′)| ≤ 1

n
log2(n− 1) +H

(
1

n

)
(40)

<
2

n
log n+

3

n
log n (41)

concluding the proof.

C.1.3. VARIANCE

Let c =
∑
y∈Y

c
2 for some c ∈ R≥0. Clearly this implies

var(S) ≤ c2 for all S.

Lemma C.4. If4(S, S′) ≤ 1 then | var(S) − var(S′)| ≤
3c2

max(|S|,|S′|) .
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Proof. The claim is trivial if S = S′, so assume S′ =
S + s for some s = (xs, ys) and let n = |S′|. Standard
calculations show that:

var(S + s) (42)

= var(S)
(n− 1)2

n2
+

1

n2

∑
(x,y)∈S

(y − ys)2 (43)

= var(S)− 2n− 1

n2
var(S) +

1

n2

∑
(x,y)∈S

(y − ys)2

(44)

Thus:

| var(S + s)− var(S)| (45)

≤ 2n− 1

n2
var(S) +

1

n2

∑
(x,y)∈S

(y − ys)2 (46)

≤ 2

n
c2 +

1

n2
|S|c2 (47)

which is at most 3
nc

2, concluding the proof.

C.2. Smoothness results

Lemma C.5. Let G be a conditional g-gain where g satis-
fies the hypotheses of Lemma C.1. Then for all S, S′ with
4(S, S′) ≤ 1:

|G(S, σ)−G(S′, σ)| ≤ 4
f(n)

n
(48)

where n = max(|S|, |S′|) and f is as in Lemma C.1.

Proof. Let (S0, S1) = σ(S) and (S′0, S
′
1) = σ(S′). With-

out loss of generality let S′ = S + s and S′0 = S0, and
let n = |S′| = max(|S|, |S′|). Standard calculations show
that:

|G(S, σ)−G(S′, σ)| (49)

≤ |g(S)− g(S′)|+ g(S0)|S0|
n(n− 1)

+∣∣∣∣g(S′1)
|S′1|
n
− g(S1)

|S1|
n− 1

∣∣∣∣ (50)

By the hypotheses of Lemma C.1 the first term is bounded
by f(n)

n and the second term is bounded by f(|S0|)|S0|
n(n−1) ≤

f(|S0|)
n ≤ f(n)

n too. For the third term, since |S
′
1|
n > |S1|

n−1

and again by the hypotheses of Lemma C.1,∣∣∣∣g(S′1)
|S′1|
n
− g(S1)

|S1|
n− 1

∣∣∣∣ (51)

≤
(
g(S1) +

f(|S′1|)
|S′1|

)
|S′1|
n
− g(S1)

|S1|
n− 1

(52)

= g(S1)

(
|S′1|
n
− |S1|
n− 1

)
+
f(|S′1|)
n

(53)

= g(S1)
n− |S′1|
n(n− 1)

+
f(|S′1|)
n

(54)

≤ f(|S1|)
n− |S′1|
n(n− 1)

+
f(|S′1|)
n

(55)

which, since f is nondecreasing and |S′1| ≥ 1, is bounded
from above by 2 f(n)

n . We conclude that |G(S, σ) −
G(S′, σ)| ≤ 4 f(n)

n , as claimed.

Lemma C.6. Let G be a conditional g-gain where g satis-
fies the hypotheses of Lemma C.1. Then for all S, S′:

|G(S, σ)−G(S′, σ)| ≤ 124∗(S, S′)f(max(|S|, |S′|))
(56)

with f is as in Lemma C.1.

Proof. Fix σ and let G(·) = G(·, σ). By the form of G, we
have that:

G(S) ≤ g(S) ≤ f(|S|) (57)

Moreover by Lemma C.5 we have that for all S, S′ with
4(S, S′) ≤ 1:

|G(S)−G(S′)| ≤ 4
f(n)

n
(58)

where n = max(|S|, |S′|). Therefore gG = G satisfies the
hypotheses of Lemma C.1 with fG = 4f , yielding:

|gG(S)− gG(S′)| ≤ 34∗(S, S′)fG(max(|S|, |S′))
(59)

that is, |G(S) − G(S′)| ≤ 124∗(S, S′)f(max(|S|, |S′)).

Theorem C.7. Let σ be any split rule. For all datasets S, S′

the distance |G(S, σ)−G(S′, σ)| is at most:

4∗(S, S′) · 48 G = Ggini

4∗(S, S′) · 60 log max(|S|, |S′|) G = Ginfo

4∗(S, S′) · 36 c2 G = Gvar

(60)

where c = supy∈Y |y|/2.
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Proof. By Lemma C.2, G = Ggini satisfies the hy-
potheses of Lemma C.6 with g = Igini and f =
4, hence |Ggini(S, σ) − Ggini(S

′, σ)| ≤ 4∗(S, S′) ·
48. By Lemma C.3, G = Ginfo satisfies the hy-
potheses of Lemma C.6 with g = H and f(n) =
5 log n, hence |Ginfo(S, σ) − Ginfo(S′, σ)| ≤ 4∗(S, S′) ·
60 log max(|S|, |S′|). By Lemma C.4, G = Gvar satisfies
the hypotheses of Lemma C.6 with g = var and f(n) = 3c2,
hence |Gvar(S, σ)−Gvar(S

′, σ)| ≤ 4∗(S, S′) · 36c2.

C.3. Approximation of maximum gain

The next result says that, for maximum-gain construction
rules, an ε-approximate guarantees split rules whose gain is
close to the maximum possible.

Lemma C.8. Let ρ be a max-G construction rule with G ∈
{Ggini, Ginfo, Gvar}. If a decision tree T is ε-approximate
w.r.t. (S, ρ), then for every internal vertex v ∈ V (T ) the
difference G(S(T, v), σ∗v)−G(S(T, v), σv) is at most

ε · 96 if G = Ggini

ε · 120 log |S(T, v)| if G = Ginfo

ε · 72c2 if G = Gvar

(61)

where σ∗v = ρ(S(T, v)).

Proof. Suppose G = Ggini; the proof for G = Ginfo and
G = Gvar is similar. Let T be ε-approximate w.r.t. (S, ρ)
and let v ∈ V (T ) be any internal vertex of T . By Defini-
tion 1.2 there exists Sv ∈ (X × Y )∗ such that σv = ρ(Sv)
and4∗(S(T, v), Sv) ≤ ε. Then by a double application of
Theorem C.7, and since G(Sv, σv) ≥ G(Sv, σ) for every
σ ∈ S:

G(S(T, v), σv) (62)
≥ G(Sv, σv)− 484∗(S(T, v), Sv) (63)
≥ G(Sv, σ

∗
v)− 484∗(S(T, v), Sv) (64)

≥ G(S(T, v), σ∗v)− 964∗(S(T, v), Sv) (65)

which proves the claim since4∗(S(T, v), Sv) ≤ ε.

C.4. Balancedness of threshold construction rules

Lemma C.9. Let G be a conditional g-gain where g
satisfies the hypotheses of Lemma C.1. Then for every
S ∈ (X × Y )∗:

min(|S0|, |S1|)
|S|

≥ G(S, σ)

4f(|S|)
(66)

where (S0, S1) = σ(S) and f is as in Lemma C.1.

Proof. Without loss of generality assume |S0| ≤ |S1|. Let
η = 4∗(S, S1) and note that η = |S0|

|S| and 1 − η = |S1|
|S| .

Then:

|S0|
|S|

g(S0) +
|S1|
|S|

g(S1) (67)

≥ (1− η)g(S1) (68)
≥ (1− η)(g(S)− 3ηf(|S|)) Lemma C.1 (69)
≥ g(S)− η(g(S) + 3f(|S|)) (70)
≥ g(S)− 4ηf(|S|) (71)

We conclude that G(S, σ) ≤ 4ηf(n) and therefore

min(|S0|, |S1|)
|S|

=
|S0|
|S|

= η ≥ G(S, σ)

4f(n)
(72)

concluding the proof.

Theorem C.10. Let S be any family of split rules and let
G ∈ {Ggini, Ginfo, Gvar}. Then any max-G construction
rule ρ : (X×Y )∗ → S∪Y with threshold α is γ-balanced,
where:

γ(|S|) =


α
16 if G = Ggini

α
20 log |S| if G = Ginfo
α

12c2 if G = Gvar

(73)

where c = supy∈Y |y|/2.

Proof. Let:

g = Igini and f(n) = 4 if G = Ggini

g = H and f(n) = 5 log n if G = Ginfo

g = var and f(n) = 3c2 if G = Gvar

(74)

Then the claim follows by Lemma C.9 by noting that, when
σ = ρ(S) ∈ S, by definition of rule with threshold α we
have G(S, σ) ≥ α.

D. Proofs for Section 3
D.1. Proof of Theorem 3.3

We prove the following version that encompasses more
general gains.

Theorem D.1. Let S be a set of split rules and let εεε =
(α, β) ∈ (0, 1]2. Let ρ : (X × Y )∗ → D ∪ Y be a max-
G construction rule with threshold α

2 that assigns major-
ity/average labels, and define:

ε =


min(α,β)

100 G = Ggini

min(α,β)
130 logn G = Ginfo

min(α,β)
80c2 G = Gvar, c = supy∈Y |y|/2

Then, for all datasets S, every decision tree that is ε-
approximate w.r.t. (S, ρ) is εεε-feasible w.r.t. (S, ρ).
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Suppose first G = Ggini. Let v ∈ V (T ). By definition of
ε-approximation (Definition 1.2) there exists Sv such that
4∗(S(T, v), Sv) ≤ ε and that the decision taken at v is
ρ(Sv) ∈ S. Let Sv be any such set. Let σv and σ∗v be split
rules with maximum gain on respectively Sv and S(T, v):

σv = arg max
σ∈S

G(Sv, σ) (75)

σ∗v = arg max
σ∈S

G(S(T, v), σ) (76)

Suppose G(S(T, v), σ∗v) ≥ α. By Theorem C.7, and by the
choice of ε and the definition of σv and σ∗v :

G(Sv, σv) ≥ G(Sv, σ
∗
v) (77)

≥ G(S(T, v), σ∗v)− 48ε (78)
> G(S(T, v), σ∗v)− α/2 (79)
≥ α/2 (80)

Similarly, if G(S(T, v), σ∗v) = 0 then:

G(Sv, σv) ≤ G(S(T, v), σv) + 48ε (81)
< G(S(T, v), σv) + α/2 (82)
≤ G(S(T, v), σ∗v) + α/2 (83)

and the rightmost expression equals α
2 . Since ρ has thresh-

old α
2 , this proves that v is internal if G(S(T, v), σ∗v) ≥ α

and v is a leaf ifG(S(T, v), σ∗v) = 0. Finally, if v is internal
then by Lemma C.8:

G(S(T, v), σv) ≥ G(S(T, v), σ∗v)− 96ε (84)
> G(S(T, v), σ∗v)− β (85)

Since the facts above hold for any choice of Sv , we conclude
that T is εεε-feasible as desired.

The proof for G = Ginfo is similar. If G(S(T, v), σ∗v) ≥ α
then again by Theorem C.7 and the definition of σv and σ∗v :

G(Sv, σv) ≥ G(Sv, σ
∗
v) (86)

≥ G(S(T, v), σ∗v)− 60ε log n (87)
> G(S(T, v), σ∗v)− α/2 (88)
≥ α/2 (89)

Similarly, if G(S(T, v), σ∗v) = 0 then:

G(Sv, σv) ≤ G(S(T, v), σv) + 60ε log n (90)
< G(S(T, v), σv) + α/2 (91)
≤ G(S(T, v), σv) + α/2 (92)

Finally, if v is internal then by Lemma C.8:

G(S(T, v), σv) ≥ G(S(T, v), σ∗v)− ε · 120 log n
(93)

> G(S(T, v), σ∗v)− β (94)

The proof for G = Gvar is completely analogous.

E. Proofs for Section 4
E.1. Proof of Lemma 4.4

First, we prove that the arraysD(T, v) are updated correctly.
For each v ∈ V (T i) let iv ≤ i be the most recent iteration
where v is in a subtree created by DELAY-APX, or iv = 0
if no such iteration exists. We claim that, for all i ≥ 1
and all z ∈ V (T i), D(T i, z) stores precisely Siz (T i, z).
This is trivial for i = 0, so suppose the claim holds for
T i−1 and let z ∈ V (T i). If iz < i then the claim holds
for z since D(T i, z) = D(T i−1, z). Otherwise T iz is a
subtree of a tree T iv that has been returned by DELAY-APX at
iteration i, and by induction DELAY-APX has been given in
input D(T i−1, v) and all subsequent updates that reached v.
By construction of DELAY-APX this implies that D(T i, z)
stores precisely Siz (T i, z).

Now consider a generic iteration of FUDY-WC where line 2
is executed. By the claim above and by construction of
FUDY-WC, I(v) was given in input a set of examples and a
sequence of updates that define precisely Si(T i, v). Thus
T iv is ε

2 -approximate w.r.t. (Si(T i, v), ρ). Now let j > i. If
less than ε

2 |S
i(T i, v)| requests have reached v between itera-

tion i+1 and the end of iteration j, then T jv is ε-approximate
w.r.t. (Sj(T j , v), ρ); and before the ε

2 |S
i(T i, v)|-th such re-

quest reaches v, the subtree T iv will be replaced, making it
ε
2 -approximate again.

The claim on the update time follows straightforwardly from
the algorithm.

E.2. Proof of Theorem 4.1

We prove a more general result. First we need a lemma. A
tree T is η-balanced if every v, w ∈ V (T ) with w child of
v satisfy |S(T,w)| ≥ η|S(T, v)|.
Lemma E.1. If ρ is a γ-balanced construction rule and T
is ε-approximate w.r.t. (S, ρ), then T is (γ − 2ε)-balanced.

Proof. Let Sv be the set for which v satisfies the definition
of ε-approximate tree. Then:

|S(T,w)| ≥ |Sv(T,w)| − 4(Sv, S(T, v)) (95)
≥ |Sv(T,w)| − ε|S(T, v)| (96)
≥ γ|Sv| − ε|S(T, v)| (97)
≥ γ(1− ε)|S(T, v)| − ε|S(T, v)| (98)
≥ (γ − 2ε)|S(T, v)| (99)

The proof is complete.

Now, for ε > 0 and n ∈ N, let hρ(ε, n) be the maximum
height, over all S with |S| ≤ n, of any decision tree ε-
approximate w.r.t. (S, ρ).
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Theorem E.2. There is a deterministic algorithm for the
dynamic approximate decision tree problem, FUDY-WC, that
for all i ≥ 1 has query time

O(h(Ti)) = O(hρ(ε, n))

and update time

O

(
hρ(ε, n) log n ·

(
hρ(ε, n) +

d log n

ε
+
fρ(n)

εn

))
Proof. By Theorem E.3, DELAY-APX is correct and has
fetch time in

O

(
hρ(ε, n)2 log n ·

(
hρ(ε, n) +

d log n

ε
+
fρ(n)

εn

))
where n is the maximum size of the dataset in the original
problem. Combining this bound with Lemma 4.4 concludes
the proof.

Theorem 4.1 follows from Theorem E.2 by noting that
hρ(ε, n) = O

(
logn
γ−2ε

)
because of Lemma E.1, and that

fρ(n) = O(dn log n) for max-gain construction rules based
on threshold splits because of Lemma G.1.

E.3. Proof of Theorem 4.5

Once again we prove a more general result:

Theorem E.3. There is an algorithm for the delayed ap-
proximate decision tree problem, DELAY-APX, that has fetch
time

O

(
h log n ·

(
h+

d log n

ε
+
fρ(m)

εn

))
where m ≤ n(1 + ε) is the maximum size of the dataset ob-
tained from applying any prefix of U to S and h ≤ hρ(ε,m)
is the maximum height of the tree held by the algorithm.

The next subsections prove the following two results, which
form the two parts of Theorem E.3 (correctness of DELAY-
APX and bound on the fetch time):

Theorem E.4. T i satisfies the constraints of Definition 4.3
w.r.t. (Si, ρ) for all i ∈ {0, . . . , `}. In particular, the tree
returned by DELAY-APX is ε-approximate w.r.t. (S + U, ρ).

Theorem E.5. DELAY-APX can be implemented to have
fetch time O

(
h log n ·

(
h+ d logn

ε +
fρ(m)
εn

))
where h =

maxi=0,...,` h(Ti) and m = maxi=0,...,` |Si|.

The correctness is given directly by Theorem E.4.
For the fetch time, Theorem E.5 yields a bound
of O

(
h log n ·

(
h+ d logn

ε +
fρ(m)
εn

))
where h =

maxi=0,...,` h(Ti) and m = maxi=0,...,` |Si|. Since by

Theorem E.4 every Ti is ε-approximate w.r.t. (Si, ρ) and
|Si| ≤ m, then by definition h(Ti) ≤ hρ(ε,m) for all i.
Moreover clearly m ≤ |S|+ |U | = (1 + ε).

For convenience let us recall here some definitions and
notation. Let i ∈ {0, . . . , `}. For every v ∈ V (T i):

ni(v) = |Si(T i, v)| (100)

∆i(v) =
∣∣{(s, o) ∈ U ii−1 : v ∈ P (T i, x)}

∣∣ (101)

ci(v) =

{
0 if i = 0 or R∗i ∩A(T, v) 6= ∅
ci−1(v) + ∆i(v) otherwise (102)

where A(T, v) denotes the set of all nodes on the path from
the root of T to v. Note that:

ci(v)− ci−1(v) ≤ ∆i(v), ∀i ≥ 1 (103)

Our proofs use the following facts.

Lemma E.6. If v ∈ R∗i then Si(T i, v) = Si(T i−1, v).

Proof. By construction R∗i contains no proper ancestor of
v, hence all such ancestors are untouched by the loop of
line 3.

Lemma E.7. For every i = 1, . . . , ` every v ∈ R∗i satisfies
ni(v) ≤ ni−1(v) + ∆i(v).

Proof. By Lemma E.6 |Si(T i, v)| = |Si(T i−1, v)|, hence:

ni(v) = |Si(T i, v)| (104)

= |Si(T i−1, v)| (105)

≤ |Si−1(T i−1, v)|+ ∆i(v) (106)
= ni−1(v) + ∆i(v) (107)

where (106) is straightforward and (104),(107) use the defi-
nition of ni.

E.4. Proof of Theorem E.4

First, we show that T i is ε-approximate w.r.t. (Si, ρ) for
all i ∈ {0, . . . , `}. For i = 0 the claim is trivial since
T 0 = GREEDYρ(S

0). Let then i ≥ 1, let v ∈ V (T i),
and let iv ∈ {0, . . . , i} be the last round where v was cre-
ated (i.e., where v or some ancestor of v was in R∗iv ). By
construction, the split rule at v in T i is ρ(Siv (T iv , v));
and by Lemma E.8 below, ci(v) ≤ ε |Siv (T iv , v)|, so
4∗(Si(T i, v), Siv (T iv , v)) ≤ ε. Thus T i is ε-approximate
w.r.t. (Si, ρ), as claimed.

Next, we show that for every v ∈ V (T i) the array D(T i, v)
stores exactly Si(T i, v). This is true for i = 0 by defini-
tion of GREEDYρ. Now let i ≥ 1 and suppose the claim is
true for i − 1. Because of line 3, at the end of the loop of
line 3 each v ∈ V (T i−1) satisfies that D(T i−1, v) stores
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Si(T i−1, v). By definition of GREEDYρ, then, after the re-
builds at line 3 D(T i, v) stores Si(T i, v) for all v ∈ V (T i),
as claimed.

For the second claim just note that S +U = S` and DELAY-
APX returns T `.
Lemma E.8. Let i ∈ {0, . . . , `}. Then every v ∈ V (T i)
satisfies ci(v) ≤ ε niv (v) where iv ∈ {0, . . . , i} is the last
round where v was created.

Proof. The proof is trivial for i = 0 since c0(v) = 0. Let
then i ≥ 1. Since v was built at round iv then civ (v) = 0;
using a telescoping sum and applying (103),

ci(v) = ci(v)− civ (v) (108)

=

i∑
j=iv+1

(cj(v)− cj−1(v)) (109)

≤
i∑

j=iv+1

∆j(v) (110)

We shall then bound ∆j(v). By definition of iv, for all
j ∈ {iv + 1, . . . , i} at round j the condition of line 3 fails,
hence:

∆j(v) <
ε

4 log2 n
nj−1(v) (111)

In this case, since nj(v) ≤ nj−1(v)+∆j(v) by Lemma E.7,
we have:

nj(v) ≤ nj−1(v)

(
1 +

ε

4 log2 n

)
(112)

By iterating (112) we conclude that for every j = iv +
1, . . . , i:

nj(v) ≤
(

1 +
ε

4 log2 n

)j−iv
niv (v) (113)

and (111) then implies for every j = iv + 1, . . . , i:

∆j(v) ≤ niv (v) · ε

4 log2 n

(
1 +

ε

4 log2 n

)j−1−iv

(114)

Plugging this bound in (110) and noting that i ≤
2 log2(εn) ≤ 2 log2 n, we obtain:

ci(v) ≤ niv (v) · ε

4 log2 n

i∑
j=iv+1

(
1 +

ε

4 log2 n

)j−1−iv

(115)

≤ niv (v) · εi

4 log2 n

(
1 +

ε

4 log2 n

)i
(116)

≤ niv (v) · ε
2

(
1 +

ε

4 log2 n

)2 log2 n

(117)

< niv (v) · ε e
1/2

2
(118)

which is at most ε · niv (v), as claimed.

E.5. Proof of Theorem E.5

By Lemma A.1 and by definition of h, GREEDYρ(S) runs
in time:

O
(
h ·
(
fρ(n) + dn log n

))
(119)

Thus, GREEDYρ(S) can be ran by using for each request in
U1

0 a number of operations in:

O

(
h

ε
·
(
fρ(n)

n
+ d log n

))
(120)

Now consider round i. By Lemma E.9 below, the total num-
ber of operations taken by the loop at line 3 together with
line 3 is inO(ti dh log n+|Ri|h log n). As each iteration of
that loop inserts at most h elements in Ri then |Ri| ≤ ti h,
so the bound above is in O(ti · (d + h)h log n). Hence,
excluding line 3, the i-th round can be ran in fetch time
O((d + h)h log n). It remains to bound the time taken
by the loop at line 3, which is dominated by the total
time of the invocations of GREEDYρ. Let then v ∈ R∗i
and consider D(T, v). By construction, D(T, v) stores
Si(T i−1(v)), which by Lemma E.6 equals Si(T i, v). Thus,
by Lemma A.1, by definition of h, and by the assump-
tions on fρ the total time of the invocations of GREEDYρ is
bounded asymptotically by:∑

v∈R∗i

h ·
(
fρ(ni(v)) + dni(v) log ni(v)

)
(121)

= h fρ

∑
v∈R∗i

ni(v)

 + dh log n
∑
v∈R∗i

ni(v)

(122)

Thus, we shall bound
∑
v∈R∗i

ni(v). Fix any v ∈ R∗i . By
line 3:

ni−1(v) ≤ 4 log2 n

ε
∆i(v) (123)

Moreover ni(v) ≤ ni−1(v) + ∆i(v) by Lemma E.7, hence:

ni(v) ≤
(

1 +
4 log2 n

ε

)
∆i(v) ≤ 5 log2 n

ε
∆i(v)

(124)

Since no two vertices in R∗i are in an ancestor-descendant
relationship, every (s, o) ∈ U ii−1 reaches at most one vertex
in R∗i . Therefore:∑

v∈R∗i

∆i(v) ≤ |U ii−1| = ti−1 − ti = ti (125)
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We conclude that:∑
v∈R∗i

ni(v) ≤ 5 log2 n

ε
· ti (126)

We can now bound the two terms of (122). For the first
term, we consider two cases. If ti 5 log2 n

εn > 1 then we use
again the fact that no two vertices in R∗i are in an ancestor-
descendant relationship to obtain

∑
v∈R∗i

ni(v) ≤ |Si| ≤
m, which yields:

fρ

∑
v∈R∗i

ni(v)

 ≤ fρ(m) <
fρ(m) ti 5 log2 n

εn

(127)

If instead ti ≤ εn
5 log2 n

then observe that, by its assumptions,

fρ satisfies fρ(x) ≤ fρ(cx)
c for all x ∈ R≥0 and all c ≥ 1.

Using (126) and choosing c = εn
ti5 log2 n

< 1, we obtain:

fρ

∑
v∈R∗i

ni(v)

 ≤ fρ(5 log2 n

ε
· ti
)

(128)

≤ fρ(n) ti 5 log2 n

εn
(129)

≤ fρ(m) ti 5 log2 n

εn
(130)

Therefore the first term of (122) is bounded by:

O

(
ti ·

h fρ(m) log2 n

εn

)
(131)

For the second term of (122), again by (126) we obtain:

dh log n
∑
v∈R∗i

ni(v) = O

(
ti ·

h d log2 n

ε

)
(132)

Thus the total number of operations performed by GREEDYρ
in the loop of line 3 is in:

O

(
ti ·

h log n

ε

(
fρ(m)

n
+ d log n

))
(133)

Summing all bounds and dividing by ti, one obtains the fol-
lowing bound on the fetch time for each round i = 1, . . . , `:

O

(
(d+ h)h log n+

h log n

ε

(
fρ(m)

n
+ d log n

))
(134)

Since (134) dominates (120), then it bounds the fetch time
of DELAY-APX. By rearranging terms, we obtain that (134)
is bounded by:

O

(
h log n ·

(
h+

d log n

ε
+
fρ(m)

εn

))
(135)

which concludes the proof.

Lemma E.9. DELAY-APX can be implemented so that, at
every round i ≥ 1:

1. each iteration of the loop at line 3 takes O(d h log n)
operations

2. line 3 takes O(|Ri|h log n) operations

3. line 3 can enumerate R∗i in O(1) per element

Proof. 1. By definition |P (T, s)| ≤ h, hence computing
P (T, s) takes time O(h). For each v ∈ P (T, s), updating
D(T, v) takes timeO(d log n) by assumption. To increment
∆i(v) in time O(1), create it as a new variable associated
to v the first time v is processed by the loop of line 3 and
set it to 1, then mark v as “alive” so that subsequent updates
increment that variable. Assuming we can access ni−1(v) in
time O(1), checking the condition at line 3 takes time O(1).
Finally, updating Ri takes time O(log |V (T )|) = O(log n)
using an associative array with logarithmic update time. It
remains to show how line 3 can access ni−1(v) in O(1)
operations.

Consider again D(T, v). Just before round i + 1 starts,
D(T, v) stores Si(T i, v). This is true for i = 0 since
GREEDYρ stores explicitly S0(T 0, v) in D(T, v); and it re-
mains true for i ≥ 1 since either v is in a subtree rebuilt
at round i, and the argument above applies, or D(T, v) is
updated by line 3. Thus, for each i ≥ 1, at the beginning
of round i we can access ni−1(v) in time O(1) by querying
|D(T, v)|. To make it available throughout all the round,
right before executing line 3 query |D(T, v)| and store it
in a new variable n̂i−1(v), then mark v as “done” so that
n̂i−1(v) does not get overwritten. From this point onward,
for any v ∈ V (T ) one can retrieve ni−1(v) in time O(1) by
using n̂i−1(v) if it exists, and using |D(T, v)| otherwise.

2,3. Initialise an empty linked list R∗i = ∅. For every
v ∈ Ri, list all the ancestors of v in T — this takes time
O(h) as every vertex of T keeps a pointer to its parent —
and if none of them is in Ri then append v to R∗i .

E.6. Proof of Theorem 4.2

We assume memory can be managed via two primitives:

• MALLOC, which takes as a parameter a positive integer k,
and returns a pointer to a block of n contiguous words all
set to zero. The running time is O(k).

• FREE, which takes as a parameter a pointer returned by a
previous call to MALLOC. The running time is O(1).

The algorithm has access to O(1) zeroed words of memory
(the registers); any additional space must be allocated with
MALLOC. At any point in time, the total space used by the
algorithm is the sum of the sizes of all the blocks MALLOC-
ed so far, minus the sizes of those that have been FREE-ed.
(Blocks whose allocation is undergoing count as completely
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allocated).

Recall FUDY-WC. Call round i the sequence of operations
that start with the i-th update request and terminate just
before the (i + 1)-th request. Let τi be the update time at
round i, let ni = |Si| be the size of the dataset defined by
the first i requests, and let n∗i = maxi≤j nj .

Adapting the algorithm. It is immediate to adapt FUDY-
WC and its subroutines so that it uses MALLOC and it ac-
cesses only memory that has bees MALLOC-ed before, with-
out increasing the asymptotic worst-case running time (the
time spent on accessing memory already bounds asymptoti-
cally the time taken by a MALLOC to allocate that memory).
In the remainder we describe how FUDY-WC uses FREE and
bound the total space used at any time.

We equip FUDY-WC with a garbage queue: a linked list that
stores pointers to memory blocks (or, more generally, to
structures such as decision trees, binary search trees, linked
lists, . . . ). The queue is initially empty, and FUDY-WC
can push a pointer to the back the queue at any time. A
collector algorithm then takes an element from the front of
the list (if any) and invokes FREE on it. If the pointer is the
node of a decision or search tree, or a node of a linked list,
then the garbage collector push to the back of the queue all
successors of that pointer (the pointers to the subtrees, or the
pointer to the next element in the list); this takes time O(1)
since the position of those successors is known by design.
Thus, after every O(1) operations the collector frees space
Ω(1).

Finally, we adapt FUDY-WC and its subroutines to use the
garbage collector, as follows:

• GREEDYρ pushes all pointers to the blocks of memory
used temporarily (i.e., not part of the returned tree) into
the garbage queue right before return time. This clearly
leaves the asymptotic running time unchanged.

• for DELAY-APX, just after line 3 we push the old tree
Tv in the garbage queue. Moreover, at the end of each
iteration of the loop of line 3 we push Ri, R∗i , as well as
the blocks used for the counters into the garbage queue.
Note that this leaves the asymptotic running time per
update unchanged.

• for FUDY-WC, after 2 we push the old tree Tv as well as
U(v) into the garbage queue. Note again that this leaves
the asymptotic running time per update unchanged.

We can proceed to bound the space used by FUDY-WC. At
any point in time, the active space is the total space minus
the total size of the blocks reachable by the pointers in the
garbage queue. An analysis of FUDY-WC and its subroutines
shows:

Claim 3. For some constant C > 0, at any point in time
during round i the active space used by FUDY-WC is at most

C hρ(ε, ni)
2 dni.

Just before round i+ 1, run the collector until the garbage
queue becomes empty or until it frees space at least:

τi +D · hρ(ε, n∗i )2 d (136)

for some constant D to be fixed later. We then have:

Claim 4. For some constant B > 0, for all i ≥ 1 the total
space used by FUDY-WC at the end of round i is at most
B hρ(ε, n

∗
i )

2 dni.

Proof. The claim holds for i = 1 for B large enough (recall
that we always assume ni ≥ 1). Now suppose the claim
holds for some i− 1 ≥ 1; we show it holds for i, too. We
consider two cases:

1. at the end of round i the garbage queue is empty. In
this case the total space at the end of round i is just
the active space, which as shown above is bounded by
C hρ(ε, ni)

2 dni; the claim then holds for every B ≥ C.

2. at the end of round i the garbage queue is not empty. In
this case the garbage collector has freed space at least
τi +D · hρ(ε, n∗i )2 d. By inductive hypothesis, then, the
total space used at the end of round i is at most:

B hρ(ε, n
∗
i−1)2 dni−1 + τi (137)

−
(
τi +D · hρ(ε, n∗i )2 d

)
≤ B hρ(ε, n∗i )2 d (ni + 1) + τi (138)

−
(
τi +D · hρ(ε, n∗i )2 d

)
= B hρ(ε, n

∗
i )

2 d

(
ni + 1− D

B

)
(139)

which for D ≥ B is at most B hρ(ε, n∗i )
2 dni and thus

proves the claim in this case too.

The proof is complete.

To prove Theorem 4.2, observe how the facts above imply
that for all i ≥ 1:

1. the update time at round i increases by an additiveO(τi+
hρ(ε, n

∗
i )

2 d). The update time at round i was originally
τi by definition, and moreover the bound of Theorem E.2
dominates hρ(ε, n∗i )

2 d from above.

2. the total space used at any point during round i is at most
τi +O(hρ(ε, n

∗
i )

2 dni).

F. Proofs for Section 5
F.1. Proof of Theorem 5.1

We prove a slightly different statement, from which Theo-
rem 5.1 follows by substituting ε.
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Theorem F.1. Let S be the set of split rules in the
form σ(x) = 1xj<t or σ(x) = 1xj=t, let G ∈
{Ggini, Ginfo, Gvar}, and let εεε = (α, β) ∈ (0, 1]2. One
can maintain an εεε-feasible decision tree with update time
O
(
d log4 n
ε3

)
, where

ε =


min(α,β)

100 G = Ggini

min(α,β)
130 logn G = Ginfo

min(α,β)
80c2 G = Gvar, c = supy∈Y |y|/2

Proof. Let us first consider the case G = Ggini. De-
fine ρ to be a max-gain construction rule with thresh-
old α

2 that assigns majority/average labels. By Theo-
rem C.10, ρ is γ-balanced for γ = α

32 . By Theorem G.1,
fρ(n) = O(dn log n). Let ε = min(α,β)

100 ; clearly ε < γ
2 and

γ − 2ε = Θ(ε). By Theorem 4.1, there is an ε-approximate
decision tree algorithm with update time O

(
d log4 n
ε3

)
. It is

straightforward to keep at every leaf v of T a priority queue
that maps every label to its count and, in constant time, re-
turns a majority label or average label of S(T, v) without
altering the running time. To show that the tree maintained
by the algorithm is εεε-feasible, consider the current dataset
Si and the current tree T i and apply Theorem D.1.

The proof for G = Ginfo is similar. Define ρ as above.
By Theorem C.10, ρ is γ-balanced where γ(n) = α

40 logn ,
by Theorem G.1 fρ(n) = O(dn log n), and letting ε =
min(α,β)
130 logn ensures ε < γ

2 and γ − 2ε = Θ(ε). The

O
(
d log4 n
ε3

)
bound and the εεε-feasibility follows like above.

The proof for G = Gvar is completely analogous.

F.2. Proof of Theorem 5.2

Let Y = {0, 1} and let c ⊆ X be a target concept. We
extend the definition of gain measure G from datasets to
distributions P over X . To ease the notation, for a split
σ we also denote by σ the set of examples x that satisfy
σ(x) = 1, and by σ its complement X \ σ. Moreover, for
every distribution P let P |σ be the conditional distribution
over σ. Finally, for every distribution P we let g(P ) =
P (c)(1− P (c)). Define:

G(P, σ) = g(P )− (P (σ)g(P |σ) + P (σ)g(P |σ))

Let S be a family of split function. We say S satisfies the
weak learning assumption if there exists γ > 0 such that,
for every distribution P over X , there exists σ ∈ S such
that G(P, σ) ≥ γ G(P, σ). This is the basic assumption
under many boosting techniques, and in particular under the
techniques for boosting trees of (Kearns & Mansour, 1999)

and (Takimoto & Maruoka, 1998).5 Now, a boosted tree T
with accuracy (i.e., expected binary loss) at most δ > 0 can
be obtained by the following construction rule ρ. Let v be a
leaf in T , and let Pv be the distribution of the examples that
reach v. The loss at v is L(Pv) = min(Pv(c), 1 − Pv(c)),
i.e., the error rate of the majority label of Pv. Note that
L(Pv) ≤ g(Pv). If g(Pv) ≤ δ then v remains as is it, and
`v is the majority label of Pv, so L(Pv) ≤ δ. If instead
g(Pv) > δ, then let P ′v be the balanced version of Pv, that
is, the one defined as

P ′v(x) =

{
Pv(x)
2Pv(c) x ∈ c
Pv(x)

2(1−Pv(c)) x /∈ c
(140)

so that P ′v(c) = 1− P ′v(c) = 1
2 . The construction rule then

chooses for v a split rule σv ∈ S such that

G(P ′v, σv) ≥ γ · g(P ′v) (141)

Note that σv exists by the weak learning assumption. By
Proposition 5 of (Takimoto & Maruoka, 1998), the same
inequality on the original distribution Pv:

G(Pv, σv) ≥ γ · g(Pv) ≥ γ · δ (142)

(Note that they use G for g, and therefore our G(P, σ)
is their GP (c) − GP (c|σ)). As shown by (Takimoto &
Maruoka, 1998), for every δ > 0 the construction rule ρ
produces a tree T with height h(T ) = O(log 1

δ ), whose
expected loss over P is at most δ. (Note that γ is fixed
and independent of γ; the O() notation in h(T ) thus hides
universal constants depending only on γ but not on δ).

Now let ε = γ·δ
96 = Θ(δ). Let S be a dataset, and let T

be a tree that is ε-approximate w.r.t. (S, ρ). (All arguments
above apply by letting each distribution be the uniform over
the relevant dataset; e.g., Pv will be the uniform distribution
over S(T, v), and so on). We want to show that T has
loss at most 2δ over S. Let v ∈ V (T ). If v is a leaf,
then by definition of ε-approximation there exists Sv with
4∗(S(T, v)Sv) ≤ ε such that ρ(Sv) outputs a label. By
definition of ρ this means that g(Sv) ≤ δ. By Lemma C.2,
and Lemma C.1 with f = 4,

g(S(T, v)) ≤ g(Sv) + 12ε < 2δ (143)

Suppose instead that v is internal with split σv. Again
by definition of ε-approximation there exists Sv with
4∗(S(T, v)Sv) ≤ ε such that ρ(Sv) outputs σv. By def-
inition of ρ this means g(Sv) > δ, and by the arguments
above,

G(Sv, σv) ≥ γ · g(Pv) ≥ γ · δ (144)

5To be precise, the assumption usually says that there exists a
decision stump with loss at most 1

2
− γ. (Takimoto & Maruoka,

1998) however show that, for the balanced distributions that are
used in the proof, one can equivalently use the gain.
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Applying Lemma C.6, again with f = 4, we obtain:

G(S(T, v), σv) ≥ G(Sv, σv)− 48ε ≥ γ · δ
2

(145)

Again by the arguments of (Takimoto & Maruoka, 1998),
the fraction of examples of S that T mispredicts is at most
2δ, and moreover T has height O(log 1

δ ) = O(log 1
ε ).

Finally, observe that the bounds of Theorem G.1 on the
cost fρ of computing ρ apply to our ρ, too. Indeed, one
just needs to compute the relative frequency of each label,
and then (implicitly) rebalance the distribution by weighing
each example appropriately when computing G.

G. Complexity of construction rules
Recall that fρ is the complexity of computing ρ as a function
of the length of the input. In this section we bound fρ for
some common construction rules, proving:

Theorem G.1. Let S be the set of all split rules in
the form σ(x) = 1xj<t or σ(x) = 1xj=t, let G ∈
{Ggini, Ginfo, Gvar}, and let ρ : (X × Y ) → S ∪ Y be
a max-G threshold construction rule that assigns majority
or average labels. Then fρ(n) ∈ O(dn log n).

As a majority/average label can be computed in time
O(|S| log |S|), to prove Theorem G.1 it is sufficient to
show that arg maxσ∈S G(S, σ) can be computed in time
O(d|S| log |S|), which we do in Lemma G.2, Lemma G.3
and Lemma G.4. Note that split rules in the form
1xj≤t,1xj≥t,1xj>t are captured by Theorem G.1 by re-
placing xj with −xj and/or σ with 1− σ.

Lemma G.2. Let Sj be the set of all split rules
in the form σ(x) = 1xj<t or σ(x) = 1xj=t.
Then arg maxσ∈Sj Ggini(S, σ) can be computed in time
O(|S| log |S|).

Proof. Suppose Sj is the set of all split rules in the form
1xj=t. Let S ∈ (X × Y )∗, and for every value t in the
domain of the j-th feature let σt be the rule defined by
σt(x) = 1xj=t. Let C,CL,L be associative arrays with
logarithmic access/update time and linear enumeration time.
First, in time O(|S| log |S|), go through every (x, y) ∈ S
and increase C[xj ], CL[xj ][y], L[y], and compute |S| and
Q =

∑
y∈L(L[y])2. Then in time O(1) compute:

Igini(S) = 1− Q

|S|2
(146)

Now let t ∈ C. Observe that, if (St,0, St,1) = σt(S), then:

Igini(St,0) (147)

= 1−
Q−

∑
y∈CL[t]

(
(L[y])2 − (L[y]− CL[t][y])2

)
(|S| − C[t])2

(148)

and:

Igini(St,1) = 1−
∑

y∈CL[t]

(CL[t][y])2

(C[t])2
(149)

Note that Igini(St,0) and Igini(St,1) can be computed
in time O(|CL[t]| log |S|) by iterating on CL[t]. Since
|CL[t]| ≤ C[t] and

∑
t C[t] = |S|, then in time

O(|S| log |S|) one can compute Igini(St,0) and Igini(St,1)
for all t ∈ C and therefore (using Igini(S) and C[t]) also
Ggini(S, σt). In time O(|S|) one then finds and returns
t∗ = arg maxt∈C Ggini(S, σt).

For the case 1xj<t, sort the distinct keys of C by increasing
value in time O(|S| log |S|); let them be t1 < . . . < tk. For
i = 1, . . . , k we keep track of cumulative versions of C and
CL that store:

C≤L [ti][y] =

i∑
j=1

CL[tj ][y] (150)

C≤[ti] =

i∑
j=1

C[tj ] (151)

Let N0,0 = 0 and N0,1 = 1, and for all i = 1, . . . , k define:

Ni,0 =
∑
y∈L

 i∑
j=1

CL[tj ][y]

2

(152)

=
∑
y∈L

(
C≤L [ti][y]

)2

(153)

Ni,1 =
∑
y∈L

L[y]−
i∑

j=1

CL[tj ][y]

2

(154)

=
∑
y∈L

(
L[y]− C≤L [ti][y]

)2

(155)

Note that, if (Sti,0, Sti,1) = σti(S), then:

Igini(Sti,0) = 1− Ni,0(
|S| − C≤L [ti]

)2 (156)

Igini(Sti,1) = 1− Ni,1(
C≤L [ti]

)2 (157)

It is not hard to compute C≤L [ti+1][y] and C≤[ti+1] from
C≤L [ti][y] and C≤[ti] in time O(|CL[ti+1]|), and therefore to
compute Ni,0 and Ni,1 and thus Igini(Sti,0) and Igini(Sti,1)
for all i in total time O(|S| log |S|). This implies the claim
in the same way as in the previous case.

Lemma G.3. Let Sj be the set of all split rules
in the form σ(x) = 1xj<t or σ(x) = 1xj=t.
Then arg maxσ∈Sj Ginfo(S, σ) can be computed in time
O(|S| log |S|).
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Proof. Suppose Sj is the set of all split rules in the form
1xj=t. Using the same notation of Lemma G.2, note that:

H(S) =
∑
y∈L

L[y]

|S|
log
|S|
L[y]

(158)

Moreover, for every t ∈ C:

H(St,1) =
∑

y∈CL[t]

CL[t][y]

C[t]
log

C[t]

CL[t][y]
(159)

Thus we can compute H(St,1) in time O(|CL[t]| log |S|).
To show that the same holds for H(St,0) we need some
more manipulations. Note that:

H(St,0) (160)

=
∑
y∈L

L[y]− CL[t][y]

|S| − C[t]
log

|S| − C[t]

L[y]− CL[t][y]
(161)

=
∑
y∈L

L[y]

|S| − C[t]
log
|S| − C[t]

L[y]
(162)

+
∑

y∈CL[t]

(
L[y]− CL[t][y]

|S| − C[t]
log

|S| − C[t]

L[y]− CL[t][y]

− L[y]

|S| − C[t]
log
|S| − C[t]

L[y]

)
The second summation can clearly be computed in time
O(|CL[t]| log |S|). The first summation can instead be writ-
ten as:

log(|S| − C[t])

|S| − C[t]

∑
y∈L

L[y]− 1

|S| − C[t]

∑
y∈L

L[y] log L[y]

(163)

which can be computed in time O(log |S|) if we pre-
compute

∑
y∈L L[y] log L[y] — note that

∑
y∈L L[y] =

|S|. We conclude that Ginfo(S, σt) can be computed
in time O(|CL[t]| log |S|). Since

∑
t |CL[t]| ≤ |S|,

one can compute Ginfo(S, σt) for all t ∈ C in time
O(|S| log |S|). In time O(|S|) one then finds and returns
t∗ = arg maxtGinfo(S, σt).

The case 1xj<t is similar, see the proof of Lemma G.2.

Lemma G.4. Let Sj be the set of split rules in the form
σ(x) = 1xj<t or σ(x) = 1xj=t. Then σ∗Sj (S,Gvar) can
be computed in time O(|S| log |S|).

Proof. The proof is similar to that of Lemma G.2.

H. Proofs for Section 6
H.1. Proof of Theorem 6.1

We prove a more general statement for several gain mea-
sures. First, let us introduce the relevant definitions and
notation in more detail.

The Orthogonal Vectors problem (OV) asks to decide
whether a set V ⊆ {0, 1}d contains two orthogonal vec-
tors. The Orthogonal Vector Conjecture OVH states that the
complexity of OV is at least n2−o(1) for all d = ω(log n),
where n = |V |. We show that, unless OVH fails, every fully
dynamic algorithm for a certain weighted version of the
dynamic exact approximate tree problem has amortized cost
polynomial in n. In this weighted version, each example
(x, y) is associated with a positive weight w((x, y)). When
the weights are integers, an example (x, y) with weight
w((x, y)) counts as w((x, y)) copies of (x, y). Our bound
holds for common gain measures such as variance gain,
Gini gain, information gain, and for labelling using the
mean and/or returning the label distribution at leaves. The
bound holds even when X = Y = {0, 1} and the maximum
weight of any example is in O(nε) for any sufficiently small
ε > 0.

Theorem H.1. Let X = {0, 1}d and Y = {0, 1} and
ε ∈ (0, 1

3 ), and let G ∈ {Ggini, Ginfo, Gvar}. Let ρ be
any construction rule based on a max-G rule with threshold
0 that labels by using the mean or the label distribution at
the leaves. Unless OVH fails, no algorithm with amortized
cost O(nε) maintains the tree of GREEDYρ under weighted
examples. This holds even in the case when all features
and the class are binary and the maximum weight of any
example is in O(n3ε).

Proof. For the sake of presentation we consider the case
when the maximum weight of any example is n1+ε. The
maximum weight can be reduced to n3ε by inserting n1−2ε

copies of the same example, each one with weight n3ε. Let
d = Θ(log2 n), let V ⊆ {0, 1}d be the OV instance, and
let n = |V |. For every u ∈ V let ū be its complement (i.e.
ūi = 1− ui) and Au ⊆ [d] be the support of u. Moreover
let a = |Au| and N = n1+ε. We let (x, y, w) denote a
labeled example (x, y) with weight w. For every u ∈ V
and every i ∈ Au, let zi ∈ {0, 1}d be the vector defined
by zij = 1j∈Au\{i} for all j ∈ [d]. Define the following
(multi)sets of weighted labeled examples:

S = {(ū, 0, 1), (ū, 1, 1) : u ∈ V } (164)
Qu = {(u, 1, N), . . . , (u, 1, N)} (165)

∪
{

(zi, 0, N) : i ∈ Au
}
, ∀u ∈ V

where the example (u, 1, N) appears a = |Au| times. Ob-
serve that |Qu| = 2|Au|. For any A ⊆ [d] let

S(A) = {(x, y) ∈ S : xi = 1,∀i ∈ A} (166)
S(A)j = {(x, y) ∈ S : xi = 1,∀i ∈ A, y = j}

(167)

Observe that |S(A)0| = |S(A)1| by construction of S.

Fix any u ∈ V , let S′ = S+Qu, and let T = GREEDYρ(S
′).

We will show that T contains a leaf v such that S′(T, v) =
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S(Au)∪Qu. Note that S(Au) 6= 0 if and only if V contains
a vector orthogonal to u, and moreover S(Au) 6= 0 if and
only if the label histogram at v gives non-zero weight to 0.
It is also immediate to see that v is the leaf reached by u in
T . Therefore by querying T for u we will learn whether V
contains a vector orthogonal to u.

To show the existence of the leaf v, we show that the gain
of any feature in Au is always strictly larger than that of
any other feature in [d]. We will assume the Gini gain, but
similar calculations work for the information gain and the
variance gain, too. The idea is that the total weight of the
“gadget” Qu dominates the total weight of S by a factor of
nε, and therefore the max-gain split will be the split that
yields maximum gain over Qu alone.

Let S′ = S ∪ Qu and let B ⊆ Au. Let k = |S′(B)1| −
|S′(B)0|. For the Gini gain by splitting on feature i ∈
Au \ B, given that we have split on all features in B i.e.
G(S′(B), i) we obtain

G(S′(B), i) (168)

≥ g(S′(B)) (169)

− N + n

2aN − kN
·

(
1−

(
N + n

2

N + n

)2

−
( n

2

N + n

)2
)

− 2aN − (k + 1)N + n

2aN − kN

(
1−

(
aN + n

2

2aN − (k + 1)N + n

)2

−
(
aN − (k + 1)N + n

2

2aN − (k + 1)N + n

)2
)

≥ g(S′(B))− o(1) (170)

− 2aN − (k + 1)N + n

2aN − kN

(
1−

(
aN + n

2

2aN − (k + 1)N + n

)2

−
(
aN − (k + 1)N + n

2

2aN − (k + 1)N + n

)2
)

as |S′(B ∪ {i})1| − |S′(B ∪ {i})0| = k + 1 and there is a
fraction of aN

2aN−(k+1)N examples in Qu(B ∪ {i}) labeled

1 and a fraction of aN−(k+1)N
2aN−(k+1)N examples in Qu(B) ∪ {i})

labeled 0.

When splitting on feature j ∈ [d] \Au, we obtain:

G(S′(B), j) (171)

≤ g(S′(B))−

(
1−

(
aN

2aN − kN

)2

−
(
aN − kN

2aN − kN

)2
)

(172)

= g(S′(B))−

(
1−

(
a

2a− k

)2

−
(
a− k

2a− k

)2
)

(173)

as |S′(B∪{j})1|−|S′(B∪{j})0| = |S′(B)1|−|S′(B)0| =
k and there is a fraction of aN

2aN−kN examples in Qu(B ∪
{j}) labeled 1 and a fraction of aN−kN

2aN−kN examples in
Qu(B ∪ {j}) labeled 0.

Observe that the following inequality holds for any 0 < k ≤
a, a > 1,

2a− (k + 1)

2a− k
·
(

1−
(

a

2a− (k + 1)

)2

−
(
a− (k + 1)

2a− (k + 1)

)2
)

< 1−
(

a

2a− k

)2

−
(
a− k
2a− k

)2

. (174)

Hence, G(S′(B), i) > G(S′(B), j) for n sufficiently large,
for every i ∈ Au \B, j ∈ [d] \Au.

We can conclude our reduction. For every ` ∈ [d] we con-
struct a decision tree T` of maximum height ` by inserting
every element of S. Then, for every u in V and every
` ∈ [d]:

• we insert all of Qu in T`
• we query for T`(u); if the answer is a label distribution

where 0 has positive weight, then we return “yes”
• we remove all of Qu from T`.

If no “yes” was returned, then we return “no”. By the
observations above, this correctly solves OV over V .

Suppose every tree T` can be maintained in amortized time
τ . As |Qu| = Õ(n1−2ε), |S| ∈ O(n), and d ∈ O(log2 n),
the total running time of the procedure above is in:

O(nτ log2 n) +O(n|Qu|τ log2 n) (175)

= O(n2−2ετ log2 n) (176)

= O(n2−2ε+o(1)τ) (177)

Thus τ = O(nε) implies OV can be solved in time
O(n2−ε+o(1)) thereby falsifying OVH.

H.2. Proof of Theorem 6.2

The 3SUM conjecture states that the 3SUM problem (de-
ciding if an array A of n integers contains three distinct
elements that sum to 0) cannot be solved in time n2−Ω(1).
We reduce from the range mode query problem, which asks
to maintain an n-entry vector of integers A and to answer
queries in the form (i, j) with the most frequent element in
the interval A[i . . . j]. It is known that, unless the 3SUM
conjecture fails, there exists c > 0 such that any algorithm
for the range mode query problem has update and/or query
time Ω(nc) (Patrascu, 2010).

Let X = Y = R. Let h ∈ {2, 3, 4} to be fixed later, let
G = Gvar, and let λ be the function that labels using a
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mode (i.e., any most-frequent label). Let S be the family of
all split rules in the form σ(x) = 1xj<t. Let T be the tree
produced by GREEDYρ where ρ is the construction rule that
returns any split that maximizes G if such a maximum is
positive and the depth of the current node is less than h, and
that returns the label decided by λ otherwise.

The reduction is as follows. The tree T is initially empty.
Upon receiving an update request A[i] := v, we first delete
any previous example whose feature has value i from the
current dataset (this can be done in time O(log n) by keep-
ing a self-balancing tree that stores the current dataset using
the feature value as a key). We then create the labeled exam-
ple (i, v) ∈ X × Y and insert it into T . Moreover, we keep
track of the maximum value of v in any update seen so far;
let it be v∗. Upon receiving a query (i, j), we insert in T the
labeled examples si := (i− .5, C2) and sj := (j + .5, C),
where C is a sufficiently large power of n (say, n10), which
can be represented using O(log n) bits. Let us now analyze
the decision taken by ρ at the root of T at this point.

Let S be the current dataset. We assume that all elements
of S except for si have label 0; our conclusions hold even
without this assumption, since what we actually need is
just that C2 dominates all other labels by sufficiently large
poly(n) factors. Since h is positive, then ρ returns a split
rule; let S0, S1 be the corresponding subsets and assume
si ∈ S0 (a symmetric argument applies otherwise). The
conditional variance given by the split rule on S can then be
easily calculated recalling that var(B(p)) = p(1− p) and
that var(cX) = c2 var(X) for any random variable X:

|S0|
|S|
· 1

|S0|

(
1− 1

|S0|

)
C4 +

|S1|
|S|
· 0 (178)

= |S|−1

(
1− 1

|S0|

)
C4 (179)

The expression above is minimized when |S0| is minimized.
Therefore S0 must consist precisely of all elements in S
with label at most i+ .5, and S1 of all elements of S with
label at least i+1. If instead si ∈ S1, a symmetric argument
shows that S0 consists precisely of all elements in S with
label at most i− 1, and S1 of all elements of S with label at
least i+ .5. In any case there exists a child v of the root of
T such that S(T, v) contains all examples of S with label at
least i, including sj (and possibly si) but no example of S
with label smaller than i. One can prove that the argument
holds even removing the assumption that all labels except
that of si are 0: doing so would change (178) by at most
O(C2/n2), which leaves the optimal split unchanged.

Applying the same argument above to S(T, v) and noting
that h ≥ 2 shows that v must have in turn a child w whose
split rule isolates precisely si, if si ∈ S(T, v), and which
otherwise separates all examples with label at least j+1 (and
possibly sj , too). We conclude that, for some h ∈ {2, 3, 4},

T has a leaf z such that S(T, z) consists precisely of the
points with label between i and j. Querying the tree for
the label of i then returns precisely a mode of A[i . . . j],
as desired. As we do not know the right h in advance, we
maintain in parallel three distinct decision trees for h = 2,
h = 3, and h = 4. It is easy to see that, at query time, one
can choose the correct tree to be queried based solely on
the values of i, j and n (and therefore in polylogarithmic
time). After answering the query, we delete si and sj from
all trees. This implies that maintaining GREEDYρ requires
time nc for some c > 0 unless 3SUM fails.
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