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Abstract

This study presents a proof of concept for
utilizing Graph Kolmogorov Arnold Networks
(GraphKAN/GKAN) in predicting the binding
affinity of small molecules to protein targets.
Working with three protein targets, we explored
the potential of GraphKAN to infer binding
affinities. We compared the performance of
GraphKAN with MLP-based graph neural net-
works, 1D convolutional neural networks (1D
CNN), and machine learning algorithms like ran-
dom forests. Although the model did not achieve
state-of-the-art performance, our results demon-
strate its feasibility and highlight its promise as
a novel approach in computational drug discov-
ery. This work opens new research directions,
suggesting that further refinement and exploration
of GraphKAN could significantly impact the ef-
ficiency and accuracy of binding affinity predic-
tions, ultimately aiding in the discovery of new
therapeutic agents. Source code is available at -
https://github.com/TashinAhmed/ferroin.

1. Introduction
Kolmogorov Arnold Networks (KAN) (Liu et al., 2024),
a newly designed replacement of Multi-Layer Perceptron
(Haykin, 1998; Cybenko, 1989; Hornik et al., 1989), which
has learnable activation functions on edges (weights) instead
of fixed activation function on nodes (neurons). Also, re-
search like Liquid Time-Constant Networks (LTCs) (Hasani
et al., 2021), a new class of time-continuous recurrent neu-
ral networks with modulated linear dynamics and inter-
linked nonlinear gates, which demonstrate stable behavior,
enhanced expressivity, and superior performance in time-
series prediction tasks compared to traditional and modern
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RNNs. These studies are pioneering new directions in AI
research, prompting us to explore innovative approaches to
developing neural networks.

In this paper, we have prepared a proof of concept employ-
ing KAN instead of MLP with Graph Neural Networks
(GNN) (Zhou et al., 2020) on a small molecule-protein inter-
action prediction problem. We have prepared a comparative
analysis on the results of a popular machine learning algo-
rithm, i.e., Random Forests (Breiman, 2001), 1 Dimensional
CNN (Kiranyaz et al., 2021), a simple MLP-based GNN,
and KAN-based GNN.

The search for effective small molecule drugs, which in-
teract with cellular proteins to alter their functions and are
crucial for treating various diseases, traditionally involves
the laborious and time-consuming process of physically
synthesizing and testing molecules against protein targets;
given the vastness of the drug-like chemical space, esti-
mated at 1060 compounds (Kirkpatrick & Ellis, 2004), this
method proves impractical for thorough exploration. To
address this challenge, researchers tested 133 million small
molecules against three protein targets using DNA-encoded
chemical library (DEL) technology (Gironda-Martı́nez et al.,
2021), resulting in the creation of the Big Encoded Library
for Chemical Assessment (BELKA), an invaluable dataset
poised to revolutionize small molecule binding prediction
through machine learning (ML). Recent advancements in
ML and the availability of large datasets provide an oppor-
tunity to revolutionize this process. By leveraging compu-
tational models, it is possible to infer the binding affinities
of small molecules to protein targets, significantly acceler-
ating the drug discovery process. The goal is to develop
models to predict which drug-like small molecules will bind
to specific protein targets, thereby paving the way for more
accurate and efficient drug development. Related works are
presented in Appendix C.

For our proof of concept, we utilized a subset of the dataset
for initial testing, the results of which are detailed in this
manuscript. Future work will involve analyzing the com-
plete dataset.

https://github.com/TashinAhmed/ferroin
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Figure 1. A row from the training dataset. A, B, and C are the building blocks in SMILES format. D is the structure of the fully assembled
molecule in SMILES. This includes the three building blocks and the triazine core. Note [Dy] stands for the DNA linker. Structures are
drawn with rdkit (Bento et al., 2020). For this particular example, the target protein name BRD4 and the binding will not be possible in
this case.

2. Dataset
The training dataset consists of roughly 98 million examples
per protein, with 200,000 validation examples per protein
and 360,000 test molecules per protein (Andrew Blevins,
2024). The test set contains building blocks that do not
appear in the training set to assess the generalizability of
the models. These datasets are highly imbalanced, with
approximately 0.5% of examples classified as binders. The
data collection involved three rounds of triplicate selection
to identify binders experimentally. In our PoC, we have
utilized a subset of this large dataset consisting of 20,000
samples per protein target.

2.1. Protein Targets

Three protein targets were screened in this study:

• EPHX2 (sEH): Soluble epoxide hydrolase, a poten-
tial drug target for high blood pressure and diabetes
progression.

• BRD4: Bromodomain 4, involved in cancer progres-
sion and targeted by drugs inhibiting its activities.

• ALB (HSA): Human serum albumin, the most common
protein in the blood, plays a role in drug absorption
and transport.

Details on the dataset preparation are available in Appendix:
A.

3. Methods
3.1. Adaption of GNN to Incorporate KAN

In this study, we showed the adaptation of the traditional
GNN by integrating KANs. This approach aims to enhance
the feature transformation capabilities of the GNN, leverag-
ing the learnable activation functions of KANs for improved
expressivity and performance.

3.1.1. GNN ARCHITECTURE

The baseline GNN model utilized in our study consists of
multiple layers, each performing the following steps:

• Node Feature Aggregation: Node features and edge
attributes are combined using max aggregation.

• Feature Update: A linear layer updates the aggregated
node features.

• Non-linear Transformation: Batch normalization,
ReLU activation, and dropout are applied sequentially
to the updated features.

• Global Pooling: After processing through all GNN
layers, global max pooling aggregates node features
into a graph-level representation.

• Output Generation: The pooled features are passed
through a final linear layer to produce the output.
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Figure 2. GraphKAN: example of training loss for 10 epochs on
sEH.

3.1.2. INCORPORATION OF KAN

We replace the standard MLP in the GNN with the Naive
Fourier KAN layer. The KAN layer’s forward pass involves
Fourier transformations, enhancing the model’s ability to
capture complex patterns in the data.

Initialization (Algorithm 1): Input dimensions and output
dimensions are defined. Fourier coefficients are initialized,
sampled from a normal distribution, and scaled appropri-
ately. If bias addition is enabled, a bias term is initialized.

Forward Pass (Algorithm 2): Input data is reshaped and
Fourier-transformed. Cosine and sine components are com-
puted and concatenated. Fourier-transformed features are
processed through Einstein summation to yield the output,
with an optional bias addition.

3.1.3. INTEGRATION WITH GNN

The Naive Fourier KAN layer is integrated into the GNN
layers as follows:

Each GNN layer combines node features and edge attributes
before applying the Fourier transformation using the KAN
layer. This integration enhances feature transformation,
enabling the model to capture more intricate relationships
within the graph data.

3.2. Proposed GraphKAN

In GraphKAN, we have replaced the MLP with KAN to
create a simple GNN. We have used Naive Fourier Layer as
the proposed architecture. The reasoning behind choosing
the layer has been discussed in section 4.

Naive Fourier KAN Layer has been presented in Algorithm
1 and the forward pass of the layer in Algorithm 2.

3.3. Evaluation Metric

Evaluation script computes the average precision score for
different subsets of the dataset and then averages those
scores. Which means the average precision for each protein
and each split group is calculated individually and then been
averaged. This method ensures a balanced evaluation across
different groups.

mean score =
1

|score|

|Np|∑
i=1

|Sg|∑
j=1

(1|selectij |>0) . scoreij

(1)

In equation 1, protein names (Np) and split groups
(Sg) are the lists of unique protein names and split groups.
1|selectij |>0 is an indicator function that is 1 if the subset
selectij is not empty and 0 otherwise. If the subset is not
empty if |selectij | > 0, then the subset of rows where the
protein name and split group match is defined as scoreij .

Details on the evaluation metric are discussed in Appendix
B.

4. Experiments and Discussions
We have experimented with a subset of the dataset with
20,000 samples of each protein and tried to provide a com-
parison among Random Forests, vanilla 1D CNN, a simple
MLP-based GNN, and our proposed KAN-based GNN.

To generate ECFP features, we utilized RDKit, an open-
source cheminformatics tool, which efficiently creates
hashed bit vectors, streamlining the feature generation pro-
cess for robust molecular representation in machine learning
applications (Bento et al., 2020).

Algorithm 1 Naive Fourier KAN Layer Initialization

1: Input:
2: input dim: Dimension of the input data
3: out dim: Dimension of the output data
4: grid size: Number of grid points for Fourier features

(default: 300)
5: add bias: Boolean flag to indicate if bias should be

added (default: True)
6: Initialize Fourier coefficients F with shape

(2, out dim, input dim, grid size), sampled from a
normal distribution and scaled by 1√

input dim·
√

grid size

7: if add bias is True then
8: Initialize bias b with shape (1, out dim)
9: end if
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Algorithm 2 Naive Fourier KAN Layer Forward Pass

1: Input: x of shape (N, input dim)
2: Reshape x to (N, input dim)
3: Construct grid vector k as k = [1, 2, . . . , grid size]
4: Reshape x to (N, 1, input dim, 1)
5: Compute cosine component C as C = cos(k · x)
6: Compute sine component S as S = sin(k · x)
7: Reshape C and S to (1, N, input dim, grid size)
8: Concatenate C and S along the first dimension, result-

ing in shape (2, N, input dim, grid size)
9: Perform the Einstein summation y =

einsum(F, [d, b, i, k],CS, [d, j, i, k] → b, j), yielding
shape (N, out dim)

10: if add bias is True then
11: Add bias b to y
12: end if
13: Reshape y to the original output shape
14: Output: Return the computed output y

4.1. Comparative Evaluation with Other Approaches

We have used sklearn RandomForestClassifier (Varoquaux
et al., 2015) with 100 trees to evaluate the performance us-
ing Extended-Connectivity Fingerprints (ECFPs). Despite
its simplicity, this technique has demonstrated efficacy, of-
ten performing comparably to more advanced methods in
prior benchmarks (Weinberger et al., 2009; Rogers & Hahn,
2010). The process involves decomposing molecular graphs
into collections of subgraphs, which are then hashed into bit
vectors, creating a compact representation of the molecular
structure. This is analogous to the hashing trick used in NLP
for representing bags of words before transformer models
(Toure et al., 2013; Karthikeyan et al., 2014).

A simple 1D-CNN is trained for 100 epochs and the highest
dimension of 1024.

We trained a vanilla GNN model using PyTorch Geometric
(Fey & Lenssen, 2019). The GNN Layer combines node
features and edge attributes, using max aggregation and a
linear layer to update node features. The model consists of
6 such layers, each followed by batch normalization, ReLU
activation, and dropout (0.3 probability). After processing
through these layers, global max pooling aggregates node
features into a graph-level representation, which is passed
through a final linear layer to produce the output. The
model’s current scores shown in Table 1 are trained using
the AdamW optimizer with a learning rate of 0.001 and a
binary cross-entropy loss function. Training is conducted
over 100 epochs, with a hidden dimension size of 128 and a
batch size of 32.

Figure 3. GraphKAN: example of training loss for 100 epochs on
sEH.

4.2. Analysis on GraphKAN

GraphKAN incorporates a naive Fourier KAN layer to en-
hance feature transformations. The NaiveFourierKANLayer
applies Fourier transformations to input features, using a
grid size of 300 (Liu et al., 2024) and adding a bias term.
This layer is used within the GNN Layer, which combines
node features and edge attributes before applying the Fourier
transformation. The GNN model consists of 6 such custom
layers, each followed by batch normalization and a dropout
rate of 0.3 for the preliminary experimentations.

It has been observed that implementing the KAN for graphs
in the latent feature space significantly enhances perfor-
mance. Specifically, employing a linear layer to project
the input features into a latent space prior to applying the
KAN layer is crucial. This can be achieved by using a linear
transformation such as:

self.lin in = nn.Linear(in feat,
hidden feat, bias=use bias)

This approach has been found to be superior compared to
directly applying the KAN layer on the input features, which
can be represented as:

self.lin in = KANLayer(in feat,
hidden feat, grid feat,
addbias=use bias)

Notably, without the linear layer for low-dimensional latent
feature projection, the KAN layer lacks a training signal,
impeding its ability to train effectively. This intriguing ob-
servation suggests a need for further theoretical exploration
following empirical validation. Whether this technique is
equally effective for other data types, such as images and
text, remains to be determined.

In our experiments, the Stochastic Gradient Descent (SGD)
optimizer and its variant ASGD (Bottou, 2012) demon-
strated more excellent stability compared to the Adam and
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Table 1. Outcomes of the experimented approaches on a subset of
the dataset with 100 iterations each. The average precision for
each protein and each split group will be calculated individually,
and these scores will then be averaged. Detailed explanation on
the evaluation metric described in Appendix B.

MODEL MEAN SCORE
RANDOM FORESTS 0.251
1D CNN 0.402
VANILLA GNN 0.193
GRAPHKAN 0.428

AdamW optimizers (Zhuang et al., 2022). However, a trade-
off was observed in terms of convergence speed. Adam
converged in approximately 300 epochs, whereas SGD re-
quired around 12,000 epochs to achieve similar results. De-
spite the slower convergence, the stability of SGD might be
advantageous in certain scenarios.

5. Future Works
As KAN has primarily been implemented and demonstrated
on small datasets (Liu et al., 2024), it presents a signifi-
cant challenge to validate its efficacy and performance on
larger datasets such as BELKA, which exceeds 50GB of
parquet files. We discussed about the motivation behind im-
plementing KAN Protein-Ligand Bioaffinity predictions in
Appendix D. Currently, we are employing a batch-by-batch
training approach to process at least 50% of the dataset.
Future work will focus on refining the manuscript to in-
clude detailed architectural explanations and the rationale
behind the selection of network structures, providing a more
comprehensive understanding of KAN’s application and
potential in large-scale data scenarios. We will also open-
source the source codes, models, and detailed explanations
after the end of the competition in a repository that will be
made available following the initial review process. After
the initial review, we will only open-source the primary net-
work. Once the competition concludes, we will release the
full codebase, including the weight files. Also, we have to
enhance the words of the manuscript, fix typos, and arrange
the sections properly.

GraphKAN has the potential to replace large networks by
building solutions with comparatively small architectures,
making them more viable in terms of cost and business
applications. Our work represents a small step towards
achieving this goal. We have discussed commercial potential
of GraphKAN in Appendix E.

We have also ensembled the models outcome to boost the
overall performance over the dataset. The weights distribu-
tions for the outcome is 0.436 are GraphKAN: 0.71, Ran-
dom Forests: 0.07, GNN: 0.05, 1D CNN: 0.17 to improve
the outcome for the competition.

6. Conclusion
In this study, we introduced GraphKAN to predict the bind-
ing affinity of small molecules to protein targets. By con-
ducting a proof of concept with three protein targets, we
demonstrated the feasibility and potential of GraphKAN
in this domain. Our comparative analysis with other ma-
chine learning models, including MLP-based graph neural
networks, 1D convolutional neural networks (1D CNN),
and random forests, highlighted that while GraphKAN did
not achieve state-of-the-art performance, it shows promise
as an innovative method in computational drug discovery.
The results of our experiments highlight the need for fur-
ther refinement and exploration of GraphKAN. Specifically,
future work will focus on validating the performance of
GraphKAN on larger datasets such as BELKA, which poses
significant challenges due to its size and complexity. Addi-
tionally, we will delve deeper into the architectural aspects
of GraphKAN, providing detailed explanations and ratio-
nales behind our design choices. Our findings suggest that
GraphKAN could significantly enhance the efficiency and
accuracy of binding affinity predictions with continued de-
velopment. This would ultimately aid in discovering new
therapeutic agents by enabling more effective exploration
of the vast chemical space. To support the broader research
community, we plan to open-source our models and code-
base following the completion of the initial review process
and the conclusion of the related competition. In conclu-
sion, while this study represents an early step in leveraging
GraphKAN for drug discovery, it opens new avenues for
research. It highlights the potential of innovative neural net-
work architectures in advancing the field of computational
biology. Combining ensemble methods to boost perfor-
mance, our work sets the stage for more sophisticated and
practical approaches to predicting molecular interactions,
potentially transforming the drug development landscape.
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