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Abstract
Leveraging the in-context learning (ICL) capabil-
ity of Large Language Models (LLMs) for tabu-
lar classification has gained significant attention
for its training-free adaptability across diverse
datasets. Recent advances, such as TABPFN, ex-
cel in tabular small-scale datasets but struggle
to scale for large and complex datasets. Our
work enhances the efficiency and scalability of
TABPFN for larger datasets by incorporating
linear attention mechanisms as a scalable al-
ternative to complexity-quadratic self-attention.
Our model, TABFLEX, efficiently handles tabu-
lar datasets with thousands of features and hun-
dreds of classes, seamlessly scaling to millions of
samples. For instance, TABFLEX processes the
poker-hand dataset with more than a million
samples in just 5 seconds. Our extensive evalua-
tions demonstrate that TABFLEX can achieve over
a 2× speedup compared to TABPFN and a 1.5×
speedup over XGBoost, outperforming 25 tested
baselines in terms of efficiency across a diverse
range of datasets. Furthermore, TABFLEX re-
mains highly effective in large-scale datasets, de-
livering strong performance with significantly re-
duced computational costs, especially when com-
bined with data-efficient techniques such as di-
mensionality reduction and data sampling.

1. Introduction
Enhancing the applicability of the Transformer architec-
ture (Vaswani et al., 2017) for diverse data modalities be-
yond textual data and non-language tasks (Achiam et al.,
2023; Brown et al., 2020; Bai et al., 2023a; Dubey et al.,
2024) has achieved remarkable success (Gemini Team et al.,
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2023), from vision (Bai et al., 2023b), audio (Chu et al.,
2023; 2024) to bio-signals (Wan et al., 2023) and protein
sequences (Rives et al., 2019; Hayes et al., 2024). Tabu-
lar data, as one of the most fundamental and critical data
types in real-world applications – including recommenda-
tion systems (Zhang et al., 2019), finance (Arun et al., 2016),
and medicine (Johnson et al., 2016) has attracted a great
deal of attention and attempts to explore the potential of
Transformer-based models, particularly for tabular classifi-
cation (Arik & Pfister, 2021; Hollmann et al., 2023; Huang
et al., 2020; Dinh et al., 2022; Gorishniy et al., 2021). For
example, the FT transformer (Gorishniy et al., 2021) con-
verts each sample into a sequence of embeddings to use the
transformer to make predictions. TabTransformer (Huang
et al., 2020) learns embeddings for categorical features, con-
catenating them with continuous features. On the other
hand, LIFT (Dinh et al., 2022) converts tabular data com-
bined with feature names and task descriptions into textual
sentences as input to LLMs. In particular, compared to tra-
ditional methods for tabular data such as gradient-boosted
trees (Friedman, 2001), these transformer-based methods
often suffer from high latency overhead for training and
inference, primarily due to their larger model sizes.

The recent TABPFN (Hollmann et al., 2023) addresses the
latency limitations of Transformer-based methods by utiliz-
ing the in-context learning (ICL) capability (Brown et al.,
2020) of LLMs for directly learning a new task from ex-
amples without parameter updates, attaining superior effi-
ciency and performance on small-scale datasets. In particu-
lar, TABPFN incorporates all training and testing samples
into a single prompt and classifies the testing samples in
one forward pass, making it highly efficient and effective
on simple and small tabular datasets. However, TABPFN
faces challenges with complex datasets that require large
sample sizes for effective learning, primarily due to the scal-
ability limitations imposed by the quadratic complexity of
the attention mechanism, introducing difficulties for both
the scalable pretraining and inference processes.

In this work, we address the limitations of the scalability
of TABPFN and improve the effectiveness of Transformer-
based methods for tabular classification. We first systemati-
cally analyze scalable alternatives to attention mechanisms,
focusing on state-space models (SSMs) within the Mamba
model (Gu & Dao, 2024) and linear attention (Katharopou-
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los et al., 2020). We find that (Finding 1) the inherent causal-
ity of SSMs impedes ICL performance compared to non-
causal mechanisms. In contrast, (Finding 2) linear attention
does not suffer from this limitation, maintaining comparable
performance with improved computational efficiency. Thus,
we develop TABFLEX leveraging linear attention as the
attention mechanism, comprising three sub-models where
each is optimized for different scenarios and selected based
on dataset characteristics (e.g., sample size). TABFLEX
efficiently handles tabular datasets with thousands of fea-
tures and hundreds of classes, scaling to millions of samples.
Via the comprehensive evaluation on a diverse range of
datasets, we find that (Finding 3) TABFLEX consistently
achieves competitively high performance with impressive
computational efficiency compared to 25 baselines, includ-
ing TABPFN and XGBoost. Notably, TABFLEX perform
highly on poker-hand dataset with 1M+ samples in less
than 5 seconds and attains high accuracies on image datasets
such as MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009) in less
than one second. Furthermore, our ablation studies suggest
that TABFLEX can seamlessly incorporate data-efficient
techniques such as dimensionality reduction and data sam-
pling for more computation reduction.

2. Related Works
Transformer-based approaches for tabular classification.
The pioneering TabNet (Arik & Pfister, 2021) applies un-
supervised pre-training on masked tabular datasets to infer
missing features, enhancing the model’s understanding of
data and features before supervised learning on feature selec-
tion for the final decision boundary. TabTransformer (Huang
et al., 2020) proposes handling categorical features by con-
catenating their contextual embeddings into numerical fea-
tures. FT-Transformer (Gorishniy et al., 2021) converts
samples to embedding sequences using a feature tokenizer
for the transformer. LIFT (Dinh et al., 2022) converts each
sample into a sentence using a predefined template incor-
porating the task description and feature names, as the nat-
ural input to apply ICL in LLM. TabR (Gorishniy et al.,
2024) proposes a retrieval-augmented model with a custom
kNN-like component to retrieve and extract signals from
the nearest neighbors. BiSHop (Xu et al., 2024) establishes
interconnected directional learning modules to process data
column-wise and row-wise for tabular learning. XTab (Zhu
et al., 2023) utilizes independent featurizers and federated
learning to resolve inconsistent column types and quantities.

The widely adopted transformer-based approaches for tab-
ular classification—TABPFN (Hollmann et al., 2023) is
trained offline on synthetic datasets derived from previous
distributions to perform ICL, allowing efficient inference
in small-scale tabular classification tasks. However, it is

limited to small tabular classification datasets. To handle it,
many concurrent variants are proposed. MixturePFN (Xu
et al., 2025) improves scalability by routing new test sam-
ples to a pool of scalable prompters using Sparse Mixture
of In-Context Prompters, while LoCalPFN (Thomas et al.,
2024) proposes retrieving a local subset of task-specific data
for efficiently fine-tuning on. Ma et al. (2024) introduce
in-context data distillation to optimize TabPFN’s context
and remove the data size constraint. TuneTable (Feuer et al.,
2024) scales TABPFN to large datasets by performing a
prefix tuning per dataset. TabPFNv2 (Hollmann et al., 2025)
enhances TabPFN’s accuracy in low-data regimes (fewer
than 10,000 samples), complementing our focus on speed
and scalability. Our method is also based on TABPFN, ex-
tending its scalability to large datasets while maintaining
and improving efficiency by simply replacing the softmax
attention with linear attention.

Attention mechanisms and scalable alternatives. As
Transformers (Vaswani et al., 2017) face the scaling chal-
lenge for long sequences due to the quadratic computational
and memory complexity, scalable alternatives have been pro-
posed (Orvieto et al., 2023; Sun et al., 2023). While RNNs
provide efficient linear-time inference, they struggle with
training efficiency and lack the parallelization capabilities
of Transformer architectures. Linear attention (Katharopou-
los et al., 2020) addresses both concerns by reformulating
self-attention as a linear dot-product of kernel feature maps,
reducing the computational complexity from quadratic to
linear time. Furthermore, causal linear attention can be in-
terpreted as a form of RNN, as it predicts based on a current
token and a “hidden state,” summarizing information from
the previous tokens. State-space models (SSMs) address
RNNs’ drawbacks by considering linear RNNs with novel
algorithms for efficient training (Gu et al., 2021; 2022; Gu
& Dao, 2024; Dao & Gu, 2024; Peng et al., 2023; Orvieto
et al., 2023; Sun et al., 2023). Dao et al. (2022) identified an-
other bottleneck in attention mechanisms’ speed stemming
from the relatively slow access to high-bandwidth memory
(HBM) in GPUs and proposed FlashAttention (Dao, 2024;
Shah et al., 2024) to restructure attention computation to
optimize the utilization of high-speed on-chip SRAM while
minimizing access to slower HBM, enhancing the efficiency
of GPU-based attention operations.

See Section A for an extended discussion of related works.

3. Preliminaries
We elucidate key concepts of TABPFN and two prominent
scalable attention mechanisms (SSMs and linear attention).

Implementation of ICL in TabPFN (Hollmann et al.,
2023). Fig. 1 illustrates the design of TABPFN, where
each sample is treated as a token, starting with training sam-
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Figure 1. Illustration of TABPFN’s for classifying the entire
dataset in one forward pass. In each layer, attention outputs
for training sample positions attend to all other training samples,
ensuring that predictions are invariant to the order of training
samples. Conversely, attention outputs for test sample positions
attend only to training samples, ensuring independent predictions
for each test instance, unaffected by other test samples. The final
classification for each test sample is derived by applying an MLP
to the corresponding Transformer output at its respective position.

ples and followed by testing samples. These samples are
embedded (features x and labels y for training and only
features x for testing samples) with MLPs before being
concatenated. Outputs corresponding to training sample po-
sitions are computed by attending to all other training sam-
ples, while the outputs for test sample positions attend to the
training samples — enabling each test prediction to leverage
the full training set without being influenced by other test
samples. Test predictions are generated by projecting the
Transformer outputs at test positions into probability distri-
butions. This implementation is functionally equivalent to
standard ICL but significantly more efficient. Standard ICL
requires m (number of test samples) separate prompts, each
containing all training samples and one test sample, necessi-
tating m prediction passes. A notable feature of TABPFN
is the encoder with non-causal attention, allowing outputs
within training sample positions to interact freely, rendering
the order of training samples inconsequential.

State-Space Models (SSMs). The SSM framework is
based on a continuous system that transforms a one-
dimensional signal x(t) ∈ R into y(t) ∈ R through an
intermediate H-dimensional latent state h(t) ∈ RH , as
shown in (1). Here, B ∈ RH×1 is the input transition
vector and A ∈ RH×H is the state transition matrix. The
latent state h(t) is then projected into the output y(t) using
the output mapping vector C ∈ R1×H . For deep learning
applications, discrete A and B replace continuous A and
B through discretization methods, such as zero-order hold.
This yields updated hidden state and output equations as
shown in (2). While (2) is structured as linear RNN, it can

be reformulated as Convolutional Neural Network (CNN) as
(3), enabling efficient and parallelizable training. SSMs ad-
dress the quadratic time complexity problem w.r.t sequence
length, as the output for each new token depends solely on
the hidden states and the current token, in contrast to stan-
dard attention mechanisms that attend to all previous tokens.
Consequently, SSMs operate as a causal mechanism.

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) (1)

ht = Aht−1 +Bxt, yt = Cht (2)

K = (CB,CAB, . . . ,CA
t−1

B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K (3)

Linear attention. Assume a sequence with length n ∈ N+

and embedding size d ∈ N+. We first focus on non-causal
cases. For the i-th position, let qi ∈ Rd, ki ∈ Rd, and
vi ∈ Rd denote the query, key, and value vectors, respec-
tively, where i = 1, . . . , n. In softmax attention, the sim-
ilarity between qi and kj for any i ̸= j is computed as
exp (q⊤

i kj). The attention output at the i-th position, de-
noted as ai ∈ Rd, is obtained by averaging the values
across all tokens weighted by their similarities. This pro-
cess requires O(n) complexity, as it necessitates comput-
ing similarities with all n tokens. Linear attention reduces
this complexity by replacing the similarity computation
from exp(q⊤

i kj) with ϕ(qi)
⊤ϕ(kj), where ϕ : Rd → Rd

is a feature conversion function. For linear attention out-
puts (4) across all positions, we identify two common terms:∑n

j=1 ϕ (kj) ·vj and
∑n

j=1 ϕ (kj), which can be computed
once. Consequently, for the linear output at position i, we
only need to compute ϕ(qi) and multiply it with these two
statistics, resulting in O(1) complexity, thus significantly
reducing computational demands.

(Softmax) ai =

∑n
j=1 exp

(
q⊤
i kj

)
· vj∑n

j=1 exp
(
q⊤
i kj

) (4)

(Linear) ai =
ϕ (qi)

⊤ ∑n
j=1 ϕ (kj) · vj

ϕ (qi)
⊤ ∑n

j=1 ϕ (kj)

For causal cases, for position i, we replace
∑n

j=1 with∑i
j=1, as each token attends only to previous tokens. The

statistics then become
∑i−1

j=1 ϕ (kj) · vj and
∑i−1

j=1 ϕ (kj),
which can be viewed as hidden states in RNNs. Thus, causal
linear attention can be conceptualized as a linear RNN,
which is also a variant of SSM.

4. Architectural Exploration for Scalable
Tabular Learning

We analyze State-Space Models and linear attention as at-
tention architecture alternatives to enhance the scalability
of TABPFN, focusing on tabular classification with ICL.
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Figure 2. Impact of model architecture on tabular classification performance. Please refer to Fig. 8 for a detailed breakdown.

4.1. Causal Model vs. Non-Causal Model

Ideally, the order of training samples (i.e., in-context demon-
strations) in the prompt should not affect the final prediction.
However, SSMs are inherently causal, computing outputs
based on new inputs and hidden states derived from pre-
vious inputs. This suggests a potential drawback in this
context. To validate our hypothesis regarding the subopti-
mal performance of causal models in ICL, we conduct two
experiments: (i) comparing the performance of TABPFN
with a modified version of the same model that uses causal
attention, and (ii) evaluating TABPFN against both its origi-
nal version and a model incorporating Mamba (specifically
Mamba-II), a leading SSM-based architecture.

Causal Attention vs. Non-Causal Attention. Our first
experiment compares the ICL capabilities of non-causal
and causal attention mechanisms using the same experi-
mental setup as TABPFN, shown in Fig. 2a. We replicate
TABPFN’s methodology for generating synthetic datasets
from priors, training a modified version employing causal
attention instead. For the inference, we generate 20 syn-
thetic datasets that maintain a consistent 1000 test samples
with varying numbers of training samples. We average the
classification accuracy across 20 simulations.

We observe that non-causal attention generally outperforms
causal attention. As more training samples are given, the
accuracy of the non-causal model continues to improve.
In contrast, the causal attention model shows accuracy im-
provements only within a very small range of training sam-
ples, after which performance begins to decline with addi-
tional samples. These findings indicate that TABPFN with
non-causal attention functions as an effective ICL model,
adeptly leveraging context from a large number of samples.
Conversely, the same model equipped with causal attention
fails to capitalize on the additional data, highlighting the su-
periority of the non-causal approach in this tabular learning

scenario. Our observation is supported by empirical stud-
ies (Ding et al., 2024; Gong et al., 2023), which show that
causal attention is suboptimal for ICL. Moreover, most the-
oretical analyses of ICL assume non-causal attention (Ahn
et al., 2023; Bai et al., 2023c).

Mamba vs. Transformer. We further investigate whether
Mamba, the most popular SSM-based model, is suitable for
ICL. We replicate TABPFN’s training methodology, sub-
stituting the transformer layer with an Mamba layer. To
evaluate performance, we test the modified model on the
same 150 validation datasets used in the TABPFN study
(See Section F.3 for details). Fig. 2b visualizes the training
loss and test mean AUC for both methods. The model with
Mamba exhibits significantly higher training loss than the
original TABPFN, with substantially lower test mean AUC.
This experiment with a popular SSM model further demon-
strates that SSMs underperform non-causal models in our
specified tasks.

4.2. Softmax Attention vs. Linear Attention

To address the quadratic complexity of standard attention
mechanisms, linear attention has emerged as a popular alter-
native (Katharopoulos et al., 2020). To investigate its impact
on ICL in tabular classification, we replaced TABPFN’s at-
tention mechanism with linear attention and trained a model
following the same strategy as TABPFN. We then evaluated
both TABPFN and this linear attention model on 57 real
datasets (used in Table 2 of McElfresh et al. (2023), where
TABPFN achieved top performance among 19 methods for
tabular classification). Fig. 2c visualizes the test accuracy
and runtime. Our results demonstrate that linear attention
does not decrease performance and significantly improves
speed, making it a suitable method for scaling TABPFN to
larger datasets. Finally, in Section B.1, we demonstrate that
linear attention significantly outperforms sliding window
attention (Beltagy et al., 2020) in our setting.
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5. TABFLEX: Scaling TabPFN for Large
Datasets

Based on the empirical findings presented in Section 4, we
identify non-causal linear attention as the optimal candidate
to replace standard softmax attention in TABPFN. This sec-
tion proceeds in two parts: first, we conduct a thorough anal-
ysis of the linear attention mechanism to ensure its efficient
implementation.; subsequently, we leverage this efficient im-
plementation to train our proposed model, TABFLEX. Our
approach aims to enhance the scalability and performance of
tabular learning while maintaining computational efficiency.

Computation Analysis. Dao et al. (2022) demonstrates
that significant wall-clock speedup for softmax attention
can be achieved by optimizing the number of memory read-
s/writes between GPU high bandwidth memory (HBM)
and GPU on-chip SRAM. Based on this criterion, Yang
et al. (2024) proposed FlashLinearAttention for speeding up
causal linear attention. This raises a natural question: can
we further improve the speed of non-causal linear attention
(we omit non-causal when it does not cause further confu-
sion) by reducing the number of memory reads/writes? Our
results in Theorem 1 analyze the #HBM access and HBM
memory usage of FlashLinearAttention and linear attention,
concluding that further optimization is not necessary. In
Section C.1, we first propose an HBM-efficient linear atten-
tion, and then show that the PyTorch implementation only
incurs a marginal increase in terms of #HBM access and
HBM memory usage, with FLOPS remaining unchanged.
We provide more details, including the analysis of different
attention mechanisms and actual memory usage and runtime
visualization of these mechanisms in Section C.1. The re-
sulting theorem below demonstrates that the straightforward
PyTorch implementation of linear attention achieves linear
HBM access, matching the performance of FlashLinearAt-
tention after optimization. Consequently, our model adopts
the straightforward implementation of linear attention.

Theorem 1 (High Bandwidth Memory Efficiency of Linear
Attention). Let Q,K,V ∈ RN×D represent the query, key,
and value matrices for a single attention head, where N
is the sequence length and D is the embedding size. With
any element-wise kernel feature mapping (e.g., elu(·) + 1),
both causal FlashLinearAttention (Alg. 2) and non-causal
linear attention (Listing 1) require O(ND) HBM accesses,
O(ND) HBM memory, and O(ND2) FLOPS to compute
the attention output.

TABFLEX. While TABPFN excels on small, simple
datasets with fewer than 100 features and 10 classes, it
struggles with more complex tasks, e.g., high-dimensional
datasets or those with numerous classes. We aim to extend
the use cases by training a model that maintains comparable
speed to TABPFN while offering reasonable performance

Algorithm 1 Conditional Model Selection
Input :A dataset D with n instances of d features

1 // Large dataset with few features if n ≥ 3K and d ≤ 100
then

2 return TABFLEX-L100(D)
3 // High-dimensional datasets else if d > 100 or (d/n ≥ 0.2

and n ≥ 3K) then
4 if d ≤ 1000 then
5 return TABFLEX-H1K(D)
6 else
7 Apply random projection to D to reduce the number

of features to 1000, yielding D′ return TABFLEX-
H1K(D′)

8 // Small datasets else
9 return TABFLEX-S100(D)
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Figure 3. Runtime and AUC comparison of TABPFN and
TABFLEX on validation datasets.

across a broader spectrum of datasets. Since models trained
on large, high-dimensional datasets often struggle in small
regions due to optimization issues, we introduce three spe-
cialized models to address this limitation.

• TABFLEX-S100 is trained on prompts with 1152 length
(same as TABPFN), 100 features, and 10 classes. This
is optimized for low-dimensional datasets. ‘S’ denotes
standard configuration, ‘100’ indicates feature capacity.

• TABFLEX-L100 utilizes prompts of 50K length, 100 fea-
tures, and 10 classes. This is designed for large, low-
dimensional datasets. ‘L’ signifies a larger sample size,
and ‘100’ represents feature count.

• TABFLEX-H1K employs prompts of 50K length, 1K
features, and 100 classes. This is suited for large, high-
dimensional datasets. ‘H’ indicates high-dimensional ca-
pabilities, and ‘1K’ denotes 1K features.

Additional training details, including training loss, hy-
perparameters, and other relevant information, are pro-
vided in Section C.2. Our code is available at https:
//github.com/microsoft/ticl.

We apply the conditional model selection strategy, shown in
Alg. 1, to select the model based on the target dataset’s size

5

https://github.com/microsoft/ticl
https://github.com/microsoft/ticl


TABFLEX: Scaling Tabular Learning to Millions with Linear Attention

and dimensionality, ensuring optimal performance across di-
verse data characteristics. The decision thresholds align with
the training regimes of the models. TABFLEX-S100, sharing
TabPFN’s training setup but with an updated architecture,
is deployed similarly (n ≤ 3K, d ≤ 100). TABFLEX-L100,
trained on low-dimensional (d ≤ 100) but larger datasets, is
used for longer sequences (n ≥ 3K, d ≤ 100). TABFLEX-
H1K, trained on high-dimensional data, is assigned to han-
dle those cases accordingly. We note that performance is
not highly sensitive to the chosen decision boundaries, sup-
ported by our results in Section C.4.

In Fig. 3, we visualize the mean runtime and mean AUC
comparison of TABPFN and TABFLEX on the validation
datasets, comprising 40 datasets with varying sample sizes
(up to 100K), dimensions (up to 3K), and number of classes
(up to 100). Detailed information about these datasets is pro-
vided in Section C.3. Our analysis reveals that TABFLEX not
only exhibits superior performance but also demonstrates
faster execution times compared to TABPFN.

6. Performance Evaluation of TABFLEX

We evaluate TABFLEX’s performance and speed across 115
OpenML tabular datasets (Vanschoren et al., 2013). See
Section D.2 for the complete list of baselines, and a detailed
description of the models’ implementation.

6.1. Experimental Setup

Unless otherwise stated, we follow the identical experiment
setup of McElfresh et al. (2023) for baseline benchmarking.

Datasets. For classification tasks, we consider datasets of
two difficulty levels. For simpler tasks, we use two collec-
tions of datasets—98 and 57 in total—originally reported in
Tables 1 and 2 of McElfresh et al. (2023), which are char-
acterized by smaller sample sizes and lower feature dimen-
sions. For more challenging tasks, we evaluate the methods
on the TabZilla hard benchmark, which includes 36 difficult
datasets—11 of which are high-dimensional (100–2000 fea-
tures) and large-scale (≥ 50K instances). Detailed dataset
information, including names and characteristics, is pro-
vided in Section D.1, with additional datasets and results
available in Section D.4.

Baselines. We evaluate our approach against a compre-
hensive set of baselines, as considered by McElfresh et al.
(2023), including (i) four classical methods, e.g., Random
Forest (Liaw et al., 2002), (ii) three Gradient Boosted De-
cision Trees (GBDT) methods, e.g., XGBoost (Chen &
Guestrin, 2016), (iii) ten Non-Transformer Neural Network
(Non-TF NN) methods, e.g., SAINT (Somepalli et al., 2021),
(iv) four Transformer (TF) methods, e.g., TABPFN, with
two recent methods designed for scaling tabular classifica-
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Figure 4. Visualization of tested methods with processing times
under 0.5 seconds per 1000 instances on the TabZilla hard
benchmark. We report the median AUC across the completed
datasets, as several methods completed only a subset of the datasets.
Compared to other methods (XGBoost and TABPFN) that success-
fully ran on all datasets, TABFLEX achieves a 2× speedup while
maintaining relatively good performance.

tion: TuneTables (Feuer et al., 2024), a TF method, and
HyperFast (Bonet et al., 2024), a Non-TF NN method.

6.2. Evaluation on Simple Datasets

We evaluate models on two sets of data: 98 simple datasets
from Table 1 and 57 small datasets from Table 2 of McEl-
fresh et al. (2023). The results are reported in Table 11
(Section D.3) and Table 1, respectively. For each dataset,
we consider ten different train/test splits, computing the
score mean and standard deviation, as well as the total run-
time per 1000 instances. We then calculate the median and
mean of these values across the entire set of datasets: 98 sim-
ple datasets for Table 11 and 57 small datasets for Table 1.
Algorithms are ranked based on AUC and time. Our results
demonstrate that TABFLEX achieves nearly identical perfor-
mance to TABPFN on small, simple datasets while offering
more than a 2× speedup. Compared to faster methods, such
as Decision Tree and Linear Model in Table 11, and Deci-
sion Tree, Linear Model, LightGBM, and KNN in Table 1,
their performance is significantly inferior to TABFLEX.

6.3. Evaluation on Hard Datasets

In this experiment, we compare TABFLEX to baselines on
the TabZilla hard benchmark (McElfresh et al., 2023), which
includes 36 datasets. However, due to the challenging na-
ture of the datasets in the TabZilla hard benchmark, many
baselines fail to execute successfully. In Fig. 4, we visu-
alize the Median AUC and the runtime per 1000 instances
across the 36 datasets, with methods that successfully ex-
ecuted on all datasets marked as stars, and methods that
failed to execute on some datasets marked as circles. This
figure focuses on efficient methods, excluding those slower
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Algorithm Class Mean AUC Std. AUC Time / 1000 inst.

median mean mean median median mean

TabPFN (Hollmann et al., 2023) TF 0.97 0.90 0.21 0.15 0.82 1.04
TABFLEX (Ours) TF 0.96 0.89 0.22 0.16 0.29 0.48
CatBoost (Prokhorenkova et al., 2018) GBDT 0.95 0.89 0.23 0.16 2.59 19.51
ResNet (He et al., 2016) Non-TF NN 0.93 0.84 0.24 0.16 13.90 23.40
SAINT (Somepalli et al., 2021) TF 0.93 0.84 0.24 0.20 173.63 195.16
RandomForest (Liaw et al., 2002) Classical 0.92 0.86 0.24 0.17 0.45 0.61
XGBoost (Chen & Guestrin, 2016) GBDT 0.91 0.86 0.24 0.18 0.49 0.95
HyperFast (Bonet et al., 2024) Non-TF NN 0.91 0.83 0.22 0.17 64.38 136.74
DANet (Chen et al., 2022) Non-TF NN 0.89 0.80 0.25 0.19 67.70 78.21
SVM (Cortes, 1995) Classical 0.87 0.75 0.28 0.22 0.71 87.84
NODE (Popov et al., 2019) Non-TF NN 0.86 0.80 0.24 0.18 157.18 194.07
DeepFM (Guo et al., 2017) Non-TF NN 0.86 0.79 0.28 0.27 5.48 5.95
FTTransformer (Gorishniy et al., 2021) TF 0.84 0.78 0.25 0.21 25.40 33.34
LightGBM (Ke et al., 2017) GBDT 0.83 0.76 0.28 0.21 0.25 0.67
MLP-rtdl (Gorishniy et al., 2021) Non-TF NN 0.83 0.74 0.26 0.20 12.65 22.97
LinearModel (Cox, 1958) Classical 0.81 0.71 0.27 0.21 0.05 0.06
TuneTables (Feuer et al., 2024) TF 0.80 0.72 0.32 0.24 53.48 113.49
STG (Yamada et al., 2020) Non-TF NN 0.79 0.67 0.29 0.23 18.46 21.26
TabTransformer (Huang et al., 2020) TF 0.79 0.64 0.24 0.16 19.04 32.84
MLP (Rumelhart et al., 1986) Non-TF NN 0.72 0.65 0.29 0.25 17.83 27.67
DecisionTree (Quinlan, 1986) Classical 0.63 0.55 0.35 0.31 0.01 0.02
KNN (Cover & Hart, 1967) Classical 0.62 0.56 0.30 0.25 0.03 0.03
TabNet (Arik & Pfister, 2021) TF 0.56 0.50 0.42 0.40 34.66 42.09
VIME (Yoon et al., 2020) Non-TF NN 0.49 0.48 0.37 0.27 18.43 20.11
NAM (Agarwal et al., 2021) Non-TF NN 0.33 0.38 0.38 0.31 147.30 341.58

Table 1. Performance of algorithms across 57 datasets of size less than or equal to 1250 (used in Table 2 of McElfresh et al. (2023)).
The reported AUC values are normalized. The “Time/1000 inst.” column represents the combined training and test time for all datasets,
divided by the total number of samples. Notably, TABFLEX achieves top-2 performance, with significantly faster runtimes compared to
baselines of similar performance, and a 2× speedup relative to TABPFN.

than 0.5 seconds per 1000 instances. We observe that only
TABFLEX, TABPFN, and XGBoost successfully run on all
datasets. Notably, TABFLEX is faster and achieves better
performance than TABPFN, and is faster than XGBoost
while sacrificing only a small margin of performance.

Next, we focus on 11 high-dimensional and large datasets
within the TabZilla hard benchmark. Since most baselines
do not obtain complete results for all datasets, instead of
comparing TABFLEX to a specific baseline, we report the
5th-best AUC and 5th-best runtime, using these values to
summarize the general performance distribution of the base-
lines. The results are presented in Table 2. We observe
that, for these datasets, TABFLEX substantially outperforms
TABPFN. While TABPFN follows McElfresh et al. (2023)’s
strategy of using only 3000 training samples, TABFLEX
utilizes all available training data, achieving superior perfor-
mance with comparable or slightly higher processing times.
TABFLEX exhibits competitive performance among base-
lines while maintaining high efficiency. Notably, on large
datasets with more than 50K instances, TABFLEX is signifi-
cantly faster than the baselines. For instance, on the largest

dataset, poker-hand, containing over one million samples,
TABFLEX significantly outperforms other baselines, classi-
fying all samples in just 4.88 seconds, while the fifth fastest
method requires more than 500 seconds.

6.4. Extension to Regression Tasks

So far, we have presented our evaluation on classification
tasks. For the extension to regression, a simple workaround
is to convert the task into classification by discretizing the
target range into bins. Shown in Table 3, we apply this
technique for regression data with numerical features from
Grinsztajn et al. (2022), where targets are discretized into
10 and 100 uniform bins. For baselines, we use linear regres-
sion and the XGBoost Regressor (100 estimators, max depth
6), both with default parameters from the scikit-learn
package. Although regression is not the primary goal of
TABFLEX, it demonstrates reasonable performance.

Furthermore, we compare TABFLEX with TuneTa-
bles (Feuer et al., 2024) using their setup in Sec. D.5 and
extend TABFLEX to image datasets, shown in Section D.6.
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Dataset #Classes #Features #Instances AUC Time (seconds)

5th Best TABPFN TABFLEX 5th Best TABPFN TABFLEX

SpeedDating 2 120 8378 0.86 0.55 0.85 1.58 1.58 1.89
higgs 2 28 98050 0.79 0.72 0.76 3.46 2.82 4.92
cnae-9 9 856 1080 1.00 0.48 0.96 0.51 0.51 3.80
albert 2 78 425240 0.71 0.69 0.70 33.98 9.39 13.46
audiology 24 69 226 0.92 0.82 0.81 0.13 0.23 0.26
jasmine 2 144 2984 0.86 0.70 0.86 0.68 1.27 0.99
nomao 2 118 34465 0.99 0.76 0.99 4.03 1.82 5.34
Bioresponse 2 1776 3751 0.85 0.50 0.75 2.49 1.29 12.38
MiniBooNE 2 50 130064 0.98 0.98 0.97 10.80 3.19 7.22
airlines 2 7 539383 0.70 0.63 0.64 6.53 9.73 4.20
poker-hand 10 10 1025009 0.54 0.72 0.84 504.52 15.36 4.88

Table 2. Performance comparison of TABFLEX, TABPFN, and other baselines on large, high-dimensional datasets from the
TabZilla hard benchmark (McElfresh et al., 2023). Baseline results are summarized by the 5th highest AUC and the 5th lowest
runtime for each dataset. TABFLEX significantly outperforms TABPFN on these datasets, achieving comparable performance to other
baselines while maintaining exceptional speed.

Dataset TABFLEX Linear Regression XGBoost

cpu_act 0.9622 0.7661 0.9872
pol 0.7770 0.4471 0.9876
elevators 0.7386 0.8336 0.8984
wine_quality 0.1966 0.2842 0.4398
Ailerons 0.7284 0.8137 0.8272
houses 0.6803 0.6496 0.8469
house_16H 0.2519 0.1708 0.5276
diamonds 0.9085 0.9213 0.9477
Brazilian_houses 0.8943 0.3459 0.9828
Bike_Sharing_Demand 0.3796 0.3291 0.6995
nyc-taxi-green-dec-2016 0.1547 0.3109 0.5732
house_sales 0.6656 0.7375 0.8732
sulfur 0.4026 0.3068 0.7497
medical_charges 0.8173 0.8118 0.9790
MiamiHousing2016 0.8112 0.7302 0.9306
superconduct 0.6867 0.7169 0.9086
yprop_4_1 0.0000 0.0449 0.0000
abalone 0.3689 0.4622 0.5125

Table 3. Comparison of performance across regression tasks
for TABFLEX, Linear Regression, and XGBoost. Regression
datasets are from Grinsztajn et al. (2022). To extend TABFLEX

to regression, we discretize the target variable into 10 and 100
uniform bins and use the better-performing setting, converting the
task to classification. Despite being designed for classification,
TABFLEX delivers reasonable performance on regression tasks.

7. Ablation Studies
We conduct ablation studies, including a fine-grained com-
parison with XGBoost and the integration of other data-
efficient techniques. Performance and runtime trends with
respect to training sample sizes, along with detailed experi-
mental setups, are provided in Section E.

7.1. Fine-Grained Comparison with XGBoost

In Fig. 4, we observe a larger performance gap between
TABFLEX and XGBoost compared to the simpler datasets

shown in Table 1. To better understand this discrep-
ancy, we conduct a more fine-grained comparison between
TABFLEX and XGBoost using synthetic datasets. XG-
Boost is configured with a tree depth of 3 and 20 esti-
mators to balance speed and accuracy. We evaluate the
accuracy-runtime tradeoff across varying feature dimen-
sions (100, 200, 400, 600, 800, 1000) and training sample
sizes (1000, 2000, . . . , 12000), averaging results over 20
synthetic datasets with diverse distributions. TABFLEX
consistently outperforms XGBoost in both accuracy and
inference time when the feature dimensionality is below
800. As the number of features increases, the performance
gap narrows, and XGBoost eventually surpasses TABFLEX
at 800 features. Nevertheless, TABFLEX achieves a stronger
overall tradeoff across most settings.

7.2. Incorporating Data-Efficient Techniques:
Dimensionality Reduction and Data Sampling

Since TABFLEX utilizes the ICL for prediction, reducing
the complexity of the data can further improve the inference
efficiency. We combine TABFLEX with two data-efficient
techniques (feature dimension reduction and training data
sampling) and investigate how they affect the balance be-
tween efficiency and classification performance. See Sec-
tion E.1 for detailed setup and datasets.

First, for dimensionality reduction, we apply three tech-
niques: Principal components analysis (PCA) (Maćkiewicz
& Ratajczak, 1993), Singular Value Decomposition (SVD),
and random linear projection (Vempala, 2005). Fig. 6
presents the performance and latency of TABFLEX where
feature dimensions are varied. Datasets are selected from
Table 9 where feature dimensions are greater than 100. On
average, dimensions can be reduced to 10% to reduce la-
tency more than 2 times while AUC scores remain the same
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Figure 5. Accuracy-runtime tradeoff of TABFLEX and XG-
Boost across feature dimensions (100, 200, 400, 600, 800, 1000)
and training sample sizes (1000, 2000, . . . , 12000). Results are
averaged over 20 synthetic datasets with diverse data distributions.
TABFLEX consistently achieves better performance and faster in-
ference than XGBoost when the number of features is below 800.
As dimensionality increases, the gap diminishes, with XGBoost
overtaking TABFLEX at 800 features.

Figure 6. Varying feature dimension with dimensionality reduc-
tion methods. Results are measured on a set of datasets whose
number of features is greater than 100. Dimension of features
can be reduced up to 90% to preserve the performance (left) with
inference being 2× faster (right).

or even better than the original predictions (100%).

Similarly, we conduct ablation studies on training data size
with different sampling methods (K-centers, K-medoids, un-
certainty sampling, and random sampling), shown in Fig. 7.
The tested datasets are selected from Table 9 where the data
size is greater than 1000 instances and the feature dimen-
sion is lower than 100. Fig. 7 illustrates that the original
performance can be preserved with only 20% of training
data while the latency can be significantly reduced.

8. Conclusion & Discussion
Conclusion. To extend TABPFN for ICL on larger and
more challenging tabular classification tasks, in this paper,
we conduct a comprehensive exploration of scalable alterna-
tives to attention, ultimately selecting non-causal linear at-
tention. Through computational analysis for algorithmic op-
timization of the implementation of linear attention, we de-
velop our model, TABFLEX. We demonstrate that TABFLEX
achieves comparable performance to TABPFN on small

Figure 7. Varying training data with sampling methods. Results
are measured on a set of datasets whose data size is greater than
1000 and whose dimension is lower than 100. For most datasets,
only 20% of training data may be required to preserve the perfor-
mance (left), while significantly reducing the latency (right).

datasets with more than 2× speedup, while outperforming
most other baselines with significantly reduced computa-
tional time. Moreover, TABFLEX significantly outperforms
TABPFN on larger and more complex datasets, becoming
much faster than most other baselines on datasets larger than
100K samples, while maintaining performance on par with
state-of-the-art methods. We posit that TABFLEX further
elevates the performance ceiling of neural network-based
models on tabular classification tasks.

Limitations & Future Works. While our method
achieves fast inference and competitive performance on
datasets with around two thousand features, scaling to even
larger feature spaces remains a compelling research direc-
tion. In this paper, we also explored adapting TABFLEX to
image classification tasks on small-scale datasets such as
MNIST and CIFAR-10. Extending this approach to large-
scale image classification could broaden its applicability,
especially given its extremely fast inference and ability to
generate predictions for all test samples simultaneously.
Further extending TABFLEX to other modalities such as
audio and video is another promising direction. This may
require new strategies for synthetic data generation for pre-
training, along with systematic analyses of the effects of
architectural hyperparameters such as depth and embedding
size. These efforts would help optimize the model for high-
dimensional inputs and enhance its generalization across
domains. Currently, our focus on tabular tasks is limited to
classification. We attempted a naive extension to regression
by discretizing the target range into bins and treating it as a
classification problem. A promising future direction is to ex-
tend TABFLEX to regression tasks using a more principled
approach, such as training on regression-specific synthetic
data. Lastly, TabPFNv2 is a concurrent work that further
improves the performance of TABPFN. Investigating how
incorporating linear attention might impact TabPFNv2 is
also an interesting question for future research.
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Impact Statement
This research tackles a key limitation in applying TABPFN
to tabular classification tasks: scalability. By introducing
TABFLEX, which leverages linear attention, it enables ef-
ficient processing of tabular datasets with millions of sam-
ples and thousands of features. The primary impact lies in
making in-context learning feasible for a broader range of
large-scale tabular problems, which is particularly useful
in domains such as finance and recommendation systems.
Furthermore, the successful integration of linear attention in
TABFLEX lays the groundwork for future studies on efficient
attention mechanisms and model architectures for tabular
and other non-NLP domains, as supported by promising
preliminary results in image classification.
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A. Extended Section 2: Related Works
Classical Machine Learning Approaches for Tabular Classification. Classical machine learning algorithms have long
been the foundation of tabular data classification. These methods include k-Nearest Neighbors (KNN) (Cover & Hart, 1967),
Logistic Regression (Cox, 1958), Decision Trees (Quinlan, 1986), and Support Vector Machines (SVM) (Cortes, 1995).
These classical models, while effective, often struggle to handle complex, high-dimensional tabular datasets, motivating the
development of more sophisticated approaches.

Gradient-Boosting Decision Trees for Tabular Classification Gradient-boosting decision trees (GBDTs) (Friedman,
2001) have emerged as a cornerstone in tabular classification, owing to their exceptional ability to capture intricate patterns
in structured data. GBDTs refine their outputs to minimize errors by iteratively combining predictions from weak learners,
resulting in high predictive accuracy. XGBoost (Chen & Guestrin, 2016) introduced weighted quantile sketching, advanced
regularization techniques, and sparsity awareness, achieving state-of-the-art performance. LightGBM (Ke et al., 2017), a
computationally efficient GBDT implementation, employs Gradient-based One-Side Sampling and a leaf-wise tree growth
strategy. CatBoost (Prokhorenkova et al., 2018) leverages symmetric trees and introduces ordered boosting, with a particular
emphasis on effectively handling categorical features. These advancements have rendered GBDTs not only powerful but
also versatile tools in the domain of tabular data, dominating tabular classification in terms of both speed and performance
until the advent of TABPFN.

Transformer-based Approaches for Tabular Classification. Recent years have witnessed numerous attempts to employ
Transformers for tabular classification (Arik & Pfister, 2021; Huang et al., 2020; Gorishniy et al., 2021; Dinh et al., 2022;
Hollmann et al., 2023). These methods utilize Transformers in diverse ways to tackle tabular data. TabNet (Arik & Pfister,
2021), one of the pioneering efforts, applies unsupervised pre-training on masked tabular datasets to infer missing features,
thereby enhancing the model’s understanding of datasets and features. It then performs supervised learning on feature
selection to obtain the final decision boundary, akin to decision trees. Huang et al. (2020) introduced TabTransformer, which
leverages Transformers to better handle categorical features by concatenating their contextual embeddings with numerical
features. While TabTransformer processes categorical and continuous features separately, SAINT (Somepalli et al., 2021)
projects both feature types into a shared embedding space before passing them through transformer blocks, thereby enhancing
overall performance. FT-Transformer (Gorishniy et al., 2021) introduces a feature tokenizer to convert each example into a
sequence of embeddings, enabling Transformers to process tabular datasets and make predictions. LIFT (Dinh et al., 2022)
utilizes a pre-trained language model with parameter-efficient fine-tuning, incorporating task descriptions and converting
each sample into a complete sentence with feature names in the prediction prompt. TabR (Gorishniy et al., 2024) proposes a
retrieval-augmented model with a custom kNN-like component to retrieve and extract signals from the nearest neighbors.
BiSHop (Xu et al., 2024) establishes interconnected directional learning modules to process data column-wise and row-wise
for tabular learning. XTab (Zhu et al., 2023) utilizes independent featurizers and federated learning to resolve inconsistent
column types and quantities.

TABPFN (Hollmann et al., 2023) is trained offline on synthetic datasets derived from prior distributions and performs ICL
rather than additional parameter tuning for a given dataset, enabling it to solve small tabular classification tasks within
seconds. Prior to our work, TuneTable (Feuer et al., 2024) extended TABPFN to scale to large datasets by performing
prefix-tuning for each dataset to achieve better performance. MixturePFN (Xu et al., 2025) improves scalability by routing
new test samples to a pool of scalable prompters using Sparse Mixture of In-Context Prompters, while LoCalPFN (Thomas
et al., 2024) proposes retrieving a local subset of task-specific data for efficiently fine-tuning on. Ma et al. (2024) introduce
in-context data distillation to optimize TabPFN’s context and remove the data size constraint. TuneTable (Feuer et al., 2024)
scales TABPFN to large datasets by performing a prefix tuning per dataset. TabPFNv2 (Hollmann et al., 2025) enhances
TabPFN’s accuracy in low-data regimes (fewer than 10,000 samples), complementing our focus on speed and scalability.
Our method is also based on TABPFN, extending its scalability to large datasets while maintaining and improving efficiency
by simply replacing the softmax attention with linear attention.

Attention Mechanisms and Scalable Alternatives. While attention in Transformers (Vaswani et al., 2017) is central
to the strong performance of language models, it encounters scaling challenges for long sequences due to its quadratic
computational and memory complexity. To overcome these limitations, several scalable alternatives have been proposed (Gu
& Dao, 2024; Dao & Gu, 2024; Katharopoulos et al., 2020; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023), all aiming
to achieve subquadratic time complexity. In contrast, classical RNNs provide the advantage of efficient linear-time inference
but suffer from limitations in training efficiency, lacking the parallelization capabilities of Transformer architectures. Linear
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attention (Katharopoulos et al., 2020) addresses both concerns by reformulating self-attention as a linear dot-product of
kernel feature maps, reducing the computational complexity from quadratic to linear time. Additionally, causal linear
attention can be interpreted as a form of RNN, as the model makes predictions based on a current token and a “hidden
state,” which summarizes information from the previous tokens. State-space models (SSMs), another popular variant of
RNNs, address the drawbacks of classical RNNs by considering linear RNNs and proposing novel algorithms for efficient
training (Gu et al., 2021; 2022; Gu & Dao, 2024; Dao & Gu, 2024; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023).

Dao et al. (2022) identified that another bottleneck in attention mechanisms’ speed stems from the relatively slow access to
high-bandwidth memory (HBM) in GPUs. To address this limitation, FlashAttention (Dao et al., 2022; Dao, 2024; Shah
et al., 2024) restructures attention computation to optimize the utilization of high-speed on-chip SRAM while minimizing
access to slower HBM, thereby enhancing the efficiency of GPU-based attention operations. FlashAttention strategically
balances computational efficiency against memory bandwidth efficiency. Although the computational complexity in terms
of sequence length remains quadratic, the optimizations introduced by FlashAttention significantly accelerate attention
computation in wall-clock time.

Non-Transformer Neural Network-based Approaches for Tabular Classification. Non-Transformer neural networks,
such as Multi-Layer Perceptrons (MLP) (Rumelhart et al., 1986), were explored for tabular classification long before
Transformer-based methods, but their performance was limited. In recent years, several novel neural network techniques
have been developed for this task, including ResNet (He et al., 2016), DANet (Chen et al., 2022), NODE (Popov et al.,
2019), DeepFM (Guo et al., 2017), STG (Yamada et al., 2020), VIME (Yoon et al., 2020), and NAM (Agarwal et al.,
2021). DeepFM (Guo et al., 2017) employs a factorization machine-based neural network to learn from categorical data.
Drawing inspiration from CatBoost, Popov et al. (2019) presents a novel neural network architecture designed specifically
for tabular data, named Neural Oblivious Decision Ensembles (NODE). While self- and semi-supervised learning have
demonstrated effectiveness in the domains of computer vision and natural language processing, Yoon et al. (2020) proposed
Value Imputation and Mask Estimation (VIME), which represents the first attempt to address tabular tasks using a self- and
semi-supervised learning framework. (Agarwal et al., 2021) proposed the Neural Additive Model (NAM), an interpretable
neural network that maintains strong performance on tabular data. Yamada et al. (2020) proposed a feature selection method
using stochastic gates (STG), which is a neural network-based and effective approach for tabular data. Chen et al. (2022)
designed an abstract layer, a specialized neural component for tabular data, and proposed Deep Abstract Networks (DANets)
by stacking these layers.

Some approaches even replace Transformers with SSMs for tabular learning (Ahamed & Cheng, 2024; Thielmann et al.,
2024). However, these methods require training on a per-dataset basis, leading to high computational costs, and they are
generally slower than GBDTs for tabular classification tasks.

Linear Attention for In-Context Learning. Although linear attention has been reported to underperform in some language
modeling tasks (You et al., 2024; Zhang et al., 2024; Qin et al., 2022), recent theoretical work demonstrates its effectiveness
in in-context learning scenarios, where it can emulate gradient descent to achieve learning during inference (Ahn et al.,
2023).

B. Supplement to Section 4: Architectural Exploration for Scalable Tabular Learning
B.1. Comparison with Other Attention Variant

In addition to the broad categories of all linear RNN variant models we studied in this paper, we also consider another
mechanism that enjoys linear complexity: sliding window attention (Beltagy et al., 2020). We show that TABFLEX achieves
significantly better performance.

Method #Class #Features #Instances Sliding Window Linear (Ours)

Poker-Hand 10 10 1,025,009 0.48 0.84
Airlines 2 7 539,383 0.48 0.64
Higgs 2 28 98,050 0.39 0.76

Table 4. Performance comparison of TABFLEX with Sliding Window attention.
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Figure 8. Impact of model architecture on tabular classification performance. Detailed version of Fig. 2.

B.2. Supplementary Visualizations

Fig. 8 provides additional visualizations to complement the analysis in Fig. 2. It includes both TabPFN-Causal-Masked and
TabPFN-Mamba variants in the settings shown in Fig. 2a and Fig. 2b, as the two experiments highlight different aspects of
model behavior. To improve the interpretability of performance differences between softmax and linear attention across
datasets, we also include a density plot illustrating the changes in runtime and accuracy when the softmax operator is
replaced with linear attention.

C. Supplement to Section 5: TABFLEX

In this section, we provide detailed insights into TABFLEX, including training procedures, validation dataset selection, and
analyses such as the sensitivity of model selection thresholds on final performance.

C.1. Computation Analysis of Various Attention Mechanism

In this part, we provide a computational analysis of various attention mechanisms, comparing standard attention, FlashAtten-
tion (specifically FlashAttention-I (Dao et al., 2022)), causal FlashLinearAttention (referred to as FlashLinearAttention in
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Yang et al. (2024)), and non-causal linear attention. To clarify, FlashLinearAttention is designed to reduce HBM access
specifically for causal linear attention. For notational simplicity, we use the term “linear attention” to refer to non-causal
linear attention. For both linear attention and FlashLinearAttention, we assume an element-wise kernel feature mapping. The
assumption is reasonable, as popular kernel feature mappings like elu(·)+ 1 (used here) and ReLU(·) are also element-wise.
We denote this mapping as ϕ.

Algorithm 2 Causal FlashLinearAttention Implementation (Yang et al., 2024)
Input: Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M

1 Set block size B Initialize O = (0)N×D ∈ RN×D in HBM Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size
B ×D each, and divide K,V into T = ⌈NB ⌉ blocks K1, . . . ,KT and V1 . . .VT of size B ×D each Divide O into T
blocks O1, . . . ,OT of size B ×D each On on-chip SRAM, construct causal mask, M ∈ RB×B On SRAM, initialize
S = (0)D×D ∈ RD×D for 1 ≤ j ≤ T do

2 Load Kj ,Vj ,Qj ,Oj from HBM to on-chip SRAM On chip, compute Kj ← ϕ(Kj) On chip, compute Qj ← ϕ(Qj)

Write Oj ← QjS + ((QjK
⊤
j )⊙M) · Vj to HBM On-chip, compute S ← S +K⊤

j Vj

3 end
Output: O

We evaluate these mechanisms based on their High Bandwidth Memory (HBM) access, memory requirements, and floating-
point operations (FLOP) when computing attention outputs given query, key, and value inputs. While Dao et al. (2022) have
provided computations for standard attention and FlashAttention, we focus our analysis on causal FlashLinearAttention
(detailed in Alg. 2) and HBM-efficient non-causal linear attention (developed by us and detailed in Alg. 3) in Section C.1.1.
In practice, we employ a simplified PyTorch implementation of linear attention and demonstrate its efficiency, as it only
causes marginal increases in HBM access and memory usage as we demonstrate in Section C.1.2. Furthermore, we present
visualizations in Section C.1.2 that illustrate the time and CUDA memory consumption of these attention mechanisms across
various sequence lengths and scenarios.

Algorithm 3 HBM-Efficient Implementation of Linear Attention
Input :Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M

1 Set block size B Initialize O = (0)N×D ∈ RN×D in HBM Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size B ×D

each, and divide K,V into T = ⌈NB ⌉ blocks K1, . . . ,KT and V1, . . . ,VT of size B ×D each Divide O into T blocks
O1, . . . ,OT of size B ×D each On on-chip SRAM, initialize S = (0)D×D ∈ RD×D for 1 ≤ i ≤ T do

2 Load Ki,Vi On chip, compute Ki ← ϕ(Ki) On chip, compute S ← S +K⊤
i Vi

3 for 1 ≤ j ≤ T do
4 Load Qj ,Oj On chip, compute Qj ← ϕ(Qj) Write Oj ← QjS to HBM

Output: O

C.1.1. HBM-EFFICIENT LINEAR ATTENTION

Here, we analyze the number of HBM accesses, HBM memory, and FLOPS required by FlashLinearAttention (Alg. 2) and
linear attention (Alg. 3).

Lemma 2. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention head, where N is the
sequence length and D is the embedding size. Both FlashLinearAttention (Alg. 2) and linear attention (Alg. 3) require 5ND
HBM accesses to compute the attention output.

Proof of Lemma 2. For causal FlashLinearAttention (Alg. 2):

• Line 8: Loading Kj ,Vj ,Qj ,Oj necessitates 4BD HBM accesses.

• Line 11: Writing Oj requires BD HBM accesses.
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These operations are executed T times, where T = ⌈NB ⌉. Thus, the total HBM accesses are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

For non-causal linear attention (Alg. 3):

• Line 7: Loading Ki,Vi requires 2BD HBM accesses.

• Line 11: Loading Qj ,Oj requires 2BD HBM accesses.

• Line 13: Writing Oj requires BD HBM accesses.

These operations are also repeated T times, where T = ⌈NB ⌉. Consequently, the total HBM accesses are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

Therefore, we conclude that both causal FlashLinearAttention and non-causal linear attention require 5ND HBM accesses
to compute the attention output.

Lemma 3. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention head, where N is the
sequence length and D is the embedding size. Both FlashLinearAttention (Alg. 2) and linear attention (Alg. 3) require 4ND
HBM memory to compute the attention output.

Proof of Lemma 3. For both algorithms:

• Storing Q,K,V requires 3ND memory.

• Storing O requires ND memory.

Total HBM memory usage: 4ND.

Lemma 4. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention head, where N is
the sequence length and D is the embedding size. Both FlashLinearAttention (Alg. 2) and linear attention (Alg. 3) require
O(ND2) FLOPS to compute the attention output.

Proof of Lemma 4. For causal FlashLinearAttention (Alg. 2):

• Computing ϕ(Kj) and ϕ(Qj) requires 2BD FLOPs.

• Computing (QjK
⊤
j )⊙M requires B2(2D − 1) +B2 FLOPs.

• The result of last step multiplied by Vj requires B2(2D − 1) +BD(2B − 1) FLOPs.

• Computing QjS requires B ·D(2D − 1) FLOPs.

• The addition of the last two steps requires BD FLOPs.

• Computing K⊤
j Vj (line 10) requires (2B − 1) ·D2 FLOPs.

• The addition of S and the last step requires D2 FLOPs.
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The total number of FLOPs for one iteration is:

2BD +B2(2D − 1) +B2 +B2(2D − 1) +BD(2B − 1) +B ·D(2D − 1) +BD + (2B − 1) ·D2 +D2

= 4B2D + 2BD + 4BD2.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(4B2D + 2BD + 4BD2) · T = O(ND2).

For non-causal linear attention (Alg. 3):

• Computing ϕ(Ki) requires BD FLOPs.

• Computing S +K⊤
i Vi (line 9) requires 2BD2 FLOPs.

• Computing ϕ(Qj) (line 12) requires BD FLOPS.

• Computing QjS (line 13) requires (2D − 1)BD FLOPs.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(BD + 4BD2) · T = O(ND2).

Thus, we conclude that both algorithms require O(ND2) FLOPs to compute the attention output.

C.1.2. SIMPLIFIED PYTORCH IMPLEMENTATION OF LINEAR ATTENTION

In our implementation, we adopt a straightforward PyTorch approach to linear attention rather than an HBM-efficient
method. We employ the concise two-line implementation presented in Listing 1. In the following lemma, we demonstrate
that this straightforward implementation only incurs a marginal increase in HBM accesses and HBM memory usage.

1 def linear_attn(q, k, v):
2 """
3 q: (batch, heads, seq_q, dim_qk)
4 k: (batch, heads, seq_kv, dim_qk)
5 v: (batch, heads, seq_kv, dim_v)
6 """
7 kv = torch.einsum("bhnd,bhnm->bhdm", k, v)
8 o = torch.einsum("bhld,bhdm->bhlm", q, kv)
9 return o.contiguous()

Listing 1. Straightforward PyTorch implementation of linear attention (Katharopoulos et al., 2020).

Theorem 1. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention head, where N is the
sequence length and D is the embedding size. Both causal FlashLinearAttention (Alg. 2) and non-causal linear attention
(Listing 1) require O(ND) HBM accesses, O(ND) HBM memory, and O(ND2) FLOPS to compute the attention output.

Proof. Let us consider the implementation in Listing 1 and compare it to Alg. 3. PyTorch’s optimized tensor computation
ensures efficiency, with the primary distinction between Listing 1 and Alg. 3 being the storage of kv in the former, which is
equivalent to S ∈ RD×D in Alg. 3. This results in the following changes:

• HBM Accesses: By Lemma 2, Alg. 3 requires 5ND HBM accesses. Due to the additional write and load operations for
S ∈ RD×D, Listing 1 requires 5ND + 2D2 HBM accesses.

• HBM Memory Usage: By Lemma 3, Alg. 3 requires 4ND HBM memory usage. Due to the additional storage requirements
for S ∈ RD×D, Listing 1 requires 4ND +D2 HBM memory usage.

20



TABFLEX: Scaling Tabular Learning to Millions with Linear Attention

The number of FLOPS remains unaffected. The analysis above, in conjunction with Lemmas 2, 3, and 4, yields the desired
outcome.

In Table 5, we summarize the #HBM access, HBM memory, and FLOPS required by standard attention (with naive PyTorch
implementation), FlashAttention-I, FlashLinearAttention (causal), and linear attention with both implementations.

Standard Attention FlashAttention FlashLinearAttention Linear Attention
(Dao et al., 2022) (Yang et al., 2024) Alg. 3 Listing 1

# HBM access 4N2 + 4ND 12N2D2

M + 16N2D
M + 2ND 5ND 5ND 5ND + 2D2

Memory 2N2 + 4ND 2N + 4ND 4ND 4ND 4ND +D2

FLOPS O(N2D) O(N2D) O(ND2) O(ND2) O(ND2)

Table 5. Comparison of memory and computational costs across different attention mechanisms. FlashAttention improves the speed
of standard attention by optimizing # HBM access. Flash causal linear attention takes a similar approach, achieving linear # HBM access.
However, we show that non-causal linear attention already achieves linear # HBM access, matching the efficiency of flash causal linear
attention without requiring any additional optimization on # HBM access.

Subsequently, we visualize the empirical execution time and CUDA memory utilization of FlashAttention-2, FlashLin-
earAttention, and linear attention in Fig. 9a and Fig. 9b, respectively. We vary the head dimension ∈ {32, 64, 128, 256},
the number of heads ∈ {2, 4, 8, 16}, and the sequence length ∈ {24, 25, . . . , 215}. We focus on the self-attention case,
randomly generating input (serving as key, query, and values) with a batch size of 10, and replicate the experiment 5
times. The final values presented are aggregated across these 5 simulations. Notably, we were unable to obtain results for
FlashLinearAttention in two configurations: (1) head dimension 256 with 8 heads, and (2) head dimension 256 with 16
heads, due to illegal memory access error incurred by the PyTorch package fla (Yang et al., 2024). Our observations from
the figures indicate that both runtime and CUDA memory usage of FlashLinearAttention and linear attention exhibit linear
growth with respect to sequence length, aligning with the predictions of Theorem 1.

C.2. Model Training

We implement linear attention with the feature function elu(·) + 1, adhering to the default implementation proposed by
Katharopoulos et al. (2020). Unless otherwise specified, we adopt the training setup of TABPFN for TABFLEX-S100,
TABFLEX-L100, and TABFLEX-H1K. Each model is trained on a single Nvidia A100 80GB PCIe GPU.

Hyperparameters Batch Size Epoch Learning Rate #Steps/epoch

TABFLEX-S100 1210 8 3e-5 8192
TABFLEX-L100 110 4 3e-5 8192
TABFLEX-H1K 1410 4 3e-5 1024

Table 6. Hyperparameters used for training TABFLEX models. The number of steps per epoch indicates the quantity of synthetic
datasets generated and used for training within each epoch.

Table 6 summarizes the hyperparameters selected for training TABFLEX-S100, TABFLEX-L100, and TABFLEX-H1K. For
all three methods, we utilize the same embedding size of 512, consistent with TABPFN. We extend the feature capacity
by modifying the first linear layer, which projects the features into embeddings – specifically, we increase the number of
neurons responsible for receiving the features.

The training loss curves are illustrated in Fig. 10. We observe that as the number of features and the length of training
dataset sequences increase, the training process becomes more time-consuming. In fact, training a robust TABFLEX-H1K
model requires more than three weeks.

C.3. Validation Datasets
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Figure 9. Time and CUDA memory usage comparison of FlashAttention-2 (Dao, 2024), causal FlashLinearAttention (Yang et al., 2024),
and linear attention (Katharopoulos et al., 2020) (implemented as in Listing 1). Results for FlashLinearAttention in two configurations:
(1) head dimension 256 with 8 heads, and (2) head dimension 256 with 16 heads are missing, due to illegal memory access error incurred
by the PyTorch package fla (Yang et al., 2024).
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Figure 10. Visualization of training loss for TABFLEX models as a
function of epoch and wallclock time.

We select the validation datasets from the OpenML Au-
toML Benchmark (Feurer et al., 2021) by choosing 10
datasets from each of the following sample size intervals:
[0.1K, 1K), [1K, 10K), and [10K, 100K). To ensure di-
versity in the validation set, we also vary the number of
classes and features within each interval. The details of
all datasets used in validation are summarized in Table 7.

C.4. Sensitivity Analysis on Decision Boundaries

The decision thresholds align with the training regimes of
the models. TABFLEX-S100, sharing TabPFN’s training
setup but with an updated architecture, is deployed sim-
ilarly (n ≤ 3K, d ≤ 100). TABFLEX-L100, trained on
low-dimensional (d ≤ 100) but larger datasets, is used

for longer sequences (n ≥ 3K, d ≤ 100). TABFLEX-H1K, trained on high-dimensional data, is assigned to handle those
cases accordingly.

We note that performance is not highly sensitive to the chosen decision boundaries. To demonstrate this, we conducted
additional experiments on simple (low-dimension, small-size), low-dimensional & large, and high-dimensional & large
datasets—two datasets per setting—and present the results for all three models in Table 8.

D. Supplement to Section 6: Performance Evaluation of TABFLEX

D.1. TabZilla Datasets

The results of our experiments on TabZilla-related datasets are reported in Table 11, 1, and 2. (McElfresh et al., 2023)
presents the details of the datasets used in their hard benchmark (Table 2) in Table 4 of their paper. We provide the
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OpenML did Dataset #Features #Instances #Classes

279 meta-stream-intervals.arff 75 45164 11
311 oil-spill 50 937 2
742 fri-c4-500-100 101 500 2
825 boston-corrected 21 506 2
833 bank32nh 33 8192 2
841 stock 10 950 2
920 fri-c2-500-50 51 500 2
940 water-treatment 37 527 2
981 kdd-internet-usage 69 10108 2
1039 hiva-agnostic 1618 4229 2
1491 one-hundred-plants-margin 65 1600 100
1492 one-hundred-plants-shape 65 1600 100
1503 spoken-arabic-digit 15 263256 10
1515 micro-mass 1301 571 20
1536 volcanoes-b6 4 10130 5
1541 volcanoes-d4 4 8654 5
1549 autoUniv-au6-750 41 750 8
40645 GAMETES-Epistasis-2-Way-1000atts-0.4H-EDM-1-

EDM-1-1
1001 1600 2

40672 fars 30 100968 8
40677 led24 25 3200 10
40693 xd6 10 973 2
40705 tokyo1 45 959 2
40922 Run-or-walk-information 7 88588 2
40985 tamilnadu-electricity 4 45781 20
41082 USPS 257 9298 10
41144 madeline 260 3140 2
41986 GTSRB-HOG01 1569 51839 43
41988 GTSRB-HOG02 1569 51839 43
41989 GTSRB-HOG03 2917 51839 43
41990 GTSRB-HueHist 257 51839 43
41991 Kuzushiji-49 785 270912 49
42193 compas-two-years 14 5278 2
42206 porto-seguro 38 595212 2
42343 KDD98 478 82318 2

Table 7. Characteristics of datasets in our diverse validation set.

Dataset Metric TabPFN TabFlex-S100 TabFlex-L100 TabFlex-H1K

Simple
credit-g Accuracy 0.79 0.82 0.79 0.75

Time (s) 0.23 0.13 0.13 0.13

diabet AUC 0.78 0.78 0.77 0.78
Time (s) 0.15 0.08 0.10 0.09

Low-Dimensional & Large
bank-marketing AUC 0.89 0.89 0.90 0.89

Time (s) 1.75 0.25 2.43 1.67

elevators AUC 0.94 0.94 0.95 0.94
Time (s) 1.11 0.22 0.7 0.7

High-dimensional & Large
nomao AUC 0.86 0.83 0.75 0.99

Time (s) 1.95 0.86 4.71 4.63

SpeedDating AUC 0.66 0.69 0.59 0.83
Time (s) 2.86 0.89 1.63 1.71

Table 8. Performance of TABFLEX-S100, TABFLEX-L100, and TABFLEX-H1K across three types of datasets, using TabPFN as a baseline.
We observe that all TABFLEX variants perform well on both simple and low-dimensional large datasets, demonstrating that performance
is fairly robust to the choice of decision threshold.
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specifications of the datasets used for our evaluation in Table 11 and Table 1 in Table 9 and Table 10, respectively.

D.2. Extended Experiment Setup

Baselines. We evaluate our approach against a comprehensive set of baselines, as considered by McElfresh et al. (2023).
These include: (i) classical methods: Random Forest (Liaw et al., 2002), SVM (Cortes, 1995), LinearModel (Cox, 1958),
KNN (Cover & Hart, 1967) and Decision Tree (Quinlan, 1986); (ii) Gradient Boosted Decision Trees (GBDT) methods:
XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017); (iii) Non-
Transformer Neural Network (Non-TF NN) methods: SAINT (Somepalli et al., 2021), ResNet (He et al., 2016), DANet
(Chen et al., 2022), NODE (Popov et al., 2019), MLP (Rumelhart et al., 1986), MLP-rtdl (Gorishniy et al., 2021), DeepFM
(Guo et al., 2017), STG (Yamada et al., 2020), VIME (Yoon et al., 2020), and NAM (Agarwal et al., 2021); (iv) Transformer
(TF) methods: TABPFN (Hollmann et al., 2023), FTTransformer (Gorishniy et al., 2021), TabNet (Arik & Pfister, 2021),
and TabTransformer (Huang et al., 2020). The results for these methods, except TABPFN, are taken directly from McElfresh
et al. (2023), who conducted their experiments using a V100 GPU, while our experiments are run on an A100 GPU, which
may introduce slight variations in performance. Additionally, we incorporate two recent methods designed for scaling
tabular classification: TuneTables (Feuer et al., 2024), a TF method, and HyperFast (Bonet et al., 2024), a Non-TF NN
method.

Note that not all baselines successfully ran on all datasets. Many methods face constraints and encounter issues, particularly
with the TabZilla hard benchmark, often due to poor scalability. We explicitly indicate which methods failed to run smoothly
across all datasets. Originally, TABPFN was limited to datasets with no more than 100 features and 10 classes. To facilitate
a fair comparison between TABFLEX and TABPFN, we implemented workarounds to prevent TABPFN from encountering
errors. For datasets exceeding 100 features, we performed random feature selection. For those with more than 10 classes,
we evaluated the accuracy of the nine most prevalent classes and marked all other classes as other, and incorrect. For
TuneTables, we directly import TuneTablesClassifier from their Python package tunetables. Note that our
results differ from those reported in their paper, as their study involved more extensive hyperparameter search, which
significantly increased runtime. We also compare our methods with TuneTables using the dataset split specified in their
paper’s setting, with results deferred to Section D.5. Similarly, for HyperFast, we utilize HyperFastClassifier
directly from their Python package hyperfast default parameters. Notably, HyperFast is meta-trained on many datasets
we use for evaluation.

D.3. Results on 98 Simple Datasets (Table 1, McElfresh et al. (2023))

The results, presented in Table 11, are consistent with the conclusions drawn in the main text.

D.4. Evaluation on Additional Datasets

We provide additional evaluation of TABFLEX on eight large datasets randomly selected from OpenML-CC18 Bench-
marks (Bischl et al., 2019), after excluding the datasets contained in TabZilla’s evaluation. As shown in Table 12, TABFLEX
consistently outperforms TABPFN in terms of speed and achieves superior performance on the majority of the datasets.

D.5. Additional Comparison with TuneTables

As mentioned in Section 6, the results of TuneTables presented in Table 13 of our main experiments use
TuneTablesClassifier. However, we note that the original paper reported results after 30 iterations of hyper-
parameter tuning. They also applied this process to TABPFN, using a different subset of datasets as training samples at each
iteration. In Table 13, we compare the performance of TABFLEX without any hyperparameter tuning to the results reported
in their paper. TABFLEX remains competitive, particularly when the number of samples is limited. While TuneTables tends
to perform better with larger sample sizes due to its ability to update model parameters based on training data, TABFLEX
maintains comparable performance while being significantly faster.

D.6. Extending TABFLEX for Image Classification

We explore the application of TABFLEX to image classification tasks, comparing it against MLP and ResNet architectures.
Our evaluation uses straightforward configurations without extensive hyperparameter optimization to maintain reasonable
computational costs. The MLP implementations include both two-layer and three-layer variants, each configured with 10
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Dataset D N C Dataset D N C Dataset D N C

cmc 9 1473 3 socmob 5 1156 1 adult-census 14 32561 2

kc1 21 2109 1 vehicle 18 846 4 breast-cancer 9 286 2

kc2 21 522 1 heart-h 13 294 1 mfeat-factors 216 2000 10

pc3 37 1563 1 jasmine 144 2984 1 mfeat-zernike 47 2000 10

pc4 37 1458 1 phoneme 5 5404 1 dresses-sales 12 500 2

pc1 21 1109 1 semeion 256 1593 10 mfeat-fourier 76 2000 10

cjs 33 2796 6 heart-c 13 303 1 balance-scale 4 625 3

car 6 1728 4 kr-vs-kp 36 3196 1 bank-marketing 16 45211 2

tae 5 151 3 spambase 57 4601 1 car-evaluation 21 1728 4

jm1 21 10885 1 satimage 36 6430 6 cylinder-bands 37 540 2

dna 180 3186 3 mushroom 22 8124 1 mfeat-karhunen 64 2000 10

musk 167 6598 1 diabetes 8 768 1 credit-approval 15 690 2

wdbc 30 569 1 rabe_266 2 120 1 ozone-level-8hr 72 2534 2

wilt 5 4839 1 breast-w 9 699 1 analcatdata_dmft 4 797 6

ilpd 10 583 1 elevators 18 16599 1 monks-problems-
2

6 601 2

sick 28 3772 1 Satellite 36 5100 1 cardiotocography 35 2126 10

iris 4 150 3 fertility 9 100 1 PhishingWebsites 30 11055 2

lymph 18 148 4 ionosphere 34 351 1 synthetic_control 60 600 6

churn 20 5000 1 transplant 3 131 1 steel-plates-fault 27 1941 7

colic 22 368 1 eucalyptus 19 736 5 mfeat-
morphological

6 2000 10

ecoli 7 336 8 Australian 14 690 1 acute-
inflammations

6 120 2

autos 25 205 6 hayes-roth 4 160 3 analcatdata_boxing1 3 120 2

scene 299 2407 1 dermatology 34 366 6 analcatdata_chlamydia 3 100 2

profb 9 672 1 MiceProtein 77 1080 8 wall-robot-
navigation

24 5456 4

colic 26 368 1 SpeedDating 120 8378 1 visualizing_livestock 2 130 2

labor 16 57 1 tic-tac-toe 9 958 1 Click_prediction_small11 39948 2

irish 5 500 1 hill-valley 100 1212 1 analcatdata_authorship70 841 4

glass 9 214 6 page-blocks 10 5473 5 banknote-
authentication

4 1372 2

yeast 8 1269 4 lung-cancer 56 32 3 LED-display-
domain-7digit

7 500 10

sonar 60 208 1 qsar-biodeg 41 1055 1 visualizing-
environmental

3 111 2

splice 60 3190 3 fri_c3_100_5 5 100 1 postoperative-
patient-data

8 88 2

libras 104 360 10 ada_agnostic 48 4562 1 blood-transfusion-
service-center

4 748 2

anneal 38 898 5 fri_c0_100_5 5 100 1

Table 9. Datasets utilized in the evaluation presented in Table 11. Here D, N , and C denote the number of features, instances, and classes,
respectively.
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Dataset #Features #Instances #Classes

Australian 14 690 2
LED-display-domain-7digit 7 500 10
MiceProtein 77 1080 8
acute-inflammations 6 120 2
analcatdata_authorship 70 841 4
analcatdata_boxing1 3 120 2
analcatdata_chlamydia 3 100 2
analcatdata_dmft 4 797 6
anneal 38 898 5
autos 25 205 6
balance-scale 4 625 3
blood-transfusion-service-center 4 748 2
blood-transfusion-service-center 4 748 2
breast-cancer 9 286 2
breast-w 9 699 2
colic 26 368 2
colic 22 368 2
credit-approval 15 690 2
cylinder-bands 37 540 2
dermatology 34 366 6
diabetes 8 768 2
dresses-sales 12 500 2
ecoli 7 336 8
eucalyptus 19 736 5
fertility 9 100 2
fri_c0_100_5 5 100 2
fri_c3_100_5 5 100 2
glass 9 214 6
hayes-roth 4 160 3
heart-c 13 303 2
heart-h 13 294 2
hill-valley 100 1212 2
ilpd 10 583 2
ionosphere 34 351 2
iris 4 150 3
irish 5 500 2
kc2 21 522 2
labor 16 57 2
lung-cancer 56 32 3
lymph 18 148 4
monks-problems-2 6 601 2
pc1 21 1109 2
postoperative-patient-data 8 88 2
profb 9 672 2
qsar-biodeg 41 1055 2
rabe_266 2 120 2
socmob 5 1156 2
sonar 60 208 2
synthetic_control 60 600 6
tae 5 151 3
tic-tac-toe 9 958 2
transplant 3 131 2
vehicle 18 846 4
visualizing_environmental 3 111 2
visualizing_livestock 2 130 2
wdbc 30 569 2
yeast 8 1269 4

Table 10. Datasets utilized in the evaluation presented in Table 1.

26



TABFLEX: Scaling Tabular Learning to Millions with Linear Attention

Algorithm Class Mean AUC Std. AUC Time / 1000 inst.

median mean mean median median mean

TabPFN (Hollmann et al., 2023) TF 0.97 0.84 0.15 0.08 0.56 0.74
CatBoost (Prokhorenkova et al., 2018) GBDT 0.97 0.92 0.15 0.07 1.95 20.51
TABFLEX (Ours) TF 0.96 0.90 0.15 0.08 0.22 0.37
XGBoost (Chen & Guestrin, 2016) GBDT 0.96 0.91 0.16 0.09 0.38 0.85
RandomForest (Liaw et al., 2002) Classical 0.95 0.90 0.16 0.09 0.32 0.47
SAINT (Somepalli et al., 2021) TF 0.94 0.86 0.16 0.11 146.15 170.56
HyperFast (Bonet et al., 2024) Non-TF NN 0.94 0.87 0.15 0.09 53.45 89.75
LightGBM (Ke et al., 2017) GBDT 0.93 0.85 0.18 0.09 0.29 0.90
ResNet (He et al., 2016) Non-TF NN 0.93 0.85 0.16 0.10 8.83 15.99
DANet (Chen et al., 2022) Non-TF NN 0.92 0.85 0.16 0.08 57.18 64.29
NODE (Popov et al., 2019) Non-TF NN 0.91 0.83 0.16 0.11 131.73 160.76
FTTransformer (Gorishniy et al., 2021) TF 0.89 0.81 0.17 0.11 18.04 27.91
SVM (Cortes, 1995) Classical 0.89 0.78 0.19 0.09 2.06 61.18
MLP-rtdl (Gorishniy et al., 2021) Non-TF NN 0.88 0.75 0.18 0.11 7.09 15.21
DeepFM (Guo et al., 2017) Non-TF NN 0.87 0.77 0.19 0.12 4.89 6.05
TabNet (Arik & Pfister, 2021) TF 0.85 0.68 0.26 0.14 29.34 35.12
STG (Yamada et al., 2020) Non-TF NN 0.82 0.71 0.20 0.14 15.98 18.58
TuneTables (Feuer et al., 2024) TF 0.81 0.70 0.25 0.16 32.96 73.40
LinearModel (Cox, 1958) Classical 0.78 0.67 0.19 0.14 0.03 0.04
MLP (Rumelhart et al., 1986) Non-TF NN 0.76 0.68 0.20 0.13 11.23 18.31
DecisionTree (Quinlan, 1986) Classical 0.74 0.63 0.24 0.18 0.01 0.03
TabTransformer (Huang et al., 2020) TF 0.72 0.61 0.17 0.13 13.45 22.05
KNN (Cover & Hart, 1967) Classical 0.70 0.61 0.21 0.14 0.03 0.05
VIME (Yoon et al., 2020) Non-TF NN 0.60 0.54 0.25 0.15 15.60 17.98
NAM (Agarwal et al., 2021) Non-TF NN 0.39 0.44 0.27 0.19 97.99 233.77

Table 11. Performance comparison of algorithms across 98 simple datasets (as used in Table 1 of McElfresh et al. (2023)). The
reported AUC values are normalized. The “Time/1000 inst.” column represents the combined training and test time for all datasets,
divided by the total number of samples. Notably, TABFLEX achieves top 3 performance, with faster runtimes compared to baselines of
similar performance, and a 2× speedup relative to TABPFN.

hidden neurons and trained for 70 epochs at a fixed learning rate of 0.001. The ResNet architecture employs 2 residual
blocks with main and hidden dimension sizes of 128 and 256, respectively. The experimental results demonstrate that
TABFLEX achieves remarkable efficiency gains, operating 30× faster than the MLP and 400× faster than the ResNet
while maintaining competitive performance. This represents a significant advancement in image classification efficiency,
particularly noteworthy given that previous approaches like TABPFN were constrained to small, low-dimensional datasets.

We further evaluate TABFLEX on an 10-way classification CIFAR-10 image dataset (Krizhevsky et al., 2009) of 60K samples
for which each sample is a color image of 32× 32 size. We deploy two approaches to convert images to 1D vectors. First,
we flatten the RGB channels to obtain a vector of 3072 dimensions. Second, we utilize a pretrained ResNet-18 (He et al.,
2016) to obtain a semantically meaningful representation of the image as an 384-dim vector. For each approach, we then
feed the 1D vectors to TABFLEX as a tabular dataset. As shown in Table 14, with first approach (CIFAR10-flattened), we
achieve an AUC of 0.791 within seconds of inference. We find that reducing feature dimension to 30% with PCA leads to 4
times lower latency while preserving the AUC score. The second approach (CIFAR10-embedding) significantly increases
AUC to 92.2% while reducing the inference latency by six times.

E. Supplement to Section 7: Ablation Studies
E.1. Datasets for Section 7.2: Incorporating Data-Efficient Techniques

For dimensionality reduction, we use the following datasets from OpenML: dna, musk, scene, jasmine, semeion, Speed-
Dating, hill-valley, mfeat-factors. These datasets are selected from Table 9 where feature dimensions are greater than 100.
For the random sampling experiment, we use the following datasets from OpenML: cmc, kc1, car, yeast, car-evaluation,
mfeat-morphological, mfeat-zernike, banknote-authentication, socmob. The tested datasets are selected from Table 9 where
the data size is greater than 1000 instances, and the feature dimension is lower than 100.
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TABFLEX: Scaling Tabular Learning to Millions with Linear Attention

Dataset #Features #Instances #Classes Mean AUC Mean Time (seconds)

TABPFN TABFLEX TABPFN TABFLEX

kick 33 72983 2 0.663 0.684 13.330 3.096
Click-prediction-small-1220 10 39948 2 0.652 0.659 3.663 0.887
house-8L 9 22784 2 0.947 0.945 1.383 0.536
okcupid-stem 20 50789 3 0.825 0.828 6.152 1.511
volcanoes-b1 4 10176 5 0.660 0.663 0.349 0.202
volcanoes-b2 4 10668 5 0.651 0.652 0.375 0.217
kdd-internet-usage 69 10108 2 0.932 0.932 1.021 0.851
BNG(tic-tac-toe) 10 39366 2 0.836 0.835 3.626 1.111

Table 12. Performance comparison between TABPFN and TABFLEX on an additional large dataset. We observe that TABFLEX is
consistently faster than TABPFN and outperforms it on the majority of the datasets.

Dataset Size TABPFN TuneTables TABFLEX

Acc. Runtime (sec.) Acc. Runtime (sec.) Acc. Runtime (sec.)

breast-cancer 286 .765 29 .770 65 .793 1
heart-c 303 .848 40 .903 66 .903 0
ecoli 336 .848 30 .843 66 .882 0
colic 368 .856 39 .892 66 .892 0
dresses-sales 500 .578 41 .580 122 .580 0
cylinder-bands 540 .800 41 .846 82 .796 0
climate 540 .959 59 .951 97 .963 0
balance-scale 625 .990 29 .995 55 1.000 0
blood-transfusion 748 .801 25 .782 56 .840 0
cmc 1473 .554 91 .556 109 .605 0
kc-1 2109 .862 168 .856 187 .867 0
bioresponse 3151 .797 638 .798 3012 .720 13
christine 5418 .742 666 .755 3920 .721 11
robert 10000 .250 964 .414 2397 .333 17
dilbert 10000 .922 761 .992 3749 .802 17
har 10299 .936 370 .981 2657 .918 9
eeg-eye-state 14980 .940 178 .986 1929 .837 1
elevators 16599 .902 186 .902 1297 .907 1
riccardo 20000 .922 1395 .995 5247 .773 31
volkert 58310 .567 459 .693 6331 .561 12
higgs 67557 .671 931 .714 4084 .691 1
connect-4 98050 .668 931 .817 5395 .692 1
BNG (vote) 131072 .968 1976 .974 2493 .974 1
albert 425240 .642 2363 .658 17518 .637 1
airlines 539383 .600 2602 .653 44434 .597 2
BNG (labor) 1000000 .937 5518 .967 7717 .950 8
agrawall 1000000 .948 5158 .950 45504 .948 3
poker-hand 1025009 .531 2423 1.000 10471 .542 15
click-prediction-small 1997410 .833 10421 .837 33148 .833 5

Table 13. Accuracy comparison of TABPFN, TuneTables, and TABFLEX on test datasets from Feuer et al. (2024). Results for TABPFN
and TuneTables are directly sourced from Feuer et al. (2024), where hyperparameter tuning was performed 30 times for both methods.
For TABPFN, hyperparameters determine the subset of the dataset used in ICL. TABFLEX results are reported without hyperparameter
tuning.
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Dataset Two-Layer MLP Three-Layer MLP ResNet TABFLEX (Ours)

AUC Time (s) AUC Time (s) AUC Time (s) AUC Time (s)

MNIST 0.924 23.547 (30.5×) 0.959 23.060 (29.9×) - - 0.948 0.771
Fashion-MNIST 0.793 23.340 (28.8×) 0.853 23.604 (29.1×) .990 398.45 (491.1×) 0.979 0.810
CIFAR-10 (flattened) - - - - - - 0.791 5.872
CIFAR-10 (embedding) - - - - - 0.922 0.989

Table 14. Performance comparison of TABFLEX against baseline models on image datasets. *Note: MLP and ResNet require significantly
more time for training and inference, compared to TABFLEX. Missing evaluation will be provided in the supplementary.
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Figure 11. Accuracy and runtime versus the number of samples. Two settings are considered: (a) 800 features and (b) 1000
features. Each curve is averaged over 20 synthetic datasets with varying data distributions, generated the same algorithm as employed in
TabPFN (Hollmann et al., 2023).

E.2. Performance and Runtime vs. Training Sample Size

We have demonstrated that TABFLEX performs well across diverse tasks. Here, we provide a more fine-grained analysis,
examining how performance and runtime vary with the number of training samples. Following the setup of TABPFN (Holl-
mann et al., 2023), we generate synthetic datasets with sample sizes ranging from 1,000 to 12,000 and feature dimensions
of 800 and 1,000. Results are averaged over 20 synthetic datasets and presented in Fig. 11. We observe that accuracy
consistently improves with more samples, while runtime increases linearly with the sample size, regardless of feature count.
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