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Abstract

This work presents a Fourier analysis framework for the non-interactive source simulation (NISS)

problem. Two distributed agents observe a pair of sequences Xd and Y d drawn according to a joint

distribution PXdY d . The agents aim to generate outputs U = fd(X
d) and V = gd(Y

d) with a joint

distribution sufficiently close in total variation to a target distribution QUV . Existing works have shown

that the NISS problem with finite-alphabet outputs is decidable. For the binary-output NISS, an upper-

bound to the input complexity was derived which is O(exp poly( 1ϵ )). In this work, the input complexity

and algorithm design are addressed in several classes of NISS scenarios. For binary-output NISS scenarios

with doubly-symmetric binary inputs, it is shown that the input complexity is Θ(log 1
ϵ ), thus providing

a super-exponential improvement in input complexity. An explicit characterization of the simulating

pair of functions is provided. For general finite-input scenarios, a constructive algorithm is introduced

that explicitly finds the simulating functions (fd(X
d), gd(Y

d)). The approach relies on a novel Fourier

analysis framework. Various numerical simulations of NISS scenarios with IID inputs are provided.

Furthermore, to illustrate the general applicability of the Fourier framework, several examples with non-

IID inputs, including entanglement-assisted NISS and NISS with Markovian inputs are provided.

I. INTRODUCTION

A critical resource, often required in distributed protocols enabling multiparty coordination, is the

availability of common or correlated random bit-strings at each agent’s terminal [1]–[11]. A well-known

example is Rabin’s randomized Byzantine generals (RBG) protocol [1], which requires a common binary

symmetric variable shared among the distributed agents during the “lottery phase”, which is crucial

for secure and effective coordination in the presence of malicious actors. More broadly, distributed

correlated randomness is necessary for randomized consensus protocols [1], [12], proof-of-stake based
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blockchain [13], [14], scaling smart contracts [15], anonymous communication [16], private browsing

[17], publicly auditable auctions and lottery [18], and cryptographic parameter generation [19], among

other applications.

Sharing common binary strings among distributed agents, which is required in many multiparty

protocols, results in communication overhead and latency issues, and represents significant obstacles

when scaling distributed computing paradigms to massive networks [14], [20]. Consequently, a natural

question is whether, instead of common binary strings, one could use correlated binary strings, acquired

via distributed observations of correlated signals, and apply some form of correlation inducing local

processing to produce common randomness. Witsenhausen’s converse result provides a negative answer

by showing that distributed agents cannot coordinate perfectly in performing a non-trivial binary task

in the absence of common randomness [3]. That is, there is a fundamental limit on the correlation in

the agents’ actions, which is determined by the correlation among their distributed observations. This

gives rise to the problem of Non-Interactive Source Simulation (NISS), which studies the set of joint

distributions that can be simulated non-interactively by distributed agents observing correlated pairs of

sequences [3], [21]–[29].

The NISS scenario considered in this work is shown in Figure 1. Two distributed agents, Alice

and Bob, each observe a sequence of independent and identically distributed (IID) random variables,

Xd ∈ X d and Y d ∈ Yd, respectively, where d ∈ N, X ,Y are finite alphabets, and the underlying joint

distribution is denoted by PXY . The agents wish to non-interactively generate (simulate) random outputs

(Ud, Vd) ∈ U×V with a joint distribution, PUdVd
, sufficiently close in total variation to a target distribution

QUV . The target distribution QUV is said to be simulatable for an input distribution PXY if

lim
d→∞

min
fd:X d→U
gd:Yd→V

dTV (PUdVd
, QUV ) = 0, (1)

where Ud ≜ fd(X
d), Vd ≜ gd(Y

d), d ∈ N, and dTV (·, ·) is the total variation distance. The sequence

of functions (fd, gd)d∈N are called a simulating sequence of functions for QUV if the total variation

distance between their output distribution PUdVd
and the target distribution QUV vanishes as d grows

asymptotically. An algorithm which takes the input and target distributions, (PXY , QUV ), and finds the

corresponding simulating sequence of functions, (fd, gd)d∈N, is called a simulating protocol.

Prior works have investigated the following questions in the NISS problem:

• Decidability: Is it possible for a Turing Machine to determine in finite time whether a target distribution

QUV can be simulated via a distributed input (Xd, Y d) ∼ PXd,Y d?
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Alice

Bob

Xd ∈ X d

Y d ∈ Yd

Ud = fd(Xd)

Vd = gd(Y d)

dTV (QUd,Vd, QU,V ) ≤ ε

Fig. 1: The non-interactive source simulation scenario.

• Input Complexity: given a desired total variation distance ϵ > 0, how many inputs samples d ∈ N

are necessary to simulate the source? That is, to determine

dϵ ≜ min{d ∈ N|∃(fd, gd) : Ud = fd(X
d), Vd = gd(Y

d), dTV (PUd,Vd
, QUV ) < ϵ.}

• Implementability: Given d ∈ N, an input distribution PXY , and target distribution QUV , how to

construct the simulating functions (f∗d (X
d), g∗d(Y

d)) to achieve the desired total variation distance?

That is, to determine

(f∗d , g
∗
d) ≜ arg min

(fd,gd)
dTV (PUd,Vd

, QUV ),

where Ud ≜ fd(X
d), Vd ≜ gd(Y

d).

These questions have been studied under various assumptions on input distributions and input and

output alphabets. Witsenhausen [3] studied the scenario for doubly-symmetric binary-output NISS (i.e.,

QU (1) = QV (1) =
1
2 ), as well as scenarios where (U, V ) are jointly Gaussian (i.e., QUV is a Gaussian

measure on R2), and derived necessary and sufficient conditions on the correlation coefficients of (U, V )

and (X,Y ) under which QUV is simulatable for PXY . In both cases, it was shown that any joint

distribution QUV whose correlation is less than the Hirschfeld-Gebelein-Rényi maximal correlation

coefficient of PXY [4]–[6] can be produced at the distributed terminals. Furthermore, Witsenhausen

showed that for any ϵ > 0, Alice and Bob can simulate the Gaussian measure QUV up to a desired

variational distance ϵ with d = poly(|X |, |Y|, log(1/ϵ)). Additionally, an explicit algorithm to construct

fd(·) and gd(·) with run-time poly(d) was provided, thus answering the decidability, input complexity, and

implementability questions and solving the Gaussian NISS problem completely. However, the discrete-

output problem remains open.

More recently, a set of impossibility results for discrete-output NISS were introduced in [9], where

hypercontractivity techniques were used to provide necessary conditions for the simulatability of QUV

for a given PXY . These impossibility results were further improved upon in [11], [29]. The decidability

of NISS with finite alphabet outputs was studied in [22], [30]. Particularly, it was shown that given PXY
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and QUV , the input complexity is O(exp poly(1ϵ ,
1

1−ρXY
)), where ρXY is the input maximal correlation.

As a result, by using a brute-force search over the set of all simulating functions, a Turing machine can

decide whether QUV is simulatable for a distribution PXY with a run-time complexity1

O(exp exp exp poly(
1

ϵ
,

1

1− ρXY
, log

1

α
)),

where ρXY is the maximal correlation of PXY , and α is the minimum non-zero value of PXY .

In this work, we study several classes of NISS scenarios, and answer the input complexity and

implementability questions for each class. In particular, we make the following contributions:

• Doubly-Symmetric Input, Binary-Output NISS: For the scenario where the input is a doubly-

symmetric binary source (i.e., PX(1) = PY (1) =
1
2 ) and the output is binary, we show that the input

complexity is Θ(log 1
ϵ ), thus achieving a super-exponential improvement. Furthermore, we provide

an explicit characterization of the simulating functions for a given input distribution PXY and target

distribution QUV . (Theorem 4)

• Finite-input, Binary-Output NISS: For finite-input, binary-output NISS (FB-NISS), we show that the

implementability question can be reduced to the problem of finding the simulating functions achieving

maximal correlation (Proposition 4). Furthermore, we provide a primal and dual formulation of the

maximal correlation problem (Theorems 1 and 2). The dual formulation is only applicable to inputs

with uniform marginals, and yields a linear program which finds the pair of simulating functions for

a given (simulatable) target distribution. As for the primal formulation, we introduce a Fourier-path

following algorithm (F-PATH) to find the pair of simulating functions for an input distribution with

non-uniform marginals and a simulatable target distribution (Algorithm 1).

• Finite-input, Finite-Output NISS: In this general scenario, we show that the set of simulatable

distributions can be decomposed into a union of star-convex sets. Consequently, we introduce the

notion of directional maximal correlation, where direction is defined with respect to the center of the

start-convex set, and show that the implementability question can be reduced to the problem of finding

the simulating functions achieving directional maximal correlation (Proposition 5). For inputs with

uniform marginals, the dual formulation of Theorem 2 can be used to find the simulating functions

using a linear program. For non-uniform input marginals, the F-PATH algorithm can be used to find

the simulating pair of functions (Algorithm 1).

1It should be noted that the main focus of [22] was on proving decidability, and the brute-force algorithm is only discussed

as an intermediate step in the decidability proof.
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• NISS Scenarios with Non-IID Inputs: The main focus of this work is to find solutions to the input

complexity and implementability questions in NISS scenarios with IID inputs. However, the Fourier

framework developed in the sequel is generally applicable to problems involving quantification of

distributed correlation. To illustrate this, we provide several examples including an example with

independent input sequences which are not identically distributed (Case Study 1 in Section III-D),

entanglement-assisted NISS (Case Study 2 in Section III-D), and NISS scenarios with Markovian

Sources (Case Study 3 in Section III-D). As described in the subsequent sections, the application of

the Fourier framework hinges on the orthonormality of the underlying function basis which is used

to perform the Fourier expansion. In non-IID-input NISS scenarios, such orthonormal basis can be

constructed by starting from the standard basis used for Fourier expansion in IID-input NISS, and then

applying the Gram-Schmidt procedure, hence making the framework applicable to such scenarios.

Other Related Works: The NISS problem has been studied extensively under various scenarios. A

comprehensive survey of relevant problems and their connections to NISS is given in [26]. The decidability

of NISS for finite output sets is presented in [30]. Further impossibility results for binary input and

binary-output are introduced in [31] that improves upon the hypercontractivity-based bounds in [9].

These derivations rely on the Fourier expansion of the functions (f(·), g(·)) over the Boolean cube. Other

important variants of the NISS problem are studied in Gács and Körner [21], and Wyner [32]. Decidability

and solvability of secure NISS have also been studied in the literature [33]–[35]. The Fourier expansion

on the Boolean cube has been widely used in computational learning, analysis of Boolean functions, and

quantifying correlation among distributed functions [22], [24], [31], [36]–[38].

Organization: Section II provides the notation, problem formulation, and a brief background on the Fourier

analysis techniques used throughout the paper. Section III explains the tools that we have developed,

including extensions of known Fourier expansion, randomization, and derandomization techniques, to

derive our main results. Section IV introduces the notion of biased and directional maximal correlation

and shows their sufficiency for solving NISS. Section V presents our main results including the primal

and dual optimizations for solving the NISS problem. Section VI provides several examples of NISS

problems with non-IID input sequences to illustrate the general applicability of the Fourier framework.

Section VII describes the F-PATH algorithm. Section VIII derives a tight bound on the input complexity

of BB-NISS with uniform input marginals. Section IX provides numerical simulations of the F-PATH

algorithm. Section X conlcudes the paper.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Notation. The set {1, 2, · · · , d} is represented by [d]. For a given prime number q ∈ N, the finite field of

order q is denoted by Fq. The vector (x1, x2, . . . , xd) is written as xd, and for a given 1 ≤ i ≤ j ≤ d, the

subvector (xi, xi+1, · · · , xj) is written as xji . Sets are denoted by calligraphic letters such as X . For the

event E , the variable 1(E) denotes the indicator of the event, i.e., 1(E) = 1 if E and 1(E) = −1, otherwise.

For a given alphabet X , the notation ∆X represents the probability simplex on X . Conv(·) represents

the convex-hull. Also, σX , σY are the standard deviation of X and Y , respectively. By P d
XY , denote the

d-fold product distribution, i.e. P d
X,Y (x

d, yd) =
∏d

i=1 PXY (xi, yi), x
d, yd ∈ X d × Yd. Furthermore, we

use the following functions and notations throughout the paper:

• dTV (P,Q) represents the variational distance between distributions P and Q defined on a shared

alphabet X , i.e., dTV (P,Q) ≜
∑

x∈X |P (x)−Q(x)|.

• The Pearson correlation coefficient between a pair of random variables X and Y is defined as

ρXY ≜ E
[
(X−µX)(Y−µY )

σXσY

]
, where µX , µY are the expected value of X and Y , respectively.

• The notation f ≡ h for any generic functions f : X → A and h : X → B means the two

functions are equal up to a bijection. More precisely, there is an invertible map Γ : A → B such

that h(x) = Γ(f(x)).

A. The Non-interactive Source Simulation Problem

The NISS problem is formally defined below:

Definition 1 (NISS). Let PXY be a probability measure on the finite set X × Y and QUV be the

target (output) probability distribution over the finite set U × V . The distribution QUV is said to be

non-interactively simulated (simulatable) using PXY if there exists a sequence of functions fd : X d → U

and gd : Yd → V , with d ∈ N, such that

lim
d→∞

dTV (PUdVd
, QUV ) = 0, (2)

where Ud = f(Xd) and Vd = g(Y d) with (Xd, Y d) ∼ P d
XY , and PUdVd

is the joint distribution of

(Ud, Vd). Given, PXY , the set of all non-interactively simulatable distributions QUV is denoted by

Q(PXY ,U ,V).

Remark 1. One might consider a more general formulation involving non-deterministic mappings in-

stead of deterministic (fd, gd). However, any simulatable target QUV with stochastic mappings is also
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simulatable with deterministic functions (fd, gd) and local randomness distilled via copies of the samples

X and Y , respectively. Hence, the restriction to determinsitic mappings does not loose generality.

Definition 2 (NISS with threshold ϵ). Given ϵ > 0 and probability distributions PXY over X × Y

and QUV ∈ Q(PXY ,U ,V), the NISS problem (PXY , QUV , ϵ) is the problem of finding the parameter

d ∈ N and pair of functions fd : X d → U and gd : Yd → V such that dTV (PUdVd
, QUV ) ≤ ϵ, where

Ud = f(Xd) and Vd = g(Y d) with (Xd, Y d) ∼ P d
XY , and PUdVd

is the joint distribution of (Ud, Vd).

B. Discrete Fourier Expansion

The uniform Fourier expansion on the Boolean cube has been well-studied and applied in various prob-

lems over the past decades (e.g., [39], [40]). It decomposes any real-valued function f : {−1, 1}d → R on

the Boolean cube as f(x) =
∑

S⊆[d] fSχS(x
d), xd ∈ {−1, 1}d where χS(x

d) ≜
∏

j∈S xj for all S ⊆ [d],

and fS ∈ R are called the Fourier coefficients of f and are calculated as fS ≜ 1
2d

∑
xd∈{−1,1}d fSχS(x

d).

This Fourier expansion can be extended to general product probability spaces. To elaborate, given a

distribution PX over a finite field Fq
2, let us consider the vector space Ld

X of real-valued functions over

Fd
q . The inner-product between two functions f, g is defined as ⟨f, g⟩ ≜ EXd∼P d

X
[f(Xd)g(Xd)]. Then,

the following defines the stochastic discrete Fourier extension over this probability space.

Fact 1 (Stochastic Discrete Fourier Expansion [39]). Let P d
X be a product probability measure on the field

Fq, where q is prime. The function f : Fd
q → R decomposes as fd(xd) =

∑
sd∈Fd

q
fsd ϕsd(x

d), for all xd ∈

Fd
q , where ϕsd(xd) is the parity associated with the vector sd ∈ Fd

q , defined as ϕsd(xd) ≜
∏

i∈[d] ψsi(xi), x
d ∈

Fd
q , and ψs(·), s ∈ Fq is an orthonormal basis for the space of functions f : Fq → R equipped

with probability measure PX . Moreover, fS are the Fourier coefficients of f(·) and are calculated as

fsd = EXd∼P d
X
[f(Xd)ϕsd(X

d)] for all sd ∈ Fd
q .

In particular, the Stochastic Boolean Fourier expansion can be further simplified by choosing the

orthonormal basis elements ψ−1(x) = 1 and ψ1(x) = αx − β for appropriately chosen constants α, β.

This is explained below.

Fact 2 (Stochastic Boolean Fourier Expansion [39]). Let P d
X be a product probability measure on

{−1, 1}d. The function f : {−1, 1}d → R decomposes as fd(xd) =
∑

S⊆[d] fS ϕS(x
d), for all xd ∈

2For q > 2, we consider the field Fq as the set {0, 1, · · · , q − 1} equipped with modulo addition and multiplication. For

q = 2, we consider the set {−1, 1} which reduces clutter and leads to more concise derivations.
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{−1, 1}d, where ϕS(xd) is the parity associated with a subset S ⊆ [d], defined as:

ϕS(x
d) ≜

∏
i∈S

xi − µX
σX

, xd ∈ {−1, 1}d,

where µX and σX are the expected value and standard deviation of X ∼ PX , respectively. Moreover,

fS are the (biased) Fourier coefficients of f(·) and are calculated as fS = EXd∼P d
X
[f(Xd)ϕS(X

d)] for

all S ⊆ [d].

Note that due to the orthonormality of ψs(·), s ∈ Fq in Fact 1, the parity functions ϕsd , sd ∈ Fd
q form

an orthonormal basis for this vector space Ld
X . Particularly, ⟨ϕsd , ϕtd⟩ = 1(sd = td), where sd, td ∈ Fd

q .

The following facts summarize some basic properties of the Fourier expansion.

Fact 3 ( [39]). For any bounded pair of functions f, g : Fd
q → R, the following hold:

• Plancherel Identity: E[f(Xd)g(Xd)] =
∑

sd∈Fd
q
fsdgsd .

• Parseval’s identity: ∥f∥22 =
∑

sd∈Fd
q
f2sd .

III. A FOURIER FRAMEWORK FOR QUANTIFYING DISTRIBUTED CORRELATION

A. Functions as Overparametrized Vectors

As discussed in the prequel, our objective is to apply the Fourier expansion techniques of Section

II-B to study pairs of distributed functions operating on correlated input sequences. In Section III-B,

we develop Fourier analysis techniques for pairs of distributed functions in different probability spaces.

These techniques are only directly applicable to binary-output functions. To make them applicable to

non-binary-output functions, we introduce an overparameterized vector representation of such functions

in terms of vectors of binary-output functions. Let f : X d → U be a generic function with U a finite

set. Then, for any u ∈ U define the indicators fu(xd) ≜ 21(f(xd) = u) − 1. Note that fu(xd) = 1 if

f(xd) = u; otherwise fu(xd) = −1. The indicator functions are sufficient to determine the output of

f(·). We write f ≡ (fu)u∈U to denote the vector of the indicator functions. Note that fu, u ∈ U satisfy

the following conditions:

Condition (1): fu(x
d) ∈ {−1, 1}, ∀xd ∈ X d (3)

Condition (2):
∑
u

fu(x
d) = 2− |U|, ∀xd ∈ X d. (4)

Consequently, in the sequel, we often focus on binary-output functions, and apply the resulting solutions

to general finite-output alphabets using the above overparametrized representation.
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B. Fourier Expansion and Disagreement Probability

The Fourier expansion is closely related to the probability of disagreement between the outputs of

pairs of functions as shown in the following.

Lemma 1. Let PXY be a probability measure over Fq × Fq. For any bounded pair of functions f, g :

Fq 7→ R, the following holds

E(Xd,Y d)[f(X
d)g(Y d)] =

∑
sd,td∈Fd

q

fsdgtd
∏

s,t∈Fq

ρ
n(s,t|sd,td)
s,t , (5)

where ρs,t = EX,Y [ψs(X)ψ′
t(Y )], s, t ∈ Fq is the correlation coefficient between ψs(X) and ψ′

t(Y )

under PXY , (ψs, s ∈ Fq) and (ψ′
t, t ∈ Fq) are orthogonal basis for the space of functions LX and LY ,

respectively, (fsd , gsd), sd ∈ Fd
q are the Fourier coefficient of f with respect to PX and g with respect to

PY , respectively, and n(s, t|sd, td) ≜
∑

i∈[d] 1(si = s, ti = t).

The proof of Lemma 1 follows by applying linearity of expectation, the fact that the probability space

is a product probability space, and using the definition of Fourier expansion for finite input alphabets

given in Fact 1.

Note that for Stochastic Boolean Fourier expansion, we have ψ−1(X) = 1 and ψ1(X) = X−µX

σX
.

Consequently,

∀s, t∈ {−1, 1} :ρs,t =


1 s = t = −1,

ρXY s = t = 1,

0 otherwise

⇒ ∀sd, td ∈ {−1, 1}d :ρsd,td = ρ
wH(sd)
XY 1(sd = td),

where wH(·, ·) denotes the Hamming weight. Consequently, for Boolean functions, the following sim-

plified result can be derived.

Corollary 1. Let PXY be a probability measure over {−1, 1}d × {−1, 1}d. For any bounded pair of

functions f, g : {−1, 1}d 7→ R, the following holds

E(Xd,Y d)∼P d
XY

[f(Xd)g(Y d)] =
∑
S⊆[d]

fSgSρ
|S|
XY , (6)

where ρXY is the correlation coefficient defined for PXY , fS is the Fourier coefficient of f with respect

to PX , and gS is that of g with respect to PY .

The following lemma provides a relation between E(fu(Xd)gv(Y
d)) and P(Ud = u, Vd = v). In the

subsequent sections, we write E(fu(Xd)gv(Y
d)) in terms of the Fourier coefficients of fu and gv, which
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allows us to forumalte the NISS problem in terms of an optimization over the Fourier coefficients. The

proof is provided in Appendix A.

Lemma 2. Consider any pair of functions f : X d → U and g : Yd → V . Let f ≡ (fu)u∈U and

g ≡ (gv)v∈V be the overparametrized vector representation of f and g, respectively. Let Ud = f(Xd)

and Vd = g(Y d). Then,

E(fu(Xd)gv(Y
d)) = 4P(Ud = u, Vd = v)− 2P(Ud = u)− 2P(Vd = v) + 1, u, v ∈ U × V.

Note that the functions fu, gv are binary-output functions. As a result, the joint distribution P(fu(Xd) =

a, gv(Y
d) = b), a, b ∈ {−1, 1} has three degrees of freedom and is completely characterized by the

marginals P
(
fu(X

d) = 1
)
,P
(
gv(Y

d) = 1
)

and P
(
fu(X

d) = 1, gv(Y
d) = 1

)
. These quantities are in

turn uniquely determined by E[fu(Xd)] = 2PUd
(u)−1,E[gv(Y d)] = 2PVd

(v)−1 and E[fu(Xd)gv(Y
d)].

This is formalized in the following proposition.

Proposition 1. Let Ud = f(Xd) and Vd = g(Y d), where (Xd, Y d) ∼ P d
XY , d ∈ N. The vector

(E[fu(Xd)gv(Y
d)], u ∈ U , v ∈ V) and marginals PUd

, PVd
uniquely characterize the output distribution

PUd,Vd
.

As a result of Proposition 1, characterizing the set of simulatable distributions QUV as in Definition 1

is equivalent to characterizing the set of feasible values for the vector (E(fu(Xd)gv(Y
d)), u ∈ U , v ∈ V).

C. Non-Convexity of Q(PXY ,U ,V) and Decomposition into Star-Convex Sets

The set of simulatable distributions Q(PXY ,U ,V) is not a convex set in general. To see this, note that

the extreme points of the probability simplex ∆U×V are always in Q(PXY ,U ,V). To elaborate, for any

given (u∗, v∗) ∈ U × V , Alice and Bob can produce deterministic outputs U, V such that PUV (u, v) =

1(u = u∗, v = v∗), u, v ∈ U × V . Therefore, the convex hull of Q(PXY ,U ,V) equals the set of all

probability distributions on U × V . For instance, for binary-output NISS with U = V = {−1, 1}, the

convex hull of Q(PXY ,U ,V) includes QU,V (u, v) =
1
21(u = v). However, this distribution is simulatable

if and only if the correlation coefficient of (X,Y ) satisfies |ρXY | = 1 [3]. Hence, in general, when

|ρXY | ≠ 1, the set Q(PXY ,U ,V) is not convex.

The fact that Q(PXY ,U ,V) is not a convex set makes its characterization challenging. Consequently,

we decompose Q(PXY ,U ,V) into a union of star-convexed sets, which is more amiable to analysis. To
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elaborate, let us define

P(PXY , QU , QV ) ≜ {Q′
UV ∈ Q(PXY ,U ,V)|Q′

U = QU , Q
′
V = QV }. (7)

The collection P(PXY , QU , QV ), QU ∈ ∆U , QV ∈ ∆V partitions the set Q(PXY ,U ,V). That is,

Q(PXY ,U ,V) =
⋃

QU ,QV

P(PXY , QU , QV ),

P(PXY , QU , QV ) ∩ P(PXY , Q
′
U , Q

′
V ) = ϕ, ∀(QU , QV ) ̸= (Q′

U , Q
′
V )

Lemma 3 (Star-Convexity of P(PXY , QU , QV )
3 ). Given finite alphabets X ,Y,U and V , and distri-

butions PXY , QU , QV defined on X × Y , U , and V , respectively, the set P(PXY , QU , QV ) defined in

Equation (7) is star-convex.

The proof is provided in Appendix B.

D. Extended Search Space and the Randomization/Derandomization Procedure

So far, we have established that in order to study the NISS problem, one can study the extreme points

of the star-convex sets P(PXY , QU , QV ) in each direction from the center (Lemma 3). Furthermore,

in Section III-A, we introduced the overparameterized representation of discrete functions, and showed

that the distributions corresponding to these extreme points can be parameterized by the probability of

disagreement between the corresponding indicator functions, which in turn is bijectively related to the

vector of their inner products (Proposition 1). Furthermore, the inner products can be expressed in terms

of the Fourier coefficients, as demonstrated in Lemma 1. Consequently, the problem of finding the extreme

points can be posed as an optimization problem over the Fourier coefficients. However, this optimization

is over a discrete search space of functions with discrete outputs. To enable the use of widely used

optimization methods over convex spaces, we expand the search space to continuous valued functions in

the following and show that this expansion does not affect the output of the optimization problem.

Building upon the randomization approach of [22], [29], in the sequel, we often expand our search

from the space of discrete functions with output alphabet U , which are captured by vectors of indicator

3This result and the accompanying proof was partially presented in the conference version [29].
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functions satisfying Conditions (1) and (2) in Equations (3) and (4), to a search over the space of

continuous-valued functions hu : X d → [−1, 1] for u ∈ U Conditions (3) and (4) below:

Condition (3): f̃u(x
d) ∈ [−1, 1], ∀xd ∈ X d, u ∈ U (8)

Condition (4):
∑
u∈U

f̃u(x
d) = 2− |U|, ∀xd ∈ X d. (9)

In the following, we provide a description of the randomization/derandomization (RD) approach

which enables us to transform a pair of functions f̃u : X d → [−1, 1], g̃v : Yd → [−1, 1], u, v ∈ U × V ,

satisfying conditions (3) and (4) into functions fu : X d → {−1, 1}, gv : Yd → {−1, 1}, u, v ∈ U × V

satisfying Conditions (1) and (2) in a correlation preserving and marginal preserving manner, i.e., such

that E(f̃u(Xd)) = E(fu(Xd)), E(g̃v(Y d)) = E(gv(Y d)), and E(f̃u(Xd)g̃v(Y
d)) = E(fu(Xd)gv(Y

d)).

We first provide the description of the RD procedure for the binary-output scenario, and then for the

general case.

1) Binary-Output Randomization and Derandomization: Alice is given input Xd and continuous-

valued functions f̃0(·) and f̃1(·) satisfying Conditions (3) and (4). Note that Condition (4) implies that

f̃0(·) = −f̃1(·). Alice produces a coin C ∈ {−1, 1} with bias 1+f̃1(Xd)
2 , i.e., P (C = 1) = 1+f̃1(Xd)

2 , and

defines the f1(Xd) as the output of this coin4. Furthermore, define f0(xd) = −f1(xd), xd ∈ X d. Then,

f0(·), f1(·) satisfy Conditions (1) and (2). Bob constructs g0(·), g1(·) from g̃0, g̃1 following a similar

procedure. We have:

E(f0(Xd)) = P(f0(Xd) = 1)− P(f0(Xd) = −1) =
1 + E(f̃0(Xd))

2
− 1− E(f̃0(Xd))

2

= E(f̃0(Xd)).

More generally, following the above line of arugment one can show that:

E(fu(Xd)) = E(f̃u(Xd)), E(gv(Y d)) = E(gv(Y d)), (10)

E(fu(Xd)gv(Y
d)) = E(f̃u(Xd)g̃v(Y

d)), ∀u, v ∈ U × V. (11)

2) Finite-Alphabet-Output Randomization and Derandomization: Define Uϕ = U − {0} and Vϕ =

V − {0}. Alice generates independent coins Cu, u ∈ Uϕ with biases f̃u(Xd)+1

3−u−
∑

u′<u f̃u′ (Xd)
, respectively,

and Bob produces independent coins C ′
v, v ∈ Vϕ with biases g̃v(Y d)+1

3−v−
∑

v′<v g̃v′ (Y d) , respectively. Note that

Condition (4) ensures that
∑

u∈A f̃u(x
d) ≤ 2− |A|, xd ∈ X d for all A ⊆ Uϕ, which in turn, guarantees

that the biases are in [0, 1] and the coin is well-defined. If Cu = −1, u ∈ Uϕ, then Alice sets f0(Xd) = 1

4Note Alice can generate the coin locally using unused input samples, e.g. [41].
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and fu(X
d) = −1, u ∈ Uϕ. Otherwise, she sets fu∗(Xd) = 1 for u∗ = argminu∈Uϕ

{u|Cu = 1} and

fu(X
d) = −1, u ̸= u∗. Note that by construction for any u ∈ Uϕ, we have:

P(fu(Xd) = 1|Xd = xd) = P(Cu = 1, Cu′ = −1, u′ < u) = P(Cu = 1)
∏
u′<u

(1− P(Cu′ = 1))

=
1 + f̃u(x

d)

2
.

Similarly, for any v ∈ Vϕ, we have P(gv(Y d) = 1|Y d = yd) = 1+g̃v(yd)
2 . Consequently, E(fu(Xd)) =

E(f̃u(Xd)) and E(gv(Y d)) = E(g̃v(Y d)), similar to the binary case. Furthermore,

E(fu(Xd)gv(Y
d)) = P(fu(Xd) = gv(Y

d))− P (fu(X
d) ̸= gv(Y

d))

= E(
1 + f̃u(X

d)

2

1 + g̃v(Y
d)

2
) + E(

1− f̃u(X
d)

2

1− g̃v(Y
d)

2
)

− E(
1− E(f̃u(Xd)

2

1 + g̃v(Y
d)

2
)− E(

1 + f̃u(X
d)

2

1− E(g̃v(Y d)

2
)

= E(f̃u(Xd)g̃v(Y
d)),

where we have used the fact that the local coins are generated using independent samples of the input

sources. Consequently, Equation (10) and (11) hold for finite-output scenarios as well.

3) Expanded Search Space and A Bijective Mapping: So, far we have introduced a procedure to

transform continuous-valued functions (f̃u, g̃v)u,v∈U×V to discrete-valued functions (fu, gv)u,v∈U×V . We

call this procedure the RD procedure, the functions (f̃u, g̃v)u,v∈U×V the randomized functions, and

(fu, gv)u,v∈U×V the derandomized functions.

Definition 3 (Binary-Output Randomized Simulating Functions). Consider the sequence of function

pairs (f̃d, g̃d)d∈N with f̃d, g̃d : {−1, 1}d → [−1, 1]. Let µd = E(f̃d(Xd)), νd = E(g̃d(Y d)), ηd =

E(f̃d(Xd)g̃d(Y
d)), for all d ∈ N. Given (µ, ν) ∈ [−1, 1]2, define the set of randomized simulating

functions FXY (µ, ν) as the set of sequences of function-pairs (f̃d, g̃d)d∈N for which limd→∞ µd = µ,

limd→∞ νd = ν, and limd→∞ ηd exists.

Definition 4 (Finite-Output Randomized Simulating Functions). Let µu, νv ∈ [−1, 1]2, u, v,∈ U×V such

that
∑

u µu = 2− |U| and
∑

v νv = 2− |V|. The function tuples (f̃u,d, g̃v,d)u,v∈U×V,d∈N with f̃u,d, g̃v,d :

{−1, 1}d → [−1, 1] are called randomized simulating functions with parameters (µu, νv)u,v,∈U×V if they

satisfy conditions (3) and (4), and (f̃u,d, g̃v,d)d∈N ∈ FXY (µu, νv), u, v ∈ U × V . The set of randomized

simulating functions parametrized by (µu, νv)u,v,∈U×V is denoted by FXY (QU , QV ), where QU (u) ≜
1+µu

2 and QV (v) ≜
1+νv

2 , u, v ∈ U × V .
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Let us define the set E(PX,Y , QU , QV ) as follows:

E(PXY , QU , QV ) ≜

{
(eu,v)u∈U ,v∈V

∣∣ ∃(f̃u,d, g̃v,d)u,v∈U×V,d∈N ∈ FXY (QU , QV ) :

eu,v = lim
d→∞

E(f̃d,u(Xd)g̃d,v(Y
d))

}
. (12)

The randomization procedure in the prequel implies that there is a bijection between E(PXY , QU , QV ) and

P(PXY , QU , QV ). Hence, it suffices to characterize E(PXY , QU , QV ) in order to characterize P(PXY , QU , QV ).

This is formally stated below.

Lemma 4. Given marginals QU and QV and PXY , there exists bijective mapping Ψ from P(PXY , QU , QV )

to E(PXY , QU , QV ).

Ψ(QU,V ) = (4QU,V (u, v)− 2(QU (u) +QV (v)) + 1)u∈U ,v∈V . (13)

The proof is provided in Appendix C.

IV. THE MAXIMAL CORRELATION PROBLEM AND SOLVABILITY OF NISS

In this section, we first consider FB-NISS problems with uniform outputs and reproduce Witsen-

hausen’s ( [3]) result which shows that any output distribution can be simulated if and only if its

Hirschfeld-Gebelein-Rényi maximal correlation is less than that of the input distribution. Next, we provide

a simulating protocol for this scenario (Corollary 3). Furthermore, we generalize the notion of maximal

correlation by defining the biased maximal correlation and prove that solving the FB-NISS for general

non-uniform outputs is equivalent to characterizing the biased maximal correlation and the simulating

protocol to simulate the joint distribution that achieves it. Next, we consider the general finite-input, finite-

output NISS problem and further extend the notion of maximal correlation by defining the directional

maximal correlation. We show that solving the FB-NISS problem for a given QUV and PXY is equivalent

to finding the directional maximal correlation in a specific direction.

The maximal correlation coefficient was first introduced by Hirschfeld-Gebelein and then Rényi [4]–

[6]. It is formally defined as follows:

Definition 5 (Maximal Correlation). Given alphabets X and Y , and joint distribution PXY , the maximal

correlation ρ(X ,Y, PXY ) is defined as:

ρ(X ,Y, PXY ) = max
f :X→R,g:Y→R,
E(f)=E(g)=0,

V ar(f)=V ar(g)=1

EX,Y (f(X)g(Y )),
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where E(f),E(g), V ar(f), V ar(g) are shorthand for the expectation and variance of f(X) and g(Y ),

respectively.

Witsenhausen [3] showed that the maximal correlation coefficient ρ(X ,Y, PXY ) tensorizes and sat-

isfies the data processing inequality. This is summarized below:

Proposition 2 ( [3]). Given alphabets X and Y , and joint distribution PXY , the maximal correlation

ρ(X ,Y, PXY ) satisfies the following:

• Tensorization: Let P d
X,Y (x

d, yd) =
∏d

i=1 PXY (xi, yi), x
d ∈ X d, yd ∈ Yd be the n-letter product

distribution associated with PXY . Then, ρ(X ,Y, PXY ) = ρ(X d,Yd, P d
XY ).

• Data Processing: Given alphabets U and V , for any f : X → U and g : Y → V , let U = f(X) and

V = g(Y ). Then, ρ(X ,Y, PXY ) ≥ ρ(U ,V, PUV ).

Proposition 2 has an important consequence in solving a special instance of the FB-NISS problem

(PXY , QUV , ϵ). Specifically, one can derive the solution for the case where U and V are uniformly

distributed, i.e., PU (1) = PV (1) = 1
2 . This is formally stated in the following proposition which is

proved in Appendix D.

Proposition 3 (Solution to Uniform-Output FB-NISS). Consider the NISS problem (PXY , QUV , ϵ),

where X,Y and finite alphabet sources defined on Fq, U, V are binary variables, and QU (1) = QV (1) =

1
2 . The distribution QUV is simulatable up to ϵ total variation distance if and only if there exists Q′

UV ∈

S(PXY , QU , QV ) such that dTV (QUV , Q
′
UV ) < ϵ, where:

S(PXY , QU , QV ) = {PUV |PU (1) = PV (1) =
1

2
, |ρ(U ,V, PUV )| ≤ |ρ(X ,Y, PXY )|}.

Furthermore, the solution is achieved by the pair of functions

U =

CX(p1) if CX(λ) = 1

CX(12) if CX(λ) = −1

, V =

CY (p2) if CY (λ) = 1

CY (
1
2) if CY (λ) = −1

, (14)

where CX and CY are independent coins5, p1 ≜ 1+f̃(Xd)
2 , p2 ≜ 1+g̃(Y d)

2 , λ ≜
√

|ρ(U ,V,Q′
UV )|

|ρ(X ,Y,PXY )| , and

f̃(Xd) =
∑

i∈[q−1] f̃
∗
i ϕi(X1), g̃(Y d) =

∑
i∈[q−1] g̃

∗
i ϕ

′
i(Y1), where ϕi, ϕ

′
i, i ∈ Fq are the orthonormal

basis of functions defined on probability spaces LX and LY , respectively; we have defined the first basis

5The biased coins CX(λ), CY (λ), CX(p1), CY (p2), CX( 1
2
) and CY ( 1

2
) are assumed to be generated using non-overlaping

samples of Xd and Y d, so that they are independent of each other given p1 and p2.
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element as the identity functions, i.e., ϕ0(X) = ϕ′0(Y ) = 1; and the Fourier coefficients f̃∗i , g̃
∗
i , i ∈ [q−1]

are the outputs of the following optimization:

(f̃∗i , g̃
∗
i )i,j∈[q−1] = arg max

(f̃i,g̃i)i∈[q−1]∈A

∑
i∈[q−1]

f̃ig̃jρi,j ,

A ≜ {(f̃i, g̃i)i∈[q−1]|
∑

i∈[q−1]

f̃iϕi(x) ∈ [−1, 1],
∑

i,j∈[q−1]

g̃iϕ
′
i(y) ∈ [−, 1, 1], x, y ∈ X × Y},

and ρi,j ≜ E(ϕi(X)ϕ′j(Y )), i, j ∈ [q − 1]. Particularly, for BB-NISS, we have:

f̃(Xd) =
X1 − E(X)

1 + |E(X)|
, g̃(Y d) =

Y1 − E(Y )

1 + |E(Y )|
.

Remark 2. Note that the simulating protocol in Proposition 3 requires one sample of Xd and Y d to

generate the distribution achieving the maximal correlation. The biased coins can be generated using

other independent samples of the distributed sources (e.g., [41]).

As shown in Proposition 3, the characterization of the maximal correlation coefficient defined in

Definition 5, along with the introduction of the pair of functions f̃(Xd) and g̃(Y d) achieving this maximal

correlation completely solves the uniform-output FB-NISS problem. However, the results do not naturally

extend to non-uniform output FB-NISS and FF-NISS scenarios. We will show in the next sections, that

a key step in solving the general binary-output NISS problem for given distributions PXY , QUV is to

characterize the biased maximal correlation coefficient of PXY with respect to QUV which is defined

below.

Definition 6 (Biased Maximal Correlation). Let X = Y = Fq and U and V be binary alphabets,

and consider the joint distribution PXY and marginal distributions QU , and QV , the biased maximal

correlation ρb(PXY , QU , QV ) is defined as:

ρb(PXY , QU , QV ) = sup
d∈N

max
f :X d→[−1,1],g:Yd→[−1,1],

E(f)=2QU (1)−1,E(g)=2QV (1)−1

EXd,Y d(f(Xd)g(Y d)).

Proposition 4 (Solution to the General FB-NISS). Consider the NISS problem (PXY , QUV , ϵ), where

X,Y are defined on Fq and U, V are binary variables. The problem has a solution if and only if there

exists PUV ∈ S(PXY , QU , QV ) such that dTV (QUV , PUV ) ≤ ϵ, where:

S(PXY , QU , QV ) =

{PUV |PU (1) = QU (1), PV (1) = QV (1), |1− 2P(U ̸= V )| ≤ |ρb(PXY , QU , QV )|}.
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Furthermore, the solution is achieved by the pair of functions

U =

CX(p1) if CX(λ) = 1

CX(QU (1)) if CX(λ) = −1

, V =

CY (p2) if CY (λ) = 1

CY (QV (1)) if CY (λ) = −1

, (15)

where p1 ≜ 1+fδ(Xd)
2 , p2 ≜ 1+gδ(Y d)

2 , λ ≜
√

|1−2P(U ̸=V )|
ρb(PXY ,QU ,QV ) , and fδ : X d → [−1, 1] and gδ : Yd →

[−1, 1] are a pair of functions for which ρb(PXY , QU , QV ) − E(fδ(Xd), gδ(Y
d)) ≤ δ and δ ≜ ϵ −

dTV (QUV , PUV ).

The proof follows by similar arguments as that of Proposition 3 and is omitted for brevity. To solve

the more general FF-NISS problem, we extend the notion of biased maximal correlation in the following

definition.

Definition 7 (Directional Maximal Correlation). Let X ,Y = Fq, and U = {0, 1, · · · , |U|} and V =

{0, 1, · · · , |V|} finite alphabets. Define Uϕ ≜ U −{0} and Vϕ ≜ V −{0}. Consider the joint distribution

PXY , marginal distributions QU ,and QV , and the direction vector α = (αu,v)u∈Uϕ,v∈Vϕ
, where αu,v ∈ R

and
∑

u∈Uϕ,v∈Vϕ
α2
u,v = 1. The directional maximal correlation ρd(PXY , QU , QV ) is defined as:

ρd(PXY , QU , QV ,α) = sup
d∈N

max
t∈Td

|t|,

where t ∈ Td if an only if there exists f̃d,u : X d → [−1, 1], u ∈ Uϕ and g̃d,v : Yd → [−1, 1], v ∈ Vϕ such

that E(f̃d,u(Xd)) = 2QU (u)− 1, u ∈ Uϕ, E(g̃d,v(Y d)) = 2QV (v)− 1, v ∈ Vϕ, and

t =
E(f̃d,u(Xd)g̃d,v(Y

d))− (2QU (u)− 1)(2QV (v)− 1)

αu,v
,∀u, v ∈ Uϕ × Vϕ.

Remark 3. Note that the set Td is always non-empty since the product distribution QUQV can always

be generated via local biased coins by Alice and Bob. So, the directional maximal correlation is always

defined.

Remark 4. Note that for binary output NISS, the direction vector can only take one direction characterized

by α1,1 = 1. It can be verified that in this case, ρd(PXY , QU , QV , 1) = ρb(PXY , QU , QV )− 2(QU (u)−

1)(2QV (v)− 1). So, finding the directional maximal correlation in this case is equivalent to finding the

biased maximal correlation, and the simulating protocol achieving the directional maximal correlation

is the same as the one achieving the biased maximal correlation.

Next, we generalize Proposition 4 to the FF-NISS problem by leveraging the concept of direc-

tional maximal correlation. To this end, let us consider finite alphabets U = {0, 1, · · · , |U|} and V =
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{0, 1, · · · , |V|} and a given joint probability distribution QUV on U × V . We define the direction vector

α(QUV ) associated with QUV as follows:

βu,v(QUV ) ≜ 4(QUV (u, v)−QU (u)QV (v)),

αu,v(QUV ) ≜
βu,v(QUV )∑

u′∈Uϕ,v′∈Vϕ
β2u′,v′(QUV )

, u ∈ Uϕ, v ∈ Vϕ,

where Uϕ ≜ U − {0} and Vϕ ≜ V − {0}. Furthermore, we define the directional correlation associated

with QUV as:

t(QUV ) ≜
∑

u∈Uϕ,v∈Vϕ

β2u,v(QUV ).

Note that by construction, for any given QUV and associated directional maximal correlation ρd(PXY ,

QU , QV ,α(QUV )), there is a unique distribution Q′
UV such that α(Q′

UV ) = α(QUV ) and t(Q′(U, V )) =

ρd(PXY , QU , QV ,α(QUV )). Furthermore, by definition of maximal directional correlation, for any δ > 0,

there exist d ∈ N and functions f̃d,u : X d → [−1, 1], u ∈ Uϕ and g̃d,v : Yd → [−1, 1], v ∈ Vϕ such that∣∣∣∣∣t(Q′(U, V ))−
E(f̃d,u(Xd)g̃d,v(Y

d))− (2QU (u)− 1)(2QV (v)− 1)

αu,v

∣∣∣∣∣ ≤ δ, ∀u, v ∈ Uϕ × Vϕ.

Hence, using the bijection described in the proof of Lemma 4, the distribution Q′
UV can be simulated

using PXY . We denote by CX,δ(Q
′
UV ) and CY,δ(Q

′
UV ) the functions f : X d → U and g : Yd → V which

simulate Q′
UV with variational distance smaller than δ. The following proposition follows by similar

arguments as that of Proposition 3.

Proposition 5 (Solution to FF-NISS). Consider the NISS problem (PXY , QUV , ϵ), where X,Y, U, V

are finite random variables. The problem has a solution if and only if there exists Q′
UV such that

dTV (QUV , Q
′
UV ) < ϵ and

|t(Q′
UV )| ≤ ρd(PXY , QU , QV ,α(Q′

UV )).

Furthermore, the solution is achieved by the pair of functions

U =

CX,δ(Q
′
UV ) if CX(λ) = 1

CX,δ(Q
′
UQ

′
V ) if CX(λ) = −1

, V =

CY,δ(Q
′
UV ) if CY (λ) = 1

CX,δ(Q
′
UQ

′
V ) if CY (λ) = −1

, (16)

where λ ≜
√

t(Q′
UV )

ρd(U ,V,Q′
UV ,α(Q′

UV )) , and δ ≜ ϵ− dTV (QUV −Q′
UV ).

V. PRIMAL AND DUAL FORMULATIONS OF THE MAXIMAL CORRELATION PROBLEM

In the previous section, we showed that the FB-NISS problem can be reduced to the problem of

finding the biased maximal correlation and the FF-NISS problem to the problem of finding the directional
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maximal correlation, and the associated generating functions. In the following, we reformulate the problem

of characterizing the biased maximal correlation and its associated functions as a norm optimization

problem over a convex polytope and its dual. We show that in the case of uniform input distributions, the

dual problem can be solved as a linear programming problem. For non-uniform input scenarios, in the

next sections, we develop the low computational complexity optimization algorithms to find approximate

solutions to the primal problem.

In the following proposition, we formulate the biased maximal correlation defined in Definition 6, and

by considering the extended search space (as in Section III-C) and the corresponding overparametrized

Fourier.

Theorem 1 (Biased Maximal Correlation - Primal Form). Let X ,Y = Fq and U and V be binary

alphabets, and consider the joint distribution PXY and marginal distributions QU ,and QV , the biased

maximal correlation ρb(PXY , QU , QV ) can be computed by solving the following optimization:

ρb(PXY , QU , QV ) = sup
d∈N

sup
(fsd ,s

d∈Fd
q)∈F(QU )

(gtd ,t
d∈Fd

q)∈G(QV )

∑
sd,td∈Fd

q

f̃sd g̃td
∏

s,t∈Fq

ρ
n(s,t|sd,td)
s,t , (17)

where ρs,t is defined in Lemma 1, and

F(QU ) ≜ {(f̃sd , sd ∈ Fd
q)
∣∣| ∑

sd∈Fd
q

f̃sd
∏
i∈[d]

ϕsi(x
d)| ≤ 1,∀xd ∈ Fd

q , f̃ϕ = 2QU (1)− 1}, (18)

G(QV ) ≜ {(g̃td , td ∈ Gd
q)
∣∣| ∑

td∈Gd
q

g̃td
∏
i∈[d]

ϕ′ti(y
d)| ≤ 1, ∀yd ∈ Gd

q , g̃ϕ = 2QV (1)− 1}, (19)

where ϕs, s ∈ Fq and ϕ′t, t ∈ Fq are the orthonormal basis for functions in LX and LY , respectively.

Particularly, for BB-NISS, we have:

ρb(PXY , QU , QV ) = sup
d∈N

sup
(f̃S ,S⊆[d])∈F(QU )
(g̃S ,S⊆[d])∈G(QV )

∑
S⊆[d]

f̃S g̃Sρ
|S|, (20)

where

F(QU ) ≜ {(f̃S ,S ⊆ [d])
∣∣| ∑

S⊆[d]

f̃SϕS(x
d)| ≤ 1,∀xd ∈ {−1, 1}d, f̃ϕ = 2QU (1)− 1},

G(QV ) ≜ {(g̃S ,S ⊆ [d])
∣∣| ∑

S⊆[d]

g̃SψS(y
d)| ≤ 1, ∀yd ∈ {−1, 1}d, g̃ϕ = 2QV (1)− 1},

and ϕS(xd) ≜
∏

i∈S
xi−E(X)√
V ar(X)

and ψS(y
d) ≜

∏
i∈S

yi−E(Y )√
V ar(Y )

are the corresponding parity functions, and

ρ ≜ ρ(X ,Y, PXY ).

Note that the optimization in Equation (17) is an inner-product optimization over two intersecting

polytopes. In particular, the following corollary shows that for binary-output NISS with QU (1) = QV (1),
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the problem reduces to a norm optimization over a convex polytope. The proof is provided in Appendix

E.

Corollary 2 (Equi-Biased Maximal Correlation). In the setting of Theorem 1, if QU (1) = QV (1) and

X = Y = {−1, 1}, then

ρb(PXY , QU , QV ) = sup
d∈N

sup
(f̃S ,S⊆[d])⊆F(QU ))

∑
S⊆[d]

f̃2Sρ
|S|, (21)

where F(QU ) ≜ {(f̃S ,S ⊆ [d])
∣∣|∑S⊆[d] f̃SϕS(x

d)| ≤ 1,∀xd ∈ {−1, 1}d, fϕ = 2QU (1)− 1}.

Remark 5. It can be observed from proof of Corollary 2 that the result can be extended to non-

binary input alphabets as long as a positive-definiteness condition holds. To elaborate, consider the

vector space R = {(vsd , sd ∈ Fd
q)|vsd ∈ [−1, 1], sd ∈ Fd

q} and define the inner-product ⟨v,w⟩ ≜∑
sd,td vsdwtd

∏
s,t∈[d] ρ

n(s,t|sd,td)
s,t , where ρs,t is defined in Lemma 1. If PXY is such that the inner-product

is positive-definite, then the Cauchy-Schwarz inequality used in the proof of Corollary 2 holds, and the

result can be extended to non-binary input alphabets.

The optimization in Equation (17) is a quadratic program which in general is NP-hard [42]. In the

next sections, we provide a convex-concave optimization problem to estimate the optimal solution.

In the special case when the input marginal distributions are uniform (i.e., X = Y = Fq and PX(x) =

PY (y) = 1
q , x, y ∈ Fq), one can use the dual to the optimization in Equation (17), which is given in

the following proposition and can be solved by linear programming. We derive the dual formulation

by considering the Karush–Kuhn–Tucker (KKT) conditions. Note that there are 4 × qd constraints in

the primal formulation, and hence they are assigned 4 × qd coefficients in the KKT conditions. To

elaborate, for each set of constraints f(xd) ≤ 1, xd ∈ Fq, f(xd) ≥ −1, xd ∈ Fq, g(yd) ≤ 1, yd ∈ Fq,

g(yd) ≥ −1, yd ∈ Fq, we define the KKT coefficients λ+f (x
d), λ−f (x

d), λ+g (y
d) and λ−g (y

d). To prove the

following result, we apply a uniform Fourier expansion on the KKT conditions λ+f (x
d), λ−f (x

d), λ+g (y
d)

and λ−g (y
d). The dual objective function and constraints are then expressed in terms of the resulting

Fourier coefficients. The complete proof is provided in Appendix F.

Theorem 2 (Biased Maximal Correlation - Dual Form). Let X = Y = Fq and U and V be binary

alphabets, and consider the joint distributions PXY , QUV such that PX(x) = PY (y) =
1
q , x, y ∈ Fq. The
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biased maximal correlation ρb(PXY , QUV ) can be computed by solving the following optimization:

ρb(PXY , QU , QV ) = (2QU (1)− 1)(2QV (1)− 1) (22)

+ sup
d∈N

sup
(λ+

f,sd
,λ−

f,sd
sd∈Fd

q)∈Λ(QU )

(λ+

g,sd
,λ−

g,sd
sd∈Fd

q)∈Λ(QV )

QU (0)λ
+
f,0 +QU (1)λ

−
f,0 +QV (0)λ

+
g,0 +QV (1)λ

−
g,0,

where (λ+f,sd , λ
−
f,sd , s

d ∈ Fd
q) ∈ Λ(QU ) if and only if:

|2QV (1)− 1 +
∑

sd∈Fd
q ,s

d ̸=0

f̄sd(λ)χsd(x
d)| ≤ 1, ∀xd ∈ Fd

q ,

∑
S⊆[d]

λ+f,sdχsd(x
d) ≥ 0,

∑
sd∈Fd

q

λ−f,sdχsd(x
d) ≥ 0, ∀xd ∈ Fd

q ,

where f̄sd(λf ), s
d ∈ Fd

q is the solution to the linear system Pf = Lf , P ≜ [
∏

s,t ρ
n(s,t|sd,td)
s,t ]sd,td∈Fd

q
,

f ∈ Rqd , Lf ≜ [λ+f,sd − λ−f,sd ]sd∈Fd
q
. Similarly, (λ+g,sd , λ

−
g,sd , s

d ∈ Fd
q) ∈ Λ(QV ) if and only if:

|2QU (1)− 1 +
∑

sd∈Fd
q ,s

d ̸=0

ḡsd(λ)χsd(x
d)| ≤ 1, ∀xd ∈ Fd

q ,

∑
sd∈Fd

q

λ+g,sdχsd(y
d) ≥ 0,

∑
sd∈Fd

q

λ−g,sdχsd(y
d) ≥ 0, ∀yd ∈ Fd

q ,

where ḡsd(λg), sd ∈ Fd
q is the solution to the linear system Pg = Lg, g ∈ Rqd , Lg ≜ [λ+g,sd −λ

−
g,sd ]sd∈Fd

q
.

Theorem 1 can be generalized to the BF-NISS scenario as given below.

Theorem 3 (Directional Maximal Correlation - Primal Form). Let X ,Y , U and V finite alphabets.

Consider the joint distribution PXY , marginal distributions QU ,and QV , and direction vector α. The

directional maximal correlation ρd(PXY , QU , QV ,α) can be computed by solving the following opti-

mization:

ρd(PXY , QU , QV ,α) =

sup
d∈N

sup
(f̃sd ,g̃sd ,s

d∈Fd
q)∈C(QU ,QV ,α)

∑
sd,td∈Fd

q
f̃sd g̃td

∏
s,t ρ

n(s,t|sd,td)
s,t − (2QU (1)− 1)(2QV (1)− 1)

α1,1
, (23)

where C(QU , QV ,α) is the set of all (f̃sd , g̃sd , sd ∈ Fd
q) for which there exists f̃u,sd , g̃v,sd , u ∈ Uϕ, v ∈

Vϕ, s
d ∈ Fd

q such that:
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• Directionality constraint:∑
sd,td∈Fd

q
fsdgtd

∏
s,t ρ

n(s,t|sd,td)
s,t − (2QU (1)− 1)(2QV (1)− 1)

α1,1
=∑

sd,td∈Fd
q
f̃u,sd g̃v,td

∏n(s,t|sd,td)
s,t −(2QU (u)− 1)(2QV (v)− 1)

αu,v
, ∀u ∈ Uϕ, v ∈ Vϕ

• Bias constraints:

f̃u,0 = 2QU (u)− 1, g̃v,0 = 2QV (v)− 1, ∀u ∈ Uϕ, v ∈ Vϕ

• Valid distribution constraints:

|
∑
sd∈Fd

q

fu,sdϕsd(x
d)| ≤ 1, |

∑
sd∈Fd

q

gv,sdϕ
′
sd(x

d)| ≤ 1, ∀xd, yd ∈ {−1, 1}d

∑
u∈U

∑
sd∈Fd

q

fu,sdϕsd(x
d) ≤ 2− |U|,

∑
v∈V

∑
sd∈Fd

q

gv,sdϕ
′
sd(x

d) ≤ 2− |V|.

Proof Outline: It suffices to argue that the Fourier coefficients associated with any pair of functions

admissible in the optimization in Definition 7 satisfy the constraints in the proposition statement. The

directionality constraints must be satisfied by the definition of directional maximal correlation. The bias

constraints enforce that the marginal distributions produced by the pair of functions are equal to (QU , QV ).

Furthermore, as argued in Equation (9) in Section III-A, the valid distribution constraints are satisfied

by the corresponding Fourier coefficients of any |U|-ary and |V|-ary pair of functions. Consequently,

optimizing the objective function of directional maximal correlation over the set of Fourier coefficients

satisfying these constraints yeilds the maximal correlation in direction α as desired.

VI. CASE STUDIES IN CLASSICAL AND QUANTUM DISTRIBUTED CORRELATION QUANTIFICATION

In the previous sections, we have introduced a general framework for quantifying the correlation

produced among distributed terminals in source simulation scenarios. Our focus in this work is to study

the NISS scenario with independent and identically distributed pairs of input samples (Figure 1) by

applying the Fourier framework. However, it should be mentioned that the framework is general, and it

is potentially applicable in various other problems of interest which require quantification of distributed

correlation. To provide examples of these general scenarios, and clarify some of the notation introduced

in the previous sections, in this subsection we consider three source simulation scenarios, focusing on

i) classical sequences with independent but not identically distributed elements, ii) classical sources

generated by sequential measurements of entangled qubits, and iii) classical sources with Markovian

structure.
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Alice

Bob

Z,X1, X2, · · ·

Z, Y1, Y2, · · ·

U = f(Z,X1, X2, · · ·)

dTV (PU,V , QU,V ) ≤ ǫZ ∼ Be(1
2
), PX ⊥ PY

V = g(Z, Y1, Y2, · · ·)

Fig. 2: An NISS scenario with one-bit common randomness and unlimited local randomness available to

the agents.

Case Study 1: Non-IID Classical Source with Common Randomness

In this scenario (Figure 2), the two agents are provided with one bit of common randomness, Z ∼

Be(12), and an unlimited number of bits of local randomness Xi, i ∈ N and Yi, i ∈ N, respectively. The

agents wish to simulate a pair of binary outputs. Let us denote the set of simulatable joint distributions

by Q1. To find Q1, we first characterize the set of simulatable distributions with marginals QU and QV ,

denoted by P(QU , QV ), where QU (1) = a and QV (1) = b for some a, b ∈ [0, 1]. Then, Q1 is found

by taking the union of P(QU , QV ) over all a, b ∈ [0, 1]. Let U, V be produced by following the RD

procedure using functions f̃(Z,Xd) and g̃(Z, Y d), satisfying Conditions (3) and (4) in Section III-D, for

some d ∈ N. Let f̃sd+1 , g̃sd+1 , sd+1 ∈ {−1, 1}d+1 be the Fourier coefficients resulting from decomposing

f̃ and g̃, respectively, where the decomposition is performed with the following orthonormal basis:

ϕsd+1(Z,Xd) ≜

Z
∏

i:si=1,i>1Xi−1 if s1 = 1∏
i:si=1,i>1Xi−1 if s1 = −1

, sd+1 ∈ {−1, 1}d+1.

We have:

f̃ϕ = E[f̃ ] = 2a− 1, g̃ϕ = E[g̃] = 2b− 1, E[f̃ g̃] = (2a− 1)(2b− 1) + f̃1g̃1, (24)

where in the last equality we have used the fact that Xd and Y d are independent local randomness to

conclude that ρsd+1 = 0 for all sd+1 such that there exists si = 1, i > 1. Furthermore, from Conditions

(3) in Section III-D, we have:

−1 ≤ f̃ϕ + f̃1 ≤ 1

−1 ≤ f̃ϕ − f̃1 ≤ 1

−1 ≤ g̃ϕ + g̃1 ≤ 1

−1 ≤ g̃ϕ − g̃1 ≤ 1

⇒



−2a ≤ f̃1 ≤ 2(1− a)

−2(1− a) ≤ f̃1 ≤ 2a

−2b ≤ g̃1 ≤ 2(1− b)

−2(1− b) ≤ g̃1 ≤ 2b

(25)
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As a result,  max{−2a,−2(1− a)} ≤ f̃1 ≤ min{2(1− a), 2a}

max{−2b,−2(1− b)} ≤ g̃1 ≤ min{2(1− b), 2b}
(26)

Hence, using Lemma (2) and Equations (24) and (26), the set P(QU , QV ) is given by:

P(QU , QV ) = {QUV |QU (1) = a,QV (1) = b,
2− ζa,b − βab

2
≤ Q(U = V ) ≤

2− ζa,b + βab
2

},

where ζa,b ≜ 1 − (2a − 1)(2b − 1) and βa,b ≜ min{2a, 2(1 − a)}min{2b, 2(1 − b)}. Consequently,

Q1 =
⋃

a,b∈[0,1] P(QU , QV ).

Case Study 2: Sequential Measurements of Entangled Qubits

The quantification of classical correlations generated by quantum measurements has been studied

extensively, and is closely related to the celebrated Bell’s theorem and the CHSH inequality [43]–[45].

There has been significant interest and progress in this area in recent years, e.g., [46], [47]. We consider a

simple example of classical correlation generation via quantum measurements to illustrate the applicability

of the Fourier framework to such problems. In this scenario (Figure 3), the two agents share an entangled

pair of qubits in the Bell state, |β⟩00 =
|00⟩+|11⟩

2 and can perform sequential measurements — restricted

to a specific set of measurements as discussed below — of their corresponding qubits. Note that in

addition to generating correlated measurement outcomes from measuring the entangled qubits, the agents

can produce unlimited amounts of local classical randomness Xi, i ∈ N and Yi, i ∈ N, respectively, by

performing subsequent measurements on the (unentangled) output qubits of the first measurement. Each

agent performs a two-outcome measurement on its qubit, and uses the classical measurement output for

non-interactive source simulation along with the available local randomness. Let the set of simulatable

distributions be denoted by Q2. We show that Q1 = Q2. That is, in this specific scenario, classical

randomness generated by quantum measurements does not allow for simulating joint distributions other

that those which are simulatable using classical common randomness achieved in Case Study 1.

Alice

Bob

U = f(Z1, X1, X2, · · ·)

dTV (PU,V , QU,V ) ≤ ǫ

|B00〉

V = g(Z2, Y1, Y2, · · ·)

Z2, Y1, Y2, · · ·

Z1, X1, X2, · · ·

Fig. 3: A quantum NISS scenario with a Bell state shared among two agents along with unlimited local

randomness available to the agents.
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We restrict the measurements M1 and M2, performed by Alice and Bob, respectively, to have two

possible outcomes each, corresponding to |ϕi⟩ = α0,i |0⟩ + α1,i |1⟩ , i = {−1, 1} for M1 and |ψi⟩ =

β0,i |0⟩ + β1,i |1⟩ , i = {−1, 1} for M2, satisfying the completeness relation. We denote the classical

output of Mi by Zi ∈ {−1, 1} for i ∈ {−1, 1}. Then,

PZ1,Z2
(i, j) = |⟨B00|ϕi ⊗ ψj⟩|2 =

1

2
(α0,iβ0,j + α1,iβ1,j)

2

The completeness relation requires the following:

α2
0,−1 + α2

0,1 = 1, α2
1,−1 + α2

1,1 = 1, α0,−1α1,−1 + α0,1α1,1 = 0

β20,−1 + β20,1 = 1, β21,−1 + β21,1 = 1, β0,−1β1,−1 + β0,1β1,1 = 0

Parametrizing with θ, θ′ ∈ [0, 2π], we have:

α0,−1 = sin(θ), α0,1 = cos(θ), α1,−1 = −cos(θ), α1,1 = sin(θ)

β0,−1 = sin(θ′), β0,1 = cos(θ′), β1,−1 = −cos(θ′), β1,1 = sin(θ′).

Consequently:

PZ1,Z2
(−1,−1) =

cos2(θ′ − θ)

2
, PZ1,Z2

(−1, 1) =
sin2(θ − θ′)

2
,

PZ1,Z2
(1,−1) =

sin2(θ − θ′)

2
, PZ1,Z2

(1, 1) =
cos2(θ − θ′)

2
.

Note that Z1 and Z2 have symmetric marginal distributions and hence following the arguments in the

previous scenario, the constrains in Equation (25) hold, consequently, Q2 ⊆ Q1. On the other hand, if

θ = θ′, we achieve one bit of classical common randomness, hence Q1 ⊆ Q2. Consequently, Q1 = Q2.

Case Study 3: First Order Markov Sources

In this scenario (Figure 4) we consider a Markov source (Xd, Y d), where X1 = Y1 is a uniform

common random bit, i.e., X1 ∼ Be(12). The elements Xi, Yi, i > 1 are produced by passing Xi−1, Yi−1

through correlated binary symmetric channels 6. The relation between (Xi, Yi) and (Xi−1, Yi−1) is given

below.

P (Xi ̸= Xi−1, Yi ̸= Yi−1) = δx(1− δy), P (Xi ̸= Xi−1, Yi = Yi−1) = δxδy

P (Xi = Xi−1, Yi ̸= Yi−1) = (1− δx)δy, P (Xi = Xi−1, Yi = Yi−1) = (1− δx)(1− δy),

where δx, δy ∈ [0, 1]. Under this formulation both sequences Xi, i ∈ N and Yi, i ∈ N are first order

Markov processes.

6For an input X ∈ {−1, 1} and bias δ ∈ [0, 1], a BSC(δ) produces output Y ∈ {−1, 1} with bit-flip probability δ.
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Alice
U = f(X1, X2, · · ·)

V = g(Y1, Y2, · · ·)
BobBSC(δz)

BSC(δx)

BSC(δz)

BSC(δx)

BSC(δz)

BSC(δx)

Y1 Y2 Y3

X1 X2 X3

Fig. 4: An NISS scenario with first-order Markov sources. We have defined δz ≜ δx ∗ δy.

Note that Xi and Yi have symmetric marginals by construction. Let us define 7

ψ1(X
d) ≜ X1, ψi(X

d) ≜
1

σ1
(Xi−1Xi − 2δx + 1), i ∈ {2, · · · , d}

ψ′
1(Y

d) ≜ Y1, ψ′
i(Y

d) ≜
1

σ2
(Yi−1Yi − 2δx ∗ δy + 1), i ∈ {2, · · · , d}

ϕS(X
d) =

∏
i∈S

ψi(X
d), ϕ′S(Y

d) =
∏
i∈S

ψ′
i(Y

d), S ⊆ [d],

where p ∗ q ≜ p(1− q)+ q(1− p), p, q ∈ [0, 1], σ1 ≜ 2
√
δx(1− δx) and σ2 ≜ 2

√
δx ∗ δy(1− δx ∗ δy). It

is straightforward to check that ϕS(Xd),S ⊆ [d] and ϕ′S(Y
d),S ⊆ [d] form an orthonormal basis for the

space of functions operating on Xd and Y d, respectively. Furthermore, E(ϕS(Xd)ϕ′S′(Y d)) = 1(S =

S ′)
∏

i∈S ρi, where ρ1 = 1 and ρi = ρ′ ≜ 4δx(1− δx)(1− 2δy), i > 1. Consequently, we have:

E(f(Xd)g(Y d)) =
∑
S
fSgSρ

′|S|−1(1∈S).

Given a set of Fourier coefficients fS , gS ,S ⊆ [d], we can find Q(U = V ) using the above equation

and Lemma 2. This along with the marginals of the target distribution uniquely characterize QUV . In the

subsequent sections, we provide an optimization technique over the Fourier coefficients to find the set of

simulatable distributions using this characterization.

VII. CONVEX-CONCAVE RELAXATION AND THE F-PATH ALGORITHM

In the previous sections, we have formulated the NISS problem as a quadratic program by writing

the primal optimization in Theorems 1 and 3. This optimization is NP-hard in general [42]. In this

section, we introduce a path-following method to find approximate solutions to the primal formulation.

To elaborate, we relax the problem to a quadratic concave maximization problem. We then obtain a

solution path of a convex-concave problem obtained by linear interpolation of the convex and concave

problems, starting from the concave relaxation, to iteratively converge to the global maximum of the

7In this example, an orthonormal basis is constructed directly. In general, one can start with the basis associated with uniform

IID sequences and perform the Gram-Schmidt procedure to derive an orthonormal basis.
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convex relaxation. Similar convex-concave optimization approaches have been used in the literature to

address quadratic programming optimization problems such as in graph matching [48], general quadratic

assignment problems [49], [50]. The relaxation is based on the observation that the optimal point in

a convex maximization problem, such as norm optimization over a convex polytope, is located on the

boundaries of the optimization region. One can manipulate the original objective function L1 (e.g., the

norm function) into a new objective function L0 such that its value is unchanged on the boundaries of

the optimization region, but it becomes a concave function inside the optimization region. Then, concave

maximization over the function L0 will yield an optimal point P0 which lies inside the optimization

region. This point is used as initial point to optimize the function Lλ ≜ λL1 + (1 − λ)L0, where λ is

a small positive number. The resulting optimal point Pλ is used as initial point for the optimization of

Lλ′ ≜ λ′L1+(1−λ′)L0, where λ′ = λ+ dλ and dλ is a small positive value. This process is continued

until the value of λ reaches one at which point the original objective function L1 is optimized. For a

comprehensive discussion on the choice of λ and related optimization methods please refer to [48].

The original objective function is given as

L(PXY , QU , QV ) = sup
(fsd ,s

d∈Fd
q)∈F(QU )

(gtd ,t
d∈Fd

q)∈G(QV )

∑
sd,td∈Fd

q

f̃sd g̃td ∏
s,t∈Fq

ρ
n(s,t|sd,td)
s,t

 .

This objective function is neither concave nor convex. From previous sections, we know that the optimal

value lies on the boundary of the search space function. The reason is that we started with an optimization

on the boundary (over discrete-valued functions) and expanded the search space to the continuous-valued

functions using the RD procedure, and proved in Section III that this relaxation does not change the

optimization solution. We note that for any pair of binary-output (indicator) functions f : X d → {−1, 1}

and g : Yd → {−1, 1}, we have that E[f2(Xd)] =
∑

sd∈Fd
q
f2sd = 1, and E[g2(Y d)] =

∑
sd∈Fd

q
g2sd = 1,

and for any continuous-valued f̃ : X d → [−1, 1] and g̃ : Yd → [−1, 1], we have that E[f2(Xd)] =∑
sd∈Fd

q
f2sd ≤ 1, and E[g2(Y d)] =

∑
sd∈Fd

q
g2sd ≤ 1. Consequently, the following optimization yeilds the

same solution as the original optimization for any α1, β1 > 0:

L1,α1,β1
(PXY , QU , QV )

= sup
(fsd ,s

d∈Fd
q)∈F(QU )

(gtd ,t
d∈Fd

q)∈G(QV )

∑
sd,td∈Fd

q

f̃sd g̃td ∏
s,t∈Fq

ρ
n(s,t|sd,td)
s,t + α1f̃

2
sd + β1g̃

2
td

− α1 − β1. (27)

We choose the values of α1, β1 large enough so that the objective function L1,α1,β1
(PXY , QU , QV ) is

convex. Similarly, we define
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L0,α0,β0
(PXY , QU , QV ) =

sup
(fsd ,s

d∈Fd
q)∈F(QU )

(gtd ,t
d∈Fd

q)∈G(QV )

∑
sd,td∈Fd

q

f̃sd g̃td ∏
s,t∈Fq

ρ
n(s,t|sd,td)
s,t − α0f̃

2
sd − β0g̃

2
td

+ α0 + β0, (28)

and choose α0, β0 > 0 large enough such that L0,α0,β0
(PXY , QU , QV ) is concave. We then derive

a solution path for a convex-concave problem by constructing a new objective function using linear

interpolation between the convex and concave problems.

Lλ ≜ λL1,α1,β1
+ (1− λ)L0,α0,β0

, λ ∈ [0, 1].

The resulting Algorithm is described in Algorithm 1. As seen in the description, the algorithm is initialized

with λ = 0 and the optimal point of the objective function Lλ is found by a method such as the Franke-

Wolfe algorithm [51], [52]. Then, we gradually increase λ by dλ. The choice of constant ϵλ controls the

tradeoff between computational complexity and accuracy in converging to the global optimum [53].

Computational Complexity: The number of iterations needed for the algorithm to reach λ = 1 depends

on the choice of ϵλ. Since by construction we have L0,α0,β0
∈ [−1, 1+α0+β0], the number of iterations

in the algorithm is upper-bounded by 2+α0+β0

ϵλ
. The Franke-Wolfe optimization step involves a gradient

optimization which has O(n3) complexity, where n is the number of optimization parameters [51], [52].

Note that the number of optimization parameters is O(exp(d)). So the Franke-Wolfe optimization step

has complexity O(exp(3d)), where d is the input dimension. In Section VIII, we show that for BB-NISS

scenarios with uniform input marginals, the sample complexity is d = Θ(log 1
ϵ ). Characterizing tight

bounds on the sample complexity in the general case is an ongoing research direction.

Sufficient Conditions and Theoretical Guarantees. Sufficient conditions for global optimality of path-

following algorithms were derived in the context of graph matching [48]. Following the arguments in [48]

we show the following proposition which provides sufficient guarantees for optimality of the solution of

F-PATH.

Proposition 6 (Sufficient Conditions for Optimallity of F-PATH). The solution of Algorithm 1 is

globally optimal if ∃λ∗ ∈ (0, 1) such that:

i) the function pair (f̃∗λ∗ , g̃∗λ∗) optimizing Lλ∗ is on the boundary region, i.e.,
∑

sd(f̃
∗
λ∗,sd)

2 = 1 and∑
td(g̃

∗
λ∗,td)

2 = 1, and

ii) the function Lλ∗ is concave.

The proof is provided in Appendix G.
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Algorithm 1 The F-Path Algorithm
1) Initialization:

λ ≜ 0

P (0) = argmax L0 — concave maximization problem, global maximum is found by Franke-Wolfe

algorithm

2) Cycle over λ:

while λ < 1

λnew ≜ λ+ dλ

if |Lλnew(P (λ))− Lλ(P (λ))| < ϵλ

λ ≜ λnew

else P (λnew) = argmin Lλnew is found by Frank-Wolfe starting from P (λ)

λ ≜ λnew

Output: P ∗ = P (1)

VIII. INPUT COMPLEXITY FOR BB-NISS WITH UNIFORM INPUT MARGINALS

So far, we have provided two optimization problems, the dual and primal formulations, for solving

the implementability question for NISS. In the primal(dual) formulation, for a given input length d ∈ N,

a quadratic(linear) program is given for finding the simulating functions achieving maximal correlation.

Furthermore, the F-PATH algorithm provides an efficient path-following algorithm for finding the solution

to the quadratic program for a given input length d ∈ N. To apply these algorithms, one needs to first

determine the value of d given a desired total variation distance ϵ. The previous best-known bound on

input complexity was O(exp poly(1ϵ )). Our numerical simulations of the F-PATH algorithm and the linear

program in the dual formulation suggest that this bound on input complexity is loose (e.g., Figure 5 in

Section IX). In this section, we focus on the BB-NISS problems with uniform input marginals, and show

that the input complexity is Θ(log 1
ϵ ), hence achieving a super-exponential improvement in this scenario.

Using Proposition 4, for a given fixed output marginal pair QU , QV and ϵ > 0, it suffices to characterize

the input complexity needed to achieve correlation within ϵ distance of the biased maximal correlation.

We derive this characterization by time-domain analysis in contrast to the Fourier-domain analysis in the

previous sections. The following lemma provides a time-domain characterization of output correlation in

terms of the simulating functions and input correlation coefficient.

Lemma 5 (Time-Domain Characterization of Output Correlation). Given binary alphabets X ,Y,U ,V ,
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symmetric input marginal PX(1) = PY (1) = 1
2 , output marginals QU , QV , and simulating functions

f, g : {−1, 1}d → {−1, 1}, the following holds:

E(f(Xd)g(Y d)) =

(
1 + ρ

4

)d (
2

∑
xd,yd∈{−1,1}d

f(xd)=g(yd)=1

β(xd, yd)− 2d (1 +QV (1) +QU (1))Cρ

)
, (29)

where β(xd, yd) ≜
(
1−ρ
1+ρ

)dH(xd,yd)
, dH(xd, yd) ≜

∑d
i=1 1(xi ̸= yi), ρ is the correlation coefficient

between X and Y , Cρ ≜
∑

xd∈{−1,1}d β(xd,−i), and i = (1, 1, · · · , 1) is the all-ones vector of length d.

The proof is provided in Appendix H.

The following definition introduces the notion of distance spectrum of a pair of functions which is

an effective measure to quantify the correlation between their outputs.

Definition 8 (Distance Spectrum and Dominating Spectrum). Given a pair of simulating functions

fd, gd : {−1, 1}d → {−1, 1}, their distance spectrum is defined as the vector S(fd, gd) ≜ (n0, n1, · · · , nd),

where ni ≜ |{(xd, yd)|dH(xd, yd) = i, f(xd) = g(yd) = 1}|, i ∈ {0} ∪ [d]. The pair of simulating

functions (f ′d, g
′
d) is said to dominate the pair (fd, gd) in spectrum if:

ℓ∑
k=0

nk ≤
ℓ∑

k=0

n′k, ∀ℓ ∈ [d],

where S(f ′, g′) = (n′0, n
′
1, n

′
2, · · · , n′d) and S(f, g) = (n0, n1, n2, · · · , nd). In this case, we write

S(f, g) ⪯ S(f ′, g′)8.

Proposition 7 (Correlation and Distance Spectrum). Given a joint distribution PXY on binary variables

X,Y with uniform marginals, and two simulating pair of functions (f, g) and (f ′, g′), where f, g, f ′, g′ :

{−1, 1}d → {−1, 1}, the following statements are equivalent:

i) E(f(Xd)g(Y d)) ≤ E(f ′(Xd)g′(Y d).

i) S(f, g) ⪯ S(f ′, g′).

The proof follows by noting that Equation (29) can be rewritten as follows:

E(f(Xd)g(Y d)) =

(
1 + ρ

4

)d (
2

d∑
k=1

nk

(
1− ρ

1 + ρ

)k

− 2d (QV (1) +QU (1))Cρ

)
,

where S(f, g) = (n0, n1, n2, · · · , nd).

8The relation ⪯ resembles the Lorenz ordering relations and majorization which are widely used in various fields such as

economics, computability theory, and quantum information theory [54]. However, it differs from a Lorenz ordering relation since

it does not pre-sort the sequences prior to comparison.
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In the following, we characterize several classes of correlation-preserving operations on pairs of

simulating functions (fd, gd)d∈N, which are then used to derive a tight bound on input complexity. A

correlation-preserving operator is formally defined below.

Definition 9 (Correlation-Preserving Operator). An operator Γ : LXd → LXd is called correlation-

preserving if

i) E(f(Xd)g(Y d)) ≤ E(Γ(f(Xd))Γ(g(Y d))

ii) E(f(Xd)) = E(Γ(f(Xd))),

for all input distributions PXY with uniform marginals, and simulating functions fd, gd : {−1, 1}d →

{−1, 1}.

We will show that the following classes of operators are correlation-preserving.

Definition 10 (Projection Operator). Given d ∈ N, the projector operator Ξk : Ld
X → Ld

X , k ∈ [d] is

defined as:

Ξk(f(x
d)) =


1 if xk = −1 and f(xd) ∨ f(ξk(xd)) = 1

1 if xk = 1 and f(xd) ∧ f(ξk(xd)) = 1

−1 otherwise

, (30)

for all xd ∈ {−1, 1}d and f : {−1, 1}d → {−1, 1}, where ξk(x
d) is the kth bit-flip operator, i.e.,

yd = ξk(x
d) if and only if yi = xi, i ̸= k and yk ̸= xk.

Definition 11 (Shuffling Operator). Given d ∈ N, and a permutation mapping π : [d] → [d], the

shuffling operator Ππ : Ld
X → Ld

X is defined as:

Ππ(f(x
d)) = f(π(xd)), ∀xd ∈ {−1, 1}d, f : {−1, 1}d → {−1, 1}.

Lemma 6 (Correlation-Preservation of Projection and Shuffling Operators). Given d ∈ N, the following

hold:

i) For any given k ∈ [d], the projection operator Ξk(·) is correlation-preserving.

ii) For any given bijective mapping π : [d] → [d], the shuffling operator Ππ is correlation-preserving.

The proof is provided in Appendix I.
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In addition to the correlation-preserving operators described above, we use the following recursive

representation of the Hamming distance matrix to characterize the simulating functions achieving biased

maximal correlation.

Lemma 7 (Recursive Representation of the Hamming Distance Matrix). Let the Hamming distance matrix

for sequences of length d be defined as Dd = [dH(j,k)]j,k∈{−1,1}d , where dH(·, ·) is the binary Hamming

distance measure. Then,

Dd = I1 ⊗Dd−1 +D1 ⊗ Id−1, (31)

where, Ik = [1]i,j∈[2k] represents the 2k × 2k all-ones matrix for k ∈ N and ⊗ denotes the Kronecker

product. Alternatively, we have:

Dd =

d−1∑
k=0

Id−k−1 ⊗D1 ⊗ Ik.

where D1 =

0 1

1 0

.

The proof follows by induction and is omitted for brevity. The following presents the main result of

this section.

Theorem 4 (Input Complexity of BB-NISS with Symmetric Input Marginals). Consider a BB-NISS

scenario with uniform input marginals, i.e., PX(1) = PY (1) =
1
2 . Let Q∗

U,V be the simulatable distribution

achieving the biased maximal correlation for a desired pair of output marginals QU , QV . Define the

sequence of lexicographical functions (fL,d, gL,d)d∈N associated with QU , QV as follows:

fL,d(x
d) ≜ 1(xd ⊏ xc(d,QU )), gL,d(y

d) ≜ 1(yd ⊏ yc(d,QV )),

where xc(d,QU ) and yc(d,QV ) are the binary representations of ⌈2dQU (1)⌉ and ⌈2dQV (1)⌉, respec-

tively, and ⊏ denotes the lexicographical ordering relation in the binary vector space.

The following hold:

i) The sequence of lexicographical functions associated with QU , QV are a simulating sequence of

functions for Q∗
U,V .

ii) For a given d ∈ N, let UL = fL,d(X
d), VL = gL,d(Y

d), then:

dTV (PUL,VL
, QUV ) ≤ c2−d,

for a universal constant c > 0.

iii) The input complexity of the BB-NISS problem with uniform output marginals is Θ(log 1
ϵ ), where ϵ

denotes an upper-bound on the total variation distance.
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The proof is provided in Appendix J.

IX. NUMERICAL SIMULATIONS

In this section, we provide simulation results by implementing the F-PATH algorithm. In our simula-

tions, we have α0 = β0 = 1, α1 = β1 = 1.1 in Equations (28) and (27), and we have set dλ = 2× 10−5

and ϵλ = 0.04 in Algorithm 1.

We consider the following NISS scenarios:

a) BB-NISS with Uniform Input Marginals:: In Section VIII, we have studied the BB-NISS

scenario with uniform input marginals, and explicitly characterized the simulating functions achieving

maximal correlation, and the associated input complexity. In Figure 5, we have numerically simulated

the F-PATH algorithm for this scenario, where ρXY = 0.4 and PU (1) = PV (1) = P (1) ∈ { 1
2−4 |k =

1, 2, 3, 4, 8}. It can be observed from the proof of Theorem 4 that when P (1) = k
2−4 , the optimal

simulating functions are produced using k samples. As observed in the simulations of Figure 5, the

output correlation does not increase by increasing the number of samples after this point, confirming the

predictions of Theorem 4.

Fig. 5: Achievable biased maximal correlation ρb for the symmetric-output BB-NISS using F-PATH as a

function of number of input samples d and output marginals PU (1) = PV (1) = P (1).
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Fig. 6: Evolution of the Fourier coefficients as a function of λ in the F-PATH algorithm. Here PX(1) =

0.6, PY (1) = 0.7, PU (1) = 0.25, PV (1) = 0.125 and ρXY = 0.4.

Fig. 7: Evolution of the (shifted) objective function Lλ + λ(α1 + β1)− (1− λ)(α0 + β0) in the F-PATH

algorithm. Here PX(1) = 0.6, PY (1) = 0.7, PU (1) = 0.25, PV (1) = 0.125 and ρXY = 0.4.

b) BB-NISS with Non-Uniform Marginals:: We simulate a BB-NISS scenario with non-uniform

input marginals, where PX(1) = 0.6 and PY (1) = 0.7. Figures 6 and 7 present the evolution of the

objective function and Fourier coefficients in Algorithm 1, as a function of λ, for QU (1) = QV (1) = 0.4

and ρ = 0.3. It can be observed that the solution falls on the boundary around λ = 0.5. Note that

34



Fig. 8: Evolution of the Fourier coefficients as a function of λ in the F-PATH algorithm.

Proposition 6 shows that if the solution of the F-PATH algorithm falls on the boundary for some λ < 1,

and the function Lλ is concave for the value of λ, then the solution is optimal for the original convex

objective function L1.

c) Numerical Simulations of FB-NISS: We have numerically simulated a ternary-input, binary-

output NISS scenario with input distribution

PXY (0, 0) = 0.133, PXY (0, 1) = 0.133, PXY (0, 2) = 0.133,

PXY (1, 0) = 0.2, PXY (1, 1) = 0.1, PXY (1, 2) = 0,

PXY (2, 0) = 0.066, PXY (2, 1) = 0.066, PXY (2, 2) = 0.166.

Recall that in this case, we need to first construct an orthonormal Fourier basis for the space of

functions on X and Y as discussed in Section III. To this end, we have used the Gram-Schmidt procedure
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to find the following orthonormal basis functions for Fourier decomposition:

ψ0(0) = 1, ψ0(1) = 1, ψ0(2) = 1

ψ1(0) = 1.225, ψ1(1) = −0.816, ψ1(2) = −0.816

ψ2(0) = 0, ψ2(1) = 1.290, ψ2(2) = −1.290.

We run the F-PATH algorithm for d = 3. Note that in this case, we have 3d = 27 Fourier coefficients

for each agent’s simulating function. The evaluation of Fourier coefficients when appying the F-PATH

algorithm is shown in Figure 8. The resulting biased maximal correlation is ρb = 0.6454.

X. CONCLUSION AND FUTURE DIRECTIONS

A Fourier analysis framework along with a path-following algorithm for solving the non-interactive

source simulation (NISS) problem was presented. The input complexity and implementability questions

were answered for several classes of NISS scenarios. For binary-output NISS scenarios with doubly-

symmetric binary inputs, it was shown that the input complexity is Θ(log 1
ϵ ). Furthermore, an explicit char-

acterization of the simulating pair of functions was provided. For general finite-input scenarios, a construc-

tive algorithm, F-PATH, was introduced that explicitly finds the simulating functions (fd(X
d), gd(Y

d)).

Various numerical simulations of NISS scenarios with IID inputs were provided to illustrate the application

of the F-PATH algorithm. Furthermore, to illustrate the general applicability of the Fourier framework,

several examples of NISS scenarios with non-IID inputs, including entanglement-assisted NISS and NISS

with Markovian inputs, were provided and the input complexity and implementability questions were

investigated for each scenario. There are several future avenues of research. One direction is to evaluate

the input complexity for the general finite-alphabet NISS scenarios, and investigate whether the super-

exponential gains observed in input complexity in BB-NISS scenarios with uniform marginals, compared

to the previous best-known upper-bounds, can be replicated. Another possible direction of future work is

to develop a general framework for non-IID NISS scenarios by designing an efficient algorithm for finding

the orthonormal Fourier basis for sources with memory such as Markovian sources. A third direction is

to evaluate the set of classical correlations which can be generated in entanglement assisted scenarios. A

question of interest in this area is whether the availability of the entanglement resource enlarges the set

of simulatable distributions compared to classical resources such as limited common randomness, and to

quantify such gains in different NISS scenarios.
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APPENDIX A

PROOF OF LEMMA 2

Since, fu(xd), gv(yd) ∈ {−1, 1}, we have

E(fu(Xd)gv(Y
d)) = P

(
fu(X

d) = gv(Y
d)
)
− P

(
fu(X

d) ̸= gv(Y
d)
)

= 2P
(
fu(X

d) = gv(Y
d)
)
− 1.

Note that

P
(
fu(X

d) = gv(Y
d)
)
= P

(
fu(X

d) = gv(Y
d) = 1

)
+ P

(
fu(X

d) = gv(Y
d) = −1

)
= P

(
fu(X

d) = gv(Y
d) = 1

)
+ P

(
fu(X

d) = −1
)
− P

(
fu(X

d) = −1, gv(Y
d) = 1

)
= P

(
fu(X

d) = gv(Y
d) = 1

)
+ P

(
fu(X

d) = −1
)
− P

(
gv(Y

d) = 1
)
+ P

(
fu(X

d) = 1, gv(Y
d) = 1

)
= 2P

(
fu(X

d) = gv(Y
d) = 1

)
− P

(
fu(X

d) = 1
)
− P

(
gv(Y

d) = 1
)
+ 1

This completes the proof.

APPENDIX B

PROOF OF LEMMA 3

We show that P(PXY , QU , QV ) is star-convex with the independent distribution QUQV as its center.

To show this, choose an arbitrary QUV ∈ P(PXY , QU , QV ) and let ϵ > 0. Since QUV is simulatable, we

conclude that there exist d ∈ N and simulating pair of functions (fd, gd) such that dTV (PUdVd
, QUV ) ≤ ϵ,

where Ud ≜ fd(X
d), Vd ≜ gd(Y

d). Furthermore, using standard results from single-source simulation it

is known that Alice and Bob can each produce a source with marginal QU ad QV , respectively [41], [55]–

[57]. Let f ′d′ and g′d′′ be such that dTV (PU ′
d′
, QU ) ≤ ϵ′ and dTV (PV ′

d′′
, QV ) ≤ ϵ′, where U ′

d′ ≜ f ′d′(X
d+d′

d+1 )

and V ′
d′′ ≜ g′d′′(Y

d+d′+d′′

d+d′+1 ), and the value of ϵ′ will be determined later. We have:

dTV (PU ′
d′
, QU ) ≤ ϵ′ →

∑
u

|PU ′
d′
(u)−QU (u)| ≤ ϵ′ (32)

dTV (PV ′
d′′
, QV ) ≤ ϵ′ →

∑
v

|PV ′
d′′
(v)−QV (v)| ≤ ϵ′ (33)

From Equations (32) and (33), we get:∑
u,v

|PU ′
d′
(u)PV ′

d′′
(v)−QU (u)PV ′

d′′
(v)− PU ′

d′
(u)QV (v) +QU (u)QV (v)| < ϵ′

2
. (34)
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Furthermore, from Equations (32) and (33), we get:∑
u,v

PV (v)|PU ′
d′
(u)−QU (u)| ≤ ϵ′ (35)

∑
u,v

PU (u)|PV ′
d′′
(v)−QV (v)| ≤ ϵ′ (36)

Adding Equations (34)-(36) and using the triangle inequality, we have:

dTV (PU ′
d′
PV ′

d′′
, QUQV ) ≤ 2ϵ′ + ϵ′

2
.

We choose ϵ′ such that 2ϵ′ + ϵ′2 = ϵ. Next, Alice and Bob each produce local coins Cp1
and C ′

p1
with

bias p1 ∈ [0, 1], respectively. That is, P(Cp1
= 1) = P(C ′

p1
= 1) = p1 and P(Cp1

= −1) = P(C ′
p1

=

−1) = 1− p1. Alice sets U ′′ = Ud if Cp1
= 1 and U ′′ = U ′

d′ , otherwise. Similarly, Bob sets V ′′ = Vd if

C ′
p1

= 1 and V ′′ = V ′
d′′ , otherwise. We have:

PU ′′,V ′′ = p21PUdVd
+ (1− p1)p1PU ′

d′
PVd

+ p1(1− p1)PUd
PVd′′ + (1− p1)

2PU ′
d′
PV ′

d′′

⇒ |PU ′′,V ′′ − (p21PUdVd
+ (1− p21)PUd

PVd
)| ≤ ϵ,

where in the last equality, we have used the fact that all distributions in P(PXY , QU , QV ) have the same

marginal. Consequently, by choosing value of p1 in the unit interval, we conclude that λPUdVd
+ (1 −

λ)PUd
PVd

is simulatable for all λ ∈ [0, 1], and the set P(PXY , QU , QV ) is star-convex with QUQV as

its center.

APPENDIX C

PROOF OF LEMMA 4

Clearly, Ψ(·) is an injective mapping since it is an affine transformation of QUV . We show that i)

Ψ(QUV ) ∈ E(PXY , QU , QV ),∀QUV ∈ P(PXU , QU , QV ), and ii) Ψ(QUV ) is surjective on E(PXY , QU , QV ).

To prove (i), note that since QUV is a simulatable target distribution, from Definition 1, there exists a

sequence of functions (fd, gd)d∈N such that (2) holds. For each d ∈ N, consider the components fd and

gd in the overparametrized representation of fd and gd, that is fd ≡ (fd,u)u∈U and gd ≡ (gd,v)v∈V . Then,

from Lemma 2, for any (u, v) ∈ U × V we have that

E(fd,u(Xd)gd,v(Y
d)) = 4PUdVd

(u, v)− 2(PUd
(u) + PVd

(v)) + 1,

where Ud = fd(X
d) and Vd = gd(Y

d). As a result, from (2), by taking the limit, we conclude:

lim
d→∞

E(fd,u(Xd)gd,v(Y
d)) = 4QUV (u, v)− 2(Qu(u) +QV (v)) + 1 = Ψ(QUV ). (37)
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Consequently, Ψ(QUV ) ∈ P(PXU , QU , QV ). To show (ii), we argue that for any (eu,v)u,v∈U×V ∈

E(PXY , QU , QV ) there exist a QUV ∈ Q(PXY ,U ,V) such that Ψ(QUV ) = (eu,v)u,v∈U×V . To see

this, let (f̃u,d, g̃v,d)u,v∈U×V,d∈N ∈ FXY (QU , QV ) be the sequence of functions that generate (eu,v)u,v as

in (12). Then, using the RD procedure described in the prequel, these simulation functions generate a

target distribution QUV ∈ P(PXY , QU , QV ) since the limit limd→∞ E(fd,u(Xd)gd,v(Y
d)) exists for the

derandomizad functions (fd,u, gd,v)u,v∈U×V,d∈N. As a result, Ψ(QUV ) = (eu,v)u,v.

APPENDIX D

PROOF OF PROPOSITION 3

The fact that the NISS problem is not solvable for any distribution for which there does not exist

Q′
U,V such that dTV (QUV , Q

′
UV ) ≤ ϵ and Q′

U,V ∈ S(PXY , QU , QV ) follows from the data processing

property in Proposition 2 (e.g., see [22]). We show that if such Q′
U,V exists, then the NISS problem is

solvable. The proof method forms the foundation for several of the proofs in the rest of the paper. To this

end, let us consider the U and V defined in (14) and denote their joint distribution by PUV . It suffices

to show that PUV = QUV . We have:

P (U = 1) = λE(p1) + (1− λ)(
1

2
) =

1

2
, P (V = 1) = λE(p2) + (1− λ)(

1

2
) =

1

2
,

where we have used the fact that E(f(Xd)) = E(g(Y d)) = 0 to conclude that E(p1) = E(p2) = 1
2 .

Furthermore,

P (U ̸= V ) =
1− E(UV )

2
=

1− λ2E(CX(p1)CY (p2))

2

Note that given p1, p2, the coins CX(p1), CY (p2) are independently generated as non-overlapping samples

are used. However, p1 and p2 themselves are correlated. Therefore, as the coins take values from {−1, 1},

we have that

E(CX(p1)CY (p2)) = P
(
CX(p1) = CY (p2)

)
− P

(
CX(p1) ̸= CY (p2)

)
= E

(
p1p2 + (1− p1)(1− p2)

)
− E

(
(1− p1)p2 + p1(1− p2)

)

= E
((1 + f̃(Xd)

2

)(
1 + g̃(Y d)

2

)
+

(
1− f̃(Xd)

2

)(
1− g̃(Y d)

2

)

−

(
1− f̃(Xd)

2

)(
1 + g̃(Y d)

2

)
−

(
1 + f̃(Xd)

2

)(
1− g̃(Y d)

2

))
= E(f̃(Xd)g̃(Y d)) =

∑
i,j∈[q−1]

f̃∗i g̃
∗
j ρi,j = ρ(X ,Y, PXY ),
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where in the last equality, we have used the fact that f̃0 = E(f̃(Xd)) = E(U) = 0 and g̃0 = E(g̃(Y d)) =

E(V ) = 0. As a result, from the definition of λ, we have that

P (U ̸= V ) =
1− λ2ρ(X ,Y, PXY )

2
=

1− ρ(U ,V, Q′
U,V )

2
.

We have shown that PU (1) = QU (1), PV (1) = QV (1) and P (U ̸= V ) = Q′(U ̸= V ). Hence, PUV =

Q′
UV .

Particularly, for BB-NISS, to find f̃∗1 , g̃
∗
1 , one needs to optimize f̃1g̃1ρ, subject to the following:

− 1 ≤ f̃1
1− E(X)√
V ar(X)

≤ 1, −1 ≤ f̃1
−1− E(X)√
V ar(X)

≤ 1,

− 1 ≤ g̃1
1− E(Y )√
V ar(Y )

≤ 1, −1 ≤ g̃1
−1− E(Y )√
V ar(Y )

≤ 1.

It is straightforward to see that −
√

V ar(X)

1+|E(X)| ≤ f̃1 ≤
√

V ar(X)

1+|E(X)| . Consequently, to maximize f̃∗1 g̃
∗
1ρ, we get

f̃(Xd) = f̃∗1ϕ1(X1) =

√
V ar(X1)

1+|E(X)|
X1−E(X)√

V ar(X)
= X1−E(X)

1+|E(X)| . Similarly, g̃(Y d) = Y1−E(Y )
1+|E(Y )| . This completes the

proof.

APPENDIX E

PROOF OF COROLLARY 2

The proof follow by the Cauchy-Schwarz inequality which implies that∑
S⊆[d]

fSgSρ
|S| =

∑
S⊆[d]

(fSρ
|S|
2 )(gSρ

|S|
2 ) ≤

√
(
∑
S⊆[d]

f2Sρ
|S|)(

∑
S⊆[d]

g2Sρ
|S|),

with equality if and only if (fS ,S ⊆ [d]) is parallel to (gS ,S ⊆ [d]). So,

ρb(PXY , QU , QV ) = sup
d∈N

sup
(fS ,S⊆[d])∈F(QU )
(gS ,S⊆[d])∈G(QV )

∑
S⊆[d]

fSgSρ
|S|

≤ sup
d∈N

sup
(fS ,S⊆[d])∈F(QU )

√∑
S⊆[d]

f2Sρ
|S| sup

(gS ,S⊆[d])∈G(QV )

√∑
S⊆[d]

g2Sρ
|S|.

Note that since by assumption QU = QV , we have F(QU ) = G(QV ). So,

sup
(fS ,S⊆[d])∈F(QU )

√∑
S⊆[d]

f2Sρ
|S| = sup

(gS ,S⊆[d])∈G(QV )

√∑
S⊆[d]

g2Sρ
|S|.

As a result,

ρb(PXY , QUV ) = sup
d∈N

sup
(fS ,S⊆[d])∈F(QU )

∑
S⊆[d]

f2Sρ
|S|,

where equality is achieved by noting that the optimal (fS ,S ⊆ [d]) is parallel to the optimal (gS ,S ⊆ [d])

(in fact they are equal with each other).
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APPENDIX F

PROOF OF THEOREM 2

We start with the following Lagrangian function for the optimization in (17):

L(f̃(·), g̃(·), λ+f (·), λ
−
f (·), λ

+
g (·), λ−g (·)) =

∑
sd,td∈Fd

q

f̃sd g̃td
∏

s,t∈Fq

ρ
n(s,t|sd,td)
s,t

− 1

qd

∑
xd∈Fd

q

λ+f (x
d)(f̃(xd)− 1)− 1

qd

∑
xd∈Fd

q

λ−f (x
d)(−f̃(xd)− 1)− 1

qd

∑
yd∈Fd

q

λ+g (y
d)(g̃(yd)− 1)

− 1

qd

∑
yd∈Fd

q

λ−g (y
d)(−g̃(yd)− 1).

The KKT optimality conditions are as follows:

• Stationarity:

∀sd ̸= 0 :
∂L
∂f̃sd

= 0 ⇒
∑
td∈Fd

q

g̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t − 1

qd

∑
xd∈Fd

q

(λ+f (x
d)− λ−f (x

d))χsd(x
d) = 0 (38)

∀sd ̸= 0 :
∂L
∂g̃sd

= 0 ⇒
∑
td∈Fd

q

f̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t − 1

qd

∑
xd∈Fd

q

(λ+g (x
d)− λ−g (x

d))χsd(x
d) = 0 (39)

Now we apply the (uniform) Fourier expansion on each of the KKT coefficients λ+f , λ
−
f , λ

+
g and λ−g .

We use uniform Fourier as the marginals are uniform. The Fourier coefficients of the KKT coefficients

are then equal to

λ+f,sd =
1

qd

∑
xd∈Fd

q

λ+f (x
d)χsd , λ−f,sd =

1

qd

∑
xd∈Fd

q

λ−f (x
d)χsd ,

λ+g,sd =
1

qd

∑
xd∈Fd

q

λ+g (x
d)χsd , λ−g,S =

1

qd

∑
xd∈Fd

q

λ−g (x
d)χsd .

Then, equations (38) and (39) can be rewritten as:∑
td∈Fd

q

g̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t = λ+f,sd − λ−f,sd , ∀sd ̸= 0. (40)

∑
td∈Fd

q

f̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t = λ+g,sd − λ−g,sd , ∀sd ̸= 0. (41)

Given λ+f,sd −λ−f,sd and λ+g,sd −λ−g,sd , s
d ∈ Fd

q , let us define f̄sd(λ), ḡsd(λ) as the solution to Equations

(40) and (41).

• Primal Feasibility: Using equations (40) and (41), we have:

∀xd ∈ Fd
q : |

∑
sd⊆Fd

q

f̃ds χsd | ≤ 1 ⇒ |2QU (1)− 1 +
∑
sd ̸=0

f̄sd(λ)| ≤ 1

∀xd ∈ Fd
q : |

∑
sd∈Fd

q

g̃sdχsd | ≤ 1 ⇒ |2QV (1)− 1 +
∑
sd ̸=0

ḡsd(λ)| ≤ 1
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• Dual Feasibility:

∀xd ∈ Fd
q : λ+f (x

d) ≥ 0 ⇒
∑
sd∈Fd

q

λ+f,sdχsd ≥ 0,

∀xd ∈ Fd
q : λ−f (x

d) ≥ 0 ⇒
∑
sd∈Fd

q

λ−f,sdχsd ≥ 0,

∀xd ∈ Fd
q : λ+g (x

d) ≥ 0 ⇒
∑
sd∈Fd

q

λ+g,sdχsd ≥ 0,

∀xd ∈ Fd
q : λ−g (x

d) ≥ 0 ⇒
∑
sd∈Fd

q

λ−g,sdχsd ≥ 0.

• Complementary Slackness:∑
xd∈Fd

q

λ+f (x
d)(f̃(xd)− 1) + λ−f (x

d)(−f̃(xd)− 1)

+ λ+g (y
d)(g̃(yd)− 1) + λ−g (y

d)(−g̃(yd)− 1) = 0

⇒
∑
sd

(λ+f,sd − λ−f,sd)f̃sd +
∑
sd

(λ+g,sd − λ−g,sd)g̃sd = λ+f,ϕ + λ−f,ϕ + λ+g,ϕ + λ−g,ϕ.

From Equations (40) and (41), we have∑
sd

(λ+f,sd − λ−f,sd)f̃sd = (λ+f,0 − λ−f,0)f̃0 +
∑
sd,td

f̃sd g̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t − f̃0g̃0

∑
sd

(λ+g,sd − λ−g,sd)g̃sd = (λ+g,0 − λ−g,0)g̃0 +
∑
sd,td

f̃sd g̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t − f̃0g̃0

So, the complementary slackness condition yields:∑
sd,td

f̃sd g̃td
∏
s,t

ρ
n(s,t|sd,td)
s,t =

1

2
((1− f̃0)λ

+
f,0 + (1 + f̃0)λ

−
f,0 + (1− g̃0)λ

+
g,0 + (1 + g̃0)λ

−
g,0 + 2f̃0g̃0).

The proof is completed by noting that 1 − f̃0 = 2 − 2QU (1) = 2QU (0), 1 + f̃0 = 2QU (1),1 − g̃0 =

2− 2QV (1) = 2QV (0) and 1 + g̃0 = 2QV (1).

42



APPENDIX G

PROOF OF PROPOSITION 6

For a given f̃ and g̃, define L0,α0,β0,f̃ ,g̃
(PXY , QU , QV ), L1,α1,β1,f̃ ,g̃

(PXY , QU , QV ), Lλ,f̃ ,g̃(PXY , QU , QV ), λ ∈

[0, 1] and as follows:

L0,α0,β0,f̃ ,g̃
(PXY , QU , QV ) ≜

∑
sd,td∈Fd

q

f̃sd g̃td ∏
s,t∈Fq

ρ
n(s,t|sd,td)
s,t − α0f̃

2
sd − β0g̃

2
td

+ α0 + β0,

L1,α1,β1,f̃ ,g̃
(PXY , QU , QV ) ≜

∑
sd,td∈Fd

q

f̃sd g̃td ∏
s,t∈Fq

ρ
n(s,t|sd,td)
s,t + α1f̃

2
sd + β1g̃

2
td

− α1 − β1.

Lλ,f̃ ,g̃(PXY , QU , QV ) ≜ λL0,α0,β0,f̃ ,g̃
(PXY , QU , QV ) + (1− λ)L1,α1,β1,f̃ ,g̃

(PXY , QU , QV ).

Note that for any (f̃ , g̃) on the boundary, the function Lλ,f̃ ,g̃(PXY , QU , QV ) = λL0,α0,β0,f̃ ,g̃
(PXY , QU , QV )+

(1−λ)L1,α1,β1,f̃ ,g̃
(PXY , QU , QV ) is constant in λ and for any (f̃ , g̃) inside the optimization search space,

the function is strictly decreasing in λ. Furthermore, from condition ii), we conclude that (f̃∗, g̃∗) is the

global optimum of Lλ∗(PXY , QU , QV ). As a result,

L1,f̃ ,g̃(PXY , QU , QV ) ≤ Lλ∗,f̃ ,g̃(PXY , QU , QV )

≤ Lλ∗,f̃∗,g̃∗(PXY , QU , QV ) = L1,f̃∗,g̃∗(PXY , QU , QV ).

This completes the proof.

APPENDIX H

PROOF OF LEMMA 5

Note that the input distribution can be parametrized as:

P (X = i, Y = j) =

(
1 + ρ

4

)
1(i = j) +

(
1− ρ

4

)
1(i ̸= j).

Consequently,

E(f(Xd)g(Y d)) =
∑

xd,yd∈{−1,1}d

f(xd)g(yd)PXdY d(xd, yd)

=
∑

xd,yd∈{−1,1}d

f(xd)g(yd)

(
1 + ρ

4

)d−dH(xd,yd)(1− ρ

4

)dH(xd,yd)

=

(
1 + ρ

4

)d ∑
xd,yd∈{−1,1}d

f(xd)g(yd)

(
1− ρ

1 + ρ

)dH(xd,yd)

43



Furthermore,∑
xd,yd∈{−1,1}d

f(xd)g(yd)

(
1− ρ

1 + ρ

)dH(xd,yd)

=
∑

xd,yd∈{−1,1}d

f(xd)=g(xd)

β(xd, yd)−
∑

xd,yd∈{−1,1}d

f(xd )̸=g(yd)

β(xd, yd)

= 2
∑

xd,yd∈{−1,1}d

f(xd)=g(xd)

β(xd, yd)−
∑

xd,yd∈{−1,1}d

β(xd, yd) = 2
∑

xd,yd∈{−1,1}d

f(xd)=g(yd)

β(xd, yd)− 2dCρ.

Additionally, ∑
xd,yd∈{−1,1}d

f(xd)=g(yd)

β(xd, yd) =
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd) +
∑

xd,yd∈{−1,1}d

f(xd)=−1,g(yd)=−1

β(xd, yd)

=
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd)−
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=−1

β(xd, yd) +
∑

xd,yd∈{−1,1}d

g(yd)=−1

β(xd, yd) (42)

Note that:∑
xd,yd∈{−1,1}d

g(yd)=−1

β(xd, yd) =
∑

yd:g(yd)=−1

∑
xd∈{−1,1}d

β(xd, yd) =
∑

yd:g(yd)=−1

Cρ = 2dQV (1)Cρ. (43)

Consequently, from Equations (42) and (43), we have:∑
xd,yd∈{−1,1}d

f(xd)=g(yd)

β(xd, yd) =
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd)−
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=−1

β(xd, yd) + 2dQV (1)Cρ (44)

On the other hand, ∑
xd,yd∈{−1,1}d

f(xd)=1,g(yd)=−1

β(xd, yd) =
∑

xd,yd∈{−1,1}d

f(xd)=1

β(xd, yd)−
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd)

= 2dQU (1)Cρ −
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd). (45)

From Equations (44) and (45), we conclude that:∑
xd,yd∈{−1,1}d

f(xd)=g(yd)

β(xd, yd) = 2
∑

xd,yd∈{−1,1}d

f(xd)=1,g(yd)=1

β(xd, yd)− 2(QU (1) +QV (1))Cρ.
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APPENDIX I

PROOF OF LEMMA 6

Proof of Part i):

Note that E(f(Xd)) = E(Ξk(f(X
d))) since PXd(xd) = PXd(ξk(x

d)) for all xd ∈ {−1, 1}d. Simi-

larly, E(g(Y d)) = E(Ξk(g(Y
d))). Furthermore, using Proposition 7, it suffices to show that S(f, g) ⪯

S(Ξk(f),Ξk(g)). Let S(f, g) = (n1, n2, · · · , nd) and S(Ξk(f),Ξk(g)) = (n′1, n
′
2, · · · , n′d). For a given

ℓ ∈ [d], we have:

ℓ∑
k=1

nk =
∑

xd,yd∈{−1,1}d

f(xd)=g(yd)=1

1(dH(xd, yd) ≤ ℓ)

=
1

4

∑
xd,yd∈{−1,1}d

1(dH(xd, yd) ≤ ℓ)1(f(xd) = g(yd) = 1)

+ 1(dH(ξk(x
d), yd) ≤ ℓ)1(f(ξk(x

d)) = g(yd) = 1)

+ 1(dH(xd, ξk(y
d)) ≤ ℓ)1(f(xd) = g(ξk(y

d)) = 1)

+ 1(dH(ξk(x
d), ξk(y

d)) ≤ ℓ)1(f(ξk(x
d)) = g(ξk(y

d)) = 1),

where ξk(·) is the kth bit-flip operator. Let us define:

γ(ℓ, f, g, xd, yd) ≜ 1(dH(xd, yd) ≤ ℓ)1(f(xd) = g(yd) = 1) (46)

+ 1(dH(ξk(x
d), yd) ≤ ℓ)1(f(ξk(x

d)) = g(yd) = 1)

+ 1(dH(xd, ξk(y
d)) ≤ ℓ)1(f(xd) = g(ξk(y

d)) = 1)

+ 1(dH(ξk(x
d), ξk(y

d)) ≤ ℓ)1(f(ξk(x
d)) = g(ξk(y

d)) = 1),

It suffices to show that γ(ℓ, f, g, xd, yd) ≤ γ(ℓ, f ′, g′, xd, yd) for all xd, yd ∈ {−1, 1}. Without loss of

generality, assume that xk = yk = −1. Then,

dH(xd, yd) = dH(ξk(x
d), ξk(y

d)) = dH(xd, ξk(y
d))− 1 = dH(ξk(x

d), yd)− 1.

We have the following cases:

Case 1: If γ(ℓ, f, g, xd, yd) = 4, then dH(xd, yd) ≤ ℓ−1, and f(xd) = f(ξk(x
d)) = g(yd) = g(ξk(y

d)) =

−1. From Equation (30), γ(ℓ, f ′, g′, xd, yd) = 4.

Case 2: If γ(ℓ, f, g, xd, yd) = 2, then dH(xd, yd) ≤ ℓ − 1 and f(xd) = f(ξk(x
d)) = g(yd) =

−1, g(ξk(y
d)) = 1 or g(yd) = g(ξk(y

d)) = f(xd) = −1, f(ξk(x
d)) = 1 or f(xd) = f(ξk(x

d)) =

g(ξk(y
d)) = −1, g(yd) = 1 or g(yd) = g(ξk(y

d)) = f(ξk(x
d)) = −1, f(xd) = 1. Then, from Equation
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(46), we conclude that γ(ℓ, f ′, g′, xd, yd) = 2.

Case 3: If γ(ℓ, f, g, xd, yd) = 1, then if g(xd) = f(yd) = 1 or g(ξk(xd)) = f(ξk(y
d)) = 1 and

dH(xd, yd) ≤ ℓ, we have γ(ℓ, f ′, g′, xd, yd) = 1. Otherwise, if g(ξk(xd)) = f(yd) = 1 or g(ξk(xd)) =

f(yd) = 1 and dH(xd, yd) ≤ ℓ− 1, we have γ(ℓ, f ′, g′, xd, yd) ≤ 1 due to Equation (46).

Case 4: If γ(ℓ, f, g, xd, yd) = 0, then either i) dH(xd, yd) > ℓ, or ii) f(xd) = f(ξk(x
d)) = −1 or iii)

g(yd) = g(ξk(y
d)) = −1, or iv) dH(xd, yd) = ℓ and f(ξk(xd)) = g(yd) = 1 or f(xd) = g(ξk(y

d)) = 1. In

sub-cases i), ii), and iii) we have γ(ℓ, f ′, g′, xd, yd) = 0, for sub-case vi), we have γ(ℓ, f ′, g′, xd, yd) = 1.

This conclude the proof of Part i).

Proof of Part ii):

Note that E(f(Xd)) = E(Ππ(f(X
d))) since PXd(xd) = PXd(π(xd)) for all xd ∈ {−1, 1}d. Similarly,

E(g(Y d)) = E(Ππ(g(Y
d))). Furthermore, dH(xd, yd) = dH(π(xd), π(yd)). As a result, S(Ππ(f),Ππ(g)) =

S(f, g), and the proof follows from Proposition 7.

APPENDIX J

PROOF OF THEOREM 4

Proof of i)

To prove that (fL,d, gL,d)d∈N achieve biased maximal correlation, we show that they achieve the maximal

correlation among all functions with the same output marginals. That is, for a given d ∈ N, we start with

an arbitrary pair of functions (fd, gd), and perform correlation-preserving operations on these function

pairs to arrive at (fL,d, gL,d). Then, by definition of correlation-preserving operators, we conclude that

(fL,d, gL,d) generates output correlation at least as high as (fd, gd).

The proof follows by Noetherian induction. To elaborate, for a given d ∈ N, we parameterize the

set of output marginals which can be generated by inputs of length d by parameters (nu, nv), where

P (U = 1) = nu

2d and P (V = 1) = nv

2d , nu, nv ∈ {0} ∪ [2d]. We cosnider the set of vectors N =

{(d, nu, nv)|d ∈ N, nu, nv ∈ {0} ∪ [2d]} equipped with the ordering relation

(d, nu, nv) ≺ind (d′, n′u, n
′
v) ⇐⇒ (d < d′) ∨ (d = d′ ∧ nu < n′u) ∨ (d = d′ ∧ nu = n′u ∧ nv < n′v).

We perform Noetherian induction on N :

Induction Basis. We base the induction on proving the claim for d = 1 and nu, nv ∈ [2]. That is, we

prove the claim for all four cases directly to form the induction basis. If d = nu = nv = 1, then there are

four possible functions (f(X), g(Y )) achieving output marginals QU (1) = QV (1) = 1
2 . The maximal

correlation is achieved by f(X) = 1(X = −1) and g(Y ) = 1(Y = −1) since this is a dominating pair

46



of functions in the sense of Definition 8. To see the later statement it suffices to note that D1 =

0 1

1 0


as stated in Lemma 7. For the cases where d = nu = 1, nv = 2 and d = nv = 1, nu = 2, the function

g(y) = 1, y ∈ {−1, 1} and f(x) = 1, x ∈ {−1, 1} are deterministic, respectively, and the choice of

f(·) and g(·) does not affect correlation. Lastly, for d = 1, nu = nv = 2, the only choice of simulating

functions is f(x) = g(y) = 1, x, y ∈ {−1, 1}. This proves the induction basis.

Induction Step. For a given (d, nu, nv), we assume that the claim is proved for all (d′, n′u, n
′
v) ≺ind

(d, nu, nv). Let fd, gd : {−1, 1}d → {−1, 1} be an arbitrary pair of functions with |{xd|fd(xd) = 1}| =

nu and |{yd|gd(yd) = 1}| = nv. We perform the following sequence of correlation-preserving operations:

Step 0: Let

nu,−1 ≜ |{xd|fd(xd) = 1, x1 = −1}|, nu,1 ≜ |{xd|fd(xd) = 1, x1 = 1}|,

nv,−1 ≜ |{yd|gd(yd) = 1, y1 = −1}|, nv,1 ≜ |{yd|gd(yd) = 1, y1 = 1}|.

Define f (0)d , g
(0)
d as follows:

f
(0)
d (xd) ≜

f
(−1)
L,d−1(x

d
2) if x1 = −1

f
(1)
L,d−1(x

d
2) if x1 = 1

,

g
(0)
d (yd) ≜

g
(−1)
L,d−1(y

d
2) if y1 = −1

g
(1)
L,d−1(y

d
2) if y1 = 1

,

where xd2 ≜ (x2, x3, · · · , xd), yd2 ≜ (y2, y3, · · · , yd), (f
(α)
L,d−1, g

(β)
L,d−1) are lexicographic functions with

input length d−1, associated with QU , QV , for QU (1) =
nu,α

2d−1 and QV (1) =
nv,β

2d−1 and α, β ∈ {−1, 1}. We

show using the induction hypothesis that the operator Γ : (fd, gd) 7→ (f
(0)
d , g

(0)
d ) is correlation-preserving.

To see this, define f (α)d−1(x
d
2) ≜ fd(α, x

d
2) and g

(α)
d−1(y

d
2) ≜ gd(α, y

d
2), α ∈ {−1, 1}. From Equation (31),

we have:

S(fd, gd) =
∑

α∈{−1,1}

Td(S(f
(α)
d−1, g

(α)
d−1)) + T1(S(f

(α)
d−1, g

(ᾱ)
d−1)),

S(f
(0)
d , g

(0)
d ) =

∑
α∈{−1,1}

Td(S(f
(α)
L,d−1, g

(α)
L,d−1)) + T1(S(f

(α)
L,d−1, g

(ᾱ)
L,d−1)),

where ᾱ = α⊕ 1 and Ti : Nd−1 → Nd, i ∈ [d] is the insertion operator which inserts 0 in the ith position

of its input, i.e.,

∀ad−1 ∈ Nd−1 : bd = Ti(a
d−1) ⇐⇒ bj = aj1(j < i) + aj−11(j ≥ i), j ∈ [d]− {i} and bi = 0.
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Furthermore, from the induction hypothesis, we have S(f (α)d−1, g
(β)
d−1) ⪯ S(f

(α)
L,d−1, g

(β)
L,d−1), α, β ∈ {−1, 1}.

We conclude that Γ is correlation-preserving.

Step 1: We generate f (1)d (Xd) = Π(1,d)(f
(0)
d (Xd)) and g(1)d (Y d) = Π(1,d)(g

(0)
d (Y d)), where (1, d) denotes

the permutation on [d] which switches 1 and d and fixed all other values. This is a correlation-preserving

operation by Lemma 6.

Step 2: We generate f
(2)
d (Xd) = Ξ1(f

(1)
d (Xd)) and g

(2)
d (Y d) = Ξ1(g

(1)
d (Y d)). This is a correlation-

preserving operation by Lemma 6.

Let

n(2)u,α ≜ |{xd|f (2)d (xd) = 1, x1 = α}|, n(2)v,α ≜ |{yd|g(2)d (yd) = 1, y1 = α}|, α ∈ {−1, 1}.

Note that by construction

n
(2)
u,−1 = ⌈nu,−1 + nu,1

2
⌉, n

(2)
u,1 = ⌊nu,−1 + nu,1

2
⌋ (47)

n
(2)
v,−1 = ⌈nv,−1 + nv,1

2
⌉, n

(2)
v,1 = ⌊nv,−1 + nv,1

2
⌋ (48)

Step 3: We generate f (3)d (Xd) = Γ(f
(2)
d (Xd)) and g

(3)
d (Y d) = Γ(g

(2)
d (Y d)) as in Step 0 to generate

piecewise lexicographic functions. This is a correlation-preserving operation as shown in Step 0.

Step 3: We generate f (4)d (Xd) = Π(1,2)(f
(3)
d (Xd)) and g(4)d (Y d) = Π(1,2)(g

(3)
d (Y d)), where (1, 2) is the

permutation on [d] which switches 1 and 2 and fixes all other values. This is a correlation-preserving

operation by Lemma 6.

The proof of Part i) follows by considering four cases. We provide the complete proof for the first

case, and an outline of the proof for the other three cases, which follow from the same line of argument:

Case 1: nu, nv ≤ 2d−1

In this case, the output of the shuffling operation is as follows:

f
(4)
d (xd) =


f (3)(−1,−1, xd3) if x1 = x2 = −1

f (3)(1,−1, xd3) if x1 = −1, x2 = 1

−1 otherwise

g
(4)
d (yd) =


g(3)(−1,−1, yd3) if y1 = y2 = −1

g(3)(1,−1, yd3) if y1 = −1, y2 = 1

−1 otherwise

,
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The pair of equalities hold since nu, nv ≤ 2d−1 and Equations (47) and (48) imply that n(2)u,α, n
(2)
v,α ≤

2d−2, α ∈ {−1, 1}. Consequently, since f (3) is piecewise lexicographic, we conclude that f (3)(xd) = −1

if x1 = −1, x2 = 1 or x1 = 1, x2 = 1. After the shuffling operation, this yields f (4)(xd) = −1 if

x1 = 1, x2 = −1 or x1 = 1, x2 = 1. Similarly, g(4)(yd) = −1 if y1 = 1, y2 = −1 or y1 = 1, y2 = 1. Let

us define f (4)d−1(x
d
2) ≜ f

(4)
d (−1, xd2) and g(4)d−1(y

d
2) ≜ g

(4)
d (−1, yd2). Note that S(f (4)d , g

(4)
d ) = S(f

(4)
d−1, g

(4)
d−1).

On the other hand, by the induction hypothesis, S(f (4)d−1, g
(4)
d−1) ⪯ S(f

(4)
L,d−1, g

(4)
L,d−1), where f (4)L,d−1, g

(4)
L,d−1

are the lexicographic functions with the same output bias as that of (f
(4)
d−1, g

(4)
d−1). Note that f (4)L,d(x

d) =

f
(4)
L,d−1(−1, xd) and g

(4)
L,d(y

d) = g
(4)
L,d−1(−1, yd), so that the spectrum of (f

(4)
L,d(x

d), g
(4)
L,d(y

d)) is equal to

that of (f
(4)
L,d−1, g

(4)
L,d−1) concatenated with nd = 0. Consequently, S(f (4)d , g

(4)
d ) ⪯ S(f

(4)
L,d, g

(4)
L,d). This

completes the proof for Case 1.

Case 2: nu ≤ 2d−1, nv > 2d−1

In this case, the output of the shuffling operation is as follows:

f
(4)
d (xd) =


f (3)(−1,−1, xd3) if x1 = x2 = −1

f (3)(1,−1, xd3) if x1 = −1, x2 = 1

−1 otherwise

g
(4)
d (yd) =


1 if y1 = −1

g(3)(−1, 1, yd3) if y1 = 1, y2 = −1

−1 otherwise

,

By the same argument as in the previous case, using the induction hypothesis f (3)(−1,−1, xd3), f
(3)(1,−1, xd3),

and g(3)(−1, 1, yd3) can be substituted with corresponding lexicographic functions in a correlation-preserving

manner. Since g
(4)
d (−1, yd2) = 1, yd2 ∈ {−1, 1}d−1, the resulting functions after the substitution are

lexicographic functions.

Case 3: nu > 2d−1, nv ≤ 2d−1
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In this case, the output of the shuffling operation is as follows:

f
(4)
d (xd) =


1 if x1 = −1

f (3)(−1, 1, xd3) if x1 = 1, x2 = −1

−1 otherwise

g
(4)
d (yd) =


g(3)(−1,−1, yd3) if y1 = y2 = −1

g(3)(1,−1, yd3) if y1 = −1, y2 = 1

−1 otherwise

,

The proof follows by symmetry between Case 2 and Case 3, and following the same line of argument.

Case 4: nu > 2d−1, nv > 2d−1

f
(4)
d (xd) =


1 if x1 = −1

f (3)(−1, 1, xd3) if x1 = 1, x2 = −1

−1 otherwise

g
(4)
d (yd) =


1 if y1 = −1

g(3)(−1, 1, yd3) if y1 = 1, y2 = −1

−1 otherwise

,

In this case f (3)(−1, 1, xd3) and g(3)(−1, 1, yd3) can be substituted by lexicographic functions in a correlation-

preserving manner, using the induction hypothesis, yielding a pair of lexicographic function operating on

sequences of length d. The proof follows by a similar line of argument as in Case 1.

Proof of Part ii)

Let Ud = fL,d(X
d) and Vd = gL,d(Y

d), d ∈ N, following the result of Part i), it suffices to show that for

a fixed d ∈ N:

lim
d′→∞

dTV (PUdVd
, PUd′ ,Vd′ ) ≤ c2−d, (49)

then it follows from the triangle inequality and taking d′ → ∞ that dTV (PUdVd
, Q∗

UV ) ≤ c2−d. To

prove Equation (49), let d′ > d and define fd′(xd
′
) ≜ fL,d(x

d), xd
′ ∈ {−1, 1}d′

, that is fd′(xd
′
)

applies a lexicographic function on the first d elements of xd
′
. Then, it follows by construction that

|{xd′ |fL,d′(xd
′
) ̸= f ′d′(xd

′
)}| ≤ 2d

′−d. Consequently, P (fL,d′(Xd) ̸= f ′d′(Xd′
)) ≤ 2−d. Similarly, we

define gd′(yd
′
) ≜ gL,d(y

d), yd
′ ∈ {−1, 1}d′

. Then, P (gL,d′(Y d)) ̸= g′d′(Y d′
)) ≤ 2−d. As a result:

|PUdVd
(α, β)− PUd′ ,Vd′ (α, β)| ≤ P (Ud ̸= Ud′) + P (Vd ̸= Vd′) ≤ 2× 2−d, ∀α, β ∈ {−1, 1}.
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This completes the proof of Part ii).

Proof of Part iii) From the proof of Proposition 4, it follows that the input complexity is upper-bounded by

the summation of the number of samples needed to generate the biased maximal correlation distribution

and the number of samples needed to generate the random coins. For symmetric input distributions,

the number of samples needed to generate random coins with total variation distance less than ϵ is

O(log 1
ϵ ). The reason is that to generate a coin with bias p ∈ [0, 1] one can take d = ⌈log 1

ϵ ⌉ samples

of the input Xd, and generate the lexicographic function fL,d(Xd) associated with bias QU (1) = ⌈2dp⌉

thus achieving a variation distance 2−d < ϵ. Furthermore, from the proof of Part ii), the number of

input samples needed to generate maximal correlation is O(log 1
ϵ ), and we have argued that the number

of input samples needed to generate each random coin is also O(log 1
ϵ ) yielding an upper-bound of

O(log 1
ϵ ) on the input complexity. On the other hand, to derive a lower-bound on input complexity,

given d input samples with uniform marginals, let ϵ = 2−d′
and the target marginal distributions be

QU (1) = QV (1) =
1
2d′ . Note that using d input samples, the distributions that can be generated at each

terminal are quantized with step-size 2−d So, the closest marginal distributions that can be generated

are QU (1) = 0, QV (1) = 0, QU (1) = 2−d and QV (1) = 2−d. Since by the triangle inequality, we

have dTV (QUV , PUV ) ≥ max(dTV (QU , PU ), dTV (QV , PV )), it follows that dTV (QUV , PUV ) ≥ 2−d.

Hence, to achieve a total variation distance less than ϵ, the agents need at least 2−d′
input samples.

Since d′ = log 1
ϵ , we conclude that the input complexity is Ω(log 1

ϵ . This, along with the fact that input

complexity is O(log 1
ϵ ) imlpies that input complexity is Θ(log 1

ϵ ).
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