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Abstract
In this paper, we introduce ‘BanglaBERT’, a001
BERT-based Natural Language Understanding002
(NLU) model pretrained in Bangla, a widely003
spoken yet low-resource language in the NLP004
literature. To pretrain BanglaBERT, we collect005
27.5 GB of Bangla pretraining data (dubbed006
‘Bangla2B+’) by crawling 110 popular Bangla007
sites. We introduce a new downstream task008
dataset on Natural Language Inference (NLI)009
and benchmark on four diverse NLU tasks010
covering text classification, sequence labeling,011
and span prediction. In the process, we bring012
them under the first-ever Bangla Language Un-013
derstanding Evaluation (BLUE) benchmark.014
BanglaBERT achieves state-of-the-art results015
outperforming multilingual and monolingual016
models. We will make the BanglaBERT017
model, the new datasets, and a leaderboard018
publicly available to advance Bangla NLP.019

1 Introduction020

Despite being the sixth most spoken language in021

the world with over 300 million native speakers022

constituting 4% of the world’s total population,1023

Bangla is considered a resource-scarce language.024

Joshi et al. (2020b) categorized Bangla in the lan-025

guage group that lacks efforts in labeled data col-026

lection and relies on self-supervised pretraining027

(Devlin et al., 2019; Radford et al., 2019; Liu et al.,028

2019) to boost the natural language understanding029

(NLU) task performances. To date, the Bangla lan-030

guage has been continuing to rely on fine-tuning031

multilingual pretrained language models (PLMs)032

(Ashrafi et al., 2020; Das et al., 2021; Islam et al.,033

2021). However, since multilingual PLMs cover034

a wide range of languages (Conneau and Lam-035

ple, 2019; Conneau et al., 2020), they are large036

(have hundreds of millions of parameters) and re-037

quire substantial computational resources for fine-038

tuning. They also tend to show degraded perfor-039

mance for low-resource languages (Wu and Dredze,040

1https://w.wiki/Psq

2020) on downstream NLU tasks. Motivated by 041

the triumph of language-specific models (Martin 042

et al. (2020); Polignano et al. (2019); Canete et al. 043

(2020); Antoun et al. (2020), inter alia) over mul- 044

tilingual models in many other languages, in this 045

work, we present BanglaBERT – a BERT-based 046

(Devlin et al., 2019) Bangla NLU model pretrained 047

on 27.5 GB data (which we name ‘Bangla2B+’) 048

we meticulously crawled 110 popular Bangla web- 049

sites to facilitate NLU applications in Bangla. 050

We also introduce a Bangla Natural Language 051

Inference (NLI) dataset, a task previously unex- 052

plored in Bangla, and evaluate BanglaBERT on 053

four diverse downstream tasks on sentiment clas- 054

sification, NLI, named entity recognition, and 055

question answering. We bring these tasks to- 056

gether to establish the first-ever Bangla Language 057

Understanding Evaluation (BLUE) benchmark. 058

We compare two widely used multilingual mod- 059

els to BanglaBERT using the BLUE benchmark 060

and find that BanglaBERT excels on all the tasks. 061

We summarize our contributions as follows: 062

1. We present BanglaBERT, a pretrained BERT 063

model for Bangla, and introduce a new Bangla 064

natural language inference (NLI) dataset. 065

2. We introduce Bangla Language Understand- 066

ing Evaluation (BLUE) benchmark and pro- 067

vide a set of strong baselines. 068

3. We release code and provide a leaderboard to 069

spur future research on Bangla NLU.2 070

2 BanglaBERT 071

2.1 Pretraining Data 072

A high volume of good quality text data is a prereq- 073

uisite for pretraining large language models. For 074

instance, BERT (Devlin et al., 2019) is pretrained 075

on the English Wikipedia and the Books corpus 076

(Zhu et al., 2015) containing 3.3 billion tokens. 077

Subsequent works like RoBERTa (Liu et al., 2019) 078

2https://github.com/hidden/hidden
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and XLNet (Yang et al., 2019) used more extensive079

web-crawled data with heavy filtering and cleaning.080

Bangla is a rather resource-constrained language081

in the web domain; for example, the Bangla082

Wikipedia dump from July 2021 is only 650 MB,083

two orders of magnitudes smaller than the English084

Wikipedia. As a result, we had to crawl the web085

extensively to collect our pretraining data. We se-086

lected 110 Bangla websites by their Amazon Alexa087

rankings3 and the volume and quality of extractable088

texts by inspecting each website. The contents in-089

cluded encyclopedias, news, blogs, e-books, sto-090

ries, social media/forums, etc.4 The amount of data091

totaled around 35 GB.092

There are also noisy sources of Bangla data093

dumps, a couple of prominent ones being OSCAR094

(Suárez et al., 2019) and CCNet (Wenzek et al.,095

2020). However, they contained lots of offensive096

texts; we found them infeasible to clean thoroughly.097

Fearing potential harmful impacts (Luccioni and098

Viviano, 2021), we opted not to use them.5099

2.2 Pre-processing100

We performed thorough deduplication on the pre-101

training data, removed non-textual contents (e.g.,102

HTML/JavaScript tags), and filtered out non-103

Bangla pages using a language classifier (Joulin104

et al., 2017). After the processing, the dataset was105

reduced to 27.5 GB in size containing 5.25M docu-106

ments having 306.66 words on average.107

We trained a Wordpiece (Wu et al., 2016) vo-108

cabulary of 32k subword tokens on the resulting109

corpus with a 400 character alphabet, kept larger110

than the native Bangla alphabet to capture code-111

switching (Poplack, 1980) and allow romanized112

Bangla contents for better generalization. We lim-113

ited the length of a training sample to 512 tokens114

and did not cross document boundaries (Liu et al.,115

2019) while creating a data point. After tokeniza-116

tion, we had 7.18M samples with an average length117

of 304.14 tokens and containing 2.18B tokens in118

total; hence we named the dataset ‘Bangla2B+’.119

2.3 Pretraining Objective120

Self-supervised pretraining objectives leverage un-121

labeled data. For example, BERT (Devlin et al.,122

2019) was pretrained with masked language mod-123

eling (MLM) and next sentence prediction (NSP).124

3www.alexa.com/topsites/countries/BD
4The completely list of the sources can be found in the

Appendix.
5We cover other ethical considerations in the Appendix.

Several works built on top of this, e.g., RoBERTa 125

(Liu et al., 2019) removed NSP and pretrained with 126

longer sequences, SpanBERT (Joshi et al., 2020a) 127

masked contiguous spans of tokens, while works 128

like XLNet (Yang et al., 2019) introduced objec- 129

tives like factorized language modeling. 130

We pretrained BanglaBERT using ELECTRA 131

(Clark et al., 2020b), pretrained with the Replaced 132

Token Detection (RTD) objective, where a gener- 133

ator and a discriminator model are trained jointly. 134

The generator is fed as input a sequence with a 135

portion of the tokens masked (15% in our case) 136

and is asked to predict them using the rest of the 137

input (i.e., standard MLM). The masked tokens 138

are then replaced by tokens sampled from the gen- 139

erator’s output distribution for the corresponding 140

masks, and the discriminator then has to predict 141

whether each token is from the original sequence 142

or not. After pretraining, the discriminator is used 143

for fine-tuning. Clark et al. (2020b) argued that 144

RTD back-propagates loss from all tokens of a se- 145

quence, in contrast to 15% tokens of the MLM ob- 146

jective, giving the model more signals to learn from. 147

Evidently, ELECTRA achieves comparable down- 148

stream performance to RoBERTa or XLNet with 149

only a quarter of their training time. This compu- 150

tational efficiency motivated us to use ELECTRA 151

for our implementation of BanglaBERT. 152

2.4 Model Architecture & Hyperparameters 153

We pretrained the base ELECTRA model (a 12- 154

layer Transformer encoder with 768 embedding 155

size, 768 hidden size, 12 attention heads, 3072 156

feed-forward size, generator-to-discriminator ratio 157
1
3 , 110M parameters) with 256 batch size for 2.5M 158

steps on a v3-8 TPU instance on GCP. We used 159

the Adam (Kingma and Ba, 2015) optimizer with a 160

2e-4 learning rate and linear warmup of 10k steps. 161

162

3 The Bangla Language Understanding 163

Evaluation (BLUE) Benchmark 164

Many works have studied different Bangla NLU 165

tasks in isolation, e.g., sentiment classification (Das 166

and Bandyopadhyay, 2010; Sharfuddin et al., 2018; 167

Tripto and Ali, 2018), semantic textual similarity 168

(Shajalal and Aono, 2018), parts-of-speech (PoS) 169

tagging (Alam et al., 2016), named entity recogni- 170

tion (NER) (Ashrafi et al., 2020). However, Bangla 171

NLU has not yet had a comprehensive unified study. 172

Motivated by the surge of NLU research brought 173
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Task Corpus |Train| |Dev| |Test| Metric Domain
Sentiment Classification SentNoB 12,575 1,567 1,567 Macro-F1 Social Media
Natural Language Inference BNLI 381,449 2,419 4,895 Acc. Misc.
Named Entity Recognition MultiCoNER 14,500 800 800 Micro-F1 Misc.
Question Answering TyDiQA 4,542 238 226 EM/F1 Wikipedia

Table 1: Statistics of the Bangla Language Understanding Evaluation (BLUE) benchmark.

about by benchmarks in other languages, e.g., En-174

glish (Wang et al., 2018), French (Le et al., 2020),175

Korean (Park et al., 2021), we establish the first-176

ever Bangla Language Understanding Evaluation177

(BLUE) benchmark.178

NLU generally comprises three types of tasks:179

text classification, sequence labeling, and text span180

prediction. Text classification tasks can further181

be sub-divided into single-sequence and sequence-182

pair classification. Therefore, we consider a total183

of four tasks for BLUE. For each task type, we184

carefully select one downstream task dataset. We185

emphasize the quality and open availability of the186

datasets while making the selection. We briefly187

mention them below:188

1. Single-Sequence Classification: Sentiment189

classification is perhaps the most-studied Bangla190

NLU task, with some of the earlier works dat-191

ing back over a decade (Das and Bandyopadhyay,192

2010). Hence, we chose this as the single-sequence193

classification task. However, most Bangla senti-194

ment classification datasets are not publicly avail-195

able. We could only find two public datasets: BYSA196

(Tripto and Ali, 2018) and SentNoB (Islam et al.,197

2021). We found BYSA to have many duplications.198

Even worse, many duplicates had different labels.199

SentNoB had better quality and covered a broader200

set of domains, making the classification task more201

challenging. Hence, we opted to use the latter.202

2. Sequence-pair Classification: In contrast203

to single-sequence classification, there has been204

a dearth of sequence-pair classification works in205

Bangla. We found work on semantic textual simi-206

larity (Shajalal and Aono, 2018), but the dataset is207

not publicly available. As such, we curated a new208

Bangla Natural Language Inference (BNLI) dataset209

for sequence-pair classification. We chose NLI as210

the representative task due to its fundamental im-211

portance in NLU. Given two sentences, a premise212

and a hypothesis as input, a model is tasked to pre-213

dict whether or not the hypothesis is entailment,214

contradiction, or neutral to the premise. We used215

the same curation procedure as the XNLI (Conneau216

et al., 2018) dataset: we translated the MultiNLI217

(Williams et al., 2018) training data using the En- 218

glish to Bangla translation model by Hasan et al. 219

(2020) and had the evaluation sets translated by 220

expert human translators.6 Due to the possibility 221

of the incursion of errors during automatic transla- 222

tion, we used the Language-Agnostic BERT Sen- 223

tence Embeddings (LaBSE) (Feng et al., 2020) of 224

the translations and original sentences to compute 225

their similarity and discarded all sentences below a 226

similarity threshold of 0.70. Moreover, to ensure 227

good-quality translation, we used similar quality 228

assurance strategies as Guzmán et al. (2019). 229

3. Sequence Labeling: In this task, all words of 230

a text sequence have to be classified. Named En- 231

tity Recognition (NER) and Parts-of-Speech (PoS) 232

tagging are two of the most prominent sequence 233

labeling tasks. We chose the Bangla portion of 234

SemEval 2022 MultiCoNER7 dataset for BLUB. 235

4. Span Prediction: Extractive question answer- 236

ing is a standard choice for text span prediction. 237

We used the Bangla portion of the TyDiQA8 (Clark 238

et al., 2020a) dataset for this task. We posed the 239

task analogous to SQuAD 2.0 (Rajpurkar et al., 240

2018): presented with a text passage and a ques- 241

tion, a model has to predict whether or not it is 242

answerable. If answerable, the model has to find 243

the minimal text span that answers the question. 244

We present detailed statistics of the BLUE bench- 245

mark in Table 1. 246

4 Experiments & Results 247

We fine-tuned BanglaBERT on the downstream 248

tasks and compared with three multilingual mod- 249

els: mBERT (Devlin et al., 2019), XLM-R base 250

and large (Conneau et al., 2020), and sahajBERT 251

(Diskin et al., 2021) (an ALBERT-based (Lan et al., 252

6We present more details in the Appendix.
7The test set of MultiCoNER will be released in December.

We used the dev set for test and a portion of the training set
for dev. We will redo all evaluations with the released test set.

8The test set of TyDiQA is not publicly available. Like
MultiCoNER, we used the validation set for test purposes and
a portion of the training set for validation. We removed the
Yes/No questions and subsampled the unanswerable questions
to have the same frequency as the answerable ones.
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Models |Params.| SC NLI NER QA BLUE Score
Zero-shot cross-lingual transfer learning
mBERT 180M – 62.22 39.27 59.44/65.00 –
XLM-R (base) 270M – 72.18 45.37 57.66/63.47 –
XLM-R (large) 550M – 78.16 57.74 70.35/77.22 –
Supervised fine-tuning
mBERT 180M 67.59 75.13 68.97 75.51/80.12 73.46
XLM-R (base) 270M 69.54 78.46 73.32 75.81/79.98 75.42
XLM-R (large) 550M 70.97 82.40 78.39 83.92/87.87 80.71
sahajBERT 18M 71.12 76.92 70.94 76.40/81.44 75.36
BanglaBERT 110M 72.89 82.80 77.78 82.89/87.60 80.79

Table 2: Performance comparison of baselines and pretrained models on different downstream tasks. Scores in
bold texts have statistically significant (p < 0.05) difference from others with bootstrap sampling (Koehn, 2004).

2020) pretrained Bangla model). We also show the253

zero-shot cross-lingual transfer results fine-tuned254

on the English counterpart of each dataset (except255

for SentNoB, which had no English equivalent).256

All pretrained models were fine-tuned for 3-20257

epochs with batch size 32, and the learning rate258

was tuned from {2e-5, 3e-5, 4e-5, 5e-5}. We per-259

formed fine-tuning with three random seeds and260

reported their average in Table 2. In all the tasks,261

BanglaBERT outperformed multilingual models262

and monolingual sahajBERT, achieving a BLUE263

score (the average score of all tasks) of 80.79, even264

coming head-to-head with XLM-R (large).265

BanglaBERT is not only superior in perfor-266

mance, but it is also substantially compute- and267

memory-efficient. For instance, it may seem that268

sahajBERT is more efficient than BanglaBERT due269

to its smaller size, but it takes 2-3.5x time and 2.4-270

3.33x memory as BanglaBERT to fine-tune.9271

Sample efficiency It is often challenging to an-272

notate training samples in real-world scenarios, es-273

pecially for low-resource languages like Bangla.274

So, in addition to compute- and memory-efficiency,275

sample-efficiency (Howard and Ruder, 2018) is an-276

other necessity of PLMs. To assess the sample277

efficiency of BanglaBERT, we limit the number of278

training samples and see how it fares against other279

models. We compare it with XLM-R (large) and280

plot their performances on the SC and NLI tasks10281

for different sample size in Figure 1.282

Results show that when we have fewer number283

of samples (≤ 1k), BanglaBERT has substantially284

better performance (2-9% on SC, 6-10% on NLI)285

over XLM-R (large), making it more practically286

applicable for resource-scarce downstream tasks.287

9Detailed comparison can be found in the Appendix.
10Results for the other tasks can be found in the Appendix.
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Figure 1: Sample-efficiency tests with SC and NLI.

5 Conclusion & Future Works 288

Creating language-specific models is often infeasi- 289

ble for low-resource languages lacking ample data. 290

Hence, researchers are compelled to use multilin- 291

gual models for languages that do not have strong 292

pretrained models. To this end, we introduced 293

BanglaBERT, an NLU model in Bangla, a widely 294

spoken yet low-resource language. We presented 295

a new downstream dataset on NLI and established 296

the BLUE Benchmark, setting new state-of-the-art 297

results with BanglaBERT. In future, we will include 298

other Bangla NLU benchmarks (e.g., dependency 299

parsing (de Marneffe et al., 2021)) in BLUE and 300

investigate the benefits of initializing Bangla NLG 301

models from BanglaBERT. 302
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Appendix600

Pretraining Data Sources601

We used the following sites for data collection. We602

categorize the sites into six types:603

604

Encyclopedia:605

• bn.banglapedia.org606
• bn.wikipedia.org607
• songramernotebook.com608

News:609

• anandabazar.com610
• arthoniteerkagoj.com611
• bangla.24livenewspaper.com612
• bangla.bdnews24.com613
• bangla.dhakatribune.com614
• bangla.hindustantimes.com615
• bangladesherkhela.com616
• banglanews24.com617
• banglatribune.com618
• bbc.com619
• bd-journal.com620
• bd-pratidin.com621
• bd24live.com622
• bengali.indianexpress.com623
• bigganprojukti.com624
• bonikbarta.net625
• chakarianews.com626
• channelionline.com627
• ctgtimes.com628
• ctn24.com629
• daily-bangladesh.com630
• dailyagnishikha.com631
• dainikazadi.net632
• dainikdinkal.net633
• dailyfulki.com634
• dailyinqilab.com635
• dailynayadiganta.com636
• dailysangram.com637
• dailysylhet.com638
• dainikamadershomoy.com639
• dainikshiksha.com640
• dhakardak-bd.com641
• dmpnews.org642
• dw.com643
• eisamay.indiatimes.com644
• ittefaq.com.bd645
• jagonews24.com646
• jugantor.com647
• kalerkantho.com648
• manobkantha.com.bd649
• mzamin.com650
• ntvbd.com651
• onnodristy.com652

• pavilion.com.bd 653
• prothomalo.com 654
• protidinersangbad.com 655
• risingbd.com 656
• rtvonline.com 657
• samakal.com 658
• sangbadpratidin.in 659
• somoyerkonthosor.com 660
• somoynews.tv 661
• tbsnews.net 662
• teknafnews.com 663
• thedailystar.net 664
• voabangla.com 665
• zeenews.india.com 666
• zoombangla.com 667

Blogs: 668

• amrabondhu.com 669
• banglablog.in 670
• bigganblog.org 671
• biggani.org 672
• bigyan.org.in 673
• bishorgo.com 674
• cadetcollegeblog.com 675
• choturmatrik.com 676
• horoppa.wordpress.com 677
• muktangon.blog 678
• roar.media/bangla 679
• sachalayatan.com 680
• shodalap.org 681
• shopnobaz.net 682
• somewhereinblog.net 683
• subeen.com 684
• tunerpage.com 685
• tutobd.com 686

E-books/Stories: 687

• banglaepub.github.io 688
• bengali.pratilipi.com 689
• bn.wikisource.org 690
• ebanglalibrary.com 691
• eboipotro.github.io 692
• golpokobita.com 693
• kaliokalam.com 694
• shirisherdalpala.net 695
• tagoreweb.in 696

Social Media/Forums: 697

• banglacricket.com 698
• bn.globalvoices.org 699
• helpfulhub.com 700
• nirbik.com 701
• pchelplinebd.com 702
• techtunes.io 703
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Miscellaneous:704

• banglasonglyric.com705
• bdlaws.minlaw.gov.bd706
• bdup24.com707
• bengalisongslyrics.com708
• dakghar.org709
• gdn8.com710
• gunijan.org.bd711
• hrw.org712
• jakir.me713
• jhankarmahbub.com714
• jw.org715
• lyricsbangla.com716
• neonaloy.com717
• porjotonlipi.com718
• sasthabangla.com719
• tanzil.net720

We wrote custom crawlers for each site above721

(except the Wikipedia dumps).722

Quality Control in Human Translation:723

Translations were done by expert translators who724

provide translation services for renowned Bangla725

newspapers. Each translated sentence was further726

assessed for quality by another expert. If found to727

be of low quality, it was again translated by the orig-728

inal translator. The sample was then discarded alto-729

gether if found to be of low quality again. Fewer730

than 100 samples were discarded in this process.731

Compute and Memory Efficiency Tests732

To validate that BanglaBERT is more efficient in733

terms of memory and compute, we measured each734

model’s training time and memory usage during735

the fine-tuning of each task. All tests were done736

on a desktop machine with an 8-core Intel Core-i7737

11700k CPU and NVIDIA RTX 3090 GPU. We738

used the same batch size, gradient accumulation739

steps, and sequence length for all models and tasks740

for a fair comparison. We use relative time and741

memory (GPU VRAM) usage considering those742

of BanglaBERT as units. The results are shown in743

Table 3. (We mention the upper and lower values744

of the different tasks for each model)745

Additional Sample Efficiency Tests746

Due to space restrictions, we move the sample ef-747

ficiency results of the NER and QA tasks to the748

appendix. We plot the results in Figure 2.749

Similar results are also observed here for the750

NER task, where BanglaBERT is more sample-751

efficient when we have ≤ 1k training samples. In752

the QA task however, both models have identical753

performance for all sample counts.754

Model Time Memory Usage
mBERT 1.14x-1.92x 1.12x-2.04x
XLM-R (base) 1.29-1.81x 1.04-1.63x
XLM-R (large) 3.81-4.49x 4.44-5.55x
SahajBERT 2.40-3.33x 2.07-3.54x
BanglaBERT 1.00x 1.00x

Table 3: Compute and memory efficiency tests
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Figure 2: Sample-efficiency tests with NER and QA.

Ethical Considerations 755

Dataset and Model Release: The Copy Right 756

Act, 200011 of Bangladesh allows reproduction 757

and public release of copy-right materials for non- 758

commercial research purposes. As a transformative 759

research work, we will release BanglaBERT un- 760

der a non-commercial license. Furthermore, we 761

will release only the pretraining data for which we 762

know the distribution will not cause any copyright 763

infringement. The downstream task datasets can 764

all be made publicly available under a similar non- 765

commercial license. 766

Human Translation: Human translators were 767

paid as per standard rates in local currencies. 768

Text Content: We tried to minimize offensive texts 769

by explicitly crawling the sites where such contents 770

would be nominal. However, we can guarantee ab- 771

solutely no objectionable content and recommend 772

using the model carefully, especially for text gen- 773

11http://bdlaws.minlaw.gov.bd/
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eration purposes. Furthermore, we removed the774

personal information of the content writers by not775

considering the author fields while collecting the776

data.777
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