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Abstract

Open-domain question answering over datalakes requires retrieving and composing
information from multiple tables, a challenging subtask that demands semantic
relevance and structural coherence (e.g., joinability). While exact optimization
methods like Mixed-Integer Programming (MIP) can ensure coherence, their com-
putational complexity is often prohibitive. Conversely, simpler greedy heuristics
that optimize for query coverage alone often fail to find these coherent, joinable
sets. This paper frames multi-table retrieval as an iterative search process, arguing
this approach offers advantages in scalability, interpretability, and flexibility. We
propose a general framework and a concrete instantiation: a fast, effective Greedy
Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and
joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our itera-
tive method achieves competitive retrieval performance compared to the MIP-based
approach while being 4-400x faster depending on the benchmark and search space
settings. This work highlights the potential of iterative heuristics for practical,
scalable, and composition-aware retrieval.

1 Introduction

Large Language Models (LLMs) increasingly leverage Retrieval-Augmented Generation (RAG)
pipelines for natural language interfaces to structured databases [Li et al., 2023, |Wang et al.| 2024]].
In this paradigm, the accuracy and coherence of an LLM’s answer is critically dependent on the
retrieval phase: if the retrieved tables do not collectively contain the necessary information or cannot
be coherently composed (e.g., via joins), the LLM’s ability to generate a correct answer is severely
compromised. While previous work on table retrieval has primarily focused on retrieving individual
tables from large corpora [Herzig et al.,|2021]], complex real-world queries often require retrieving
and composing information from multiple tables—a challenge known as multi-table retrieval. This
task introduces significant challenges beyond simple relevance ranking. Consider a query like: "Show
names and total order values for New York customers who ordered ’Laptop’ and any customers
who ordered *Smartphone’ after 2024." Answering this requires tables like Customers, Orders, and
Products, but the retrieval process faces several issues. Due to data redundancy or different valid
reasoning paths, multiple valid sets of tables might answer the query. Furthermore, path dependency
can arise in iterative methods, where the order of table selection influences the final set. This inherent
ambiguity suggests that multi-table retrieval is not always about finding a single, pre-defined optimal
set, but often involves exploring multiple plausible evidence paths.

Traditional retrieval methods, which assess tables independently, struggle with structural compos-
ability. |Chen et al.| [2024b] addressed this by proposing composition-aware retrieval focused
on joinability, reframing the task as selecting a coherent sub-graph. Their Join-Aware Retrieval
(JAR) method performs neural retrieval followed by a Mixed-Integer Program (MIP) to find the
provably optimal joinable subset. Although highly effective, this one-shot NP-hard optimization
suffers in terms of scalability, as acknowledged by the authors. JAR has inspired follow-ups com-
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bining solver logic with LLMs [Chen et al., 2025] and agentic, multi-hop reasoning approaches
like MURRE [Zhang et al., |2025]]. Other related works like CRUSH4SQL [Kothyari et al., 2023
use a greedy decomposition strategy, but lack the explicit join-aware component central to JAR.
Recent works such as DBCopilot [Wang et al., [2025]] also explore iterative retrieval via schema
routing for massive databases. Complementary to these efforts, recent work has also proposed
retrieval-augmented methods that enable LLMs to interact with structured data via iterative and
adaptive search frameworks [Wang et al., [2024]).

This paper proposes framing multi-table retrieval as an iterative and explorative search process. To
stimulate discussion on practical, scalable architectures for this complex retrieval task, we posit that
constructing the table set step-by-step offers benefits in scalability (via heuristics), interpretability,
and flexibility. Our contributions are threefold: (1) We propose a general, flexible iterative framework
for multi-table retrieval. (2) We detail a fast and effective Greedy Join-Aware Retrieval algorithm
as a concrete instantiation of this framework. (3) We demonstrate its empirical viability on standard
benchmarks (Yu et al.|[2018]], Li et al.| [2023]]) as well as more complex enterprise benchmarks (Sen
et al.|[2020], |(Chen et al|[2024a]), showing it achieves competitive performance to the MIP-based
JAR approach while being over 4-400x fastelﬂ

2 An Iterative Framework for Multi-Table Search

We propose framing multi-table retrieval as a sequential decision-making process where an algorithm
iteratively expands a set of selected tables based on a dynamic context. This approach offers several
advantages over one-shot global optimization:

* Interpretability: Each selection step provides a checkpoint for analyzing the reasoning
process, potentially enabling human-in-the-loop guidance.

» Extensibility: The framework is modular and the selection logic can be dynamically adapted
to prioritize different operators (e.g., JOIN vs. UNION) or evolving objectives.

* Heuristic Potential: While global optimization is often NP-hard for this task, step-by-step
construction lends itself to efficient polynomial-time heuristics, addressing scalability.

Representing Query Coverage A central challenge in multi-table retrieval is tracking the capacity
to answer the initial query by the already selected tables. To illustrate, consider the query "For
movies with the keyword of "civil war’, calculate the average revenue generated by these movies". To
estimate what information is needed, methods process this query using an LLM in different ways.
For instance, Kothyari et al.| [2023]] use the LLM to "hallucinate" a minimal, potential schema (e.g.,
movies(title, revenue)) that could answer it. In contrast, our method (following (Chen et al.
[2024b]) decomposes the query into a set of fine-grained concepts or sub-queries {g;}, such as
{movies:keyword, movies:revenue}. This general idea of estimating the query’s requirements
is known as query coverage. In our framework, query coverage tracks how well each concept g; is
addressed by the tables selected so far.

Abstract Formulation Let 7 be the set of all available candidate tables. The search process
evolves at each step & a context C;, = (G, Qi) where:

* Gi = (Sk, E)) is a graph of k selected tables S, C T and their discovered relationships
E (e.g., potential joins).

* Qy, represents the query coverage state for the query concepts {g¢;}. For example, in a
simple setting we can represent Qy, by a vector g whose size equals the number of concepts,
where element g, ; quantifies coverage for concept g;.

The process starts with the empty context Cy = ((0,0),0) with no selected tables and no cov-
erage. At each step k, a selection function ® chooses the next table 7}, from the remaining
candidates T \ Sj by maximizing a context-dependent utility function U: Typ11 = ®(Cx, T \ Sk) =
arg maxr, e\ s, U(Ti,Ck). An update function W then transitions the system to the next state C 1
by incorporating T+1: Cx+1 = V(Ck, Tk+1) = (Gi+1, Qr+1). This process repeats until a stopping
criterion is met (e.g., k = K or min; g ; > ). We illustrate a concrete instantiation of the selection
and update functions in the next section.

!Code available at: https://github.com/Allaa-boutaleb/iterative-jar/
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3 Case Study: Greedy Join-Aware Retrieval

In this section we present a simple instantiation of the iterative framework focused on join-aware
multi-table retrieval. Our algorithm, like JAR [[Chen et al., 2024b]], operates on pre-computed scores
quantifying relevance and compatibility for a query () and candidate tables 7. These include:

* Coarse-grained Relevance (r;), the overall ()-to-table 7; semantic similarity via dense
retriever embeddings [[zacard et al.,[2022]], where emb(-) is the embedding function:

r; = cos(emb(Q),emb(T;)) € [—1,1] (1)

* Fine-grained Relevance (};), which measures how well T} addresses a specific sub-query
g; (decomposed from () via an LLM) by finding the maximum similarity between ¢; and
any column c in Tj: Fj; = maXcccols(1;) cOS(emb(g;), emb(c)) € [—1,1].

* Join Compatibility (w;;), a score in [0, 1] quantifying the join likelihood between T; and T}
by combining schema, value overlap, and uniqueness signals to approximate a PK-FK link,
following (Chen et al.|[2024b].

The context is C;, = (G, Qr) where Gy, = (Sk, E)) is the graph of selected tables Sy, and their join
paths Ej,. The coverage state Q, is implemented as the vector g, storing the maximum F; score
seen for each sub-query g;. The algorithm’s selection function ® works by maximizing a utility
function U that is a weighted sum of three marginal gain components. These gains are calculated for
a candidate table 7; relative to the prior context Cx—1 = (Gr—1, Qx—1):

* Coarse Relevance Gain, G a5 (1) = 7;, which is intrinsic to the table;
» Marginal Coverage Gain, which depends on the prior coverage vector qy_1:

Geov(T;|Cr—1) = Zmax(o, Fji — (qr-1);) 2
J

* Marginal Join Gain, Gjoin(T;|Cr—1) = ZTZ es,_, wit, which depends on the nodes Sk_1
of the prior graph G, ;. For the main iterative step (k > 1), the utility function U (T}, Cj—1)
combines these gains:

T, = arg — max [/\coarschoarse (Tz) + AeovGleov (Tz|Ck71) + /\joinGjoin (Tz |Ck71)} 3)
Ti, ET\Sk,1

The seed selection (k = 1) is a special case. Starting from Cy = ((0, 0), 0), the Gjoin term is undefined
and G,y simplifies (as qp = 0), so the utility function reduces to selecting based on individual merit:

Tl = arg ,%ng%(, )\coarse -1+ >\cnv : Z Fj'l (4)
J

Finally, the update function U transitions the state to C by updating the graph Gy, = (Sk_1 U
{T%}, Ex—1 U Epeyw) and the coverage vector q;, = max(qg_1, Fy), where Fy, is the vector of
fine-grained scores for T}.

4 Experiments and Analysis

Experimental Setup. We compare our iterative greedy algorithm against three baselines: a Dense
Retrieval (Contriever) baseline [[zacard et al.,|2022], the official JAR ;7 p implementationﬂ [[Chen
et al.| 2024b], and CRUSH [Kothyari et al.,|2023]] (using Contriever as the embedding model). For
all methods, we use a consistent table schema serialization. The Contriever baseline embeds this
serialized schema, the query, and its concepts within the same embedding space to retrieve an initial
ranked list of tables. For JAR (MIP) and our iterative method, we re-rank this initial candidate set:
the top-20 tables for SPIDER, BIRD, and BEAVER, and the top-30 for FIBEN. Both methods use
the identical set of pre-computed relevance (r;, I;) and join compatibility (w;;) scores, ensuring
a fair comparison of the selection algorithms. For CRUSH, we follow the default settings from its
implementatio using an initial candidate cutoff of 100 tables and a selection budget of 20.

“https://github.com/peterbaile/jar
*https://github.com/tshu-w/DBCopilot/blob/master/scripts/crushésql.py
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We evaluate on the multi-table queries from SPIDER [Yu et al.l 2018], BIRD |[Li et al., 2023,
FIBEN [Sen et al., [2020], and the complex BEAVER [[Chen et al., 2024al] benchmark (see Table
[T)for statistics). BEAVER is composed of two distinct enterprise data warehouses: BEAVER-DW
(university physical administration) and BEAVER-NW (virtual machine and network infrastructure).
As our study focuses on multi-table retrieval, we exclude all single-table queries from our evaluation.
A detailed breakdown of the multi-table query distribution for each benchmark is available in

Appendix [C]

For our greedy method, we use weights Acoy = 2.0, Ajoin = 1.0, Acoarse = 4.0. These weights were
determined empirically via an ablation study (Appendix [A), which indicated that coarse relevance is
the strongest signal, followed by coverage and join compatibility. We report Recall (R) and Complete
Recall (CR) for K € {2, 3,5, 10}, where CR is a binary set-level metric indicating if all ground-truth
tables were retrieved. We use a 1 hour per-query timeout for the MIP solver to allow it ample time to
find optimal solutions.

Table 1: Retrieval performance on multi-table queries. K is the number of tables retrieved. Contriever
shows absolute R/CR scores (%) and base retrieval time (s). All other methods show relative R/CR
gain (+) or loss (-) and total re-ranking time (+ s). T indicates prohibitive runtime. Highest and
Second-Highest scores are marked per column within each benchmark.

Benchmark Method K=2 K=3 K=s K=10 Time (seconds)

Recall (R) CR Recall (R) CR Recall (R) CR Recall (R) CR

SPIDER Contriever 813 599 938 856 989 976 99.7  99.3 15
Num. f DBs: 20

Num of Tables: 81 JAR (MIP) 41 472 426 +57 +0.5 411 ¥ ¥ +(325/290/ 6360/ 1)
Avg. Table Width: 5.4  JARjerive (Ours) +42 481 418 +44 09 20 14 28 +~20
Num. of Queries: 459  CRUSHcongiover [176 253 214 381 215 420 219 433 +-38
BIRD Contriever 635 348 762 56.2 852 713 95.1 899 23
Nm.of DBs: M s JAR (MIP) +109  +16.9 194 +157 +52 +104 ¥ o+ (8501/ 1367940756/ )
Avg. Table Width: 10.6 JARierative (Ours) +10.7 +16.7 +8.5 +14.3 +5.8 +10.8 +1.1  +2.7 +~101
Num. of Queries: 1172  CRUSHcongiever 128 128 ‘135 173 124 -169 206 -32.8 +~116
FIBEN Contriever 28 07 2.1 11 20 18 414 54 13
o sy 152 JAR (MIP) 419 +3.6 +122 461 +164 482 +172 486 +(45/55/2206/ 11340)
Avg. Table Width: 2.5 JARjieraiive (Ours) +6.4 +3.6 +10.7 +5.7 +19.8 +9.0 +21.2 493 +~10
Num. of Queries: 279

BEAVER-DW Contriever 29.3 17 375 9.2 485 175 3.5 308 13
Num. f DBs: 1

Num.  of Tabies: 97 JAR (MIP) 211 -17 -133 09 § ¥ ¥ ¥ + (18659 /34756 / 1/ 1)
Avg. Table Width: 15.8  JARjeruive (Ours) -0.3 +0.8 +4.2 +3.3 +4.1 +6.7 +1.5  +2.5 +~82
Num. of Queries: 120

BEAVER-NW Contriever 23.6 1.2 30.2 1.2 385 23 484 9.3 19
Num. of DBs: §

Num. of Tables: 366 JAR (MIP) +103 00 494 435 +107 23 04 93 +(210/572/7297/10449)
Avg. Table Width: 7.4 yAR. . (Ours) +3.0 0.0 +6.5  +4.6 111 +8.2 +6.1  +35 +~30

Num. of Queries: 86

Analysis of Performance and Scalability. As shown in Table [I] our greedy method achieves
highly competitive, and often superior, retrieval performance compared to the JAR /7 p baseline,
while being dramatically faster. For example, on BIRD at K=3, our method achieves 99% of JAR’s
CR score in only 0.7% of the time (101s vs 13679s, a >135x speedup). This efficiency advantage
becomes an enabling factor on the complex BEAVER benchmarks. Our iterative method was able to
complete all BEAVER-DW runs, while JAR (MIP) timed out on K>5. On BEAVER-NW (K=5), our
method was >240x faster (30s vs 7297s) while achieving a +10.5 point higher CR.

It is also worth noting that even when JAR (MIP) finds a 100% optimal solution according to its
objective function (e.g., on SPIDER at K=2, see Appendix [B), our iterative method can still achieve
slightly higher performance (see Table[7)). This suggests the MIP’s objective is not a perfect proxy
for the end retrieval metrics, further motivating the exploration of alternative heuristic formulations.

CRUSH’s lower performance stems from two core design differences: it is not explicitly join-aware,
and it employs an aggressive coverage-first greedy logic, unlike our holistic gain-based approach.
As analyzed in Appendix D] this heuristic is sensitive to noise and can fail to select optimal tables.
Given the performance drop on SPIDER and BIRD, we skipped evaluating CRUSH on FIBEN and
BEAVER benchmarks.

Finally, the slight performance drop of our method on SPIDER at K=5 and K=10 (relative to the
Contriever baseline) can be attributed to the fixed candidate set. As K increases, the re-ranker is
forced to include lower-ranked tables from the initial top-20 set, which are more likely to be irrelevant
and can create confusion for the selection algorithm on certain queries.



5 Limitations and Future Work

This paper proposed reframing multi-table retrieval as an iterative, explorative search process,
an alternative to one-shot optimization with inherent advantages in scalability, interpretability, and
extensibility. Our Greedy Iterative Join-Aware Multi-Table Retrieval algorithm demonstrated
this viability, achieving strong empirical results on standard and complex enterprise benchmarks at a
fraction of the computational cost of the MIP-based JAR method [Chen et al., 2024b]]. While effective,
our greedy approach is sensitive to its initial seed selection; a poor start can lead to a suboptimal final
set.

A crucial direction for future work is to enhance the robustness of the iterative search. The frame-
work’s step-by-step nature lends itself well to incorporating backtracking mechanisms. Exploring
strategies where the algorithm can revisit earlier decisions if subsequent steps yield low utility could
significantly mitigate the risks associated with greedy choices.Furthermore, the framework’s true
potential lies in its extensibility beyond joins, such as incorporating the UNION operator. This
involves modifying the selection utility U (T}, Cy,) to reward schema compatibility and row diversity.
The iterative context Cy, allows for dynamic strategies, like prioritizing joins then exploring unions.
Exploring such adaptive strategies, potentially learning operator priority, is a rich research avenue.

Future work must also investigate the framework’s robustness to the quality of the initial LLM-based
query decomposition and test on more diverse, open-domain datasets with even more complex join
paths. Hybrid models, using a fast greedy search by default but triggering a complex solver for
specific patterns, also warrant investigation. To provide a broader comparative study, we also plan to
evaluate our iterative framework against other recent LLM-Based and schema-routing approaches,
such as MURRE [Zhang et al.| [2025[] and DBCopilot [Wang et al., 2025]]. We advocate for continued
research into practical, scalable, and flexible architectures for multi-table retrieval.
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A Ablation Study on Coefficients

Table 2] details the ablation study on the coefficients for the utility function (Eq. 3) of our iterative
greedy algorithm. We tested isolating each component (A = 1 for one, 0 for others) and removing
each component (A = 1 for two, 0 for one). These results informed our Custom Configuration
(Acoarse = 45 Acov = 2, Ajoin = 1), which consistently performs well. The study confirms that coarse
relevance is the strongest signal, followed by coverage, and then join compatibility.

Table 2: Ablation study on utility function coefficients. All runs use the top-20 candidates from
Contriever, except for FIBEN which uses top-30. Metrics are Recall (R) and Complete Recall (CR)
at K. The bold values indicate the best score for each metric within each benchmark, and underlined
values indicate the second-best.

R@2/CR@2 R@3/CR@3 R@5/CR@5 R@10/CR@10

Benchmark Setting (Acov, Ajoin; Acoarse)
R CR R CR R CR R CR
Only Coverage (1,0.0) 742 503 786 577 788 577 789 58.0
Only Join (0,1,0) 715 418 841 678 861 723 896 79.1
Only Coarse (0,0,1) 813 599 938 856 989  97.6 997 99.3
SPIDER (k=20) No Coarse (1,1,0) 716 492 787 623 823 695 859 75.8
No Join (1,0,1) 8.0 643 948  87.1 99.0  97.8 997 99.3
No Coverage (0,1,1) 748 477 858 710 872 745 90.0 80.2
Custom Config 2,1,4) 855  68.0 956  90.0 980 956 983 96.5
Only Coverage (1,0.0) 625 322 675 399 688 418 69.4 4026
Only Join (0,1,0) 568 264 666 421 794 628 902 81.7
Only Coarse (0,0,1) 635 348 762 562 852 713 95.1 89.9
BIRD (k=20) No Coarse (1,1,0) 66.1 393 757 555 842 712 927 86.7
No Join (1,0,1) 722 475 842 695 91  82.1 962 92.6
No Coverage (0,1,1) 599 317 734 563 834 713 939 89.6
Custom Config 2,1,4) 742 515 847 705 91.0  82.1 962 92.6
Only Coverage (1,0.0) 136 07 162 14 181 14 205 1.4
Only Join (0,1,0) 240 14 33.1 43 530 118 620 13.6
Only Coarse (0,0,1) 22.8 0.7 26.1 1.1 320 1.8 414 54
FIBEN (k=30) No Coarse (1,1,0) 17.4 25 296 72 488 111 626 147
No Join (1,0,1) 237 11 289 25 346 50 449 7.9
No Coverage (0,1,1) 262 18 328 43 516 90 620 13.6
Custom Config 2,1,4) 292 43 368 68 518 108 62.6 14.7
Only Coverage (1,0.0) 244 25 315 42 377 75 428 83
Only Join (0,1,0) 256 25 377 75 444 133 567 25
Only Coarse (0,0,1) 293 17 375 92 485 175 635 30.8
BEAVER-DW (k=20) ¢ Coarse (1,1,0) 256 25 380 117 464 200 61.0 292
No Join (1,0,1) 260 25 374 92 508 200 663 342
No Coverage (0,1,1) 274 25 398 92 484 183 592 267
Custom Config 2,1,4)  29.0 25 417 125 526 242 650 33.3
Only Coverage (1,0.0) 279 00 323 12 364 12 4038 5.8
Only Join (0,1,0) 273 23 338 58 412 81 508 1.6
Only Coarse (0,0,1) 236 12 302 12 385 23 484 9.3
BEAVER-NW (k=20) " ¢ Coarse (1,1,0) 262 23 346 47 456 70 53.7 10.5
No Join (1,0,1) 282 00 364 12 441 23 504 8.1
No Coverage (0,1,1) 267 12 333 58 407 81 502 11.6
Custom Config 2,1,4) 266 12 367 58 496 105 545 12.8

B MIP Solver Status

Table [3| provides a detailed breakdown of the JAR (MIP) solver’s termination status. The experiments
were run on a server equipped with Intel(R) Xeon(R) Gold 6330 CPUs @ 2.00GHz, using an allocated
resource quota of 4 CPU cores (8 threads) and 64 GB of RAM for this task. We used the Python-MIP
library, similar to|Chen et al.| [2024b]], and the statuses correspond to its official numeric codeﬂ The

“https://python-mip.readthedocs.io/en/latest/classes.html
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data shows that while most simple queries (SPIDER K=2, BIRD K=2) were solved to optimality,
timeouts become common as complexity increases. This results in either a suboptimal Feasible
solution (one was found, but not proven optimal) or No Solution (no solution was found within
the 1-hour limit). Timeouts were prevalent on BIRD (K=5), FIBEN (K=10), BEAVER-NW (K=5,
K=10), and most significantly on BEAVER-DW (K=2), which saw a high percentage of timeouts
before any solution could be found.

Table 3: JAR (MIP) solver status breakdown for multi-table queries (3600s timeout/query). Percent-
ages relative to total multi-table queries (SPIDER: 459, BIRD: 1172, FIBEN: 279, BEAVER-NW:
86, BEAVER-DW: 120).

Benchmark K Optimal (%) Feasible (%) No Solution (%) Infeasible (%)
K=2 459 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
SPIDER K=3 459 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=5 459 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=2 1172 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
BIRD K=3 1172 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=5 1144 (97.6%) 24 (2.0%) 4(03%) 0 (0.0%)
K=2 279 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
FIBEN K=3 279 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=5 279 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=10 240 (86.0%) 39 (14.0%) 0 (0.0%) 0 (0.0%)
K=2 86 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
K=3 86 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
BEAVER-NW (5 84 (97.7%) 2 (23%) 0 (0.0%) 0 (0.0%)
K=10  50(58.1%) 28 (32.6%) 8 (9.3%) 0 (0.0%)
BEAVER-DW K=2 32 (26.7%) 4(33%) 84 (70.0%) 0 (0.0%)
BEAVER-DW K=3 45 (37.5%) 28 (233%) 47 (39.2%) 0 (0.0%)

The status codes reported in the table are defined as follows:

Optimal: The MIP solver found and proved the globally optimal solution.

Feasible: The solver found a solution but ran out of time before proving optimality.

* No Solution Found: The solver exhausted its time limit before finding any solution.

Infeasible: The constraints are contradictory; no solution can satisfy all of them.

C Distribution of Multi-Table Queries

The following table details the distribution of multi-table queries within each benchmark, categorized
by the number of tables required to answer the query. These values were calculated based on the list
of tables that were mentioned in the corresponding gold SQL queries. For example, in BIRD, one
query requires 8 tables to be answered, so it is counted under the "8" column.



Table 4: Distribution of multi-table queries based on the number of tables required by the gold SQL
query.

# Tables in Benchmark

Total
Gold Query SPIDER BIRD FIBEN BEAVER-DW BEAVER-NW
2 393 936 77 5 13 1424
3 60 197 26 44 18 345
4 6 34 98 37 24 199
5 0 1 63 23 4 91
6 0 1 5 8 4 18
7 0 2 2 3 4 11
8 0 1 6 0 1 8
9 0 0 0 0 2 2
10 0 0 0 0 7 7
11 0 0 2 0 1 3
12 0 0 0 0 8 8
Total 459 1172 279 120 86 2116

D Case Study: Analysis of CRUSH Re-ranking Failure

To illustrate the performance dip of CRUSH mentioned in Section 4, we analyze a query from the
SPIDER benchmark. This case study highlights how CRUSH’s greedy, segment-coverage-first logic
can prioritize covering diverse segments with irrelevant tables over selecting a set of relevant, coherent
tables.

For the query regarding high schooler friendships, the baseline Contriever successfully retrieves the
two correct tables in the top-2. CRUSH, however, selects one correct table and one incorrect table,
failing the Complete Recall (CR) metric. Table [5|summarizes the results.

Table 5: Retrieval results for the example query. The baseline (Contriever) succeeds, while CRUSH
fails.

Item Tables

Gold Tables network_1.highschooler, network_1.friend

Baseline Top-2 network_1.friend (0.6121), network_1.highschooler (0.5861) [CR@2: True]
CRUSH Top-2  network_1.friend (0.4032), network_2.personfriend (0.3899) [CR@2: False]

The query was decomposed into four segments. The similarity breakdown for the relevant tables
against these segments is shown in Table [§] Note that the baseline’s scores (e.g., 0.5861) are the
maximum similarity from this table, which CRUSH uses as input.

Table 6: Similarity breakdown for candidate tables against query segments. Segments are:
(S1) high_schooler.name, (S2) high_schooler.student_id, (S3) friendship.student_id,
(S4) friendship.friend_id.

Table Name (S1) ...name (S2)...student_id (S3)...student_id (S4)...friend_id
network_1.highschooler 0.5313 0.5861 0.5490 0.5344
network_1.friend 0.5297 0.6121 0.6065 0.5844
network_2.personfriend 0.5291 0.5377 0.5500 0.5597

Analysis of Greedy Selection The failure is a direct result of CRUSH’s greedy, segment-coverage
algorithm, which does not re-evaluate aggregate relevance but selects tables one-by-one to "check
off" segments.



* Iteration 1: Selecting the First Table

The algorithm looks for the single best (table, segment) pair across all candidate tables and
all 4 segments.

— network_1.highschooler’s best score is 0.5861 (on S2).

— network_1.friend’s best score is 0.6121 (on S2).

— network_2.personfriend’s best score is 0.5597 (on S4).
Decision 1: The highest score overall is 0.6121. The table network_1.friend is selected,
and segment S2 (high_schooler.student_id) is marked as "covered".
Iteration 2: Selecting the Second Table
The algorithm now seeks to cover one of the 3 remaining segments (S1, S3, S4). It ignores
segment S2 and any table already selected (network_1.friend). It compares the best
scores from unselected tables on uncovered segments:

— For network_1.highschooler (Gold): Its best remaining score is 0.5490 (on S3).

— For network_2.personfriend (Wrong): Its best remaining score is 0.5597 (on S4).
Decision 2: Because 0.5597 > 0.5490, CRUSH greedily selects the incorrect table
network_2.personfriend to cover segment S4.

Conclusion The baseline’s #2 table, network_1.highschooler, was dropped. Its highest rele-
vance score (0.5861 on S2) was "used up" by the first table selected, which had an even higher score
(0.6121) on that same segment. CRUSH’s logic then forced it to pick network_2.personfriend
because its score on an uncovered segment was marginally higher than network_1.highschooler’s.
This case study exemplifies the risk of a purely coverage-based heuristic, which, as noted in Section
4, can be sensitive to noise and lacks the robust, holistic scoring of our iterative, join-aware approach.

E Absolute Performance Scores

Table [/| presents the absolute retrieval performance scores (Recall and Complete Recall) for all
methods, corresponding to the relative delta values shown in Table [1|in the main paper. For each
benchmark and metric, the highest value is in bold and the second-highest is underlined.

Table 7: Absolute retrieval performance (R/CR %) on multi-table queries. K is the number of tables
retrieved. All re-ranking methods (JAR, CRUSH, Ours) operate on the same top-20 Contriever
candidate set. T indicates prohibitive runtime or timeout. Highest and Second-Highest scores are
marked per column within each benchmark.

Benchmark Method K=2 K=3 K=5 K=10 Time (seconds)
Recall R) CR Recall(R) CR Recall(R) CR Recall(R) CR

SPIDER Contriever 813 599 938 856 989 97.6 99.7 99.3 15
om. of PBS: 20 a1 JAR (MIP) 854 67.1 9.4 913 9.4 987 o +(325/290/ 6360/ 1)
Avg. Table Width: 5.4 JARcrative (Ours) 85.5 68.0 95.6 90.0 98.0 95.6 983 96.5 +~20
Num. of Queries: 459  CRUSH(conricver 637 346 724 475 714 556 718 560 +-38
BIRD Contriever 635 348 762 562 852 713 95.1 89.9 23
Num. of DBs: 11

om0 Tobies: 75 JAR (MIP) 744 517 856 719 904 817 F ot +(8501/13679 /40756 /%)
Avg. Table Width: 10.6  JARieratve (Ours) 742 515 84.7 705 91.0 82.1 96.2 92.6 +~101
Num. of Queries: 1172  CRUSH(conricver 507 220 627 389 728 544 745 571 +~116
FIBEN Contriever 28 07 261 11 320 18 414 54 13
om. OE DB s JAR (MIP) 307 43 383 72 484 100 58.6 140  +(45/55/2206/ 11340)
Avg. Table Width: 2.5 JARjerative (Ours) 292 43 36.8 6.8 51.8 108 62.6 14.7 +~10
Num. of Queries: 279

BEAVER-DW Contriever 293 17 375 92 485 175 635 308 13
Yom. oL DB Lo JAR (MIP) 82 00 42 83 o o + (18659134756 / 1/ 1)
Avg. Table Width: 15.8 JARcrative (Ours) 29.0 25 41.7 125 52.6 242 65.0 333 +~82
Num. of Queries: 120

BEAVER-NW Contriever 236 12 302 12 385 23 484 93 19
Num. of DBs: 65§

Num. of Tables: 366 JAR (MIP) 339 12 396 47 492 00 480 0.0 +(210/572/7297/10449)
Avg. Table Width: 7.4 yAR, .. (Ours) 266 1.2 367 5.8 496 105 545 128 +~30

Num. of Queries: 86
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