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Abstract
This paper develops an approximation to the (ef-
fective) p-resistance and applies it to multi-class
clustering. Spectral methods based on the graph
Laplacian and its generalization to the graph p-
Laplacian have been a backbone of non-euclidean
clustering techniques. The advantage of the p-
Laplacian is that the parameter p induces a con-
trollable bias on cluster structure. The drawback
of p-Laplacian eigenvector based methods is that
the third and higher eigenvectors are difficult to
compute. Thus, instead, we are motivated to
use the p-resistance induced by the p-Laplacian
for clustering. For p-resistance, small p biases
towards clusters with high internal connectivity
while large p biases towards clusters of small “ex-
tent,” that is a preference for smaller shortest-path
distances between vertices in the cluster. How-
ever, the p-resistance is expensive to compute. We
overcome this by developing an approximation
to the p-resistance. We prove upper and lower
bounds on this approximation and observe that it
is exact when the graph is a tree. We also provide
theoretical justification for the use of p-resistance
for clustering. Finally, we provide experiments
comparing our approximated p-resistance cluster-
ing to other p-Laplacian based methods.

1. Introduction
Graphs are widely used data structures representing a pair-
wise relationship (Shi & Malik, 1997). In machine learning,
various graph methods are considered, such as clustering
and semi-supervised learning (von Luxburg, 2007; Zhu et al.,
2003). Common to these methods, graph 2-seminorm, 2-
seminorm induced from the graph Laplacian, is actively
used. Its generalization to the graph p-seminorm is known
to exhibit performance improvement (Bühler & Hein, 2009;
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Slepcev & Thorpe, 2019).

This paper considers multi-class clustering over a graph
using the graph p-seminorm. For this purpose, spectral
clustering is the most popular. In the 2-seminorm based
(i.e., standard) spectral clustering, we use the first k eigen-
vectors of the graph Laplacian for k-class clustering (von
Luxburg, 2007). This use of the first k eigenvectors is
theoretically supported (Lee et al., 2014). Using the p-
seminorm, this graph Laplacian is extended to the graph
p-Laplacian (Bühler & Hein, 2009). Similar to the standard
case, using the first k eigenvectors of this graph p-Laplacian
for k-class clustering is also theoretically supported (Tud-
isco & Hein, 2018). However, there is not yet known an
exact identification for the third or higher eigenpairs of p-
Laplacian (Lindqvist, 2008), and hence in practice, it is
difficult to obtain them. Due to this limitation, the existing
methods using p-Laplacian propose an ad-hoc resolution
of this limitation for multi-class clustering (Bühler & Hein,
2009; Ding et al., 2019; Luo et al., 2010). On the other hand,
this limitation makes the p-Laplacian difficult to use in prac-
tice to leverage the full potential of graph p-seminorm for
multi-class clustering purposes.

Thus, in order to aim to exploit the graph p-seminorm more
for multi-class clustering, we explore an alternative way to
spectral clustering; in this paper, we propose multi-class
clustering via approximated effective p-resistance. The p-
resistance is also induced by the graph p-seminorm. The
use of p-resistance1 for clustering is motivated in the fol-
lowing way. Looking back to the 2-seminorm case, the
2-resistance is considered in the context of the graph analog
to electric circuit (Doyle & Snell, 1984). The 2-resistance
is defined as an inverse of the constrained optimization
problem using the graph 2-seminorm. This 2-resistance
is known to be a metric over a graph (Klein & Randić,
1993). Moreover, 2-resistance is characterized by a semi-
supervised learning problem of the graph 2-seminorm reg-
ularization (Alamgir & Luxburg, 2011). Given these prop-
erties, the 2-resistance is used for the multi-class graph
clustering (Yen et al., 2005; Alev et al., 2017). However,
in the large graph setting, the 2-resistance converges to a
meaningless limit function (Nadler et al., 2009; von Luxburg

1In the following, we abbreviate effective p-resistance as p-
resistance.
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et al., 2010). Using the graph p-seminorm, the 2-resistance
is generalized to the p-resistance (Herbster & Lever, 2009),
which overcomes this problem (Slepcev & Thorpe, 2019).
The 1{pp ´ 1q-th power of the p-resistance is also shown to
be a metric (Herbster, 2010; Kalman & Krauthgamer, 2021).
Furthermore, since different p of p-resistance captures a dif-
ferent characteristic of a graph (Alamgir & Luxburg, 2011),
we expect that the parameter p serves as a tuning parame-
ter for the clustering result. Thus, the natural idea for the
multi-class clustering is to use the 1{pp ´ 1q-th power of
p-resistance.

While the discussion above motivates us to use the 1{pp´1q-
th power of the p-resistance to multi-class clustering, there
remain two issues; i) computational cost of p-resistances
for many pairs ii) lack of theoretical justification for using
p-resistance for clustering other than the metric property.
In this paper, we address these in the following way. For
i), it is computationally expensive to compute p-resistances
for many pairs. The reason is that we need to solve the
constrained optimization problem for many pairs. Looking
back at the 2-resistance, we can compute the 2-resistance
efficiently in the following way. Recall that we can compute
2-resistance as

rG,2pi, jq “ }L`ei ´ L`ej}2G,2, (1)

where rG,ppi, jq is p-resistance for a graph G, i and j are
vertices, L` is a pseudoinverse of the graph Laplacian L for
G, ei is the i-th coordinate vector of Rn, and } ¨ }G,2 is a
2-seminorm induced from the graph Laplacian L. By this
representation, once we compute L`, we can “reuse” L` to
compute 2-resistance for different pairs. This reuse makes
the computation of 2-resistances for many pairs faster than
naively solving the optimization problem for each pair. How-
ever, we do not know such representation for p-resistance.
Thus, to obtain p-resistance for many pairs, we need to solve
many constrained optimization problems. The significant
result of this work is that in Thm. 3.3, we give a theoretical
guarantee for the approximation of p-resistance as

rG,ppi, jq « }L`ei ´ L`ej}
p
G,q, (2)

where q satisfies 1{p ` 1{q “ 1, and } ¨ }G,q is a graph
q-seminorm whose formal definition is given later. We
also show that for a tree, the approximation of Eq. (2) be-
comes exact (Thm. 3.4). By this approximation, we can
compute the approximated p-resistance efficiently, similar
to the p“2 case. For ii), we do not have a theoretical jus-
tification for using p-resistance for clustering other than
the metric property. While the p-resistance has the metric
property, this property itself does not support the cluster-
ing quality. For spectral clustering and 2-resistance, we
have theoretical justifications for clustering. For spectral
clustering, using the first k eigenvectors of the graph p-
Laplacian is theoretically justified (Lee et al., 2014; Tud-

isco & Hein, 2018). The 2-resistance has a theoretical con-
nection to a semi-supervised learning problem of graph
2-seminorm regularization (Alamgir & Luxburg, 2011). For
p-resistance, we show that p-resistance is characterized by
the semi-supervised learning problem of p-seminorm regu-
larization. This resolves the open problem stated in (Alam-
gir & Luxburg, 2011). This gives a theoretical foundation
for using p-resistance for clustering from a view of the semi-
supervised learning problem. Addressing the two issues
above, as a multi-class clustering algorithm, we propose to
apply the k-medoids algorithm to the distance matrix ob-
tained from the approximated p-resistance. With these two
results, our algorithm can be said to be more theoretically
supported than existing multi-class spectral clusterings via
graph p-Laplacian. Our experiment demonstrates that our
algorithm outperforms the existing multi-class clustering
using graph p-Laplacian and 2-resistance-based methods.

Our contributions are as follows: i) We give a guarantee for
the approximated representation of p-resistance using the
q-seminorm. ii) We show that the p-resistance characterizes
the solution of semi-supervised learning of p-seminorm
regularization of a graph. iii) We provide graph p-seminorm-
based multi-class clustering. iv) We numerically show that
our method outperforms the existing and standard methods.
All proofs are in Appendix.

2. Preliminaries
We define a graph G “ pV,Eq, where V is a set of vertices
and E is a set of edges. Throughout this paper, we use
n :“ |V | and m :“ |E|. An edge connects two vertices, and
we do not consider the direction of the edge (undirected). A
graph is connected if there is a path for every pair of vertices.
In the following we assume that the graph is connected. We
associate an ℓ-th edge (ℓ“1, . . . ,m) with a positive value
wℓ, which we refer to as a weight. We define a weight
vector w P Rm, whose ℓ-th element is wℓ. We define a
weight matrix as a diagonal matrix W P Rmˆm whose ℓ-
th diagonal element is wℓ. We define an incidence matrix
C P Rmˆn, where cℓi :“ 1 and cℓj :“ ´1 when ℓ-th
edge connects vertices i to j (i ą j) otherwise 0. We
represent a graph by an adjacency matrix A P Rnˆn; the
ij-th element and ji-th element of A are wℓ if ℓ-th edge
connects vertices i to j (i ą j), i.e., aij “ aji :“ wℓ,
and we define aij “ aji :“ 0 if there is no edge between
vertices i and j. By construction, the adjacency matrix
A is symmetric. A degree di for a vertex i is defined as
di :“

ř

j aij . We define a degree matrix D, a diagonal
matrix whose diagonal elements are Dii :“ di. We define a
matrix called graph Laplacian, as L :“ D ´ A. The graph
Laplacian can also be written as L “ CJWC. For more
details, see (Bapat, 2010). A graph Laplacian induces a
seminorm from a inner product xu,xyL :“ uJLx. We now
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define VpLq, a set of L`ei, a coordinate spanning set of L,
and we compute as

VpLq :“ tvi “ L`ei : i “ 1, . . . , nu,

xu,viyL “ uJLL`ei “ ui,@vi P VpLq, u P HpLq, (3)

where HpLq :“ spanpVpLqq. This is a reproducing kernel
property for a kernel whose gram matrix is L` (Aronszajn,
1950; Shawe-Taylor & Cristianini, 2004). Thus, vi “ L`ei
works as coordinate for the space HpLq. Note that although
we call VpLq as “coordinate”, the vectors in VpLq are not
necessarily orthonormal to each other.

An analog is established between graph and electric cir-
cuit (Doyle & Snell, 1984). In this analog, the energy S2pxq

for a vector over vertices xPRn and effective 2-resistance
rG,2pi, jq between two vertices i, jPV are defined as

SG,2pxq :“
ÿ

i,jPV

aijpxi ´ xjq2 “ xJLx, (4)

rG,2pi, jq :“ pmin
x

tSG,2pxq s.t. xi ´ xj “ 1uq´1 (5)

Using the inner product x¨, ¨yL and its induced seminorm
}¨}L, we can rewrite 2-resistance as

rG,2pi, jq “ }L`ei ´ L`ej}2L “ }vi ´ vj}2L, (6)

where vi,vjPVpLq. From the definition, rG,2pi, iq“0 and
rG,2pi, jq“rG,2pj, iq. These energy and effective resistance
are extended to p-energy SG,p and p-resistance rG,p for
p ą 1 as

SG,ppxq :“
ÿ

i,jPV

aij |xi ´ xj |p, (7)

rG,ppi, jq :“ pmin
x

tSG,ppxq s.t. xi ´ xj “ 1uq´1. (8)

This p-resistance shows the triangle inequality (Herbster,
2010), that is for a, b, c P V

r
1{pp´1q

G,p pa, bq ≤ r
1{pp´1q

G,p pa, cq ` r
1{pp´1q

G,p pc, bq. (9)

With r
1{pp´1q

G,p , the graph G is a metric space. Particu-
larly, when p“2, 2-resistance defines a metric between
vi,vjPVpLq. More properties on p-energy and p-resistance,
see (Alamgir & Luxburg, 2011; Herbster & Lever, 2009).

Lastly, we review several notions from linear algebra. We
refer to (Horn & Johnson, 2012) for the details. First, we
recall the weighted p-norm. Given positive weights r P Rn1

where ri ą 0, for a vector x P Rn1 we define the weighted
p-norm }x}r,p, and its inner product xx,yyr as

}x}r,p :“

˜

n1
ÿ

i“1

ri|xi|
p

¸1{p

, xx,yyr :“
n1
ÿ

i“1

rixiyi. (10)

For this weighted p-norm and inner product, we have
Hölder’s inequality as follows;

Lemma 2.1 (Hölder’s inequality). For p, q ą 1 such that
1{p ` 1{q “ 1, xx,yyr ≤ }x}r,p}y}r,q.

For a matrix MPRn1ˆn2 , we define an image of M
as ImpMq:“ty|y“Mx,xPRn2uĎRn1 , that is a space
spanned by the matrix M . Note that MM`y is an or-
thogonal projection of y onto ImpMq, where M` is a pseu-
doinverse of M . We introduce a matrix operator p-norm
~M~p for a matrix M as

~M~p :“ sup
xPRn

}Mx}p{}x}p. (11)

3. Graph p-Seminorm and Approximating
p-Resistance

This section defines a graph p-seminorm, which is a founda-
tion of our discussion. We then discuss several properties of
the graph p-seminorm. Using these properties, we provide
the approximation of p-resistance.

3.1. Graph p-Seminorm

In this section, we define a graph p-seminorm and discuss
its characteristics. For a vector over vertices x P Rn, we
define a graph p-seminorm over a graph using a weighted
p-norm for a graph weight vector w P Rm. We define a
graph p-seminorm }x}G,p for x P Rn as

}x}G,p :“ }Cx}w,p

“

˜

ÿ

iPE

wi|pCxqi|
p

¸1{p

“

˜

ÿ

i,jPV

aij |xi ´ xj |p

¸1{p

.

(12)

From the definition of p-energy Eq. (7), SG,ppxq “ }x}
p
G,p.

Also, we immediately know that this norm is induced by the
inner product xCx, Cyyw from the definition of the graph
p-seminorm. We now see that this graph seminorm can also
be induced from the inner product xx,yyL, because

xCx, Cyyw “ xJCJWCy “ xJLy “ xx,yyL. (13)

From this observation, we see that }x}G,2 “ }x}L. Also,
we can restrict graph p-seminorm to a norm if we consider
x P ImpLq. Note that this graph p-seminorm is same as
the graph p-seminorm defined in (Herbster & Lever, 2009).
For this graph p-seminorm, using Lemma 2.1, the Hölder’s
inequality holds;

xx,yyL ≤ }x}G,p}y}G,q, 1{p ` 1{q “ 1. (14)

When p “ 2 Hölder’s inequality plays a fundamental role
to show the representation of 2-resistance by Eq. (6) in the
following way. Using the equality condition of the Hölder’s
inequality Eq. (14) for p “ 2, we have a lemma.
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Lemma 3.1 (Classical, e.g., Herbster & Pontil (2006)). For
y P Rn, }y}

´2
G,2 “ minxt}x}2G,2 s.t. xx,yyL “ 1u.

This lemma is a classical result rewritten with our nota-
tion of graph p-seminorm. By substituting y:“L`ei ´

L`ej , the right hand side of Lemma 3.1 becomes the in-
verse of 2-resistance (see Appendix C). Thus, we obtain
rG,2pi, jq“}L`ei ´ L`ej}2L“}L`ei ´ L`ej}2G,2. For p-
resistance, the question is how is the coordinate spanning
set VpL`q related to the p-resistance? Can we derive such
relation using Hölder’s inequality Eq. (14), similarly to the
p“2 case? Next section will show such connection between
p-resistance and the coordinate spanning set using Eq. (14).

3.2. Approximating p-Resistance via Coordinate
Spanning Set

This section discusses approximation of p-resistance via the
coordinate spanning set VpL`q. Looking at the p“2 case,
we see that L`eiPVpL`q can be regarded as coordinate,
and rG,2pi, jq“}L`ei ´ L`ej}2G,2. This expression aids
us to compute all the pairs of 2-resistance much faster than
naively obtaining 2-resistance. For p-resistance, a natural
question to ask is that does there exist some norm } ¨ }; such
that rG,ppi, jq “ }L`ei ´ L`ej};? If not, how can we
approximate as rG,ppi, jq « }L`ei ´ L`ej};? If we can
write p-resistance by such expression, we expect to obtain
all the pairs of approximated p-resistance much faster than
naively computing all the pairs of p-resistance. This section
addresses this problem.

As we see in Sec. 3.1, Lemma 3.1 is a key to show that
rG,2pi, jq “ }L`ei ´ L`ej}2G,2. In the following, we now
extend Lemma 3.1 from the case of p “ 2 to the general p.

Proposition 3.2. For a graph G and p, q ą 1 such that
1{p ` 1{q “ 1, we have

}y}
´p
G,q ≤ min

x
t}x}

p
G,p s.t. xy,xyL “ 1u ≤ }z}

p
G,p (15)

where

z :“ C`
fq{ppCyq

}y}
q
G,q

, pfθpxqqi :“ sgnpxiq|xi|
θ. (16)

When fq{ppCyq P ImpCq, we have

}y}
´p
G,q “ min

x
t}x}

p
G,p s.t. xy,xyL “ 1u “ }z}

p
G,p (17)

We first note that the minimization problem of Eq. (15) is the
inverse of p-resistance Eq. (7). The left hand side of inequal-
ity Eq. (15) immediately follows from Hölder’s inequality
(Eq. (14)) with xy,xyL “ 1. We now turn our attention to
the right hand side. Recall that when p “ 2 we always have
fq{ppCxq P ImpCq and }y}

´1
G,2 “ }z}G,2, which matches

Lemma 3.1. In the general p case, fq{ppCxq R ImpCq and

}y}
´1
G,q‰}z}G,p. Thus, neither }y}

´p
G,q nor }z}

p
G,p gives the

solution to the minimization problem. However, this the-
orem tells us that we can upper bound the solution to the
minimization problem by }z}

p
G,p.

Applying Prop. 3.2, we obtain the bound for p-resistance as
follows;

Theorem 3.3. For a graph G and p, q ą 1 such that 1{p `

1{q “ 1, the p-resistance can be bounded as

1

αp
G,p

}L`ei ´ L`ej}
p
G,q ≤ rG,ppi, jq ≤ }L`ei ´ L`ej}

p
G,q,

where αG,p :“ ~W 1{pCC`W´1{p~p,

Theorem 3.4. For a tree G and p, q ą 1 such that 1{p `

1{q “ 1, the p-resistance can be written as

rG,ppi, jq “ }L`ei ´ L`ej}
p
G,q (18)

Thm. 3.3 and Thm. 3.4 show the relationship between p-
resistance and }L`ei ´ L`ej}

p
G,q. For general graphs, we

do not obtain the exact representation of p-resistance. How-
ever, Thm. 3.3 guarantees the quality of approximation as

rG,ppi, jq « }L`ei ´ L`ej}
p
G,q “ }vi ´ vj}

p
G,q, (19)

where vi,vjPVpLq. By this approximation, we obtain the
similar representation of p-resistance to the p “ 2 case
Eq. (6). The term αG,p is a p-norm of the orthogonal pro-
jector to ImpW 1{pCq. Note that we always have αG,p≥1.
For a tree graph, Thm. 3.4 shows that }L`ei ´ L`ej}

p
G,q

becomes the exact representation of p-resistance.

The next question is what is αG,p. We bound αG,p as fol-
lows;

Proposition 3.5. For a general graph G and p ą 1, we
have αG,p ≤ m|1{2´1{p|.

This proposition gives the guarantee for the approximation
in Thm. 3.3. Although Prop. 3.5 gives the quality guarantee,
we expect this upper bound to be loose, i.e., we expect that
the actual approximation value is closer to the exact value
than this bound. The reason why we expect in this way is
that to prove the bound we only use the general technique
that holds for any matrix and we do not use any graph
structural information. In the real dataset, we observe that
the approximation of p-resistance and αG,p is far better than
this guarantee, see Appendix I.3. We give more discussion
on this αG,p in Appendix J.

Finally, we discuss computational times of the p-resistance.
To compute Eq. (19), it takes Opmq, given L`. Also, in
general it takes Opn3q to compute L`. Note that we can
reuse L` to compute p-resistance for different pairs. We
now consider to obtain the p-resistance by naively solving
the optimization problem. We can rewrite the constrained
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problem Eq. (8) as unconstrained problem, which is solvable
by gradient descent. In each step of the gradient descent,
we compute ∇x}x}

p
G,p, which takes almost same time as

Eq. (19). Moreover, we cannot reuse the result of a single
pair to compute for other pairs, while we can reuse L`.
Thus, to compute p-resistance for a single pair, our approx-
imation is expected to be faster than naively solving the
optimization problem. Moreover, if we compute for many
pairs, our approximation is much faster by reusing L`.

4. Clustering via p-Resistance
This section considers using the p-resistance for the cluster-
ing algorithm. Firstly, we propose a clustering algorithm
using the approximated p-resistance. We next characterize
our clustering algorithm from the semi-supervised prob-
lem point of view. From this characterization, we can see
that our clustering algorithm inherits properties from semi-
supervised learning.

4.1. Proposed Clustering Algorithm via p-Resistance

This section proposes an algorithm using p-resistance.
The triangle inequality Eq. (9) gives a metric property
to r

1{pp´1q

G,p pi, jq. We call this 1{pp ´ 1q-th power of p-
resistance as p-resistance metric. This metric property moti-
vates us to use p-resistance for clustering algorithms.

Furthermore, the parameter p serves as a tuning parameter of
the clustering result. The general p of p-resistance captures
the graph structure somewhere between the cut and shortest
path. Using this characteristic, we expect varying p tunes
the clustering result somewhere suitable between cut-based
and path-based. When p is small, the clustering result biases
towards clusters with high internal connectivity, like a min-
cut. When p is large, the clustering result focus more on
path-based topology, that is a preference for smaller shortest-
path distances between vertices in the cluster. We illustrate
this with examples of the two-class clustering in Fig. 1.
In these examples, we conduct clustering with k-center
algorithm using p-resistance. The left example is intuitively
“symmetric”; for this kind, p Ñ 8, which looks at the path-
based topology, gives more natural result. The more natural
clustering of the right example is “cut”; for this kind, p Ñ 1,
where we focus on the graph cut, gives the more natural
result. More details are in Appendix G.

While the discussion above motivates us to use the p-
resistance metric for clustering, computing the p-resistance
metric for all pairs is costly. Thus, we approximate this
metric by Thm. 3.3, and we obtain

r
1{p´1
G,p pi, jq « }L`ei ´ L`ej}

p{pp´1q

G,q

“ }L`ei ´ L`ej}
q
G,q “ }vi ´ vj}

q
G,q, (20)

where vi,vj P VpLq. We then apply k-medoids to the

Algorithm 1 Clustering Algorithm via p-Resistance
Require: Graph G “ pV,Eq and p

1: Compute pseudoinverse of the graph Laplacian L`.
2: Compute all the pairs of the p-resistance metrics

r
1{pp´1q

G,p using Eq. (20) and obtain a distance matrix.
3: Apply k-medoids to the distance matrix.

Ensure: The clustering result.

distance matrix obtained by Eq. (20). The overall proposed
algorithm is summarized in Alg. 1

We discuss the choice of k-medoids over the other distance
based method, such as k-means (Bishop & Nasrabadi, 2006)
and k-center (Gonzalez, 1985). Although the main em-
phasis of our algorithm does not comes from the choice
of k-median but from the approximation of p-resistance
metric, k-median has some advantages. Since p-resistance
metric cannot define a distance between other than the data
points defined as VpL`q, we cannot define distance for the
some “mean”, which is outside of the data points. Therefore,
the mean-based method such as k-means is not appropri-
ate for this setting. Instead, k-medoids is similar to the
k-means (Kaufman & Rousseeuw, 1990) but more appro-
priate since k-medoids assigns the centers to the actual data
points. The other potential choice is k-center algorithm. The
k-center algorithm also assigns the center to the actual data
point, and is known to be faster than k-medoids. Also, k-
center algorithm is approximated by the fast greedy farthest
first algorithm (Gonzalez, 1985; Herbster, 2010). However,
the k-medoids is more robust to the outliers than k-center.
Thus, we propose to use k-medoids. The overall computa-
tional time for Alg. 1 is dominated by the computation of
the all the pairs of the approximated p-resistance, Opmn2q.
If we use the farthest first algorithm instead of k-medoids
the algorithm is dominated either by the computation of L`,
Opn3q, or farthest first Opkmnq. Thus, farthest first is faster
since in general m " n but less robust than k-medoids.

4.2. Connection between Semi-supervised Learning and
p-Resistance

This section explores connection from the p-resistance to
the semi-supervised learning (SSL) via graph p-seminorm.
As we saw in Sec. 2, Herbster (2010) shows the metric
property of p-resistance. While the metric property itself
can motivates us to use p-resistance for our clustering, we
do not know how much p-resistance shows connectivity of
a graph. This section shows that p-resistance can be seen
from as an SSL perspective. This connection assures us to
use p-resistance for the clustering problem. In the following
we explain the connection by taking the following steps;
i) SSL problem in the clustering context ii) the connection
between the SSL and p-resistance.
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p → 1

p → ∞

Figure 1: The illustrative examples where p changes the clustering results. These examples conduct clustering with k-center
algorithm using p-resistance as a metric. The red and green colors show the clustering result. Also, the vertices with borders
show the obtained centers. The dotted boxes exhibit natural clustering results. These examples show varying p tunes the
clustering result; the left example gives a more natural clustering result when p Ñ 8 whereas for right p Ñ 1 gives more
natural result. Details are in Sec. 4.1 and Appendix G.

We first consider an SSL problem for two known labels as

min
x

tSG,ppxq s.t. xi ´ xj “ 1u

“ min
x

tSG,ppxq s.t. xi “ 1, xj “ 0u. (21)

The equality holds since SG,ppxq“SG,ppx`c1q, @cPR. We
first note that Eq. (21) is an inverse of the p-resistance and
we use the optimal value of this problem to p-resistance.
This learning problem for p “ 2 case has been considered
in many literature, such as (Zhu et al., 2003), and extended
to the p-seminorm setting (Herbster & Lever, 2009; Alamgir
& Luxburg, 2011; Slepcev & Thorpe, 2019).

We now put Eq. (21) into clustering context; the solution of
Eq. (21) tells us the graph structural information on cluster-
ing. We recognize that Eq. (21) is two fixed-label problem.
Let x˚ij be a solution of the problem Eq. (21). It is straight-
forward to interpret Eq. (21) if i and j is in different binary
classes; we see which clusters the third point ℓ belongs to,
the cluster which i or j is in. More specifically, by com-
paring x

˚ij

ℓ ´ x
˚ij

j and x
˚ij

i ´ x
˚ij

ℓ we know which cluster
the third point ℓ belongs to. If we take the a pair of vertices
pi, jq arbitrarily, the assumption that “i and j in different
binary classes” is not always appropriate. In this case, rather
than assuming i and j in different binary classes, it is more
natural to interpret in the following way; the two-pole binary
SSL problem tells us that which of i and j the third point
ℓ is close to in a graph. From this observation, if we look
at x˚ij for all pairs, we know “graph structural information”
from the SSL point of view.

We next show the connection between p-resistance and the
solution of Eq. (21), x˚ij .
Theorem 4.1. Let x˚ij be the solution of the problem
Eq. (21), and ℓ P V be the third unlabeled point. Then
we have

x
˚ij

ℓ ´ x
˚ij

j ≥ x
˚ij

i ´ x
˚ij

ℓ ðñ rG,ppj, ℓq ≥ rG,ppℓ, iq.

First note that Alamgir & Luxburg (2011) proved Thm. 4.1
only for the p “ 2 case in a different context than clustering

(See Appendix H.2), and posed the case of general p as an
open problem. We resolve this open problem.

Thm. 4.1 means that the p-resistance has a good property
inherited from the SSL problem Eq. (21) in a following
sense. Thm. 4.1 tells us that the “graph structural infor-
mation”, which can be obtained by comparing x

˚ij

ℓ ´ x
˚ij

i

and x
˚ij

j ´ x
˚ij

ℓ , is equivalent to comparing p-resistances
rG,ppi, ℓq and rG,ppℓ, jq. Henceforth, Thm. 4.1 further trans-
lates the intuition about x˚ij into p-resistance.

Thus, combining the two observations above, looking at
the distance matrix computed from p-resistances can be
interpreted as follows. Each distance shows how close the
pair is in terms of two-pole binary SSL problem. Doing
clustering with this distance matrix assigns a cluster by
looking at all the graph structural information of two-pole
binary SSL problems, which tells us that “which the third
point ℓ is close to, i or j?”

From the observations above, we see that Thm. 4.1 moti-
vates us to use p-resistance metrics for multi-class problem.
Without Thm. 4.1, our algorithm is somewhat naive; even
though p-resistance has a metric property, we do not know
how much p-resistance contains the structural information.

5. Related Work
This section reviews the related work to the clustering via
graph p-seminorm. Since our work uses graph p-seminorm
for the clustering purpose, spectral clustering using graph
p-Laplacian is relevant. The graph p-Laplacian is induced
from graph p-seminorm and used for the clustering pur-
pose (Bühler & Hein, 2009). Tudisco & Hein (2018) showed
a theoretical guarantee for the use of the first k variational
eigenvectors (i.e., eigenvectors obtained by variational prin-
ciple) of p-Laplacian for k-class clustering. While we know
the exact identification for the second eigenvectors of p-
Laplacian, we do not know how to obtain the third or higher
eigenvectors (Lindqvist, 2008). Thus, it is practically diffi-
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cult to use spectra of p-Laplacian for multi-class clustering.
To bypass this limitation, Bühler & Hein (2009) applied
two-class clustering method to multi-class by recursively
bisectioning a subgraph into two subgraphs. However, even
in the p“2 case, recursive bisectioning produces suboptimal
results (Simon & Teng, 1997). The earlier works (Luo et al.,
2010; Ding et al., 2019; Pasadakis et al., 2022) used approx-
imated orthogonality between eigenvectors of p-Laplacian
for multi-class clustering. However, we do not have theoret-
ical supports that this approximated k eigenvectors are the
approximation of the first k variational eigenvectors. Thus,
we need to say that these methods rely on the “ad-hoc by-
passes” and do not fully exploit the graph p-seminorm. For
more details, see Appendix A.

Another relevant approach is resistance-based clustering.
In (Yen et al., 2005), k-medoids algorithm is applied to the
square of 2-resistance. For clustering purpose, similar dis-
tances to the 2-resistance is proposed (Fouss et al., 2007;
Nguyen & Mamitsuka, 2016; Yen et al., 2008) The most rel-
evant approach in this category is the k-center algorithm for
the “distance” matrix obtained from the exact p-resistance
in (Herbster, 2010). Herbster (2010) did not numerically
verify the algorithm. Our work uses p-resistance metric
instead of p-resistance since without the 1{pp´ 1q-th power
operation p-resistance does not satisfy the metric property
(Eq. (9)). However, if we use k-center algorithm to the exact
p-resistance metric, we obtain the same result as (Herbster,
2010). The reason is that the k-center algorithm only mat-
ters the order of the distance, and the 1{pp ´ 1q-th power
operation does not change the order of the p-resistance. On
the other hand, we emphasize that the most significant differ-
ence between our work and (Herbster, 2010) is that while we
use the approximated p-resistance (Herbster, 2010) uses ex-
act p-resistance. We also mention that the work (Nguyen &
Mamitsuka, 2016) proposed a distance from the p-seminorm
flow point of view. However, this distance does not have
characterization from the learning problem (Thm. 4.1).

Also, the graph p-seminorm is actively used in semi-
supervised learning (SSL). The SSL problem using graph
p-seminorm is relevant to p-resistance since the p-resistance
can be seen as SSL for two known labels. Earlier, the
SSL using graph 2-seminorm is considered (Zhou et al.,
2003; Zhu et al., 2003; Calder et al., 2020). The SSL via
graph 2-seminorm and effective resistance is known to be
“ill-posed” when the size of the unlabeled data points is
asymptotically large (Nadler et al., 2009). To overcome this
problem, graph p-seminorm based SSL and p-resistance are
considered (Alamgir & Luxburg, 2011; Bridle & Zhu, 2013;
El Alaoui et al., 2016; Slepcev & Thorpe, 2019), where
the p-resistance is shown to be meaningful when p is large.
Finally, the graph p-seminorm is widely used in the machine
learning community, such as online learning (Herbster &
Lever, 2009) and the local graph clustering task, where we

find a cluster which the given vertices belong to (Veldt et al.,
2019; Fountoulakis et al., 2020; Liu & Gleich, 2020).

6. Preliminary Experiments
This section numerically demonstrates the performance of
our Alg. 1 using approximated p-resistance. The purpose
of this preliminary experiments is to evaluate if our al-
gorithm on two-class and multi-class clustering problem
improves the existing p-seminorm based graph clustering
algorithm. Thus, we compared with existing resistance
based algorithms and spectral clustering algorithms using
graph p-seminorm and its p“2 setting. For the resistance
based method, we compared with the farthest first algo-
rithm on our approximated p-resistance. Additionally, we
compared with existing methods; the farthest first using ex-
act p-resistance (Herbster, 2010), a p-seminorm flow based
method (Nguyen & Mamitsuka, 2016), and 2-resistance
based method (Yen et al., 2005). We especially note that
for the farthest first (Herbster, 2010), we computed the
exact p-resistance by the gradient descent as discussed in
Sec. 3.2. We also apply this exact p-resistance to k-medoids.
Note that k-medoids is more costly than k-center as dis-
cussed in Sec. 4.1. For spectral clustering methods, we
compared with a recursively bisection method (Bühler &
Hein, 2009) and a method using the approximated orthog-
onality (Luo et al., 2010). Since the p-resistance is related
to the unnormalized graph Laplacian, we use unnormal-
ized graph Laplacian for the spectral methods. Our ex-
periments were performed on classification datasets, iono-
sphere, iris and wine from UCI repository. We also used
Hopkins155 dataset (Tron & Vidal, 2007), which contains
120 two-class motion segmentation datasets and 35 three-
class ones. We created a graph with the following pro-
cedure. First, we built a k-NN graph, where we choose
k“µn (0ăµ≤1). Then, we computed the edge weight
with a Gaussian kernel (κpxi,xjq“expp´σ}xi ´ xj}2q)
for two real-valued vectors xi,xj . We used free pa-
rameters µPt0.04, 0.06, 0.08, 0.1, 1u, σPt10´3, . . . , 102u

and pPt1.1, 1.4, . . . , 2.9, 5, 10, 100, 1000u. For compar-
isons, we followed the original parameters other than
above µ, σ, and p. We evaluated the performance by er-
ror rate, similarly to the previous study (Bühler & Hein,
2009). Since the Hopkins155 dataset contains multiple
two-class and three-class tasks, we take an average of er-
ror rates among a set of two-class tasks and three-class
tasks and report both. The implementation of our method
is available at https://github.com/ShotaSAITO/
approximated-presistance.

The results are summarized as follows. We see that ours out-
performs the others except for iris. As we expected, seeing
the deviation, k-medoids offers more robust performance
than the farthest-first algorithms. Moreover, our approxi-
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Table 1: Experimental Results. The “type” shows the type of methods; (ER) for effective resistance based methods and
(SC) for spectral clustering methods. The “Hop” stands for Hopkins 155 dataset. In method of ER, “(a)” shows that the
method uses the approximation by (Eq. (20)) and “(ex)” computes the exact p-resistance by gradient descent. Also, “k-med”
is k-medoids, and “FF” is the farthest first. Thus, the method “k-med (a) p” is our proposed algorithm, and “FF (ex) p”
and “FF p “ 2” is a method proposed by (Herbster, 2010). The “p-Flow” is (Nguyen & Mamitsuka, 2016), “ECT” is (Yen
et al., 2005), “Rec-bi p” is (Bühler & Hein, 2009), and “p-orth” is (Luo et al., 2010). Since “Rec-bi p” is a deterministic
method, we only report error. Also, since Hop contains multiple datasets, we only show the average. Due to the significant
computational time, we were unable to finish some of the experiments, which are shown as “–”.

2 clsss multi-class
Type Method ionosphere Hop 2 cls iris wine Hop 3 cls

ER k-med (a) p 0.196 ˘ 0.000 0.056 0.078 ˘ 0.013 0.287 ˘ 0.000 0.144
ER k-med (ex) p – – 0.075 ˘ 0.000 0.427 ˘ 0.000 –
ER k-med p “ 2 0.305 ˘ 0.000 0.236 0.331 ˘ 0.000 0.534 ˘ 0.000 0.306
ER FF (a) p 0.330 ˘ 0.023 0.109 0.108 ˘ 0.045 0.339 ˘ 0.054 0.313
ER FF (ex) p (Herbster, 2010) 0.344 ˘ 0.020 – 0.109 ˘ 0.019 0.524 ˘ 0.046 –
ER FF p “ 2 (Herbster, 2010) 0.355 ˘ 0.035 0.274 0.320 ˘ 0.000 0.530 ˘ 0.000 0.357
ER p-Flow (Nguyen & Mamitsuka, 2016) 0.291 ˘ 0.000 0.231 0.247 ˘ 0.000 0.543 ˘ 0.043 0.243
ER ECT (Yen et al., 2005) 0.376 ˘ 0.000 0.155 0.247 ˘ 0.000 0.534 ˘ 0.000 0.310
SC Rec-bi p (Bühler & Hein, 2009) 0.225 0.200 0.089 0.354 0.237
SC SC p-orth (Luo et al., 2010) 0.215 ˘ 0.123 0.237 0.087 ˘ 0.089 0.327 ˘ 0.116 0.221
SC SC p “ 2 0.308 ˘ 0.000 0.216 0.093 ˘ 0.000 0.438 ˘ 0.000 0.251
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Figure 2: Plots of the error verse p.

Table 2: Computational time for approximated vs exact p-
resistance. (a) denotes approximation and (e) denotes exact.
In “r” we reuse L`. In “et” we compute L` each time. All
time is in second.

ionosphere iris wine

(a) + r 0.08 ˘ 0.04 0.07 ˘ 0.03 0.01 ˘ 0.00
(a) + et 0.39 ˘ 0.00 0.32 ˘ 0.00 0.05 ˘ 0.00
(e) 1.11 ˘ 0.00 1.03 ˘ 0.04 0.36 ˘ 0.00

mation provides faster computation than the exact method
since we could not finish some of the experiments using the
exact p-resistance even for the farthest first. Seeing Fig. 2,
in k-medoids large p offers better performance. Also, if we
look at p “ 2, the k-medoids with 2-resistance is not always
better than spectral clustering. However, for general p the
k-medoids with p-resistance performs better. Thus, the k-
medoids with p-resistance can be said to be more benefited

by p than spectral clustering. These correspond to the exist-
ing theoretical indication; p-resistance with large p becomes
meaningful function while 2-resistance is not (Alamgir &
Luxburg, 2011). Comparing exact and approximation p-
resistance in Fig. 2, while we observe similar performance
in the middle range of p, we observe the better performance
for approximation at the very small p or very large ps. This
might come from the numerical computation of the gradient
∇x}x}

p
G,p as follows. For the exact solution of the very

small p, the gradient of each step tends to be very small.
For the very large p, there is a risk of amplifying round-off
numerical error at each step of optimization by taking the
power of large p. On the other hand, the approximation of-
fers a robust computation, especially for important large ps,
because instead we compute by taking the power of small q
in Eq. (20), by which we can avoid the risk discussed.

We next compare times to compute the exact and approx-
imated p-resistance for randomly chosen 100 pairs of ver-
tices. We made a graph for ionosphere, iris, and wine by
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choosing the best-performing parameters in Table. 1. We
measure time for exact p-resistance by naively optimizing
Eq. (7) by the gradient descent. For approximation, since
we can reuse L` for our approximation, we report the time
in two ways; i) we compute L` each time and compute the
approximation ii) we reuse L`. The “each time” scenario
reports the computational time of p-resistance for a single
pair. In the reuse scenario, we measure time t to compute
L` and p-resistance 100 pairs using L`. Then, we report
the time t{100. By this, the reuse scenario is much faster
than the each time scenario. Table 2 summarizes the comput-
ing time. We observe that the approximation method for a
single pair is faster than the exact method by comparing the
“each time” and exact. As expected, the reuse scenario pro-
vides much faster computation than the exact p-resistance
For more details and results, including the computing time
of Table 1 and the comparison between values of the exact
and approximated p-resistance, see Appendix I.

7. Conclusion
We have proposed the multi-class clustering algorithm using
the approximated p-resistance. For this purpose, we have
shown the guarantee for the approximation of p-resistance.
We also have shown that p-resistance characterizes the solu-
tion of the semi-supervised learning problem. Our algorithm
has outperformed the existing clustering methods using the
graph p-seminorm.

The limitation of this work is that we cannot exploit the
sparse structures of graphs. It is because we use L`, which
becomes dense even if the graph is sparse. For future work,
there remains an ample opportunity to further speed up
the procedures involving pseudoinverse of graph Laplacian,
such as sparsification techniques (Spielman & Srivastava,
2008; 2011; Spielman & Teng, 2014) or numerical linear-
algebraic methods (Saad, 2003). Another direction to con-
sider is connection from p-resistance to p-Laplacian and
nonlinear modularity such as (Tudisco et al., 2018). How-
ever, unfortunately, the current state of knowledge in the
field offers very limited theoretical understanding, even
for the standard case; we do not know the connections
between 2-resistance and the standard existing clustering
methods using the standard modularity and also the stan-
dard Laplacian. Nevertheless, this potential connection
highlights interesting open challenges. Additionally, since
we can compute 2-resistance by the simple size n norm
}pL`q1{2ei ´ pL`q1{2ej}, it is interesting to see if we can
further approximate }L`ei ´ L`ej}G,p by the size n norm
instead of the size m graph p-seminorm. This further speeds
up the approximation from Opmq to Opnq. Moreover, in-
stead of our approximated representation of p-resistance
approach, the exciting approach is to obtain exact repre-
sentation of p-resistance. We leave some discussion on the

difficulty of this approach in Appendix. K. Furthermore,
the experiments using network datasets would be a nice to
confirm. Finally, it would be also interesting if we apply
this p-resistance framework to the recently growing space of
hypergraph clustering using hypergraph p-Laplacians (Hein
et al., 2013; Saito et al., 2018; Li & Milenkovic, 2018; Saito
& Herbster, 2023).
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A. On Limitation to Multi-class Spectral Clustering using Graph p-Laplacian
In Sec. 1 and Sec. 5, we claim that it is difficult to obtain the third or higher eigenpairs of graph p-Laplacian. This claim is a
key motivation on why we take an alternate approach to the graph p-Laplacian. Thus, for completeness, this section briefly
reviews graph p-Laplacian, and its difficulties to apply for multi-class clustering.

A.1. Eigenpairs of p-Laplacian

To start, following (Bühler & Hein, 2009) we introduce the graph p-Laplacian and its eigenpairs. The graph p-Laplacian ∆p

is defined as

p∆pxqi :“
ÿ

i,jPV

aij |xi ´ xj |p´1sgnpxi ´ xjq. (22)

By this construction, we have SG,ppxq “ xx,∆pxy. The k-th eigenpair (λk,xk) of the p-Laplacian ∆p satisfies

p∆pxkqi “ λk|pxkqi|
p´1sgnppxkqiq,@i P V. (23)

Note that the first eigenpair is p0,1q. The eigenpairs are characterized by the critical values of the Rayleigh quotient.

Proposition A.1 (Tudisco & Hein (2018)). The eigenpairs of graph p-Laplacian is a critical value and point of the Rayleigh
quotient defined as

RG,ppxq :“
SG,ppxq

}x}
p
p

. (24)

From this proposition, we can know that RG,ppaxq “ RG,ppxq, for a P R. Therefore, to consider the eigenpairs of the
graph p-Laplacian, we can limit our interest to Sp :“ tx | }x}pp “ 1u, seeing the Rayleigh quotient in Eq. (24).

In the sequel, we briefly explain why we can obtain the second eigenpair and why it is difficult to obtain the third or higher
eigenpairs of the graph p-Laplacian. We now define the following quotient,

R
p2q

G,ppxq :“
SG,ppxq

minη }x ´ η1}
p
p
. (25)

This quotient gives the second eigenpair of p-Laplacian.

Proposition A.2 (Bühler & Hein (2009)). The global solution to Eq. (25) is given by x˚ “ x2 ` η˚1, where η˚ “

argminη }x2 ´ η1}pp, and x2 is the second p-eigenvector.

This proposition shows that we have an exact identification for the second p-eigenpair; minimizing Eq. (25) gives the
second p-eigenpair of ∆p. However, we have not known yet the exact identification for third or higher eigenpair of
p-Laplacian (Lindqvist, 2008).

While we do not know the identification such as Eq. (25) for the higher order eigenpairs, the next question is if there
is characterization of eigenpairs of the graph p-Laplacian, such as “orthognality” for the p “ 2 case. When p “ 2, the
eigenvectors of the graph Laplacian are further characterized from Prop. A.1; the eigenvectors of graph Laplacian are
orthogonal to each other. By using orthogonality and Rayleigh-Ritz theorem, we can obtain the full eigenvectors of the
graph 2-Laplacian as

Proposition A.3 (Classical, e.g.,von Luxburg (2007)). Let x1, . . .xk´1 be eigenvectors of the graph Laplacian L. Then the
k-th eigenvector xk is given as

xk “ argmax
x

RG,2pxq s.t. xkKx1, . . . ,xk´1. (26)

This proposition is the simplest form of the Courant’s min-max theorem, and also called as variational principle. By this
proposition and the sequence Eq. (26), we can easily obtain the higher order eigenvectors. This orthogonality constraint
of eigenvectors comes from the nature of L2 space induced from the graph 2-seminorm. However, we lose this sense of
orthogonality if we expand to p-seminorm, since we lose the inner product structure in the Lp space.
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In this context, the following further generalizes the “orthogonality” to graph p-Laplacian. To characterize the eigenpairs of
graph p-Laplacian, we use Krasnoselskii genus γ for a set B;

γpBq “

$

&

%

0 if B “ H

inftk P Z` | Dodd continuous h : B Ñ Rkzt0uu

8 when no such h exists @j P Z`

(27)

This genus is a generalized concept of dimension of B. Using this genus, we can characterize the eigenpairs;

Proposition A.4 (Tudisco & Hein (2018)). Consider the set of subsets FkpSpq :“ tB Ă Sp | B “ ´B, closed , γpBq ≥
ku. The sequence defined as

λk “ min
BĂFkpSpq

max
xPB

Rppxq (28)

gives a critical point of Rppxq, whose corresponding x and λk constitute an eigenpair of ∆p.

This proposition is the generalized Courant’s min-max theorem Prop. A.3; when p “ 2, this proposition corresponds to
Prop. A.3. This proposition is also called as variational principle. The eigenvectors obtained by the sequence Eq. (28) is
called as variational eigenvectors.

In this proposition, the space FkpSpq serves as a generalized orthogonal k-dimensional space. Moreover, the sequence
Eq. (28) may serve as a method to obtain eigenpairs in the sequential way. However, we have two issues for the practical use
of this sequence. First problem is that due to the abstract characterization of Krasnoselskii genus, we do not know how
we can numerically apply this genus to obtain the higher eigenvectors. When p “ 2, this abstract characterization can be
translated into the concrete and “numerically computable” characterization, “orthogonality”. However, in the current form
of Krasnoselskii genus given as Eq. (27), at this point we do not know how to numerically obtain this genus. Secondly,
similarly to the continuous p-Laplacian theory (Lindqvist, 2008), we do not know in which condition this sequence yields
exhaustive eigenpairs. For the tree (and the disconnected forest) case the sequence Eq. (28) exhausts all the spectra (Deidda
et al., 2022; Zhang, 2021). On the other hand, for the complete graph case, it is shown that there are other eigenpairs than
ones yielded by the sequence Eq. (28) (Amghibech, 2003). Despite these extensive studies, we are yet to understand in
which conditions this sequence exhausts all the spectra of p-Laplacian. Thus, for a general graph we do not know if the
variational eigenvalues are the same eigenvalues as the Rayleigh quotient would do in Prop. A.1.

To conclude the discussion above, while we know the identification for the second eigenpair of the graph p-Laplacian
(Eq. (25)), we have three open problems related to the multi-class spectral clustering as follows;

1. We do not know the identification of the third or higher eigenpairs.

2. We do not know if the sequence Eq. (28) exhausts the spectra of the graph p-Laplacian for a general graph.

3. We do not know how to numerically obtain Krasnoselskii genus.

A.2. Cheeger Inequalities for graph p-Laplacian

This section discusses Cheeger inequalities for the graph p-Laplacian. The Cheeger inequality theoretically supports the use
of the variational eigenvectors of p-Laplacian from the Cheeger cut point of view.

We start our discussion from a 2-way Cheeger cut. Let U Ă V be a set and U be a complement of U . A Cheeger cut may be
defined as

CpUq :“
CutpU,Uq

minp|U |, |U |q
, CutpU,Uq :“

ÿ

i,jPV

aij (29)

We call the optimal cut h2 :“ minUĂV CpUq as Cheeger constant. By recursively using this Cheeger cut, we define the
multi-class Cheeger cut, which we call k-way Cheeger constant as

hk :“ min
tViui“1,¨¨¨ ,k

max
jPt1,...,ku

CpVjq. (30)
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This k-way Cheeger constant can be seen as the smallest k-way Cheeger cut. To obtain the k-way Cheeger cut is known to
be NP hard. However, relaxing into the real-value would ease this problem; this Cheeger cut can be approximated by the
variational eigenvalues of the graph p-Laplacian by Cheeger inequality.

Before we discuss the Cheeger inequality, we need a setup of the nodal domain. A nodal domain is a maximally connected
subgraph A of a graph G such that for x P Rn where A is either ti | xi ą 0u or ti | xi ă 0u. With this idea, a nodal
domain can be seen as a “partition” of the graph by the sign function. The number of the nodal domains of the variational
eigenvectors is bounded, see (Tudisco & Hein, 2018).

This nodal domain is used in the Cheeger inequality for the variational eigenvectors of graph p-Laplacian as follows.

Proposition A.5 ((Tudisco & Hein, 2018)). Let pλk,xkq be a k-th eigenpair of ∆p, obtained by the sequence Eq. (28). Let
also ωk be a number of nodal domains of xk. Then,

ˆ

max
i

di
2

˙´pp´1q ˆ

hωk

p

˙p

≤ λk ≤ 2p´1hk

This proposition theoretically supports the use of the higher variational eigenvectors of the graph p-Laplacian for multi-way
Cheeger Cut, since the eigenvalues can serve as an approximation of the k-way Cheeger constant.

For two-class spectral clustering, we are ready to use the second eigenvector of the graph p-Laplacian because we have
theoretical supports (Prop. A.5) and we can numerically obtain by Prop. A.2. On the other hand, for multi-class spectral
clustering, while we still have a theoretical supports (Prop. A.5), at this point we do not have a numerical way to obtain the
higher eigenpairs due to open problems.

A.3. Existing Work for Multi-class Spectral Clustering Using Graph p-Laplacian

So far, we discuss limitations for spectral clustering using the graph p-Laplacian. This section discusses how the existing
works “bypass” this limitation. In a rough sense, there are two ways to materialize the multi-class clustering using graph
p-Laplacian; i) recursively bisectioning and ii) the use of the approximated orthogonality.

For i), the work (Bühler & Hein, 2009) proposed a multi-class clustering, which recursively bisections a graph by using
Prop. A.2. Thus, the work (Bühler & Hein, 2009) partitions a subgraph when we partition further than two, which does not
exploit the full structure of a graph. In fact, this way is known to lead to the suboptimal cut even when p “ 2 (Simon &
Teng, 1997).

The methods in line with ii), such as (Ding et al., 2019; Luo et al., 2010; Pasadakis et al., 2022), assume that the k
eigenvectors of the graph p-Laplacian are close to ones of the graph 2-Laplacian, since the Rayleigh quotients RG,p and
RG,2 are similar. Using this assumption, these methods use optimization methods for the Rayleigh quotients RG,p with
the initial conditions as the first k-eigenvectors of the graph 2-Laplacian. By these initial conditions, we expect that
the obtained k-eigenvectors are “close” to the first k-eigenvectors of the graph 2-Laplacian, and thus we expect that the
obtained k-eigenvectors are the first k-eigenvectors from the Rayleigh quotient RG,p. These methods exploit approximated
orthogonality proven in (Luo et al., 2010) of eigenvectors of graph p-Laplacian in order to achieve better algorithms.
However, this assumption might be too strong, especially for the very large p or very small p, i.e., p close to 1. Moreover,
even if this assumption may be reasonable, we do not know if the first k eigenvectors from Rayleigh quotient are the same
set of vectors with the first k-eigenvectors obtained by the sequence Eq. (28) as we discussed in Sec. A.1. Now, recall that
the Cheeger inequality guarantees the quality of the cut for the latter, the eigenvectors obtained by Eq. (28). Thus, at this
point, we do not know if this assumption is suitable for multi-class clustering.

As a side, we remark that we have a different way to define graph p-energy and corresponding graph p-seminorm in many
literature (Bougleux et al., 2007; 2009; Calder, 2018; Elmoataz et al., 2008; Singaraju et al., 2009; Zhou & Schölkopf, 2006).
In this line, the p-energy is defined in “vertex-wise” way, which is written as

SVW
G,p pxq “

¨

˝

ÿ

iPV

˜

ÿ

iPV

aij |xi ´ xj |2

¸1{2
˛

‚

p

, (31)

This definition sums the vertex-wise energy. For more details of the difference, see (Saito et al., 2018). For the corresponding
p-Laplacian, we do not have an exact identification of higher eigenpairs either. Moreover, for the corresponding seminorm,
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we have not theoretical characteristics yet, such as Cheeger inequality. Thus, for this graph p-Laplacian, we have less
understanding than the graph p-Laplacian induced from the p-energy we used in the main text.

To conclude, there are three important open problems for the graph p-Laplacian. As we see in this section, these open
problems are a key if we want to apply the graph p-Laplacian to multi-class clustering. Hence, without solving these open
problems, we cannot say that it is theoretically guaranteed to use the graph p-Laplacian for multi-class clustering. However,
these problems remain open not only in the graph domain, but also in the continuous domain, which has a longer history and
wider research communities. Thus, in this study, for the purpose of multi-class clustering, we take an alternative approach to
spectral clustering using the graph p-Laplacian. For more on the continuous p-Laplacian, see (Lindqvist, 2008), and on the
theory of the graph p-Laplacian, refer to (Tudisco & Hein, 2018).

B. Additional Preliminary Definitions
First, we make an additional note for an intuition behind the analog between graph and electric circuit. In this analog, a
vertex is a point at a circuit, and an edge is a resistor with resistance 1{aij . A flow over a graph mapped to a current, and
a distribution over V as x is seen as a potential at each vertex point. For the equations Eq. (4), the energy is defined as a
sum of the inverse of resistance times square of the difference of the potential. The effective resistance between i and j is
computed as follows; we inverse the energy that is minimized with the constraint that the difference of potential between i
and j is unit. Given an electrical network the effective resistance between two vertices is the voltage difference needed to
induce a unit “current” flow between the vertices i.e., it is resistance measured across the vertices.

Next, on top of the image for a matrix M P Rn1ˆn2 , ImpMq, we also define a kernel2 of M , which is a subclass of Rn, as

KerpMq :“ tx|Mx “ 0,x P Rnu. (32)

From the elementary result in the linear algebra area, we note that

ImpMqK “ KerpMJq, (33)

where ImpMqK is an orthogonal space to ImpMq.

The matrix norm is submultiplicative, i.e., ~M1M2~p≤~M1~p~M2~p whenever a product of matrices M1M2 can be
defined. A matrix norm is shown to be bounded as follows;

Lemma B.1 (Higham (1992)). For a square matrix MPRn1ˆn1 , }M}p≤n
|1{2´1{p|

1 }M}2.

Lemma B.2 (Higham (1992)). For a matrix M P Rn1ˆn2 , }M}p≤maxp}M}1, }M}8q.

We elaborate more on Lemma B.2. For a symmetric matrix, since we have

~M~1 “ ~M~8 “ max
j

ÿ

i

|mij |. (34)

From the Lemma B.2 and Eq.(34), for a symmetric matrix M , we have

~M~p ≤ ~M~1 “ ~M~8. (35)

By this we can bound ~M~p by 1 or infinity norm of the matrix M .

An operator weighted matrix norm is defined for any matrix M P Rn1ˆn2 and weights r as

~M~r,p :“ sup
xPRn2

}Mx}r,p

}x}r,p
. (36)

Recall that

}x}r,p “ }R1{px}p, (37)

where R is a diagonal matrix whose diagonal element is a weight of the norm.

2This kernel is a linear algebraic kernel, not a kernel function which often appears in the machine learning context.
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From this definition, we can rewrite ~M~r,p as

~M~r,p “ sup
xPRn2

}Mx}r,p

}x}r,p

“ sup
xPRn2

}R1{pMx}p

}R1{px}p
(38)

“ sup
x1:“R1{px,xPRn2

}R1{pMR´1{px1}p

}x1}p
(39)

“ sup
x1PRn2

}R1{pMR´1{px1}p

}x1}p
(40)

“ sup
xPRn2

}R1{pMR´1{px}p

}x}p
(41)

“ ~R1{pMR´1{p~p, (42)

C. Details of Lemma 3.1
This section provides detailed explanation on Lemma 3.1. We first note that the trick in this transformation is as same as
done in (Herbster & Pontil, 2006; Klein & Randić, 1993). The elaboration here follows these earlier works.

Using the reproducing property Eq. (3) as done in (Herbster & Pontil, 2006; Klein & Randić, 1993), the constraints of
2-resistance (and also for p-resistance Eq. (7)) can be rewritten as

1 “ xi ´ xj “ xx, L`ei ´ L`ejyL. (43)

Now, since L1 “ 0, there exists c P R such that x ´ c1 P HpLq. We now define as x1 :“ x ´ c1. We then compute

xx1, L`eiyL “ x1JLL`ei (44)

“ x1Jei (45)
“ x1

i. (46)

The second line follows since we have LL`x1 “ x1 for x1 P HpLq. Note that this computation is same as the reproducing
kernel property characteristics Eq. (3). Also, the definition of x1 immediately leads to

Lx1 “ Lpx ´ c1q “ Lx ´ cL1 “ Lx, (47)

and thus for u P Rn we have

xx1,uyL “ x1JLu (48)

“ xJLu (49)
“ xx,uyL (50)

From these discussions, we obtain

1 “ xi ´ xj (51)
“ pxi ´ cq ´ pxj ´ cq (52)
“ x1

i ´ x1
j (53)

“ xx1, L`eiyL ´ xx1, L`ejyL (54)

“ xx, L`eiyL ´ xx, L`ejyL (55)

“ xx, L`ei ´ L`ejyL. (56)

The third line follows from the definition of x1. The fourth line follows from Eq. (46) and the fifth line follows from Eq. (50).
Thus, we obtain Eq. (43)
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D. Proof for Proposition 3.2
For the proof we divide the proof into lower bound, upper bound and equal condition.

D.1. Lower Bound

In the following we give a proof for this Proposition. From Hölder’s inequality, we have

xx,yyL ≤ }x}G,p}y}G,q (57)

Assuming xx,yyL “ 1, we have

1 ≤ }x}G,p}y}G,q, (58)

and hence

}y}
´p
G,q ≤ }x}

p
G,p, (59)

which proves the lower bound.

D.2. Upper Bound

This section proves the upper bound of Prop. 3.2.

Recall the variable of the minimization problem in Eq. (15) is x. If we prove that when x “ z, this z satisfies the condition
in the minimization problem xz,yyL “ 1, from the minimization problem nature we can prove the upper bound. For this
strategy, we use the following lemma.

Lemma D.1. For α P Rn and β P Rm, we have

xCα,βyw “ xCα,β1yw (60)

where

β :“ β1 ` β2, β1 :“ CC`β,β2 :“ pI ´ CC`qβ (61)

For readability, we move the proof of Lemma D.1 to Sec. D.4.2.

By using Lemma D.1, we now prove the upper bound.

Note that

fq{ppCyq

}Cy}
q
w,q

“ CC`
fq{ppCyq

}Cy}
q
w,q

` pI ´ CC`q
fq{ppCyq

}Cy}
q
w,q

. (62)

Recall that we define as

z :“ C`
fq{ppCyq

}y}
q
G,q

“ C`
fq{ppCyq

}Cy}
q
w,q

, pfθpxqqi :“ sgnpxiq|xi|
θ. (63)

By using this relation and Lemma D.1, we have

xz,yyL “ xCz, Cyyw (64)
“ xCy, Czyw (65)

“ xCy, CC`
fq{ppCyq

}Cy}
q
w,q

yw (66)

“ xCy,
fq{ppCyq

}Cy}
q
w,q

yw (67)

“ 1. (68)
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From Eq. (66) to Eq. (67) we apply Lemma D.1. The last equality comes from the same nature of Eq. (81) in Prop. D.3,
which we will discuss in Sec. D.4.1.

From the discussion above, z satisfies the condition of the minimization problem of Eq. (15). Therefore, we obtain

min
x

t}x}
p
G,p s.t. xy,xyL “ 1u ≤ }z}

p
G,p (69)

D.3. Proof for the Equal Condition

Finally, we turn into the equality condition. We obtain the following lemma.

Lemma D.2. For any p, q such that 1{p ` 1{q “ 1, we have

min
x

t}x}
p
G,ps.t. xx,yyL “ 1u “ }z}

p
G,q “ }y}

´p
G,q, (70)

where

z :“ C`
fq{ppCyq

}y}
q
G,q

“ C`
fq{ppCyq

}Cy}
q
w,q

, (71)

when fq{ppCyq P ImpCq

The proof of Lemma D.2 is given in Sec. D.4.3

D.4. Proof for Lemma D.1 and Lemma D.2

This section provides proofs for Lemma D.1 and Lemma D.2. These lemmas are critical components for the proof for
Prop. 3.2. In order to enhance the readability, we gather proofs for these claims in this section. We first give auxiliary
lemmas, that hold for the general setting. Then, using these auxiliary lemmas, we provide the proofs for Lemma D.1 and
Lemma D.2.

D.4.1. AUXILIARY LEMMAS

This section provides auxiliary lemmas. We start with the following claim.

Proposition D.3. For any p, q ą 1 such that 1{p ` 1{q “ 1, we have

min
x

t}x}pr,p s.t. xy,xyr “ 1u “ }y}´p
r,q (72)

Proof. Using the Hölder’s inequality, we get

}y}r,q}x}r,p ≥ xx,yyr (73)

Assuming xx,yyr “ 1, we can rearrange as

}x}r,p ≥ }y}´1
r,q . (74)

Now we consider when the minimum of the right hand side of Eq. (74). The minimum with the assumption xy,xyr “ 1 is
achieved when x “ ζ such that

ζ :“
fq{ppyq

}y}
q
r,q

, pfθpyqqi :“ sgnpyiq|yi|
θ (75)

which means

ζi “
sgnpyiq|yi|

q{p

}y}
q
r,q

. (76)
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For this ζ, we compute

xy, ζyr “

n
ÿ

i“1

riyiζi (77)

“

n
ÿ

i“1

riyi
sgnpyiq|yi|

q{p

}y}
q
r,q

(78)

“

řn
i“1 ri|yi|

q{p`1

}y}
q
r,q

(79)

“

řn
i“1 ri|yi|

q

}y}
q
r,q

(80)

“
}y}qr,q

}y}
q
r,q

“ 1. (81)

The transition from Eq. (79) to Eq. (80) comes from q{p ` 1 “ q. Also, we have

}ζ}r,p “

›

›

›

›

fq{ppyq

}y}
q
r,q

›

›

›

›

r,p

(82)

“

˜

n
ÿ

i“1

ri

ˇ

ˇ

ˇ

ˇ

sgnpyiq|yi|
q{p

}y}
q
r,q

ˇ

ˇ

ˇ

ˇ

p
¸1{p

(83)

“
1

}y}
q
r,q

˜

n
ÿ

i“1

ri

ˇ

ˇ

ˇ
sgnpyiq|yi|

q{p
ˇ

ˇ

ˇ

p
¸1{p

(84)

“
1

}y}
q
r,q

˜

n
ÿ

i“1

ri |yi|
q

¸1{p

(85)

“
1

}y}
q
r,q

}y}q{p
r,q (86)

“ }y}q{p´q
r,q “ }y}´1

r,q . (87)

By substituting x “ ζ in Eq. (74), the assumption xy,xyr “ 1 is satisfied and the equality holds. Thus, we obtain

}x}r,p ≥ }y}´1
r,q ðñ }x}pr,p ≥ }y}´p

r,q , (88)

where the equality holds when x “ ζ.

We bring another lemma about spaces spanned by matrices.

Lemma D.4 ((Ben-Israel & Greville, 2003) Ex.9, §1.3, p.43 & §2.6, p.71). For a matrix M P Rn1ˆn2 , we define a
generalized inverse of matrix M denoted by M : P Rn2ˆn1 , satisfying that

MM :M “ M. (89)

Then,

ImpMq “ ImpMM :q. (90)

Also,

S “ ty : y “ pI ´ MM :qx,x P Rn1u Ď ImpMqK. (91)

Note that the generalized inverse M : is not unique. However, the pseudoinverse M` is unique, and also be one of
generalized inverses M :. From this lemma, we can write as

ImpMq “ ta : a “ MM :b,b P Rn1u, ImpMqK Ě ta : y “ pI ´ MM :qb,b P Rn1u. (92)
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D.4.2. PROOF FOR LEMMA D.1

This section provides a proof for Lemma D.1.

For the illustrative purpose, we start with the w “ 1 case. If w “ 1, then

xCα,βyw “ xCα,β1 ` β2yw (93)
“ xCα,β1yw ` xCα,β2yw (94)
“ xCα,β1yw. (95)

The last equality follows for the following reason. By composition, Cα P ImpCq. Also, from Lemma D.4, β2 P ImpCqK.
Hence, Cα and β2 are orthogonal to each other and we get xCα,β2yw “ 0.

We now turn into the case where w is arbitrary. Things are less trivial when we introduce the weight. Thus, we further
analyze the weighted inner product.

Since the matrix W is a full rank diagonal matrix, we obtain

W 1{2CpC`W´1{2qW 1{2C “ W 1{2CC`C “ W 1{2C, (96)

and thus C`W´1{2 is a generalized inverse of W 1{2C, i.e.,

pW 1{2Cq: “ C`W´1{2. (97)

Also, since W is a full rank diagonal matrix,

tb : b “ W´1{2a,a P Rmu “ tb1 : b1 P Rmu “ Rm. (98)

Using these relations and Lemma D.4, we get

ImpW 1{2Cq “ tb : b “ W 1{2CpW 1{2Cq:a,a P Rmu (99)

“ tb : b “ W 1{2CC`W´1{2a,a P Rmu (100)

“ tb : b “ W 1{2CC`a1,a1 P Rmu, (101)

where we use Eq. (97) for Eq. (100) and we use Eq. (98) for Eq. (101). Moreover, we have

ImpW 1{2CqK Ě tb : b “ pI ´ W 1{2CpW 1{2Cq:qa,a P Rmu (102)

“ tb : b “ pI ´ W 1{2CC`W´1{2qa,a P Rmu (103)

“ tb : b “ W 1{2pI ´ CC`qW´1{2a,a P Rmu (104)

“ tb : b “ W 1{2pI ´ CC`qa1,a1 P Rmu, (105)

where we use Eq. (97) for Eq. (103) and we use Eq. (98) for Eq. (105). Therefore,

xCα,βyw “ xW 1{2Cα,W 1{2βy (106)

“ xW 1{2Cα,W 1{2β1y ` xW 1{2Cα,W 1{2β2y (107)

“ xW 1{2Cα,W 1{2CC`βy ` xW 1{2Cα,W 1{2pI ´ CC`qβy (108)

“ xW 1{2Cα,W 1{2CC`βy. (109)

“ xW 1{2Cα,W 1{2β1y. (110)
“ xCα,β1yw (111)

The line Eq. (109) follows because from Eq. (105) the W 1{2pI ´CC`qβ P ImpW 1{2CqK and therefore W 1{2pI ´CC`qβ
is orthogonal to W 1{2Cα, which induces xW 1{2Cα,W 1{2pI ´ CC`qβy “ 0.

Eq. (111) concludes the proof.
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D.4.3. PROOF FOR LEMMA D.2

This section proves Lemma D.2.

If fq{ppCyq P ImpCq, then

Cz “ CC`
fq{ppCyq

}y}
q
G,q

(112)

“
fq{ppCyq

}y}
q
G,q

(113)

“
fq{ppCyq

}Cy}
q
w,q

(114)

From Eq. (112) to Eq. (113), we use the following relation; for a vector aPImpCq we have a “ CC`a since CC` is an
orthogonal projection onto the space ImpCq. Eq. (114) is a form of Eq. (75), and thus from Prop. D.3, Eq. (114) satisfies the
equality condition of the Hölder’s inequality as

}Cz}pw,p “ }Cy}´p
w,q ðñ }z}

p
G,p “ }y}

´p
G,q, (115)

where we use the definition of the graph p-seminorm. Thus, we obtain the claim.

E. Proofs for Theorem 3.4 and Theorem 3.3
In this section we prove Thm. 3.4 and Thm. 3.3. The general strategy is applying Prop. 3.2. We first prove the general case
of Thm. 3.3.

E.1. Proof for Theorem 3.3

By definition,

rG,ppi, jq “
1

minx }x}
p
G,p s.t. xi ´ xj “ 1

. (116)

First, we rewrite the condition of the minimization problem. Using Eq. (43), we observe that the denominator of Eq.(8) can
be written as

min
x

t}x}
p
G,p s.t. xi ´ xj “ 1u “ min

x
t}x}

p
G,p s.t. xL`ei ´ L`ej ,xyL “ 1u (117)

From this rewrite, we see that Eq. (117) is exactly same as the minimization problem of Prop. 3.2 if we substitute
y :“ L`pei ´ ejq. Thus, we apply Prop. 3.2 to this problem in order to obtain lower and upper bounds of Eq. (117).

Lower Bound of Eq. (117). Now, we come to the lower bound of this problem Eq. (117). By applying the lower bound of
Prop. 3.2 with substituting y :“ L`pei ´ ejq, we obtain

}L`pei ´ ejq}
´p
G,q ≤ min

x
t}x}

p
G,p s.t. xL`pei ´ ejq,xyL “ 1u. (118)

This conclude the lower bound.

Upper Bound of Eq. (117). Next, we turn to the upper bound of this problem Eq. (117).
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We first compute

}z}G,p “ }Cz}w,p “

›

›

›

›

CC`fq{ppCyq

}Cy}
q
w,q

›

›

›

›

w,p

(119)

“

›

›CC`fq{ppCyq
›

›

w,p

}Cy}
q
w,q

(120)

≤ ~CC`~w,p

}fq{ppCyq}w,p

}Cy}
q
w,q

(121)

“ ~CC`~w,p}Cy}´1
w,q (122)

“ ~W 1{pCC`W´1{p~p}Cy}´1
w,q (123)

“ ~W 1{pCC`W´1{p~p}y}
´1
G,q (124)

“ αG,p}y}
´1
G,q, (125)

where we recall that we defined as αG,p :“ ~W 1{pCC`W´1{p~p. The transformation from Eq. (120) to Eq. (121) follows
from the submultiplicative characteristics of the matrix norm discussed in Sec. 2. The equality from Eq. (121) to Eq. (122)
holds due to the same discussion as Eq. (87) in Prop. D.3, which we discussed in Sec. D.4.1. The transformation from
Eq. (122) to Eq. (123) follows from a characteristics of the weighted matrix norm discussed in Eq. (40). Hence, by taking
the p-th power of the inequality Eq. (125) and observing that we substitute y :“ L`pei ´ ejq, we obtain

}z}
p
G,p ≤αp

G,p}L`pei ´ ejq}
´p
G,q (126)

Thus, from Prop. 3.2 and the inequality Eq. (125) we get

min
x

t}x}
p
G,p s.t. xL`pei ´ ejq,xyL “ 1u ≤ }z}

p
G,p ≤ αp

G,p}L`pei ´ ejq}
´p
G,q. (127)

Combining Lower and Upper Bounds of Eq. (117). We now combine the lower bound Eq. (118) and the upper bound
Eq. (127). By combining these two and using Eq. (117), we get

}L`ei ´ L`ej}
´p
G,q ≤ min

x
t}x}

p
G,p s.t. xL`pei ´ ejq,xyL “ 1u ≤ αp

G,p}L`ei ´ L`ej}
´p
G,q

ðñ }L`ei ´ L`ej}
´p
G,q ≤ min

x
t}x}

p
G,p s.t. xi ´ xj “ 1u ≤ αp

G,p}L`ei ´ L`ej}
´p
G,q (128)

For the p-effective resistance, taking the inverse we obtain

1

αp
G,p

}L`ei ´ L`ej}
p
G,q ≤ rG,ppi, jq ≤ }L`ei ´ L`ej}

p
G,q. (129)

E.2. Proof for Theorem 3.4

For the incidence matrix of tree, rankpCq “ n´1 (Bapat, 2010). Hence ImpCq “ Rn´1. Thus, fq{ppCyq P Rn´1 “ ImpCq.
Using the Lemma D.2 and substituting y “ L`ei ´ L`ej ,

min
x

t}x}
p
G,ps.t. xx, L`ei ´ L`ejyL “ 1u “ }L`ei ´ L`ej}

´p
G,q. (130)

Recall that the minimization problem of Eq. (130) is the inverse of the p-resistance. Therefore, Eq. (130) leads to the claim.

F. Proof for Proposition. 3.5
We recall that by definition of pseudoinverse, we have

~CC`~2 “ 1, (131)
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since the eigenvalues of CC` is either 0 or 1. Also, for any matrix M and any invertible matrix P , PMP´1 and M share
the same eigenvalues. By construction, W is also an invertible matrix. Thus, using Lemma B.1, we obtain

αG,p “ ~W 1{pCC`W´1{p~p (132)

≤ m|1{2´1{p|~W 1{pCC`W´1{p~2 (133)

“ m|1{2´1{p|. (134)

G. Illustrative Examples of Clustering via p-resistance Fig. 1
This section explains illustrative examples of clustering via p-resistance where p plays a role.

G.1. Preliminaries for Illustrative Examples

Before we discuss the details of the clustering, we setup preliminaries. We now setup the notions on the graph metrics. First,
a st-mincut is defined as the minimum cut between the vertices s and t, i.e.,

min
V 1

Cutps, tq :“ min
V 1

ÿ

iPV 1,jPV 1zV |sPV 1,tPV 1zV

aij . (135)

The act of the “cut” of the edges is defined to divide into two graphs so that the vertex s belongs to one and the vertex t
belongs to the other. The minimum cut is that we want such a cut so that the sum of the weight of the edges to be cut is
minimized.

Now, we also define the shortest path between vertices s and t is defined as

min
i

ÿ

ℓPE

wℓiℓ s.t. i “ piℓqℓPE unit flow from i to j, (136)

where i P t0, 1um. The shortest path problem is to finding the path with smallest sum of the weights of edges between s and
t.

In the following, we show that p-resistance is connection with st-mincut and the shortest path. We recall the theorem
in (Alamgir & Luxburg, 2011) as

Proposition G.1 (Alamgir & Luxburg (2011)). Consider a p-flow problem as

FG,ppi, jq :“ min
i

ÿ

ℓPE

w1´p
ℓ ipℓ s.t. i “ piℓqℓPE unit flow from i to j, (137)

where i P R`m is a current at edges. Then, for 1{p ` 1{q “ 1, we have

r
1{pp´1q

G,p pi, jq “ FG,qpi, jq. (138)

We first remark that i in q-flow problem is non-negative real value whereas i for the shortest path is either 0 or 1. We remark
that when p Ñ 8, q goes to 1 and q-flow problem is a simple shortest path flow problem.

This proposition means that the 1{pp ´ 1q-th power of p-resistance is equivalent to the q-flow. From this proposition, we
now see the connection between p-resistance, and st-mincut and shortest path as follows.

• When p Ñ 1, p-resistance between s and t is 1/st-mincut.

• When p Ñ 8, 1{pp ´ 1q-th power of the p-resistance is the discrete shortest path of the unweighted graph.

Thus, we intuitively characterize the p-resistance as

• When p is small, p-resistance more focus on a minimum cut.

• When p is large, p-resistance more focus on the “path”, and also more focus on the “unweighted topology”.
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Figure 3: The notations of illustrative example graphs. In the graph G2 the vertex 5 is in both G21 and G22.

1 2 3 4 5 6

G3

p → 1

p → ∞

Figure 4: The illustrative example of a weighted graph and its notations. The weights of edge drawn in the line are 1,
whereas weight of the dotted line is ϵ ! 1. The other drawing rule follows Fig. 1. In the example, we observe that we focus
on the difference of the weight when p Ñ 1, while we ignore the weight when p Ñ 8. For this example, “more natural
result” depends on the perspective. If we look at the cut, the more natural result is obtained when p Ñ 1. If we look at the
path-based topology, we obtain the natural result when p Ñ 8. Details in Appendix G.

We next formulate the clustering problem as follows. We use the k-center algorithm using p-resistance as a metric as

C˚
G,p :“ min

v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q, (139)

where tv˚
1 , v

˚
2 u is a minimizer. Since when p Ñ 1 and r

1{pp´1q

G,p ą 0, then r
1{pp´1q

G,p Ñ 8 and therefore Eq. (139) cannot be
used. In this case, we note that the following relation that is

x ă y ðñ x1{pp´1q ă y1{pp´1q (140)

we have

C˚p´1
G,p :“ min

v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

rG,ppv, v˚
i q. (141)

Thus, we simply use the comparison of rG,p instead of rp1{pp´1qq

G,p when p Ñ 1. We finally remark that Herbster (2010)
showed that when p Ñ 1 the triangle inequality still holds, i.e.,

rG,pÑ1pi, jq ≤ rG,pÑ1pi, ℓq ` rG,pÑ1pℓ, jq. (142)

G.2. Illustrative Examples of Clustering via p-Resistance

Now, we discuss the examples in Fig. 1. We give notations as in Fig. 3. We denote by pVij , Eijq the vertices and edges of
the graph Gij . We also give the example where the weight matters and its notation in Fig. 4.
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G.2.1. THE CASE OF G1

For the case of p Ñ 1, since p-resistance is the 1 over min-cut, we have for j ą i

rG,ppi, jq “

$

&

%

1 i “ 1 and j P V zt1u

1{5 i, j P V12 or i, j P V13

1{4 i P t5, 6u, j P t7, 8u

(143)

Note that rG,ppi, jq “ rG,ppj, iq. By using this p-resistance, the set satisfying Eq. (141) is v˚
1 “ 1 and v˚

2 P V12 Y V13. This
is because if we do not take v˚

1 “ 1,

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

rG,ppv, v˚
i q “ 1, (144)

which is the maximum of the weight of edges of G.

For p Ñ 8, since p-resistance is a shortest path, we have for j ą i

r
1{pp´1q

G,p pi, jq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 i “ 1, j “ 2
2 i “ 1, j P t3, 4, 5, 6u

3 i “ 1, j P t7, 8u

4 i “ 1, j P t9, 10, 11u

1 i, j P V12 or i, j P V13

2 i P V12, j P V13.

(145)

Then if we set v˚
1 “ 2 and v˚

2 P V13, we have

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q “ 1. (146)

Since this is the minimum of the weight of the edge, it is clear that this set is optimal.

Coloring the vertices in the same color if the vertices are closer to the same center than the others, we obtain Fig. 1.

G.2.2. THE CASE OF G2

For the case of p Ñ 1, we have for j ą i

rG,ppi, jq “

$

&

%

1{5 i, j P V21

1{2 i P V21, j P V22

1{2 i, j P V22.
(147)

Then if we set v˚
1 P V21 and v˚

2 P V22, we have

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q “ 1{2. (148)

Since miniPV22, rG,ppi, jq “ 1{2, this is the best possible minimum.

For the case of p Ñ 8, we have for j ą i

rG,ppi, jq1{pp´1q “

$

’

’

’

’

&

’

’

’

’

%

1 i, j P V21

2 i P V21zt5u, j P t6, 10u

3 i P V21zt5u, j P t7, 9u

4 i P V21zt5u, j “ 8
mintj ´ i, 6 ´ pj ´ iqu i, j P V22

(149)

Then if we set v˚
1 “ 5 and v˚

2 “ 8, we have

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q “ 1. (150)

Since the minimum of p-resistance is 1, this is the best possible minimum.

Coloring the vertices in the same color if the vertices are closer to the same center than the others, we obtain Fig. 1.
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G.2.3. THE CASE OF G3

For the case of p Ñ 1, we have for j ą i

rG,ppi, jq “

$

&

%

1 i, j P t1, . . . , 4u

1 i, j P t5, 6u

1{ϵ i P t1, . . . , 4u, j P t5, 6u.
(151)

Then if we set v˚
1 P t1, . . . , 4u and v˚

2 P t5, 6u, we have

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q “ 1. (152)

Since the minimum of p-resistance is 1, this is the best possible minimum.

For the case of p Ñ 8, we have for j ą i

r
1{pp´1q

G,p pi, jq “ j ´ i if j ą i (153)

Then if we set v˚
1 “ 2 and v˚

2 “ 5, we have

min
v˚
1 ,v˚

2 PV
max
vPV

min
iPt1,2u

r
1{pp´1q

G,p pv, v˚
i q “ 1. (154)

Since the minimum of p-resistance is 1, this is the best possible minimum.

Coloring the vertices in the same color if the vertices are closer to the same center than the others, we obtain Fig. 1.

H. On Theorem 4.1
This section discusses Thm. 4.1, including proof and some existing claim on Thm. 4.1.

H.1. Proof for Theorem 4.1

We use the following characteristics of p-Laplacian, defined as Eq. (22).

Proposition H.1 ((Bühler & Hein, 2009)).

SG,ppxq “ xx,∆pxyHpV q, (155)
ˆ

BSppxq

Bx

˙

i

“ pp∆pxqi. (156)

Before we prove the main argument, we now explore a matrix expression of the p-Laplacian ∆p. We define a matrix Ap,x as

Ap,xpi, jq :“ aij |xi ´ xi|
p´2, (157)

and its degree-like matrix Dp,x as

Dp,xpi, jq “

" řn
j“1 Ap,xpi, jq if l “ i

0 if l ‰ i
(158)

Define the matrix Lp,x as

Lp,x :“ Dp,x ´ Ap,x. (159)
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We note that these matrix expressions depend on x except the p “ 2 case. Now,

pLp,xxqi “ Dp,xpi, iqxi ´

n
ÿ

j“1

Ap,xpi, jqxj (160)

“

n
ÿ

j“1

Ap,xpi, jqxi ´

n
ÿ

j“1

Ap,xpi, jqxj (161)

“

n
ÿ

j“1

Ap,xpi, jqpxi ´ xjq (162)

“

n
ÿ

j“1

aij |xi ´ xi|
p´1sgnpxi ´ xjq (163)

“ p∆pxqi. (164)

Thus, we can say that Lp,x is a matrix expression of the p-Laplacian, satisfying

Lp,xx “ ∆px. (165)

Then, by Prop. H.1, we can prove that

xJLp,xx “ SG,ppxq. (166)

Now we turn to the optimization problem Eq. (21). By using the Lagrangian multiplier method, the optimal solution satisfies
the following:

F px, λq :“ pSG,ppxqq ´ λpxi ´ xj ´ 1q (167)
BF

Bx
“ pLp,xx ´ λpei ´ ejq “ 0 (168)

BF

Bλ
“ xi ´ xj ´ 1 “ 0. (169)

From Eq. (168), we have

x˚ij “
λ

p
L`

p,x˚ij
pei ´ ejq. (170)

From Eq. (170) and Eq. (169), we have

λ

p

´

pL`

p,x˚ij
pi, iq ´ L`

p,x˚ij
pi, jqq ´ pL`

p,x˚ij
pj, iq ´ L`

p,x˚ij
pj, jqq

¯

“ 1. (171)

Following Eq. (170), we substitute λ{p from Eq. (171) into Eq. (170), and we have

x˚ij “

L`

p,x˚
ij

L`

p,x˚ij
pi, iq ` L`

p,x˚ij
pj, jq ´ 2L`

p,x˚ij
pi, jq

pei ´ ejq. (172)

Since p-resistance is an inverse of the energy, we obtain

rG,ppi, jq “ px˚ijJL`

p,x˚ij
x˚ij q´1 (173)

“ L`

p,x˚ij
pi, iq ` L`

p,x˚ij
pj, jq ´ 2L`

p,x˚ij
pi, jq (174)

“ pei ´ ejqJL`

p,x˚ij
pei ´ ejq (175)

The rest of the proof is same as the original proof in Thm. 6 in (Alamgir & Luxburg, 2011). The trick is that we do not have
to the exact form of Lp,x˚ij . Only this expression is enough to prove Theorem 4.1.
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w
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s t2w
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Figure 5: The example discussed in (Bridle & Zhu, 2013).

H.2. Original Context of Theorem 4.1

Originally in Sec. 5 (Alamgir & Luxburg, 2011), Thm. 4.1 when p “ 2 has a different interpretation. Nadler et al. (2009)
proves that the semi-supervised learning problem of p “ 2 case is meaningless if the number of vertices are infinite. Thm. 4.1
for p “ 2 supports this claim in (Nadler et al., 2009) for two-pole semi-supervised leaning problem for the following
way. Since the equivalent 2-resistance is known to converge to a meaningless function, the solution of the semi-supervised
problem is equivalently characterized by this meaningless function. Thus, the semi-supervised learning does not make
sense, if the number of the vertices are large. If the conjecture for p ą 1 case were proven, Thm. 4.1 can be interpreted that
for some range of p ą 1 two-pole semi-supervised learning problem is not meaningless, since the equivalent p-resistance
is shown not to converge to a meaningless one. Later year, independent of p-resistance, the statement “for some range
of p ą 1 semi-supervised learning problem is not meaningles” is proven by (Slepcev & Thorpe, 2019). Thm. 4.1 now
supports (Slepcev & Thorpe, 2019) from a p-resistance view.

H.3. Remark on the Existing Claims on Theorem 4.1

Finally, we discuss several existing claims on this theorem. First, we need to mention a small fixable mistake in the original
proof in (Alamgir & Luxburg, 2011) for the p “ 2 case. The original proof assumes that the solution to the semi-supervised
learning Eq. (21) when p “ 2 is that

x˚ij “ L`pei ´ ejq. (176)

However, this is not true since this does not satisfy the constraint

x
˚ij

i ´ x
˚ij

j “ pei ´ ejqJL`pei ´ ejq ‰ 1. (177)

Instead, the solution is given as

x˚ij “
L`pei ´ ejq

pei ´ ejqJL`pei ´ ejq
. (178)

Note that this corresponds to Eq. (172). However, this does not affected the rest of the proof, since the proof exploits only
x˚ij “ ρL`pei ´ ejq for ρ P R, and ρ does not matter. Thus, the validity of the original claim still remains.

Next, since Thm. 4.1 resolves the open problem in (Alamgir & Luxburg, 2011), there is an existing discussion on if
this statement is true or not. The work (Bridle & Zhu, 2013) claims that there is a counterexample to Thm. 4.1 in the
general p case. In the following, we argue that the discussion on the example in (Bridle & Zhu, 2013) does not work as a
counterexample.

The “counterexample” given in (Bridle & Zhu, 2013) is based on the example shown as Fig. 5. However, unfortunately, we
believe that there is invalidity in the discussion on this example. Firstly, we recall that

min
x

tSG,ppxq s.t. xs ´ xt “ 1u ‰ min
x

SG,ppxq, (179)

since minx SG,ppxq “ 0 when x “ c1, @c P R, while c1 does not satisfy the constraint of the left hand side. However, the
work (Bridle & Zhu, 2013) assumes the equality of Eq. (179), see the the first equality at the top of the left column in p.3
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Table 3: Dataset Summary. Since Hopkins 155 contains 155 different videos, we report the sum of the data points and sum
of the dimensions of videos. Also, Hopkins 155 dataset contains 120 2-class datasets and 35 3-class datasets.

ionosphere hop 155 2cls iris wine hop 155 3cls

# of class 2 2 3 3 3
size 351 31981 150 178 13983

dimension 34 3542 4 13 999

Table 4: Computational Time for the Experiment (unit:sec). Here we use E notation, e.g., E-6“ 10´6 or E1 =101. For
methods we use the same abbriviation as Table 1. Since “Rec-bi p” is a deterministic method, we only report time. Also,
since Hop contains multiple datasets, we only show the average.

2 clsss multi-class
Type Method ionosphere Hop 2 cls iris wine Hop 3 cls

ER k-med (a) p 1.37E1 ˘ 0.01E1 1.21E1 4.93E0 ˘ 0.01E0 1.30E-1 ˘ 0.13E-1 1.78E1
ER k-med p “ 2 3.76E0 ˘ 0.01E0 1.01E1 1.36E0 ˘ 0.00E0 9.07E-2 ˘ 1.05E-2 1.34E1
ER FF (a) p 9.71E-2 ˘ 0.32E-1 4.88E-1 5.45E-1 ˘ 0.33E-1 4.72E-2 ˘ 0.18E-2 8.01E0
ER FF p “ 2 8.71E-2 ˘ 0.12E-1 3.56E-1 4.21E-1 ˘ 0.12E-1 3.82E-2 ˘ 0.06E-2 6.45E0
ER p-Flow 1.46E1 ˘ 0.01E1 1.33E1 5.21 E0 ˘ 0.02E0 1.60E-1 ˘ 0.15E-1 1.81E1
ER ECT 1.01E-1 ˘ 0.10E-1 8.12E-1 2.03E-2 ˘ 0.42E-2 2.05E-2 ˘ 0.49E-2 9.26E-1
SC Rec-bi p 1.18E-1 8.11E-1 5.35E-1 9.07E-2 1.01E0
SC SC p-orth 8.60E-2 ˘ 0.01E-2 6.31E-1 4.78E-1 ˘ 1.65E-1 3.02E-2 ˘ 0.57E-2 8.10E-1
SC SC p “ 2 1.60E-2 ˘ 0.01E-2 3.43E-2 1.28E-1 ˘ 0.00E-1 8.78E-3 ˘ 0.00E-3 6.12E-2

of (Bridle & Zhu, 2013). Moreover, we note that

BSG,ppxq

Bxu
“

B

Bxu
pw|xs ´ xu|p ` 2w|xu ´ xv|p ` 3w|xs ´ xt|

pq (180)

“ p
`

w|xs ´ xu|p´1 ` 2w|xu ´ xv|p´1
˘

, (181)

and therefore

BSG,ppxq

Bxu
‰ p

`

´w|xs ´ xu|p´1 ` 2w|xu ´ xv|p´1
˘

, (182)

where the difference between Eq. (181) and Eq. (182) is the sign of the term w|xs ´ xu|p´1. 3 However, the work (Bridle &
Zhu, 2013) assumes the equality of Eq. (182), see the the third equality at the top of the left column in p.3 of (Bridle &
Zhu, 2013). In (Bridle & Zhu, 2013), these invalid equality assumptions of Eq. (179) and Eq. (182) derive the fundamental
relationship in order to bring a counterexample. The rest of the analysis in (Bridle & Zhu, 2013) is carried with this
relationship. Due to this invalidity, we believe that there are serious flaws in the claim that the example Fig. 5 leads to a
counterexample to Thm. 4.1. Hence, we claim that Thm. 4.1 holds with the proof in this section.

I. Details of the Preliminary Experiments
This section discusses missing details of preliminary experiments and additional experimental results.

I.1. Details of Preliminary Experiments

To begin with, we further explain the details of the experimental setting. We report the size of the dataset in Table. 3. Our
experiment was conducted on Mac Studio with M1 Max Processor and 32GiB RAM. Also, we use an Intel binary Matlab

3There is a slight difference between the definition of the p-resistance between ours and (Bridle & Zhu, 2013). We follow the definition
of (Herbster & Lever, 2009) and (Bridle & Zhu, 2013) follows the definition of (Alamgir & Luxburg, 2011). However, these two have
almost same properties. Moreover, while we write the equations in our form, this difference does not affect the discussion here. For more
details of the difference, see §6.1 in (Alamgir & Luxburg, 2011) or Sec. I.
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Figure 6: The ratio of the approximated value of p-resistance to the exact p-resistance, i.e., }L`ei´L`ej}
q
G,q{r

1{pp´1q

G,p pi, jq.
Also, the factor of the bound αq

G,p.

translated by Rosetta, which is a standard use in MacOS with Apple Silicon environment. We need to note that for the
comparison method Rec-bi (Bühler & Hein, 2009), originally, the algorithm is defined for p ≤ 2. Thus, we apply the same
technique for p ≤ 3. In (Bühler & Hein, 2009), in order to avoid the conversion to too close or too far local optimum, at the
step t (Bühler & Hein, 2009) minimizes Eq. (25) via the gradient descent method using the initial condition as the obtained
eigenvector of the previous step pt “ 0.9pt´1. If we increase the p, we use the same technique; pt “ pt´1{0.9 until p
reaches 5. Beyond 5, we use pt “ 2pt´1. When p “ 2, we know that 2-resistance is further computed as

rG,2pi, jq “ }L`ei ´ L`ej}2G,2 “ }pL`q1{2ei ´ pL`q1{2ej}2. (183)

The graph p-seminorm is the size m norm, while the latter is based on the size n norm. However, we use graph 2-seminorm
even for the p “ 2 case. The reason is that we needed to be consistent in the experiment since we observed numerical
round-off errors in the other methods. On the other hand, ECT (Yen et al., 2005) uses the square of 2-resistance. For this
method, we use }pL`q1{2ei ´ pL`q1{2ej}2 since the original paper (Yen et al., 2005) uses this.

Next, we discuss the computational time for the experiment. Due to its significant computational time, we parallelized the
distance computation for the exact method, while we did not use such a technique for the others. Thus, we first compare the
approximation of the p-reistance and the exact p-resistance. Next, we compare the computational time among the methods
except for the exact methods.

I.2. Computational Times of Experiments

In this section we discuss computational times of the experiment.

In Table 2, we compare the approximation by Eq. (20) and the exact computation of p-resistance by naively optimizing
Eq. (7) by the gradient descent. For ionosphere, iris, and wine, we made a graph for the best performing parameters in
Table. 1.

In Table 4, we compare the computing time for the the best performing parameters in Table. 1. We can see that ours are
slower than spectral clustering methods. This slowness is because ours takes Opmn2q while spectral clustering methods
using p-Laplacian are Opn3q-based convergence methods. Looking at the computational time for ECT, the time is similar
to the spectral methods since ECT is also the Opn3q method. The computing time on ECT further motivates this future
direction.

I.3. Comparison of the Values of Approximated and Exact p-Resistance

This section discusses the comparison of approximated and exact p-resistance. This experiment shows that the value is
approximation is tighter than Prop. 3.5.

This preliminary experiment aims to evaluate the quality of the approximation comparing to Thm. 3.3. To do so, we would
like to compute the ratio of approximation to the exact p-resistance as }L`ei ´ L`ej}

q
G,q{r

1{pp´1q

G,p pi, jq. Using Thm. 3.3,
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this ratio can be theoretically evaluated as

1 ≤
}L`ei ´ L`ej}

q
G,q

r
1{pp´1q

G,p pi, jq
≤ αq

G,p, αG,p :“ ~W 1{pCC`W´1{p~p. (184)

This experiment also aims to evaluate this inequality. We numerically computed the approximated p-resistance, exact
p-resistance, and αG,p. To compute αG,p, we use the same algorithm for the Table. 8, which is discussed in Sec. J.3 To
compute the approximated and exact p-resistance, we conducted with the following procedure. To create a graph, we used
µ “ 0.1, in order to make k-nn graph. This means that we use k “ t0.1nu. To make the comparison simple, we use an
unweighted graph. This is because if we incorporate weights, it is not trivial how αG,p behaves, and thus, the results might
not be a consistent of a comparison among different ps. The rest of the analysis was carried in the same procedure as Table 4.

The result is summarized in Fig. 6. We can see that the all the ratios are in the bound of Thm. 3.3. We also remark that using
Prop. 3.5 we have the bound as

αq
G,p ≤ m|q{2´1|, (185)

all of the plots of }L`ei´L`ej}
q
G,q{r

1{pp´1q

G,p pi, jq in Fig. 6 is obviously far lower than this bound. For this result we observe
the looser bound for larger p, since ~CC`~p ≤ ~CC`~8 assuming an unweighted graph. By incorporating the weight, we
might observe αG,p differently, since we do not know which is larger ~W 1{pCC`W´1{p~p and ~W 1{8CC`W´1{8~8.
Further, we have

αq
G,p “ ~W 1{pCC`W´1{p~q

p ≤
ˆ

wmax

wmin

˙q{p“q´1

~CC`~q
p. (186)

Seeing the current derived bound Eq. (186), the bound may be looser if we involve the weights and p is small and hence q is
large. A tighter bound particularly for smaller p is a possible future direction, but this might be a lower priority due to the
low performance at the smaller p. The reason is that, for small p, it is known that rG,ppi, jq converges to a meaningless
function (Alamgir & Luxburg, 2011; Slepcev & Thorpe, 2019) under certain graph building conditions. Also, possibly due
to this, our method performs better for larger p.

We remark on the large p observation. In the main text, we argue that “these correspond to the existing theoretical insight;
p-resistance with large p becomes meaningful function while 2-resistance is not (Alamgir & Luxburg, 2011; Slepcev &
Thorpe, 2019).” At a first glance, (Alamgir & Luxburg, 2011) seems to argue that “smaller p works”. However, this is due to
the difference of the definition. While we follow the p-resistance definition in (Herbster & Lever, 2009), in (Alamgir &
Luxburg, 2011) their p-resistance rAG,p is given as

rAG,ppi, jq “
1

minx
ř

ij a
1{pp´1q

ij |xi ´ xj |p{pp´1q s.t. xi ´ xj “ 1
(187)

“
1

minx
ř

ij a
q´1
ij |xi ´ xj |q s.t. xi ´ xj “ 1

. (188)

Hence, in (Alamgir & Luxburg, 2011) the parameter p works in the opposite way; if we mean large, p (Alamgir & Luxburg,
2011) means smaller p and vice-versa. Despite this slight change of the definition, p-resistance in (Herbster & Lever, 2009)
and (Alamgir & Luxburg, 2011) shares almost the same properties. More discussion can be seen in §6.1 in (Alamgir &
Luxburg, 2011).

I.4. Code for the Experiments

We leave a remark on our code in the supplemental material. Although we include an implementation of Alg. 1, at this stage
we include a part of the whole codebase due to the copyright of the library reasons. In the final version, we plan to reduce
the blockers to publish the code as much as possible. Moreover, we plan to publish our implementation at Github, an online
codebase repository service.

J. More Discussion on αG,p

This section gives more observations on αG,p. In practice, we want to know how close to the exact value and how far from
this upper bound the value of ~W 1{pCC`W´1{p~p is. In the following, we argue that in the general case αG,p is far less
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than the bound given in Prop. 3.5.

Before we get into the detail, we give a brief overview of an interpretation of αG,p. From the definition of z, z is a mapping of
fq{ppCyq{}y}

q
G,q from Rm Ñ ImpCq. Comparing the equality condition Eq. (114), we observe that if fq{ppCyq P ImpCq,

we obtain the tightest bound since }z}G,p “ }y}
´1
G,q. By looking at this, we observe that the αG,p is the worst possible

“overflow” of the mapping from ImpCq from Rm, in a sense of the weighted p-norm.

J.1. Condition Number Point of View

To prove the bound of Prop. 3.5, we only use ~MM`~2 “ 1 and Lemma B.1, which holds for any matrix M . Hence, we
can say that this is the “worst” bound and we expect a far lower value of ~CC`~p for a general incidence matrix of graph.
To gain some qualitative observation on how close between the exact and approximation, we further decompose αG,p. By
using the submultiplicity and Lemma B.2,

αG,p “ ~W 1{pCC`W´1{p~p ≤ ~W 1{p~p~CC`~p~W´1{p~p ≤ ~CC`~pw
1{p
max{w

1{p
min (189)

≤ ~C~p~C`~pw
1{p
max{w

1{p
min (190)

where wmax:“maxℓ wℓ and wmin :“ minℓ wℓ. In numerical analysis, the term ~C~p~C`~p is called as a condition
number of the matrix C (Saad, 2003). A condition number is related to the “difficulty” to numerically solve the linear
equation Cx “ y. The larger the condition number gets, the more difficult to solve the linear equation. The linear equation
is difficult to solve if we can make one or more pairs of column or row of C close to parallel by elementary operations.
However, by construction of incidence matrix, no pairs of column or row of the incidence matrix are close to parallel. Thus,
we expect that the condition number of C will not be large, and hence we expect a smaller value of αG,p than Prop. 3.5 in
general. For the specific graphs, we theoretically show this in the next section.

J.2. Bound of αG,p for Some Specific Graphs

In this section we give a constant bound of αG,p for some specific graphs. By this we can independently bound αG,p of m.

Now, for the specific cases, we have the following.

Proposition J.1. If a graph is complete or cyclic, then ~CC`~p ≤ 4 and hence αG,p ≤ 4w
1{p
max{w

1{p
min.

For these specific graphs, we can bound the p-resistance (Thm. 3.3) by a constant. We now divide the proof into the complete
case and the cyclic case.

J.2.1. COMPLETE CASE

First, we obtain the pseudoinverse of C of a complete graph.

Lemma J.2. For an incidence matrix C 1 for a complete graph,

C
1
` “

1

n
C

1
J (191)

Proof. For a graph Laplacian L of unweighted graph can be written as

L “ nI ´ 1J1, (192)

and thus

Lij “

"

n ´ 1 if i “ j
´1 if i ‰ j

. (193)

Also, we know that

L “ C
1
JC 1. (194)
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Now we consider the the vector xij P Rn as

xJ
ij :“ p0, . . . , 0,

ith element
hkkikkj

1 , 0, . . . , 0,

jth element
hkkikkj

´1 , 0, . . . , 0q
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

size n

. (195)

Note that this xij is one row of the incidence matrix C 1. Now we get

pLxijql “

$

&

%

pn ´ 1q ˆ 1 ` p´1q ˆ p´1q “ n if l “ i
1 ˆ p´1q ` pn ´ 1q ˆ p´1q “ ´n if l “ j
p´1q ˆ 1 ` p´1q ˆ p´1q “ 0 otherwise

(196)

“ npLxijql. (197)

Since xij is one column of the transpose of the incidence matrix C
1
J,

LC “ C
1
JC 1C

1
J “ nC

1
J ðñ

ˆ

1

n
C

1
J

˙

C 1

ˆ

1

n
C

1
J

˙

“
1

n
C

1
J (198)

Also,

pLCqJ “ C
1

C
1
JC

1

“ nC
1

ðñ C
1

ˆ

1

n
C

1
J

˙

C
1

“ C
1

(199)

From Eq. (198) and Eq. (199), the matrix 1{nC 1 satisfies the definition of C`, which leads to the claim.

Note that ~CC`~1 “ ~CC`~8 due to the symmetricity of CC`.

~CC`~p ≤ ~CC`~8 ≤ ~C~8~C`~8 “ 4
n ` 1

n
≤ 4. (200)

J.2.2. CYCLIC CASE

In the cyclic graph, m “ n, i.e., the number of vertices is equal to the number of edges. Thus, the incidence matrix C
is square. However, in order to avoid confusion, in the following we use m and n. Now, we define the incidence matrix
C P Rmˆnof the cyclic graph as

ci1 “

$

&

%

´1 when i “ 1
1 when i “ 2
0 otherwise

(201)

ci2 “

$

&

%

´1 when i “ 1
1 when i “ n
0 otherwise

(202)

cij “

$

&

%

´1 when i “ j ´ 1
1 when i “ j
0 otherwise for

for j ≥ 3. (203)

Before we explore C`, we introduce cyclic shift operator of the vector. Given the vector a, the shift operator plq “cyclic
shifts” the element, as

aplq “ pan´l`1, an´l`2, . . . , an, a1, . . . , an´lq
J. (204)

Thus, ap0q “ a. Also, we define the reverse operator rev for a vector a as

revpaq “ pan, an´1, . . . , a1q. (205)
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Figure 7: Heatmap plot for the matrices C, B “ C` and CC` of the cyclic graph for n “ 20.

We also define the vector ξ P Rn as

ξ “ p1{2 ´ 1{2n, 1{2 ´ 3{2n, . . . , 1{2 ´ p2i ´ 1q{2n, . . . ,´1{2 ` 1{nq. (206)

Now, we define a matrix B as

B1¨ “ ξp1q (207)

B2¨ “ revpξp0qq “ revpξq (208)

Bj¨ “ ξpj´1qfor j ≥ 3, (209)

where Bi¨ denotes i-th column of B. We plot a heatmap of C and B for the illustrative purpose.

Now we prove that C` “ B. To claim that, it is enough to prove that BC “ I ´ 1J1{n (Bapat, 2010). From the
construction,

pBCqii “ ξ1 ´ ξn “ 1{2 ´ 1{2n ´ p´1{2 ´ 1{2nq “ 1 ´ 1{n. (210)

Also, when i ‰ j,

pBCqij “

$

&

%

´ξi´1 ´ ξn´i`1 when when j “ 1

ξ
pjq

i`1 ´ ξ
pjq

i when when 2 ≤ j ă n,
ξn´i`1 ` ξi`1 when when j “ n,

(211)

“ ´1{n. (212)

Thus, we can say that B “ C`. By doing a similar computation, we get

CC` “

$

&

%

1 ´ 1{n when i “ j
1{n when i “ 2 or j “ 2, i ‰ j

´1{n otherwise
(213)

We also plot a heatmap for CC` for the illustrative purpose in Fig. 7(c). Thus, applying Lemma B.2, we get

~CC`~p ≤ ~CC`~1 “ max
i

n
ÿ

j“1

|pCC`qij | “ 2 ´ 1{n ≤ 4. (214)

We leave a brief note for other concrete examples. Several attempts are made to obtain the concrete form of C` for the
specific graph (Azimi & Bapat, 2018; Azimi et al., 2019). However, due to their abstract ways to characterize the graph such
as distance or cut, we think that it is hard to immediately obtain a non-trivial bound from these results. Also, C` for tree is
studied (Bapat, 1997). However, since we know the exact representation of p-resistance for tree in Thm. 3.4, we do not have
to discuss the tree case.
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Figure 9: The example where the approximated value is far lower
than the exact value. See J.3 for details.

Table 5: The values of approximated 1-Resistance for
(a). The exact 1-resistance for this graph is 1{δ.

ζ
5 10 20 40 80

δ

5 0.2 0.1 0.05 0.025 0.0125
10 0.2 0.1 0.05 0.025 0.0125
20 0.2 0.1 0.05 0.025 0.0125
40 0.2 0.1 0.05 0.025 0.0125
80 0.2 0.1 0.05 0.025 0.0125

Table 6: The values of approximated p-Resistance for
(b). The exact 1-resistance for this graph is 1{pδ ` 1q.

ζ
5 10 20 40 80

δ

5 0.46 0.33 0.21 0.13 0.07
10 0.61 0.48 0.33 0.21 0.12
20 0.75 0.64 0.49 0.33 0.20
40 0.85 0.77 0.65 0.49 0.33
80 0.92 0.87 0.79 0.66 0.50

J.3. Additional Experiments for Bound of Approximation

This section discusses some additional experiments for bound of approximation in Prop. 3.5. For the real datasets we
confirmed that the approximation over exact }L`ei ´ L`ej}

q
G,q{r

1{pp´1q

G,p pi, jq is far below the bound and its worst case, in
Fig. 6. In this section, we further investigate the αG,p of the real datasets. Moreover, we further investigate artificial dataset
that the ratio is close to the worst dataset, and we discuss why it happens.

J.3.1. PLOT OF ~CC`~p.

As we discussed in Sec. I.3, since αG,p “ ~W 1{pCC`W´1{p~p involves p in the matrix as well as norm, it is somewhat
difficult to how αG,p behaves by changing p. Thus, we focus on the unweighted graph; we numerically investigate the
unweighted }CC`}p that is a matrix norm evaluated in Eq. (186). We plot }CC`}p for wine, ion, and iris with the µ when
k-medoids performs the best in Fig. 8. We use the matrix p-norm estimation algorithm proposed by (Higham, 1992). We
plot p Ñ 1 and p Ñ 8 as the exact value. We remark on the estimation of the matrix norm by (Higham, 1992); let ξ be
the output by the estimation of the matrix norm of CC`, then ~CC`~p{m|1{2´p| ≤ ξ ≤ ~CC`~p. We note that using
Lemma B.2 and symmetricity of CC`, we have

~CC`~p ≤ ~CC`~1 “ ~CC`~8, (215)

whose exact value is computable. Thus, although we need to use estimation algorithm for ~CC`~p, we can exactly compute
the bound of this norm.

Fig. 8 shows that }CC`}p is far lower than the worst bound in Prop. 3.5. Moreover, Fig. 8 shows that the estimation
algorithm proposed by Higham (1992) outputs is reliable results on this problem since this follows theory in terms of
~CC`~p1 ≤ ~CC`~p if 2 ă p1 ă p or p ă p1 ă 2, also Eq. (215). Also, even only looking at ~CC`~1 “ ~CC`~8,
which is exactly computable the bound of ~CC`~p, we have far lower value than the worst bound, especially in larger p
where our clustering algorithm works better.
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Table 7: The values of ~CC`
~1{m1{2 for the graph

(a). If this value is close to 1, we have a looser bound.

ζ
5 10 20 40 80

δ

5 0.51 0.33 0.23 0.16 0.11
10 0.41 0.27 0.19 0.13 0.09
20 0.31 0.2 0.14 0.1 0.07
40 0.23 0.15 0.1 0.07 0.05
80 0.16 0.11 0.07 0.05 0.04

Table 8: The values of ~CC`
~1{m1{2 for the graph

(b). If this value is close to 1, we have a looser bound.

ζ
5 10 20 40 80

δ

5 0.70 0.55 0.43 0.33 0.24
10 0.68 0.59 0.51 0.41 0.32
20 0.59 0.56 0.54 0.49 0.41
40 0.47 0.48 0.51 0.52 0.48
80 0.36 0.38 0.44 0.49 0.51

Table 9: The values of condition number
~C~1~C`

~1 for (a).

ζ
5 10 20 40 80

δ

5 20.4 45.2 95.1 195.1 395
10 40.4 90.2 190.1 390.1 790
20 80.4 180.2 380.1 780.1 1580
40 160.4 360.2 760.1 1560.1 3160
80 320.4 720.2 1520.1 3120.1 6320

Table 10: The values of condition number
~C~1~C`

~1 for (b).

ζ
5 10 20 40 80

δ

5 24.4 49.7 101.8 219.3 457.7
10 51 136.7 346.2 812.8 1790
20 120.2 362.3 1035.1 2702.6 6432.7
40 266.2 871.6 2768.2 8119.5 21449
80 563.8 1943.9 6670.3 21713 64438

J.3.2. EXAMPLE WHERE APPROXIMATION IS FAR LOWER THAN THE EXACT VALUE

Lastly, we discuss an example where the approximation is far lower than the exact value and how this happens. We consider
a graph depicted in Fig. 9. First, we see a graph in Fig. 9 (a). To build this graph, first consider the line graph, where the ζ
vertices are in line. This graph is constructed with δ lines of diameter ζ each lines start vertex is glued to each other lines
“start vertex” and similar to the “end vertices”. For Fig. 9 (b), we add one edge to the graph in Fig. 9 between the start vertex
and end vertex.

We now compare with approximation and the exact value of 1-resistance between the start vertex and end vertex. As
we discussed in Sec. G, we compute the exact 1-resistance between i and j as the minimum cut’s inverse. Thus, for (a)
rG,1pstart, endq “ 1{δ and for (b) we have rG,1pstart, endq “ 1{pδ ` 1q. We then compute the approximated values and
~CC`~1 for Fig. 9. We give a result in Tables 5–8. From Tables 5 and 6, we observe that we have a far less accurate
approximation for graph (b) than that for graph (a). In Tables 7 and 8, we observe that a far larger value of ~CC`~1 for the
graph (b) than that for the graph (a). We also observe that comparing with ~CC`~1 of the graph constructed from the real
dataset in Fig. 8, we see a far larger value of ~CC`~1 for the graph (b). The larger value of ~CC`~1 might be the reason
why the approximation of the 1-resistance of graph (b) is far worse than the graph (a).

We now discuss why ~CC`~1 for graph (b) is far larger than that for graph (a). We now revisit the condition number
argument in Sec. J.1. The condition number is the stableness of the linear equation of the matrix. The stable linear equation
is even if we add small value ϵ to the linear equation, i.e., Cx “ y ` ϵ, the solution x is almost unchanged. If we add
perturbation on each edge in graph (a), the graph can absorb the perturbation since each line graph is almost independent.
However, on the graph (b), each line graph becomes dependent due to the additional edge. Moreover, the start and the end
vertex are like “pivots” of the graph. The perturbations might be widely spread over the graph by connecting two pivots. By
this spread, graph (b) becomes unstable, while graph (a), where we do not connect the pivots is more stable. In Tables 9
and 10 we see that graph (b) is far more unstable than graph (a).

Finally, we argue that we do not observe this phenomenon in the real setting. In the example of graph (b), the unstableness
comes from the sparse connection over the graph and connection of the “pivots” over such a spares graph. In a dense graph
such as a complete graph, we saw far lower ~CC`~1 as we observe in Sec J.2. As we saw in the real dataset case, we can
assume that there is a denser connection over the graph, even between the clusters.

K. On Difficulties of The Exact Solution
In this section, we briefly explain the difficulties to obtain the exact solution of the resistance. Again, we consider the
minimization problem Eq. (21). The Lagrangian multiplier method gives Eq. (168) and Eq. (168). From Eq. (168), the
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optimal solution x satisfies

0 “ p∆px ´ λpei ´ ejq (216)

To solve this problem, we want to consider ∆`
p , which is “generalized inverse” function ∆p, defined as

∆`
p p∆pp∆`

p pxqqq “ ∆`
p x (217)

Recall that we can write as

∆p “ CJWfp´1pCxq. (218)

For the convenience of notation, we write

fw,p “ WfppCxq. (219)

If there exists α P KerpCq s.t.

f´1
w,p´1pC`Jx ´ αq P ImpCq, (220)

the ∆`
p is given as

∆`
p pxq :“ C`f´1

w,p´1pC`Jx ´ αq, (221)

The reason is as follows. We get

∆pp∆`
p pxqq “ CJfw,p´1pCC`f´1

w,p´1pC`Jx ´ αqq (222)

“ CJfw,p´1pf´1
w,p´1pC`Jx ´ αqq (223)

“ CJpC`Jx ´ αqq (224)

“ CJC`Jx. (225)

The second line follows from the assumption that f´1
w,p´1pC`Jx ´ αq P ImpCq. Thus,

∆`
p p∆pp∆`

p pxqqq “ C`f´1
w,p´1pC`JCJC`Jx ´ αq (226)

“ C`f´1
w,p´1pC`Jx ´ αq (227)

“ ∆`
p x. (228)

From this property, if we substitute

x “ ∆`
p

ˆ

λ

p
pei ´ ejq

˙

(229)

the Eq. (216) satisfied. Therefore, the next question is what α is. However, we do not know even if such α satisfying
Eq. (220) exists or not.
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